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PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established to expand and
disseminate knowledge about earthquakes, improve earthquake-resistant design, and implement
seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis is on
structures in the eastern and central United States and lifelines throughout the country that are found
in zones oflow, modemte, and high seismicity.

NCEER's research and implementation plan in years six through tell (1991-1996) comprises four
interlocked elements, as shown in the figure below. Element I, Basic Research, is carried out to
support projects in the Applied Research area. Element II, Applied Research, is the major focus of
work for years six through ten. Element lll, Demonstration Projects, have been planned to support
Applied Research pr~iects, and will be either case studies or regional studies. Element IV,
Implementation, will result from activity in the four Applied Research projects, and from Demonstm­
tion Projects.

ELEMENT I
BASIC RESEARCH

• Seismic hazard and
ground motion

• Solis and geotechnical
engineering

• Protective and Intelligent
systems

• Societal and economic
studl..

ELEMENT II
APPLIED RESEARCH

• The Building Project

• The Nonstruetural
Components Project

• The Lifelines Project

The Highway Project

ELEMENT III
DEMONSTRATION PROJECTS

Ca.. Studi..
• Active and hybrid control
• Hospital and data processing

facilities
• Short and medium span bridges
• Watar supply systems In

Memphis and san Francisco
Regional Studies

• New Yorit City
......I..ippl Valley
• san Francisco Bay Area

ELEMENT IV
IMPLEMENTATION

• ConferencesJWorbtto.-
• EducatlonlTralnlng cou.....
• Publications
• Public AWl!""'"

Research in the Building Project focuses on the evaluation and retrofit of buildings in regions of
moderate seismicity. Emphasis is on lightly reinforcedconcrete buildings, steel semi-rigid frames, and
masonry walls or infills. The researchinvolves small- and medium-scaleshake table testsand full-scale
component tests at several institutions. In a parallel effort, analytical models and computer programs
are being developed to aid in the prediction of the response of these buildings to various types of
ground motion.
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Two of the short-term products of the Building Project will be a monograph on the evaluation of
lightly reinforced concrete buildings and a state-of-the-art report on unreinforced masonry.

The protective and intelligent systems program constitutes one ofthe important areas ofresearch
in the Building Project. Current tasks include the following:

I . Evaluate the performanceoffull-scale active bracingand active mass dampers already in place
in terms ofperformance, power requirements, maintenance, reliability and cost.

2. Compare passive and active control strategies in terms of structural type, degree of
effectiveness, cost and long-term reliability.

3. Perform fundamental studies ofhybrid control.
4. Develop and test hybrid control systems.

The workpresented in this report represents one part ofthefull-scale active control implementation
project focusing on the development ofmore efficient control algorithms. Since peak response is
closely related to structural safety, control algorithms which provide improved peak response
reduction are desirable. A class ofnonlinear control algorithms arepresented in this reportfor this
purpose. Extensive simulation and experimental results presented in this report sho''; that the
proposed nonlinear control laws can be more effective than tradilionallinear control laws inpeak
response reduction. The successful accomplishment ofthe experiments indicates that the implemen­
tation ofnonlinear control laws in practice present no inherent difficulties and their design can be
carried out following the same procedures as in the linear control case. Good agreement between
analytical and experimental results makes itpossible to extrapolate the nonlinearcontrol results/or
potential full-scale structural applications.
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ABSTRACT

linearquadratic regulatorhasbeen used extensively in manycontrol systems designedfor
structural control applications due to its stability and robustness. Recent results obtained
from simulation. model experiments. and full-scale structural applications. however, show
that it is difficult to employ linear feedback control laws to produce a significant peak
response reduction when the peak response occurs during the first few cycles of the
time history. In this report, a class of nonlinear control algorithms are proposed which
can provide improved peak response control performance. Through extensive simulation
studies and experimental verification in the laboratory using a model structure, it is shown
that these nonlinear control laws can significantly improve peak response reduction under
the same constraints imposed on the control resources as in the linear quadratic regulator
case.
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SECTION 1

INTRODUCTION

In recent years, remarkable progress has been made in research and implementation of

active structural control technology for structural protection against environmental loads.

It is now at the stage where actual systems have been designed, fabricated and installed

in full-scale structures (Soong, et aI., 1991; Reinhom, et aI., 1993). In most of the operat­

ing systems, linear control laws based upon some quadratic performance criteria are

being used since they are best understood and they provide stable and robust controlled

performance for the structures.

An important consideration in structural control is to reduce the peak structural

responses in order to prevent possible structural damage due to severe environmental

loads. However, the results obtained from simulations, model experiments and full-scale

structural applications show that it is difficult to employ quadratic performance criteria and

linear feedback control laws to produce a significant peak response reduction when the

peak response occurs during the first few cycles of the time history, which is usually the

case under seismic ground excitations (Soong, 1990; Soong and Reinhom, 1993). This

is somewhat expected since the weighted sum of the vibration energy and control energy

is minimized in linear quadratic control laws but this minimization does not guarantee min­

imization of he maximum response. How to suppress the initial large responses, there­

fore, becomes a problem of practical importance as active control technology becomes

more common in civil engineering.

A more effective control performance criterion is clearty one related to the minimiza­

tion of some function of the maximum response, which has been studies by several

authors (Sarma and Kozin, 1971; Glover and Schweppe, 1971; Cortess and Leitmann,

1981; Chemousko, 1982). Unfortunately, the existence of an implementable solution for

this nonlinearoptimal problem has not been clearly established at this time. Lee and Kozin

(1985, 1986) investigated the bounded state control of linear structures based on an
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extension of the Lyapunov function method; however, in their procedure, the external

input must be known completely at the beginning, which is not possible in, for example,

the earthquake case. Chuang and Wang (1991) introduced an additional state constraint,

the oscillation amplitude, into the linear quadratic control law. By adjusting the weighting

matrix at different response amplitudes, they derived a bounded state control approach

based on the linear control law. This procedure, however, is available only in the scalar

case and it alse requires some knowledge of the input.

Alternatively, a class of nonlinear control laws based on the minimization of higher­

order performance criteria was developed mainly for control of mechanical and electrical

systems (Rekasins, 1964; Bass and Webber, 1966; Speyer, 1976; Jacobson, 1977;

Suhardjo et aI., 1992). The theoretical basis for employing higher-order performance cri­

teria is that minimizing the maximum response can be approximated by minimizing a per­

fonnance function of this type. That is, a minimax criterion of the type

min max g [z (t) ]
U t

(1.1 )

where Z(t) represents the state vector of the structure, g [z (t) ] denotes a positive def­

inite scalar function of Z (t) , and u is the corltrol law to be chosen, can be approximated

by the criterion

min
u

T

J
2m

{g[Z(t)]} dt
o

(1.2)

for large m , since (Taylor, 1958)

{

T } 1/(2m)

lim IV(t)1 2m
dt = sup\f(t) I

m~oo 0 t
(1.3)

Generally, the integrand in Eq. (1.2) can be replaced by a finite (or infinite) sum of positive

definite homogeneous multinomial forms of degree 2m (m = 1,2, . . . ).

Practical applications of these control laws have shown a good control efficiency from

the viewpoint of peak response reduction. On the other hand, Bang-Bang control laws,

based on minimizing the vibration energy subjected to maximum control force constraint,

have also shown a good ability to suppress large responses (Bellman, et. aI., 1956;
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Wonham and Johnson, 1964; Bryson, 1985; Meirovitch, 1990). Recently, Indrawan and

Higashihara (1993) introduced a Bang-Bang control law to the control of a single-degree­

of-freedom structure with an active mass damper subjected to seismic loads. Simulation

results show that, keeping the same maximum control force, the linear control law gives

a maximum displacement of 1.99 mm, while the Bang-Bang control law gives a maximum

displacement of 1.11 mm. Remarkable control efficiency can be achieved by using the

proposed Bang-Bang control law. But unfortunately, as this paper stated, servo-hydraulic

actuators, which are popular control force delivery devices, are not suitable for this kind

of control laws due to high-speed switching of control ~orces. Therefore, some modifica­

tions are necessary for practical implementation of Bang-Bang control laws in civil engi­

neering.

The work presented in this report is focused on the development of implementable

nonlinear control laws which can provide improved peak response control perfonnance

under the same constraints imposed on the control force and other resources as in the

linear control law case. First, five different nonlinear control laws, based on both higher­

order perfonnance criterion and Bang-Bang control theory, are proposed in Section 2. The

maximum control force constraint is imposed on these nonlinear contro/laws for practical

consideration. Then, in Section 3, extensive parametric studies are performed, especiall~'

to identify the regions of effectiveness for nonlinear parameters. The influence of the max­

imum control force constraint is evaluated. Based on the typical parameters selected in

section 3, a series of comprehensive control experiments are carried out in the laboratory

using model structures with ground excitations supplied by a shaking table. Section 4 is

devoted to the presentation of the experimental results. The effectiveness of the proposed

nonlinear control laws in peak response reduction is demonstrated experimentally. Finally,

good agreement between numerical simulations and experimental results leads to the

conclusion, in Section 5, that implementation of the proposed nonlinear control laws does

not bring inherent difficulties to achieving a real enhancement of structural control perfor­

mances.

1-3



SECTION 2

CONTROL ALGORITHMS

2.1 Brief Review of Classical Linear Quadratic Regulator (LQR)

Consider a general linear building structure modelled by an n-degree-ot-freedom lumped

mass-spring-dashpot system. The matrix equation of motion of the structural system,

subjected to a horizontal earthquake ground acceleration 1'0 (I) can be written as

Mx (I) + ex (I) + Kx (I) = Du (I) + mxo(t) (2.1)

where x (t) = [x, x2, . . . ,x] T is an n -dimensional vector of relative displace-
1 n

ments, u (t) is a r-dimensional control force vector, D is an n x r matrix denoting the lo-

cation ot the controllers, M is an n x n diagonal matrix with jth diagonal element m .•
J

T
m =- [m I' m2, . . . , mn ] ,and C and K are n x n tn-diagonal damping and stiff-

ness matrices, respectively. In the above, the superscript T indicates vector or matrix

transpose.

In the state-space representation, Eq. (2.1) becomes

zU) = AZ(I) +Bu(l) +Wi'O(I)

where

(2.2)

Z(I) = fx (!)] ; A= [ 0
lX(I) _M-1K

In classical linear quadratic regulator (LOR), the control force is linear in the state

vector z(t) (800ng,199O), i. e.,

_ T
U (t) =Gz (t) = -R IB pz (t)

2-1
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in which the control gain matrix G is found by minimizing

I
1 f T T

J = 2 Hz (t) Qz (t) + U (t) Ru (t) ]dt
o

(2.5)

where Q is a 2n x 2n positive semi-definite weighting matrix and R is a r x,. positive

definite weighting matrix. In Eq. (2.4), P is the Riccati matrix which can be obtained by

solving the approximated time invariant Riccati matrix equation

(2.6)

As seen from Eq. (2.5), the linear control law derived above, while effective in

reducing the structural response in the time-averaged mean-square sense, may not be

effective in reducing the peak response, particularty when the peak response occurs

near the beginning of the excitation interval. Since peak response reduction is of

practical importance in structural control, other forms of the control law may be more

desirable. A natural candidate is a control law which is nonli~car in the state vector in

order that the control force be more sensitive to larger response values.

2.2 Higher-Qrder RegulBtor Formulation

In order to have a performance index that is more sensitive to larger response values,

higher-order terms of the response vector are introduced into the performance index as

follows:

1 I
f

[ T ( T) ( T ) T -. T ( T) T ]J = 2 J Z Qz 1 + (lIZ PZ + alz PZ Z PBR -B pz 1 + (lIZ pz + U Ru dt (2.7)
o

in which Q and R are the same as in Eq. (2.5), (l is a nonlinear feedback weighting
1

factor, and P is an unknown symmetric matrix. In minimizing this kind of a performance

index, not only the total energy but also its higher order terms are minimized. which
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should lead to a more effective control law in terms of maximum response control.

Following the same procedure as in the linear quadratic regular case, one can first

form the Hamiltonian as

I[ T ( T) ( T ) T - T ( T) T ]:J{=i zOz I+(XIZPZ + (X1ZPzZPBRIBPZ I+(XIZPZ +uRu

+'A.T [Az + Bu + wxo-z]

The necessary conditions for optimal centrol are

(2.8)

iJll= 0
dU

')..T _ (J:J{ = 0
dz

(2.9)

By carrying out necessary partial derivatives of ~ with respect to u and z, one obtains

(2.10)

~(t) =- AT'A. - ( 1+ a
1
z

1
pz)oz-( a

1
z
T
Qz)pz

-( 1+ a
1
zTpz)( (XIZTpZ)PBR-IBTpZ

-( I + al~~tpz)( (XIZTPBR-IBTpz)pz

-( (XIZTpZ)(a1;/PBR-1sTpz)pz

(2.11)

The set of Eqs. (2.2), (2.10) and (2.11) provides the optimal solution for z (t), U (t) and

'A. (t) . Once the form of A(t) is assumed according to a prescribed control strategy, the

optimal control force can be derived.

In view of the non-quadratic terms in the performance index, a nonlinear feedback

control law appears to be appropriate. Hence, let A. (t) be of the fORn

(2.12)
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where P is a 211 x 2" matrix to be determined. Taking the derivative of A. (t) with respect

to time t, one has

Substituting Eq. (2.12) into Eq. (2.10), the control law is found to be

-( T) _ T
u(t)= l+alzPZRlBPz

If the input is neglected, Eq. (2.2) becomes

Substituting Eq. (2.15) into Eq. (2.13), the derivative of A. (t) is

Equating the right-hand sides of Eqs. (2.11) and (2.16) leads to

II +a.1ZTpZ)l PA+ ATp - PBR-1aTp + Q)z­

[alzT(PA+ATp-PBR-lSTp+ a)z]pz =0

which holds if and only if the following equation is satisfied:

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

This is seen to be the standard matrix Riccati equation. There are many solution

algorithms which can be used to determine the Riccati matrix p. Finally, the substitution

of pinto Eq. (2.14) produces the desired control law. Obviously, for small response Z(I)

or small weighting factor a I U (t) reduces to Eq. (2.4), which is the standard linear
1
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control law based on the quadratic performance criterion. In this report, we call Eq. (2.14)

Nonlinear Control Algorithm 1.

2.3 Power Series Feedback Control Law

It is noted that in Eq. (2.14) the nonlinear term is of the third order of Z (t) . A natural

extension is to include higher-order terms of Z (t) in the form

2 4
(X,2 3 (X.2 5

U (t) = Gz (t) + 3TGz (t) + s! Gz (t) +

in which

(2.19)

(2.20)

(X2 is also a nonlinear feedback weighting factor and sh (x) is the hyperbolic sine

function. Equation (2.19) is called Nonlinear Control Algorithm 2 here.

2.4 Polynomial Velocity Feedback Control Law

In Eq. (2.14) the feedback control force includes both displacement feedback and

velocity feedback. Generally, velocity feedback dominates the control force. Therefore,

another two nonlinear velocity feedback control laws, enhanced by a quadratic term in

velocity or displacement, are proposed specially for single-degree-of-freedom (SooF)

systems. They are

u(t) = g~(t) + [a3i(t)]gxi(t)

u(t) = g~(t) + [a4i(t)]g~(t)

(2.21)

(2.22)

where g:.i is an element of control gain vector g = [g~t g,:tl . In tum, Eq. (2.21) and Eq.
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(2.22) are called Nonlinear Control Algorithms 3 and 4, respectively.

2.5 Inverse Order Feedback Control Law

All of the control laws presented above provide the control forces which are directly

proportional to some powers of the response z (t) . In practical applications, however,

due to necessary control force limitations, a control force constraint is usually imposed

on the nonlinear control laws, which is difficult to deal with theoretically. In view of this

requirement, a control law which is inversely proportional to some powers of the

response is suggested below.

First consider a SDOF system. If performance index takes the form

/
1 I T

J = 2 fez (t)QZ(t)Jdt
o

and subjected to the maximum control force constraint

max Iu (t) I S; Ub

then from Bang-Bang control theory, we know that the optimal control force is

(2.23)

(2.24)

(2.25)

in which A(t) is the co-state vector and sgn [xl denotes the signum function. When

velocity feedback is dominant in the control force, we can approximate u (t) as

. x(t)
u(t) =-ubsgn[x(t)} = ub\x(t)1

In the linear control case, the maximum control force is approximately

maxlu(t)1 =g:t(x)~.

2-6
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where (x)~.. is the absolute maximum of relative velocity during [0, tfl under linear

control. In the nonlinear control case, when keeping the same maximum control force as

in the linear control, Eq. (2.26) becomes

where

( ) x(t) (.) L ( ) • ( )
U t = gi Ix (t) I x ~.. = Y t g:i X t (2.28)

y(t) = (x)~••
Ix (t) I 1.0 S Y (t) S Ymax (2.29)

represents a time-variant amplification factor which is an inverse function of the velocity

response and is bounded by Ymax in order to prevent y(t) from becoming unbounded as

x(t) approaches zero.

F~r a MDOF system, the control force vector corresponding to Eq. (2.28) takes the

form

and the top floor response is chosen to form y (t) , i.e.,

(2.30)

1.0 S y(t) S Ymax (2.31)

where subscript n represents the top floor and CXs is a nonlinear weighting factor. Finally,

Eq. (2.30) is called Nonlinear Control Algorithm 5.

To sum up, all five nonlinear control algorithms proposed in this report are listed in

Table 2-1.
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2.6 Maximum Control Force Constraint

The possibility of reaching the maximum limit in the control force requirement is a

desirable condition in order to enhance the control effectiveness. However, the demand

on the control force for the nonlinear control laws presented above depends on the

frequency content of the forcing term and on the amplitude of the external excitation.

This direct dependency on the amplitude of the external excitation is not a desirable

characteristic in designing active devices. Indeed, difficulties in determining the control

force requirement related to stochastic behavior of the external excitation are increased

by the nonlinearity of the controller. Moreover, similar reasons do not permit one to easily

conduct comparative studies between the pertormance of nonlinear algorithms and the

classical LOR. Therefore, a maximum control force constraint, exactly the same as Eq.

(2.24) in the nonlinear control algorithm 5, is added to the nonlinear control algorithms 1

to 4. Thus, in order to evaluate the performance of the nonlinear algorithms, a reference

level of performance for the system will be determined by a specified level of

performance of the linear control algorithm (LOR). This performance level determines

the peak value of the linear control force which is then taken as the bounded control

force ub for the nonlinear algorithms.
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Algorithms

LOR

Nonlinear 1

Nonlinear 2

Nonlinear 3

Nonlinear 4

Nonlinear 5

Table 2·1. Nonlinear Control Algorithms

Formulae

-1 T
U (t) = Gz (t) = -R B pz (t)

2 4
a 2 3 ~ 5

U (t) = Gz (t) + 3TGz (t) + 5! Gz (t) +
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SECTION 3

PARAMETRIC STUDIES

3.1 Introduction

The nonlinear control laws proposed in Section 2 are extensively investigated in this

section by numerical simulation. Numerical calculations are necessary in the design

process of control systems to determine the parameter values or control gains for

obtaining an optimal feedback. In the expressions of these nonlinear control algorithms,

two groups of parameters are unknown. The first one is related to the linear part of the

feedback and the second one concems the nonlinear part. The determination of the

linear gains can be carried out by solving the optimal problem characterized by the

Riccati equation (Eq. (2.6». Optimal formulation using the linear quadratic functional

permits one to regulate the level of control activity by an appropriate choice of weighting

matrices Q and R. The influence of the choice of matrices Q and R on the control

performance is analyzed for two structural systems. Correspondingly, in the nonlinear

feedback part, the emphasis of parametric studies is placed on the weighting coefficient

«. The introduction of this parameter in the nonlinear expression permits one to regulate

the relative importance between the linear and the nonlinear terms. A correct choice of a

has been found to be important for enhancing control performance. Thus, the study of

the influence of parameter on the structural response is carried out first. Finally, through

extensive parametric studies, the design parameter values for experimental verification

are suggested.

3.2 Controlled Structural Systems and Earthquake Inputs

The effectiveness of the nonlinear control techniques for peak response reduction is

evaluated using two different structural systems. The first controlled structure is a one­

story steel frame with a set of active tendon control devices, which can be idealized as a
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single-degree-of-freedom (SDOF) control system. The second one is a three-story steel

frame with the same active tendon control devices as in the SDOF system. A schematic

sketch of this system is shown in Fig. 3-1. Actually, if the top tow floors of the three-story

frame are braced rigidly, the MDOF system becomes a SDOF system. Later in the

experimental phase, this technique will be utilized to build the model structures. The

dynamic parameter values of the structural system are given in Table 3-1, which are

chosen to correspond to the ones estimated from an identification process of the

experimental set-up that will be presented in the next section.

As typical earthquake records, the N-S component of the 1940 EI Centro

acceleration record and the N21 E component of the 1957 Taft earthquake record are

chosen as the base excitations due to dependency of the nonlinear control laws on the

frequency content of the extemal input. But the intensities of these records are scaled

down appropriately in order to prevent the structure from exceeding the elastic limit in the

uncontrolled case and to have a comparable level of excitations. The two base

acceleration time histories are shown in Fig. 3-2.

The parametric studies are performed for different structural systems, under

different earthquake inputs, and by using different control algorithms. Table 3-2

summarizes all parametric study cases in this investigation.

3.3 Weighting Matrices Q and R

Under the quadratic performance criterion expressed by Eq. (2.5), the feedback control

law is designed such that integral J is minimized. Generally, in terms of minimizing

vibratory energy and control energy, weighting matrix Q can be chosen as

Q = rK 01
I Lo oj or Q = fo 01

2 Lo MJ or Q = rK 01
3 Lo MJ (3.1)

and since only one controller is used in this investigation weighting matrix R is a scalar

which takes the form
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(3.2)

In Eqs. (3.1) and (3.2), K and M are the structural stiffness and mass matrices,

respectively; kc is the tendon stiffness; and ~ is a non-dimensional param~~ter which

determines the relative importance of control effectiveness (response reduction) and

economy (control force requirement). The results from previous research (Wu and

Soong, 1994) have shown that choice of weighting matrix Q among O}, 02 or 03

would lead to almost the same control efficiency if the corresponding weighting

coefficient ~ is chosen properly. Therefore, the parametric study in terms of weighting

matrices Q and R is focused on the evaluation of effectiveness of the control actions for

different choices of the parameter ~. The weighting matrix ° is simply taken as

Q = Ql'

At the beginning of the parametric study, it is useful to introduce a definition for the

reduction factor which will be used as a measure of control efficiency. it is defined by

R = maxlVul-maxlVcl
~ maxlVul (3.3)

where V represents a general response quantity such as relative displacement, relative

velocity or absolute acceleration, and subscripts u and c denote the uncontrolled and

controlled cases, respectively.

First, consider the SooF system. Figure 3-3 shows the numerical simulation results

representing the maximum relative displacement reduction, maximum absolute

acceleration reduction and maximum required control force for different ~ values under

the 1/3-scaled N-S EI Centro acceleration input. It is clearly illustrated that, as the value

of ~ decreases, the control force increases, leading to an increase in response

reduction. Therefore, the selection of the level of control activity by choosing an optimal

value of 13 depends on the capacity of the employed control device. Initially, a value of

~ = 32 is chosen as a reference for the next nonlinear control analysis, and the

corresponding maximum control force is 0.92 kN.
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For the three-story frame controlled by one active device, the maximum response

reductions at the top-floor are drawn in Fig. 3-4 under the 1/4-scaled EI Centro

earthquake input, and the exact peak values are listed in Table 3-3 under the 1/2-scaled

Taft earthquake input. The response reduction trend by varying the parameter ~ is

similar to the previous SDOF system case. But note that, in the case of the scaled EI

Centro excitation, a value of ~ smaller than 32 produce5 a decreasing rate of

acceleration reduction. ThUS, the aforementioned value of ~ may be suitable for the next

nonlinear control analysi$ Ii: consideration of a better force reduction performance.

Correspondingly, the maximum control forces are 0.984 kN and 1.194 kN for EI Centro

and Taft earthquake excitations, respectively.

3.4 Welgh'&lng Coefficient ex

Keeping the same ~ value and observing maximum control force limitation as in the

linear control case, an extensive parametric study about coefficient a has been carried

out as summarized in Table 3-2. The results are given in terms of peak response

reduction, response time history and accumulated energy time history.

3.4.1 Peak Response Reductions

The nonlinear differential equations governing the closed-loop systems are

numerically solved in the time domain using the Adams-Moulton method and the high­

order Runge-Kutta integration scheme. The peak responses are evaluated for a wide

range of values of parameter a and using different nonlinear control laws. Figure 3-5

shows the peak response reductions at the top-floor of the three-story frame obtained

from nonlinear control algorithm 1 (Case 4) under the 1/4 EI centro earthquake

excitation. Table 3-4 gives the results using the same nonlinear control law under the 1/2

Taft earthquake input. It can be cleany seen that, as the value of a increases, the peak

response reduction of relative displacement increases significantly under the same

maximum control force limitation as in the linear control case. For example, as seen from

Fig. 3-5, the reduction under linear control is 37% and 53% under nonlinear control at

a 1 =0.032. These results indicate that the proposed nonlinear control law is more
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suitable than a linear one since it can produce a larger peak response reduction under

the same control force requirement. For acceleration response reduction. the

improvement by using the nonlinear control law is within 5% range compared with the

linear control case, and as the value of (Xl increases the peak response reduction

becomes even worse. Thus, a decision of using (Xl =0.016 is made for nonlinear control

algorithm 1 based on a proper trade off between structural safety and occupant comfort.

Similar results were obtained by employing other nonlinear control laws C'/'Iu, et aI.,

1994, Gattulli 1994). These results show that all nonlinear control laws presented in the

previous section yield a better control performance than LQR control in term of reducing

the peak response. Generally, reductions for the relative displacement are 10% - 15%

over that in the linear control case. For reduction of the peak absolute accelera.tion,

nonlinear control algorithm 5 is better than the others. According to the trade off between

structural safety and occupant comfort, an optimal value of ex is chosen for each

nonlinear control algorithm as listed in Table 3-5.

3.4.2 Response Time Histories

Using the optimal values chosen for parameters ~ and ex, response time histories

can be calculated directly by using numerical integration method in the time domain. A

set of typical response time histories for uncontrolled, linear controlled and nonlinear

controlled cases are shown in Fig. 3-6, showing the top floor responses of the three-story

frame under the 1/4-scaled EI Centro earthquake excitation, and the nonlinear control is

Case 4. These time histories illustrate that not only the peak values but the overall

responses are also reduced by employing the proposed nonlinear control law. Also as

expected, the maximum control force applied in the nonlinear control case is kept at the

same value as in the linear control case.

3.4.3 Accumulated Energy Time Histories

Energy formulations have been developed to evaluate the performance of structural

systems (zahrah and Hall, 1982; Uang and Bertel'O,1988). The evaluation of energy

dissipation capacity of control devices is one way of studying a wide range of behavior
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characteristics conceming the considerable number of different passive and active

devices installed in structures throughout the world. On this basis, comparative studies

can be performed among different innovative technologies.

For a MDOF controlled system, the equation of motion is given in Eq. (2.1). This can

be considered as a force equilibrium equation, each term representing a force that will do

work during the d~/.,amic event. Thus, an energy equilibrium equation can be derived,

giving

(3.4)

where EK is the kinetic energy, ED is the viscously damped energy, Es is the strain

energy, E,. is the control force energy and E1 is the input energy. The expressions of

these energy terms are

1 .T .
(3.5)EK = iX MX

ED = f '1/C'Xdt (3.6)

1 T
(3.7)Es = iX KX

Eu =1UTO
TdX (3.8)

E1 = Jxom
T
dX (3.9)

It can be seen that each energy term is a function of time and has positive values.

Figures 3-7, 3-8 and 3-9 show the accumulated energy time histories for, respectively,

the uncontrolled, linear controlled and nonlinear controlled cases. First, from Fig. 3-7, it is

noted that, in the uncontrolled case, a significant portion of the energy input to the

structure is dissipated by inherent damping. Evidently, the consumption of this quantity of

energy may force the structure into the nonlinear range of material behavior

accompanied by excessive response and consequently structural damage. On the other
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hand, the introduction of the active control system consumes a large portion of the input

energy, which is clearly demonstrated in Fig. 3-8 for the case of linear control.

Furthermore, it can be observed from Fig. 3-9 that, if the active control action follows the

nonlinear control law, only a small portion of the total input energy is dissipated by

inherent damping, while the active control energy is dominant. Since structural damping

does not change with installation of the control system, the decrease in viscous damping

energy in the controlled case indicates that a remarkable reduction in the structural

response is achieved by applying an active control force.
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Table 3-1. Parameter Values of Structural Systems

Values
Parameters

SOOF MDOF

[981 ° 0]Mass matrix M (kg) 2943 o 981 0
o 0 981

[2.37
T

Natural frequency f (Hz) 4.10 7.45 12.30]

[1.00 0.53
T

Damping factor ~ (%) 2.62 0.55]

[0.0897 0.2859 0.2979~
Modal matrix ttt 1.0 0.2365 0.2143 -0.2769

0.3385 -0.2255 0.1146

Tendon stiffness kc (kNlm) 385.3 411.55

Tendon angle 9 (deg.) 36 36
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Table 3-2. Summary of Parametric Studies

Systems Earthquakes Cases & Algorithms Parameters Results

LOR Q,R

SDOF EI Centro (1/3) Case 1: Nonlinear 2 ~ Peak Value,

Case 2: Nonlinear 3 ~

Case 3: Nonlinear 4 0.4 Time History,

LOR Q,R

MDOF EI Centro (1/4) Case 4: Nonlinear 1 0.1 Accumulated

Taft (1/2) Case 5: Nonlinear 2 ~ Energy

Case 6: Nonlinear 5 0.5

3-9



Table 3-3. Maximum Response of Three-Story Frame with LQR Control
(112 Scaled TAFT Earthquake Input)

Control Floor Relati"e Displacement Absolute Acceleration Control

Algorithms No. Values Reduction Values Reduction Force
(em) (%) (g) (%) (kN)

1 0.353 0.235 0.000

Uncontrolled 2 0.912 0.283

3 1.420 0.430

Linear 1 0.292 17.13 0.199 15.42 0.372

Control 2 0.823 9.750 0.245 13.44

P= 256 3 1.271 10.52 0.376 12.61

Linear 1 0.274 22.39 0.177 24.58 0.572

Control 2 0.783 14.09 0.233 11.57

P = 128 3 1.204 15.21 0.347 19.31

Linear 1 0.251 28.87 0.171 30.44 0.862

Control 2 0.722 20.78 0.202 28.72

~ = 64 3 1.108 21.97 0.317 26.29
"

Linear 1 0.226 35.93 0.147 37.15 1.194

Control 2 0.646 29.11 0.181 36.17

P = 32 3 0.992 30.13 0.284 33.83

Linear 1 0.195 44.71 0.143 41.75 1.561

Control 2 0.564 38.19 0.154 45.54

P= 16 3 0.864 39.18 0.246 42.76

Linear 1 0.163 53.78 0.121 48.32 1.935

Control 2 0.473 48.16 0.136 51.87

P =8 3 0.726 48.84 0.207 51.84

3-10



Table 3-4. Maximum Response for Nonlinear Control Algorithm 1

(1/2 Scaled TAFT Earthquake Input)

Control Floor Relative Displacement Absolute Acceleration Control

Algorithms No. Values Reduction Values Reduction Force
(em) (%) (9) (%) (kN)

1 0.353 0.235

Uncontrolled 2 0.912 0.283

3 1.420 0.430

Linear 1 0.226 35.93 0.147 37.15 1.194

Control 2 0.646 29.11 0.181 36.17

[3 = 32 3 0.992 30.13 0.284 33.83

Nonlinear 1 1 0.201 43.06 0.157 33.19 1.194

[3 = 32 2 0.598 34.43 0.193 31.80

(11 = 0.004 3 0.928 34.65 0.283 34.19

Nonlinear 1 1 0.192 45.61 0.187 20.43 1.194

[3 = 32 2 0.569 37.61 0.202 28.62

(Xl = 0.008 3 0.892 37.18 0.287 33.26

Nonlinear 1 1 0.179 49.29 0.212 9.787 1.194

[3 = 32 2 0.538 41.01 0.207 26.86

(11 = 0.016 3 0.844 40.56 0.287 33.26

Nonlinear 1 1 0.177 49.86 0.225 4.255 1.194

[3 = 32 2 0.505 44.63 0.211 25.44

(Xl = 0.032 3 0.790 44.37 0.281 34.65

Nonlinear 1 1 0.176 50.14 0.243 -3.40 1.194

[3 = 32 2 0.472 48.25 0.224 20.85

(11 = 0.064 3 0.739 47.96 0.279 35.12
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Table 3·5. Optimal Value for Nonlinear Control Laws

Systems Cases & Algorithms Parameters Max. Force (kN)

LOR ~ = 32 0.920

SDOF Case 1: Nonlinear 2 (X2 = 0.6 (EI Centro)

Case 2: Nonlinear 3 (X3 =0.06

Case 3: Nonlinear 4 (X4 = 120

LOR P= 32 0.984

MDOF Case 4: Nonlinear 1 (Xl =0.016 (EI Centro)

Case 5: Nonlinear 2 (X2 = 1.2 1.194

Case 6: Nonlinear 5 (X5 =0.8 (Taft)
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SECTION 4

EXPERIMENTAL VERIFICATION

4.1 Experimental Setup and Model Structure

In order to evaluate implementability of the nonlinear control algorithms, an experimental

investigation was carried out on a 1/3-scale model structure in the laboratory. The model

structure was a three-story frame modeling a shear building by the method of artificial

mass simulation. As stated in the previous section, as the first step, the top two floors of

the model structure were rigidly braced so that the structure would behave as a SDOF

system. Then, at the second step, the rigid braces on the top two floors were removed so

that a MDOF structural system could be simulated by this model. Figure 4-1 s"ows its

configuration in the laboratory. The model structure was bolted to a rigid foundatioi1

which in tum was bolted to the center of the she-king table which supplied the desired

base excitation.

The control force was supplied by a servo-controlled hydraulic actuator through a

system of tendons attached to the first floor of the model structure. The tendons were

pretensioned to about 2.2 kN, a value larger than the maximum designed control force

so as to insure tension at all times.

For the SDOF system, the state variable measurements were made by means of

strain gage bridges installed on one of the columns. The signal from one strain gage

bridge was used as the measured relative displacement. The signal was further passed

through an analog differentiator to yield measured relative velocity. For the MDOF

system, the state variable measurements were made by means of displacement

transducers (Temposonic-TM) installed on each floor and on the base. The measured

relative displacements were obtained from the differences between the measured

absolute displacements and the base displacement. The transducer signals were further

passed through the analog differentiators to yield the measured relative velocities. The
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measured displacements and velocities were low-frequency filtered to eliminate the high­

frequency noise. The base acceleration and absolute accelerations of the masses were

directly measured by accelerometers installed at the base and on each floor slab. The

Control force was obtained from the measured displacements of actuator piston or from

the load cells installed on each tendon. These measurements also provided information

for control operations and for performance evaluation of the system. A block diagram

showing the measurement system and the control procedure is given in Fig.3-1. More

details of this experimental setup can be found in Chung et. al.(1989).

4.2 System Identification

A good model of a real structural system is essential for the success of vibration

mitigation using a control system. Thus, a reliable identification of the structural

parameters was required. The identification of the experimental structural model was

based on the assumption that the model response was in the linear range under control

actions. The parameters of the linear analytical model were identified based on

measurements of the frequency domain response of the structural model. Another

important factor to be considered in order to reach final success of the performance of

the control system is the time delay that will always occur when the designed control

force is applied to the structure.

4.2.1 Parameters of Model Structure

In frequency domain, the absolute acceleration transfer function of the jth degree­

of-freedom contributed by the kth mode is

(4.1)

in Which, (J)k and ;1: are, respectively, the natural frequency and damping factor;

rl: = +~m, where m is a vector of lumped masses; and +1: is the kth modal vector, Le.,

the kth column of modal shape matrix cz- which was orthogonally normalized such that
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e'/)TMe'/) = I. The peak value of the jth acceleration transfer function is a superposition of

all modes, Le.,

"
(H.(im» = 't" (H.k(im»J Q ~ J a

k;1
(4.2)

However, for small damping and well separated modes, the kth peak of the jth transfer

function will be assumed equal to (Hjk(im» Q by neglecting the contribution of other

modes. The assumption of lightly damped structure permits considering the peaks of the

transfer function occur precisely at m = COt' k = 1, 2, . . . ,with its amplitude

determined by

(4.3)

From Eq. (4.3), it is shown that the kth peak value of the jth transfer function is

proportional to the jth component of the kth modal shape. Therefore, by measuring the

absolute acceleration transfer function at each degree-of-freedom, the modal shapes

can be determined from the ratios of the peak values at the frequency corresponding to

each mode of vibration. The frequency corresponding to the kth peak value of the

acceleration response function is the natural frequency of the kth mode. Moreover, the

damping factor of each mode can be estimated by solving Eq. (4.3).

The identification tests of the model structure were carried out on the shaking table.

The banded (0 - 20Hz) white noise was used as the input excitation. For the SooF

system, the absolute acceleration transfer function is shown in Rg.4-2 and the

identification results are listed in Table 3-1. For the MDOF system. the absolute

acceleration transfer function is shown in Fig.4-3 and the identification results are also

listed in Table 3-1.

4.2.2 EVllultion of Time Delay
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In the performance of an active control system, the time delay is unavoidable. The

time delays generated by the differentiator, low-frequency filter, on-line computations and

execution of the control force must be considered. The necessity of compensation for

time delay has been discussed by Chung et. al.(1989} and Reinhom et. al.(1989}.

Time delay can be determined from the phase lag measured between the input and

the respective output signal for each component of the control system. In the

identification test for evaluating time delay, the banded (0 - 20Hz) white noise was used

as input. The phase lag angle for each control system component was determined from

the real and imaginary parts of the frequency transfer function of the input and output

signals. Thus, time delay is determined for each component of system using

(4.4)

.
where Td is the time delay, e is the phase lag in degrees and f is the frequency in Hz.

A set of the experimental results obtained is shown in Fig.4-4. The time delay was 4

milliseconds for the differentiator, 20 milliseconds for the low-frequency filter, 6 - 8

milliseconds for the on-line computation, and 7 milliseconds for the generation of the

control force. Therefore, the total delay time that the control force lagged behind the

state variables was 33 - 35 milliseconds for displacements and 37 - 39 milliseconds for

velocities.

For the experiment on the structural model, the phase shift method was found to be

effective for time delay compensation. Details regarding the derivation of the phase shift

method can be found in Reinhom et. al.(1989).
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4.3 Experiment Verification

4.3.1 Peak Response Reductions

Peak Response under Optimal J3...JrnL.a Values. In the previous section, the

optimal J3 and a values listed in Table 3-5 were suggested from extensive parametric

studies. The first part of the experiment was to verify the control performance provided

by the proposed nonlinear control laws based on these optimal control parameters.

Corresponding to simulation cases, maximum responses of the SOOF system with and

without control actions are listed in Table 4-1, and Tables 4-2 and 4-3 give the results at

the top-floor of the MDOF system, respectively, under EI Centro and Taft Earthquake

excitations. From these tables, the folloWing observations can be made. First,

experimental results show that, relative to the linear control case, all five nonlinear

control laws provide better control performance in terms of reducing peak response. For

the example in Table 4-3, the relative displacement reduction is 38% by employing the

linear control law, while by using nonlinear control algorithm 5, the reduction reaches

54%. For absolute acceleration, the reduction under linear control is 34°/... and 42% under

nonlinear control. Second, comparisons of experimental and analytical results indicate

good agreement, and the errors are generally within 10%. Third, reductions from

experiments are somewhat larger than those from simulations. The major reason is that

the hydraulic actuator was not able to generate the required control forces precisely, and

in general a small part of control force overshoot would occur at the peak of control

actions.

Peak Response under Different J3 Values, Apart from the experimental

verification based on the optimal J3 and a values, a group of linear control experiments

were also carried out as the second part of the experiment. The purpose of doing this

group of tests was to verify suitability and reliability of the hydraulic active control system.

Figures 4-5 and 4-6 illustrate the top-floor response reduction from both experiment and

simulation under EI Centro and Taft Earthquake excitations, resPectively. It can be seen

that good agreement is achieved within a broad range of J3 values. Generally, an

increase in the control force, which implies a decrease in J3 values, the peak response

reduction increases. But one may specially note from Fig. 4-5(b) that a control force
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smaller than 1.2 kN, corresponding to ~ = 32, will produce a decreasing ratio of

acceleration reduction. The experiment verified that the optimal ~ value should be

chosen as ~ = 32.

Peak Response under Different a ValuM. Similar to the previous tests for

different 13 values, the third part of the experiment was focused on nonlinear control

algorithms, specially on different a values. All five nonlinear algorithms were verified

based the optimal ~ value but varying a values. Typically, the results obtained from the

MDOF system by using nonlinear algorithms 1 and 5 are shown in Figs. 4-7 and 4-8,

respectively. First, for nonlinear algorithm 1, Fig. 4-7(a) indicates that, keeping the same

maximum control force, as a-value increases, the peak response reduction of relative

displacement increases monotonously, which implies that the heavier the weighting of

nonlinear feedback in the control actions, the larger the reduction. But from Fig. 4-7(b),

one may note that the reduction of absolute acceleration decreases remarkably after a­

value exceeds 0.016. Thus it is reasonable to choose the optimal a value as 0.016.

Second, for nonlinear algorithm 5, the similar trend can be observed from Fig. 4-8, and

the optimal a value may be selected as 0.8. Moreover, extensive experimental

verifications were also perfonned for SOOF system, for other nonlinear algorithms and

for a broad range of a values. Generally speaking, all five nonlinear control algorithms

are effective in terms of reducing peak response within & broad range of a values. The

reduction of relative displacement is better than that of absolute acceleration, and tile

reduction as obtained from the experiments is better than that from simulation. Different

nonlinear algorithms lead to different optimal a values and it is possible to find these

optimal values from simulation analysis.

4.3.2 Response Time Histories

As shown in Fig. 3-1, for each story of the model structure, we can measure the relative

displacement and absolute acceleration. Furthennore, through the analog differentiaor,

the relative velocity can be obtained from the measured rel3tive displacement. On the

other hand, using the recorded acceleration on the base of the model structure as the

simulation input, we can calculate responses for the same model structure under the

same excitation as in the experiment. Conclusions may be drawn from comparisons
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between experimental and analytical results.

First, Fig. 4-9 shows the experimental response time histories and control force time

histories for uncontrolled, linear control and nonlinear control cases. These are only the

top floor response of the MDOF model structure under 1/4-scaled EI Centro earthquake

excitation, and the nonlinear control is Case 4. From this typical set of time histories, it

can be seen that not only the peak response but the overall response is also reduced by

employing suggested nonlinear control law. As expected, the peak response during the

initial period is suppressed proper1y. For other nonlinear control laws, similar trend can

be observed, for example, as shown in Figs. 4-10 and 4-11 for Case 5 and Case 6,

respectively.

Second, the comparison between experimental and analytical time histories are

illustrated in Figs. 4-12,4-13 and 4-14, respectively, for Case 4, Case 5, and Case 6.

Good agreement between the two groups of time histories can be observed. Small

overshoots of peak control forces in the experimental results are due to inherent

mechanical limitations of the hydraulic actuator.
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Table 4·1. Maximum Response Verification for SDOF System
(1/3 Scaled EL-CENTRO Earthquake Input)

Control Relative Displacement Absolute AoceI~ration Max. Control

Algorithms Values (em) Reduction (%) Values (9) Reduction (%) Foroe (kN)

Simu. Exp. Simu. Exp. Simu. Exp. Simu. Exp. Simu. Exp.

Uncontrolled 0.501 0.522 0.341 0.350

Unear Control

13 =32 0.388 0.403 22.55 22.80 0.274 0.279 19.65 20.29 0.85 0.92

Case 1

(l.2 =0.6 0.357 0.334 28.74 36.02 0.255 0.261 25.22 25.43 0.85 1.09

Case 2

(13 =0.06 0.371 0.353 25.95 32.38 0.263 0.269 22.87 23.14 0.85 1.09

Case 3

cx4 =120 0.357 0.339 28.74 35.r; 0.267 0.256 21.70 26.86 0.85 0.96
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Table 4-2. Top Floor Maximum Response Verification for MDOF System

(1/4 scaled EL-CENTRO Earthquake Input)

Control Relative Displacement Absolute Acceleration Max. Control

Algorithms Values (an) Reduction ('Yo) Values (9) Reduction (0/0) Force (kN)

Simu. Exp. Simu. Exp. Simu. Exp. Simu. Exp. Simu. Exp.

Uncontrolled 1.578 1.664 0.450 0.449

Linear Control

/3 = 32 0.988 0.999 37.37 39.96 0.256 0.251 43.20 44.10 0.984 1.125

Case 4

a 1 = 0.016 0.790 0.782 49.94 53.03 0.246 0.255 45.33 43.21 0.984 1.171

CaseS

a2 = 1.2 0.779 0.788 50.60 52.64 0.267 0.265 40.67 40.98 0.984 1.229

Case 6

as =0.8 0.866 0.850 45.12 48.92 0.240 0.232 46.66 48.33 1.255 1.388
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Table 4-3. Top Floor Maximum Response Verification for MDOF System
(1/2 Scaled TAFT Earthquake Input)

Control Relative Displacement Absolute Acceleration Max. Control

Algorithms Values (em) Reduction ('Yo) Values (g) Reduction ('Yo) Foroe (kN)

Simu. Exp. Simu. Exp. Simu. Exp. Simu. Exp. Simu. Exp.

Uncontrolled 1.420 1.569 0.430 0.414

Linear Control

~ =32 0.992 0.967 30.13 38.37 0.284 0.273 33.83 34.06 1.194 1.175

CaM 4

at =0.016 0.844 0.796 40.56 49.27 0.287 0.262 33.26 36.71 1.194 1.209

CaM 5

a 2 = 1.2 0.804 0.780 43.38 50.29 0.284 0.278 33.95 32.85 1.194 1.238

Case 6

as =0.8 0.838 0.726 40.99 53.73 0.246 0.239 42.79 42.27 1.232 1.363

4-10



Fig. 4-1. VIew of the Model Structure
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SECTION 5

CONCLUDING REMARKS

In civil engineering structural applications, peak response control is of practical impor­

tance due to its close relation with safety. The work presented in this report is focused on

the development of implementable nonlinear control laws which can provide improved

peak response control performance under the same constraints imposed on the control

force and other resources as in the linear control law case. Five different nonlinear control

laws have been proposed. The first algorithm is derived based on a higher-order perfor­

mance criterion and optimal control strategy, and the last algorithm is developed from

modifications of Bang-Bang control theory. Other three algorithms come from the simpli­

fications of the first algorithm.

Extensive parametric studies have been perfonned for each of the proposed

nonlinear control algorithms. Based on the control performance, such as peak response

reduction, response time history or accumulated energy, the regions of effectiveness for

nonlinear control parameters are identified, and the optimal values of these parameters

are determined. Simulation results indicate that all five nonlinear control algorithms are

effective in terms of improving peak response reduction. In general, the relative

displacement reduction is about 10% - 15% over that in the linear control case, and the

reduction of absolute acceleration is some\.'hat smaller than that of the relative

displacement.

In order to verify the feasibility of developed nonlinear control laws, a series of

comprehensive control experiments have been carried out in the laboratory using a

model structure with ground excitations supplied by a shaking table. The successful

accomplishment of experiments indicates that the implementation of nonlinear control

laws is feasible and presents no inherent difficulties. Their designs can be carried out

following an iterative procedure based on the linear control gains. Good agreement

between experimental and analytical results makes it possible to extrapolate these
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nonlinear control results for potential full-scale structural applications. Nonlinear control

laws such as those suggested herein can provide an effective means for enhancing

structural control effectiveness.
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