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PREFACE

The National Center for Earthquake Engineering Research (NCEER ) was established to expand and
disseminate knowledge about earthquakes, improve earthquake-resistant design. and implement
seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis is on
structures in the eastern and central United States and lifelines throughout the country that are found
in zones of low, maderate, and high seismicity.

NCEER’s research and implementation plan in years six through ten (1991-1996) comprises four
interlocked elements. as shown in the figure below. Element I, Basic Research. is carried out to
support projects in the Applied Research area. Element [1. Applied Research. is the major focus of
work for years six through ten. Element I11. Demonstration Projects. have been planned to support
Applied Research projects. and will be either case studies or regional studies. Element IV,
Implementation, will result from activity in the four Applied Research projects. and from Demonstra-
tion Projects.

ELEMENT | ELEMENT Hl ELEMENT HI
BASIC RESEARCH APPLIED RESEARCH DEMONSTRATION -ROJECTS
* Seismic hazard and * The Building Project Case Studies
ground motion ¢ Active and hybrid control
* The Nonstructural * Hospital and data processing
* Soils and geotechnical Components Project facilities
engineering * Short and medium span bridges
* The Lifelines Project E" * Water supply systems in
« Structures and systems Memphis and San Francisco
The Highway Project Regional Studies
* Risk and reliability * New York City
* Mississippi Valley
« Protective and intelligent * San Francisco Bay Area
systems * City of Memphis, Tennessee
and Shelby County
* Societal and economic
studies J—L I I
v ELEMENT IV v
IMPLEMENTATION
+ Conferences/Workshops
« Education/Training courses
* Publications

Public Awareness

Research inthe Building Project focuses on the evaluation and retrofit of buildingsin regionsof moderate
seismicity. Emphasisisonlightly reinforced concrete buildings. steel semi-rigid frames. and masonry walls
orinfills. The research involves small- and medium-scale shake table tests and full-scale component tests
atseveral institutions. Ina parallel effort, analytical models and computer programsare being developed to
aid in the prediction of the response of these buildings to various types of ground motion.



ABSTRACT

To avoid excessive damage under strong earthquakes, the peak response of civil engineering
structures should be limited to an allowable level. To this end, active/hybrid control systems have
been proposed and investigated for the protection of buildings. In this report, full-state optimal
polynomial controllers and the corresponding static output polynomial controllers are proposed for
limiting the peak response of linear and nonlinear civil engineering structures. Performance indices,
that are quadratic in control and polynomial of an arbitrary order of both the linear or nonlinear states
are considered. These performance indices are minimized based on the solution of the Hamilton-
Jacobi-Bellman equation using a polynomial function of either linear or nonlinear states, which
satisfies all the properties of a Lyapunov function. The resulting controllers are summations of
polynomials of different orders of linear or nonlinear states, i.e., linear, cubic, quintic, etc. Gain
matrices for different parts of the controllers are calculated easily by solving matrix Riccati and
Lyapunov equations. Extensive simulation results indicate that the new optimal polynomial
controllers consume less energy in reducing the peak response quantities; however, they may use
bigger peak control force than the corresponding linear controllers. Because of the strong
dependence on the structural response, the level of response reduction increases for the optimal
polynomial controllers with respect to the earthquake intensity. Hence, if the earthquake intensity
exceeds the design one, the optimal polynomial controllers are capable of exerting larger control
forces thus achieving a higher reduction for the peak structural response. Such response adaptive
properties are very desirable for the protection of the integrity of civil engineering structures, because
of the inherent stochastic nature of the peak ground acceleration. The proposed optimal polynomial
controllers, including the comresponding static output controllers, are viable control strategies,

representing valuable additions to available control methods in the literature.
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SECTION 1

INTRODUCTION

Intensive research efforts have been made for active/hybrid control of civil engineering
structures under severe wind gusts and strong earthquakes. Progress and literature review in the
subject area can be found in, e.g., Soong(1990), Soong et al (1991), Housner and Masri (1994), etc.
Recently, advanced control theories have been investigated for applications to seismic-excited
structures (e.g., Dyke et al (1994), Jabbari et al (1995), Schmitendorf et al (1994), Kose et al (1996),
Nagarajaiah et al (1993), Reinhorn et al (1993), Yang et al (1993; 1994b, c, d, e; 1995b, c, d; 1996a,
b, ¢), etc). Under strong earthquakes, the main objective of active/hybrid control is to limit the peak
response (e.g., interstory drifts) of the structure to minimize the damage. In this connection, it has
been presented by Housner, Soong and Masri (1994) that nonlinear controllers (e.g. Wu et al (1994))
are more effective than the classical linear controllers in reducing the peak response of linear
structures. Such evidences were also observed elsewhere ( e.g., Tomasula et al (1994), Agrawal and
Yang (1995a), Yang and Agrawal (1995a)).

Control of linear structures by nonlinear controllers was first proposed by Rekasius, Z.V.
(1964). He presented a suboptimal solution of the Hamilton-Jacobi-Bellman equation for a general
nonquadratic cost function. Since then, many researchers have proposed methods to design different
types of nonlinear controllers [e.g., Bass et al (1966), Speyer, J.L. (1976), Sandor et al (1977), Salehi
et al (1982), Bernstein, D.S. (1993) etc.]. Their main objective was to derive nonlinear controllers
that could respond fast to large peak responses while reacting slowly to small responses. In classical
linear control theory, an optimal linear control law for linear structures is derived based on various
assumnptions, including linear state dynamics subjected to additive Gaussian white noise disturbances,
completely accurate system model, quadratic performance index, etc. In practice, however, one or
more of these assumptions may not be valid, e.g., the state dynamics may be nonlinear, disturbance
may not be additive Gaussian white noise, system model may be inaccurate, etc. Moylan and
Anderson (1973) have shown that for linear open-loop plants, the nonlinear optimal control law is
more robust than the linear optimal control law for integral performance indices convex in the state.

Speyer, J.L. (1976), through the derivation of a cubic controller for stochastic infinite time series
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problem, has shown that the probability of violating a state constraint for the linear optimal controller
is much higher than that for the nonlinear controller.

The main objective of active/hybrid control for civil engineering structures is to reduce the
peak response quantities of the structure. However, it is extremely difficult to obtain an optimal
controller that minimizes the peak response of the structure. Recently, Wu et al (1994) and Tomasula
et al (1994) have proposed nonlinear controllers for peak response reduction of seismic-excited linear
structures. They have shown advantages of nonlinear controllers over the linear optimal controller for
control of linear structures. The controller proposed by Wu et al (1994) is a special cubic order
controller obtained by minimizing a nonquadratic performance index and is similar to the cubic
controller derived by Speyer, J.L. (1976). Tomasula et al (1994) have proposed a polynomial
controller using tensor expansion method for a SDOF structure for a performance index that is
quadratic in control and quartic in the states. Agrawal and Yang (1995a, 1996) have proposed an
optimal controller that is polynomial of any orders of the state for linear structures.

Aseismic hybrid protective systems, consisting of a combination of active control devices and
passive base isolation systems, have been shown to be quite effective. Since the dynamic behavior of
most base isolation systems, such as lead-core rubber bearings or frictional-type sliding bearings, is
highly nonlinear or inelastic, hybrid protective systems involve control of nonlinear or hysteretic
structural systems. Likewise, under strong earthquakes, yielding may occur even if the fixed-base
building is equipped with active control systems. As a result, control of nonlinear or hysteretic civil
engineering structures has attracted considerable attraction recently. Various control methods have
been investigated, including pulse control (Reinhom et al 1987), polynomiai control (Spencer et al
1992), acceleration control (Nagarajaiah et al 1993; Reinhorn et al 1993; Riley et al 1993),
instantaneous optimal control (Yang et al 1992a), dynamic linearization (Yang et al 1994b; Reinhomn
et al 1993), nonlinear control (Yang et al 1992b; 1994a; Dixon et al 1995), neural network (Krishnan
et al 1995), sliding mode control (Yang et al 1993; 1994b, c, d, e; 1995b, c, d; 1996a, b, c), etc. It
has been shown by Yang et al (1992b, 1994a) that a controller, having the same nonlinear
characteristics as that of the structure, performs better than a linear controller. In fact, the sliding
mode controller also has such characteristics (Yang et al 1994¢, 1995b). More recently, an optimal
controller, that is a polynomial of any order of nonlinear states, has beeri proposed by Yang &
Agrawal (1995a, 1996d) for control of nonlinear and hysteretic structures.
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For practical implementations of active/hybrid control systems in complex civil engineering
structures, it may not be possible to install sensors at all degrees of freedom to measure the full-state
vector. An observer, however, may require excessive on-line computations due to a large number of
degrees of freedom involved. thus resulting in a system time-delay. As a result, static output feedback
control methods, which utilize only the information measured from a limited number of sensors
without an observer, are highly desirable for practical implementations of control systems. Recently
static output polynomial controllers. which are the extension of the optimal polynomial controllers
proposed previously for control of linear and nonlinear structures have been proposed by Agrawal &
Yang (1995b). Such static output controllers have been shown to be plausible.

In section 11, we present a class of optimal polynomial controllers of various orders for control
of linear structures. The performance index to be minimized is quadratic in control and is polynomial
of an arbitrary order of the states. This specific polynomial performance index belongs to a general
class for which an exact optimal solution can be determined easily. Based on the optimality conditions
derived by Bernstein. D.S. (1993) for nonlinear optimal control problems, the performance index is
minimized and the general polynomial control law is obtained analyvtically. The gain matrices for
different parts of the controller are calculated easily from matrix Riccati and Lyapunov equations.
Our optimal polynomial controlier reduces to the controller presented by Wu et al (1994) for a
specific choice of weighting matrices. Numerical simulations have been conducted for both the SDOF
and MDOF systems to investigate the performance of the optimal polynomial controller with respect
to various contro! objectives, including the peak response reduction, peak control force and required
control cnergy.

In section IIl, we present a class of optimal polynomial controllers for the peak response
reduction of seismically excited nonlinear or hysteretic structures. The performance index to be
minimized is quadratic in control and polynomial of any order in nonlinear states. The performance
index is minimized using the Hamilton-Jacobi-Bellman equation, and the resulting optimal contro! law
is a summation of polynomials of different orders in nonlinear states, i.c., linear, cubic, quintic, etc.
Gain matrices for different parts of the controller are computed easily from Riccati and Lyapunov
matrix equations. Numerical simulations have been conducted for contrel of a base-isolated building
using lead-core rubber bearings and a fixed-base yielded building to investigate the performance of the

optimal polynomial controller with respect to various control objectives, including the peak response
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SECTION 11

OPTIMAL POLYNOMIAL CONTROL FOR LINEAR STRUCTURES

In this section, we derive analytically an optimal polynomial controller of various orders for linear
structures, in which the gain matrices are computed easily from matrix Riccati and Lyapunov
equations. The performance and advantages of such an optimal controller are demonstrated by the

simulation results for SDOF and MDOF systems.

2.1 PROBLEM FORMULATION AND MAIN RESULTS

Consider an n degree-of-freedom linear building structure subjected to a one-dimensional

earthquake ground acceleration X, (t). The vector equation of motion is given by

MX (1) + CX(1) + KX (1) = HU(1) + n% o (1) (2.1

in which X(t) = [xl(t), xz(l) ..... xn(t)]T is an n vector with xi(l) being either the interstory drift or
the displacement of the ith floor with respect to the ground; U(t) is a r vector consisting of r control
forces; and 1 is an n vector denoting the influence of the earthquake excitation. In Eq.(2.1), M, C and
K are (nxn) mass, damping and stiffness matrices, respectively, and H is a (nxr) matrix denoting the
location of r controllers. In the state space, Eq.(2.1) becomes,

Z(1) = AZ(t) + BU(t) + E(t) 2.2)
where Z(t) is a 2n state vector, A is a (2nx2n) system matrix, B is (2nxr) controller location matrix,

and E(t) is a 2n excitation vector, respectively, given by

X(t) 0 i 0 0
Zy=| [ A= B=| _[LEO=| (2.3)
X(t) MK M M'H M g,y )

A general performance index J can be expressed as follows
T
IJ=XZy. U).1g) =S(Z, TY+ | LIZ(1), U(t), 1] dt 24)
‘o
where Zp =2Z(T) is the terminal state, S(Z1,T) is the terminal cost and L{ Z(1),U(t),t] is a

nonguadratic non-negative cost function. For infinite time regulator problem, the performance index



PA+ATP-PBR'BTP+Q=0 (2.8)
M;(A-BR'BTP)+(A-BR'BTP)TM, +Q, =0, i=23,.. .k (2.9)
As can be seen from Eq.(2.7), the nonlinear part of the controller is the sum of polynomials of various
orders in terms of the states of the system. Matrices P and M, ’s in Eqs.(2.8) and (2.9) can be solved
using any well-known numerical algorithms or using functions available in MATLAB.
Another optimal polynomial controller has also been derived and the result is identical to the form
of Eq.(2.7), except that M, (i=2,3,... k) are determined from the matrix Riccati equation, i.e.,
M,(A-BR'BTP)+(A-BR'B"P)'M -M,BR'B™, +Q, = 0, i=23...k (210

In this case, the performance index J used to be minimized is given by Eq.(2.5) with

h h Iy k T 1-l5T -InT
h(Z) = h(2) = hy(Z2) - X(Z'M,Z) "Z’M;BR ' B'M,Z (2.11)
i=2

where E,(Z) is given by Eq.(2.6).
2.1.1 SPECIAL CASES

The optimal polynomial controller derived in Eq.(2.7) reduces to different special cases in the

following.
(i) Linear Controller: For k=0 or Q, =0, i =2,3..k, the controller presented in Eq.(2.7)
becomes,
uw = -R'BTPZ 2.12)
which is the well-known result of linear quadratic optimal control (LQR).
(ii) Special Cubic Controller: For a special case in which k=2 and Q, is chosen to be
Q, =Q+PBR™'BTP, the solution of Eq.(2.9) yields M, = P. Hence, the special cubic controller
becomes
uw = -R'BT(1+2TP2)PZ (2.13)
This controller is precisely the one presented by Wu et al (1994) recently. Hence, their controller is a
special case of our general polynomial controller.
(iii) Scalar Control: For control of a scalar system with Z(t)=z(t) being a scalar,
2(t) = az(t)+ bu(t) (2.14)

the nonlinear controller for this system is given by,
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in which V=V(Z) is the optimal cost function, and H(Z,U,V’,t) is the Hamiltonian function defined

as

HZ U, V.1 = LZUY + [V] fZ Uy (2.20)
where a prime indicates the differentiation with respect to Z, i.e., V' =dV/dZ= a 2n vector. The

necessary condition for the minimization of the right hand side of Eq.(2.19) is,

oH(Z,U,V',ty _ JL(Z, U,y . af(Z,U,t)v,

oU du au
in which Eq.(2.20) has been used. The solution, U(t)=¢(Z), of Eq.(21) will be the minimum control if

the second derivative of H is non-negative, ie., 9 H(Z,®(Z),V’,t)/oU% > 0. Then, the teminal
condition for the optimal cost function will be the same as that of the performance index in Eq.(2.4),
i.e., V(Z;,T) =S(Z+.T). For the optimal control U()=¢(Z), the H-J-B equation in Eq.(2.19) can be
written as

%’ + H(Z,(Z),V',1) = 0 (2.22)

The following theorem derived in Bernstein (1993) will be used.

Theorem: For an optimal cost function V(Z) that satisfies all the properties of a Lyapunov function, if
there exists a minimum control U=¢(Z) which satisfies Egs.(2.19) to (2.22), then the closed-loop
system is asymptotically stable and the minimum value of the performance index in Eq.(2.4) is given

by NZ,.0(Z),ty) = V(Z,). Furthermore, the optimal feedback control U=®(Z) minimizes
NZy,U,ty) in Eq.(2.4) in the sense that, J(Z,,8(Z),t)) = l'}"g[](zo'tho)]- The asymptotic
€

stability of the closed-loop system is automatically guaranteed through the Lyapunov theorem of
stability, i.e., V(Z)<0.
Based on the theorem above, an optimal polynomial controller can be derived in the following
manner. A comparison of the system dynamics in Eq.(2.18) with that in Eq.(2.2) leads to
f(Z,U,t) = AZ+BU 2.23)
in which the external excitation has been neglected.

We choose the nonquadratic cost function L(Z,U) and a Lyapunov function V(Z) as follows

L(Z,U) = ZTQZ+ UTRU + h(Z) (2.24)
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g2)= %(ZTMiZ)i (2.33)

IeR

1
such that
k .
g(2)=2 ¥ (Z™,2)""'M;Z (2.34)
i=2
where k is any integer greater than 2 indicating the order of the multinomial g(Z), and M;’s are
positive-definite matrices. It should be noted that Eq.(2.25) with g(Z) in Eq.(2.33) satisfies all the
properties of a Lyapunov function [Anderson and Moore (1990)]. Substituting Eq.(2.34) into
Eq.(2.28), we obtain the optimal polynomial controller as,
k ,
U= -R'B"PZ - RTB" 3 (z™M,2)"'MZ (2.35)
i=2
Note that for any value of k greater than 2, the maximum order of the controller in terms of Z is
(2k+1). With g(Z) and g'(Z) given by Eqs.(2.33) and (2.34), respectively, Eq.(2.31) can be written

as,

k . . k .
-3 @™;2)'Z"M;Z = $(Z"™;2Z) ' 2T [M;(A-BRT'BTP)+(A-BR'B'P)"M;1Z

i=2 i=2
+h(Z) - ﬁ(zTMiZ)"‘ Z2™;BR™'BT( }";(zTMiZ)i" M,Z] (2.36)
1=2 i=2

Now, let us choose h(Z) as follows
k . _
h2)= ¥ (2Z"™™,2)"'(27Q,2) + k(@) (2.37)
i=2

in which h(Z) = h,(Z) is given by Eq.(2.6). Substituting Eq.(2.37) into Eq.(2.36), we obtain M,
(i=2,3....k) as follows

-M,; =M, (A-BR'BTP)+(A-BR'B"P)"M, +Q,, i=23.k (2.38)
Equation (2.38) is the well-known matrix Lyapunov equation. For time invariant system with
constant matrices A and B such that M; = 0 ast — =, M, can be determined from the algebraic
Lyapunov equation

M;(A-BR'BTP)+(A-BR'BTP)'M,; +Q, = 0, i=23..k (2.39)



(2.16), which minimizes the performance index J given in Eq.(2.17). It should be mentioned that the
optimal controller for the scalar system given by Eq.(2.14) can be derived analytically for a general

class of nonlinear performance index in the steady-state form given by

J = [1Z7QZ + UTRU + h(z)] dt 2.41)
0

in which h(Z) can be any general nonquadratic part of the performance index. For this general case,
one can solve g(Z) from Eq.(2.31) for the steady-state condition dg(Z)/dt=0. Then, a
substitution of the resulting g’(Z) into the optimal controller given by Eq.(2.28) leads to the exact

solution

2 2
uc(l)=—%z—%J(a2 +q—:7)+%z—’ (2.42)

where u_(t) is the unique optimal solution. Note that such a unique optimal solution is possible only

for the scalar system. For other systems with a general class of function h(Z), it is not possible to
obtain the optimal solution analytically. Furthermore, the solution for higher order systems is not
unique; namely, there are multiple solutions.

Recall that, in the controllers given by Eqgs.(2.15) and (2.42), ¢ is the scalar form of the control
weighting matrix R, and q and q, (i=2,3,....k) are scalar forms of the weighting matrices Q and Q,
(1=2,3....k). For illustrative purpose, we consider a control system with a=-0.025, b=1, ¢ =1 and
g=q; =1.5, i=2,3,...k. Plots of the control force u(t) versus relative displacement z(t) given by
Eqgs.(2.15) and (2.16) for controllers of order one to eleven are shown in Fig. 2-1. A controller of the
ith order consists of all the odd order controllers from 1 to i. Although Eq.(2.42) is an irrational
polynomial in z(t), it is found that plots of polynomial controllers in Eq.(2.15) exactly coincide with
those of the unique optimal controller u_(t) in Eq.(2.42) for the case where h(Z) is given by
Eq.(2.37). Itis observed from Fig. 2-1 that all the nonlinear controllers behave like linear controllers
for small displacement z. However, as the displacement z increases, the control force, u(t), increases

rapidly for all the nonlinear controllers. Polynomial controllers presented in this paper are exact

solutions that minimize a class of performance index in Eq.(2.5).
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2.3.2 CONTROL OF A SIN . F-FRE M F

A SDOF structure equipped with an active tendon control system is used for the investigation of
various characteristics of optimal polynomial controllers. Structural parameters of the SDOF system
are: mass m=2.942 matric tons; natural frequency = 4.1 Hz; and damping ratio= 2.62%. Active
tendons with stiffness = 385.3 kN and angle of inclination = 36° are used. The N-S component of
1940 El Centro earthquake with a peak ground acceleration (PGA) of 116.68 gal is used for the input
excitation, where the time axis has been scaled down by 1/2 as shown in Fig. 2-2. The peak
displacement and peak acceleration of the uncontrolled structure are, respectively, 0.475 cm and 314
cm/sec’. The time-history of the displacement of the uncontrolled structure is shown in Fig. 2-3.

The peak response quantities are relevant to the safety of the structure, whereas the peak control

force is a measure of the capacity of the actuator required. In addition, the mean square (MS) control

force U?, that is directly related to the total required energy of the actuator during the earthquake
episode, is of practical importance, i.c.,

T,
vt = JuTud (2.43)
0

in which T; is the duration when the control force is required. For civil engineering applications,
accumulators may be needed to provide the control energy for the actuators as the stand-by system,
since power outage may occur during the earthquake episode.

(i) Same Level of Response Reduction: For the problem considered, the weighting matrix R for
the controller consists of only one element, denoted by R, . whereas the dimension of the response
weighting matrices Q and Q; (i=1,2,...k) is 2x2. Suppose the objective of control is to achieve a
60% reduction for the peak displacement. Based on the linear controller, i.e., Q; (i=2,3,...,k) are null
matrices, this objective can be met by using R, = 2269.81, Q(1,1)= 1952.46, and all other elements of
Q are zero. To obtain the same level of the response reduction by a cubic controller, we use R, =
4380505, Q(1,1)=1952.46 and Q,(1,1)= 9762, and all other elements of Q and Q, are zero. Various

response quantities for the two controllers above are shown in Table 2-1. Time-histories for the
displacement and control force for these two cases are shown in Figs. 2-4 and 2-5. It is observed
from the Table 2-1 and Figs. 2-4 to 2-5 that, while the peak control force for the cubic controller
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(3.228 kN) with respect to linear controller (2.383 kN) increases by 35.4%, the mean square (MS)
control force, which is related to the total control energy, decreases by 16.1%. These results
remained unchanged when the peak ground acceleration of the earthquake was increased to 500 gal.
The control energy in case of the polynomial controller decreases because the control force from the
nonlinear controller at instants other than the peak response is smaller than that of the linear controller
as shown in Fig. 2-5. This is reflected in the increase of RMS displacement and acceleration of the
structure as shown in Table 2-1. Fig. 2-6 shows the cumulative energy build-up during the
carthquake episode for these two controllers. The total energy buildup for the cubic controller is much
smaller than that of the linear controller. It is worthwhile to mention that electrohydraulic actuators
usually have high control force capacity, whereas stand-by accumulators for a large control energy
requirement may pose some practical problems.

To investigate the performance of linear and polynomial controllers for various levels of
displacement reductions, numerical simulations were conducted for: (i) linear controller with

Q(1,1)=1952.5, (ii) cubic controller I with Q(1.1)=Q,(1,1)=1952.5 (iii) cubic controller II with
Q(L.L)= 19525, Q,(1.1)= 5Q(1,1), and (iv) quintic controller with Q(1,1)= Q,(l.,I)=
Q,(1,1)=1952.5, by varying the control weighting element R,,. All other elements of Q, Q, and Q,

matrices in above cases were zero. The peak response reduction in % vs. the peak control force and
mean square contro! force are shown in Figs. 2-7 and 2-8. It is observed from Fig. 2-7 that, for peak
displacement reductions below 80%, the peak control force required by nonlinear controllers is always
higher than that required by the linear controller. The peak control forces required by different
nonlinear controllers varies in a nonlinear fashion, because the closed-loop system is no longer linear.
The peak control force increases as the order of the polynomial controller is increased. However, for
the peak reductions greater than 80%, the peak control forces for all the four cases in Fig. 2-7
coincide, because all nonlinear controllers at small displaceinents behave like the linear controller. It
is observed from Fig. 2-8 that the required control energy for all the nonlinear controllers is smaller
than that of the linear controller. It is further observed from Fig. 2-8 that the cubic controller with

Q, =Q yields the best performance in terms of the required control energy. This case is even better

than the quintic controller, and hence, it may be sufficient to use cubic controllers.



The results presented above were obtained using the El Centro earthquake. Since, earthquakes
are stochastic in nature, the effect of random earthquake ground motions on the performance of
nonlinear controllers will be investigated. Simulations results using six different earthquakes are
shown in Table 2-2. In Table 2-2, the peak ground acceleration (PGA) of each earthquake input is
shown in Column(2); the percentage of reduction for the peak Jisplacement is shown in Columns (3)
and (6); the peak control force is shown in Columns (4) and (7); and the mean square contro! force is
shown in Columns (5) and (8). The linear controller and the cubic controller Il described above were
used, and the results are designated as “Linear Controller” and “Nonlinear Controller”, respectively.
In Table 2-2, the level of reduction for the peak displacement is kept to be the same for both linear
and nonlinear controllers. Columns (9) and (10) of Table 2-2 are comparisons for the results of the
nonlinear controller in columns (6)-(8) with respect to that of the linear controller in columns (3)-(5).
It is observed from Table 2-2 that, although the peak control force for the nonlinear controller is
higher than that of the linear controller, the required control energy for the nonlinear controller is
smaller. Of particular interest are the results using Mexico N9OW earthquake for a 65.3 % peak
displacement reduction (last row of Table 2-2). In this case, the peak control force for the two
controllers is about the same, but the required control energy in the case of nonlinear controller
decrcases by 43.6 %. However, as the level of the response reduction increases, the difference
between the control energy required by the two controllers decreases, because the nonlinear controller
starts to behave like a linear controller. Cumulative build-up of the required control erergy based on

the Mexico N9OW earthquake excitation is shown in Fig. 2-9.
2.3.3 CONTROL QF A MULTI-D -OF-FREEDOM (MDOF

The same three-story building equipped with an active tendon control system on the first floor,
investigated by Wu et al (1994), is considered herein. The properties of the building are: mass of each
floor = 981 kg; natural frequencies of three modes = 2.34, 7.42 and 12.30 Hz; and the corresponding
damping ratios { (%) = 1.28, 0.54 and 0.42, respectively. Other relevant structural properties of the
model can be found in Wu et al (1994). Active tendons with stiffness = 411.55 kN/m have been
installed at an inclination of 36° from the horizontal floor. Numerical simulations have been

conducted using the El Centro NS (1940) earthquake considered previously.



A linear optimal controller has been designed for a PGA of 300 gal to achieve approximately 66
%, 62 % and 64 % reductions, respectively, for the peak displacements of the first, second and third

floors with respect to the ground. This is achieved using Ry =2 and Q(1.1)=3.0, and all other

elements of Q are zero. To obtain a similar level of response reductions, two optimal polynomial

controllers of cubic order have been designed using: (i) Ry =2, Q(1,1)=1.7, Q,(1,1)=7.0, and other
elements of Q and Q, are zero; and (ii) Ry =3, Q(1.1)=4.0, Q(2,2)=0.01, Q(3.3)=0.001, Q,=Q, and
all other elements of Q and Q, are zero. These two controllers are designated as “Nonlinear 1 and

“Nonlinear 2", respectively. In a similar manner, the special cukbic controller proposed by Wu et al

(1994) has been designed using: R, =2, Q(1,1)=2.45, and all other elements of Q are zero. Note that
for the special cubic controller presented by Wu et al (1994), Q, is related to Q through

Q; =Q+ PBR™'BTP. As a result, the cubic controller presented in this paper is more flexible, since
Q,, can be chosen arbitrary to achieve various objectives.

Numerical simulations have been carried out by varying the peak ground acceleration (PGA) of
the El Centro earthquake from 100 to 600 gals to examine the performance of linear and three cubic
controllers for a wide range of earthquake intensities. Figs. 2-10 to 2-12 present the reduction (%)
for the peak displacement of the first, second and third floors, respectively, as a function of PGA. As
expected, the peak displacement reduction by the optimal linear controller remains constant for
different PGA. On the other hand, the peak response reduction by the three nonlinear controllers
increases with the increase of PGA. As mentioned previously, the peak response reduction at the
design PGA (i.e., 300 gal) is about the same for all controllers. Figs. 2-10 to 2-12 indicate that (i) for
PGA smaller than the design one, i.e.. PGA < 300 gal, the peak response reduction for cubic
controllers is smaller than that of the linear controller, and (ii) for the PGA greater than the design
one, i.e., PGA>300 gal, the peak response reduction for the cubic controllers is higher than that of the
linear controller. The latter behavior is very desirable, since a larger reduction for the peak response
is needed when the actual earthquake intensity exceeds the design one. Such a response adaptivity to
stochastic earthquakes is very beneficial for practical implementations of the control system.

Figs.2-13 and 2-14 show the corresponding normalized peak control force and normalized
control energies vs. PGA, respectively. Peak control forces and control energies for all the controllers

have been normalized by the corresponding quantities required by the linear optimal controller at a
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SECTION III

OPTIMAL POLYNOMIAL CONTROL FOR NONLINEAR AND
HYSTERETIC STRUCTURES

In this section, we derive analytically an optimal polynomial controller for seismically excited
nonlinear or hysteretic structures. A performance index that is quadratic in control and polynomial of
any order in nonlinear states is minimized based on the Hamilton-Jacobi-Bellman equation. Gain
matrices for different parts of the controller are computed easily from Riccati and Lyapunov matrix
equations. For the special case in which the damping and stiffness of the structure can be separated
into linear and nonlinear parts, a special optimal polynomial controller is also derived. Such an
optimal controller reduces to the one derived in Section II, when the structure becomes linear, i.c., the
nonlinear parts of damping and stiffness are zero. The performance of the optimal polynomial
controller derived in this section is demonstrated by simulation results for a base-isolated building and

a bilinear elasto-plastic fixed-base building with a large ductility.

3.1 STATEMENT OF OPTIMAL CONTROL

Consider an n degree-of-freedom nonlinear building structure subjected to a one-dimensional

earthquake ground acceleration X(t). The vector equation of motion is given by

MX(t) + F.[X(1)]+ F,[X(t)] = HU(t) + ni o (1) (3.1
in which X(t) =[x, X5...., xn]'r is an n vector with x;(t) being the drift of a designated ith story
unit; U(t)=[u,, u,...., u,(l)]T is a r-vector consisting of r control forces; superscript T denotes the
transpose of a vector or a matrix; and m is an n-vector denoting the influence of the earthquake
excitation. In Eq.(3.1), M is a (nxn) mass matrix; H is a (nxr) matrix denoting the location of r
controllers; F.[X(1)] = F,is an n-vector denoting the nonlinear damping force; and F,[X(1)]=F; is

an n-vector denoting the nonlinear stiffness which is assumed to be a function of X(t). In the state
space, Eq.(3.1) becomes

Z(t) = q(Z(t)) + BUU) + E(1) (3.2)
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functions of the weighting matrices Q;, 1=2,3,..., k. The relation between M; and Q; will be defined
later.

Generally, a factor of 1/2 should be multiplied to the performance index in Eq.(3.4).
However, the optimal solution ( or control law) does not depend on any constant factor multipled to

the performance index. For simplicity of presentation, the constant factor of 1/2 has been dropped.

3.2 DERIVATION OF OPTIMAL POLYNOMIAL CON LER

The penalty for )"(a( t) has been included in the performance index, Eq.(3.4), in order to

reduce the absolute acceleration of each floor to an acceptable level. From the equation of motion,

Eq.(3.1), the absolute acceleration vector J"(a( t) can be expressed as,
X, (1) =-LM'[E.(X)+F,(X)]+ LM~ 'HU(1) (3.7
in which L is a (nxn) transformation matrix. For a shear-beain type building, L(i,)) = | for j<i and

L(i,j) =0 for j>i. Substituting Eq.(3.7) into Eq.(3.4), one obtains a transformed performance index
as follows (Yang et al 1992b)

=] [qT Qq+UTRU + _iz(qTMiq)"'qTQiq + h(g) ]dt (3.8)
0 i=
where R, Q and U are
T. =[° 0 }; R=R+B™T,B; §=0Q+T,-T.BR-'BTT, (3.9)
0 L' Q,L
U=U+R"'BTT,q(2) (3.10)
Substituting Eq.(3.10) into Eq.(3.2), one obtains the transformed state equation as,
Z=Aq+BU+E() @3.11)
where
A=[I-BR'B'T,) (3.12)

The minimization of the performance index in Eq.(3.8) by classical conditions of optimality is
very difficult and hence an alternative approach has been developed. This approach is based on the

solution of the Hamilton-Jacobi-Bellman (H-J-B) equation (Anderson and Moore 1990) using a
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sense that J(Z,.(Z).t,) = glig[l(zo.ﬁ.lo )]. The asymptotic stability of the closed-loop system is
€

guaranteed through the Lyapunov theorem of stability. i.e.. V(Z)<O0.

A comparison of the state equation in Eq.(3.11) with the general state equation in Eq.(3.13)

leads to
f(Z.U.t) = AqZ) + BU() (3.19)
Now. we consider a cost function L(Z.U) and a Lyapunov function V(Z) as follows
L(Z.U)=q"Qq+ UTRU + h(q (3.20)

V(Z) = q'Pq + g(q) (321
where g(q) is some positive definite multinomial of q. Our aim is to determine the nonquadratic cost
function, h(q), such that simple analytical solution for the optimal control law U can be derived.

Substituting Eqs.(3.19) - (3.21) into Eq.(3.16). one obtains the Hamiltonian function
HQ.U.V.t) = q"Qq + UTRTU + h(q) + [2q"PA+’(q)"] (Aq + BU) (3.22)
in which the denvative matrix A = A(Z) is given by Eq.(3.6). Substitution of Eq. (3.22) into the
necessary condition in Eq.(3.17) leads to
WRU+28TATPq+BTp @) = 0 (3.23)

From Eq.(3.23). one obtains the optimal nonlinear controller, U(l). as
U = -R™IBTATPg2) - %ﬁ_lBTg’(q) (3.24)

It can be verified easily that 9°H(Z.U.V*.1)/dU> =2R >0, since R is a positive-definite matrix.
Substituting Eqs.(3.19)-(3.21) and Eq.(3.24) into the H-J-B equation in Eq.(3.18), and separating
quadratic terms in q and terms containing g’(q). one obtains,

-P = PAA+ATATP-PABR'BTATP+Q (3.25)

_98(q)
ot

in which the scalar identity 2qTPAAq = qTPAA3+q"ATATPq has been used to obtain Eq.(3.25).

1 =- - =-
= h(q)-:g'(q)TBR IBTgq)+g’ T(A-BR™'1BTATP)g (3.26)

Equation (3.25) is the well-known Riccati matrix equation.

To express the controtler in Eq.(3.24) as an explicit functionale of multinomials in q(Z), we
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then it follows from Eq.(3.26) that M, ’s are determined from the following matrix Riccati equation,
-M; =M,A(A-BR'B"ATP)+ (A~ BR'BTATP)TATM, - M,ABR'BTATM; +Q, (3.34)
It is observed from Eqgs.(3.21), (3.25), (3.27) and (3.31) that the function V(Z) satisfies all the

properties of the Lyapunov function.
3.2.1 TANT GAIN MATRI

Sirce the derivative matnx, A = A(Z), in Egs.(3.25), (3.31) or (3.34) is a nonlinear function
of Z, Eq.(3.6), gain matrices P and M, for the polynomial controller, Eq.(3.32), can not be calculated
off-line. Hence, P and M, will be determined by linearizing A(Z) at the initial equilibrium point Z=0,

which is stable for civil engineering structures. For many civil engineering structures, the stable initial

point Z=0 is the only equilibrium point. With such a premise, we linearize the derivative matrix A(Z)
at Z=0, i.e., Ag = A(Z)|z-¢ . Replacing A(Z) by the linearized form at Z=0, i.e., A(Z)= A¢, one

obtains from Eqs.(3.25), (3.31) and (3.34) for the steady-state Riccati and Lyapunov matrix

equations, respectively,
PAoA + ATALP - PA,BR'BTATP + Q=0 (3.35)
M,Ao(A-BR'BTA,TP) + (A—BR'BTA,TP)TA(™, + Q, =0, i=2,3, ...k (3.36)
M.A (A-BR'BTA,TP)+(A-BR'BTA,TP)TA,TM, ~-M,A(BR'BTA,™™M, +Q, =0  (3.37)
in which P is the constant Riccati matrix, Eq.(3.35), and M,- is either a constant Lyaounov matrix,

Eq.(3.36), or a constant Riccati matrix, Eq.(3.37). Consequently, the controller in Eq.(3.32) can be

written as,
— - . — | I .
uw=-RIBT(T, +ATh)g - R7IBT Z(qTM,9)' 1AM, q (3.38)
i=2
The optimal controller derived in Eq.(3.38) is a polynomnial of nonlinear states q with gain matrices P,
Mi (i=2,3,...k)and A= A(Z). P and Mi are constant gain matrices determined by linearizing A
at Z=0, Eqs.(3.35)-(3.37). However, the gain matrices A = A(Z) in the controller, Eq.(3.38), which

is the derivative matrix, is a2 nonlinear function of the state Z.



damping and stiffness can be separated into linear and nonlinear parts as follows

F.[X()]=CX()+F,. : FIX(U}=K X(1)+F,, (3.43)
in which C and K are (nxn) linear damping and stiffness matrices, respectively, and F,_ = FnC[X(l)]

and F, = F [X(1)] are n-vectors representing the nonlinear parts. Thus, the state equation of the

system can be expressed as

Z(t) = Ag(Z) + BU(1) + E(1) (3.44)
in which q(Z) = A"q(Z) is the nonlinear state vector given by
W2)=2+A7'f(2) (3.45)
where f(Z) is the nonlinear part of q(Z)
0 [ - 0
A= . (2= (346)
-M-IK -M-IC -M-YF, +F]

For the performance index in Eq.(3.4) with q being replaced by q, one has

oo . .. k —
J= | [a’qa + X,7Q,X, + UTRU + 3@"™M,9"'3"Q,3 +h@] dt (3.47)
0 1=2
where h(q) = h, () is given by Eq.(3.5) with q being replaced by T, i.e.,

_ — k . _ k .

h@=h,@= [Z(ETM,E)"'ﬁTM,A} BR"BT[ (ﬁTMia)"'ATMiﬁ] (3.48)

1=2 1=2

Following the same derivations presented in the preceeding subsection, the optimal controller is

obtained as
— - . - k N .
un=-R'BT(T, +AThg - R7'BT @™ ~'aTMm g (3.49)
i=2
where Ta and R are given by Eq.(3.9),i.c..
T = % 1. R-r+B™L,B (3.50)
a=lo  LTQL|” a >
and the derivative matrix A is given by,
aq 41 9f(2)
A=—=1+A" =2 3.51)
daZ a9z (

For most civil engineering structures, the nonlinear part f(Z) of §(Z) and its derivative BT(Z)/BZ

are zero around the equilibrium point Z=0. Consequently, Ay = /\l 7=0=08/92Z| z_o =I. Matrices



vy = D5 [Ak =By, M - v M ] = kv (3.59)

In Eq.(3.59), A,, B;.y, and n,are parameters characterizing the hysteresis loop of the inelastic

behavior of the ith story unit. Substituting Eq.(3.58) into Eq.(3.1) with F.(X)=CX, one obtains the
vector equation of motion as follows

MX +CX + K _X(t)+ K, V(t) = HU(1) + nX (1) (3.60)

where K, and K, are the elastic and inelastic stiffness matrices, assembled for each story unit

according to Eq.(3.58); V(1) =[v,.v,.....v, 1" is an n vector denoting the hysteretic component of
each story unit given by Eq.(3.59). The derivative matrices A(Z)=9q(Z)/dZ, Eq.(3.6), and
Ay = A(Z)),_, appearing in the control law, Egs.(3.35)-(3.38), are given by

Onn

AZ) = oV tm . Ag=| om lon 3.61
(2) = —M"[KC+K,-87] -M7cl "0 |-MT'k, -M7'C G

in which 0., and I, are (nxn) null and identity matrices, respectively, and oV/9X is a diagonal
matrix with the ith diagonal element dv, /dx; given by,

v, v, B . a-l .
a—xi-g-Dw[Ai Bisgn(x;) [vi[ " v, ‘Yi|vi||] (3.62)

1

The linearized constant matrix A, that is required for the calculation of the feedback gain matrices in
Eqs.(3.35)-(3.37), is obtained from A(Z)by setting Z=0 or 9V/dX =0, see Eq.(3.61). For numerical
simulations of the structural response, the hysteretic vector V can be augmented in Eqs.(3.59) and

(3.60) so that the state vector Z=[XT, XT, VT)T has a 3n-dimension. A detailed description of

the procedures for numerical simulations of the response of hysteretic structures can be found in Yang
et al (1992a).

3.5 OTHER CONTRO], LAWS FOR NONLINEAR OR HYSTERETIC STRUCTURES

The performance of the controller presented in this paper will be compared with some other

controllers available in the literature. These control methods include the LQR method based on
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control system consisting of rubber-bearing isolators and actuators, Fig. 3-1. The performance of the

proposed controller will be compared with that of various controllers described previously.

3.6.1 A BASE-ISOLATED ELASTO-PLASTIC BUILDING

An eight-story building that exhibits bilinear elasto-plastic behavior is considered. The
properties of the building are as follows: (i) the mass of each floor is identical with m; =345.6 metric
tons: (i) preyielding stiffnesses k,(i=1.2..8) of eight-story units are 340400, 325700, 284900,
268600, 243000. 207300, 168700 and 136600 kN/m, respectively, and postyielding stiffnesses are
0.1k, for i=1.2...8. ie.. o;=0.1 in Eq.(3.58); and (iii) the linear viscous damping coefficients for
each story unit are c; =490, 467. 410, 386, 348, 298, 243 and 196 kN.sec/m, respectively. The
damping coefficients result in a damping ratio of 0.38 % for the first vibrational mode. The
fundamental frequency of the unyielded building is 5.24 rad/sec. The yielding level for each story unit
varies with respect to the stiffness: with the results, Dy; =2.4,2.3,2.2,2.1, 2.0, 1.9, 1.7 and 1.5 cm,
Eq.(3.59). The bilinear elasto-plastic behavior can be described by the hysteretic model, Eq. (3.59).
with A;=1.0, B;=1.0, n,=95 and v,=1.0 for i=1.2..8. The El Centro NS (1940) carthquake with a
peak ground acceleration of 0.3g, referred to as the design earthquake as shown in Fig. 3-2, is used
for the input excitation.

Without any control system. it has been observed that the deformation of the unprotected
building is excessive and that yielding takes place in the upper five stories (Yang et al 1992b, 1994a).
Hence. a lead-core rubber bearing isolation system is used to reduce the response of the building. The
stiffness of the lead-core rubber-bearing is modelled by Eq.(3.58) with F =a,kpxy +
(1-ap)kp Dy, vy, in which the subscript b stands for the base-isolation system. The hysteretic
component, v,,. is modelled by Eq.(3.59). Properties of the base-isolation system are: m,=450
metric tons, stiffness k,=18050 kN/m, damping ¢\, =26.17 kN.sec/m, a;,= 0.6, Dy, =4 cm, A,=1.0,
By =0.5, n, =3 and y,=0.5. Eq.(3.59). The hysteresis loop of such a base-isolation system, i.e., xy,
versus vy, , is shown in Fig. 3-3.

For the building with the base-isolation svstem, the first natural frequency of the preyielded

structure is 2.21 rad/sec and the damping ratio for the first vibrational mode is 0.16 %. Within 30
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are chosen to be Q,(1,1)=10 and Q(1,1)=130 for the second case. With R =7.3x107"!, the peak

response quantities are presented in Columns (7) and (8), respectively, of Table 3-1, designated as
“Linear 2”. It is observed that, although the drift of the rubber bearing and the peak control force are
reduced, the building response quantities increase.

For the controller, Eq.(3.38), presented in this study, we first consider the special case in
which Q; =0, i=2, 3,..., k. Such a special controller was proposed by Yang et al (1992b, 1994¢). In
this case, we choose R=1.0x10"7, and Q, and Q are diagonal matrices as follows: Q, (i,i) =[10, 15,
15, 20, 20, 30, 50, 50, 50}, Q(1,1)=100, Q(i,i)=10 for i=2, 3,.., 9, and Q(i,i)=0 for i=10, 11, ..., 18.
The peak response quantities based on this controller are shown in Columns (9) and (10) of Table 3-1,

designated as “Nonlinear 1”. We observe that the overall performance of this controller is slightly

better than that of linear controllers. Next, we consider a general case, where Q, #0 and Q; =0
for i=3, 4,..., k. Diagonal weighting matrices are chosen as follows: R=1.0 x 107 .Q,. (,i) =[4, 6, 6,

8, 8, 12, 35, 35, 35]1x10°, Q(1,)= 2, Q)= 1 for i= 2, 3,..., 9, Q(i,i)= O for i= 10, 11,..., 18,
Q,(1.1)=8, Q, (i,i)=6 for i=2, 3,.,, 6, Q, (i,i)=1 for i=7, 8, 9 and Q, (i,i) =0 for i=10, 11,..., 18. The
peak response quantities based on this controller are shown in Columns (11) and (12), respectively, of
Table 3-1, designated as “Nonlinear 2. It is observed that, while the overall performance is similar to
that of “Nonlinear 1", the peak control force has been decreased by 5%. In particular, the overall
performance of “Nonlinear Controller 2" is comparable with that of the sliding mode controller.
Time histories for the drift of rubber-bearings are shown in Fig. 3-4(a), in which the response
without actuator is shown by the solid curve. The dashed and dash-dotted curves represent the
responses using Nonlinear 2 and Nonlinear 1 controllers, respectively. The required control forces for
both controllers are shown in Fig. 3-4(b). As observed from Fig. 3-4 and Table 3-1, hybrid control is
quite effective and the performance of both Nonlinear | and Nonlinear 2 controllers are comparabie.
With hybrid control, the building response quantities are well within the elastic range except
the drift of rubber bearings. Hence, the reduction for the drift of rubber bearings will be compared for
different controllers in the following. The results presented in Table 3-1 are based on the design
earthquake, i.c., El Centro earthquake with a peak ground acceleration (PGA) of 0.3g. Since the
PGA is stochastic in nature, numerical simulations have been conducted for the same earthquake with

different PGA. Based on the same design for various controllers presented in Table 3-1, simulation
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Table 3-1: Peak Response Quantities of an Eight-Story Building Equipped with Hybrid Control

System

F

L | D, Linear ] Linear 2 Nonlinear | | Nonlinear 2 | Sliding Mode
(6] With BIS U=1491kN jU=1031 kN|U=1437kN| U=1350kN | U = 1494 kN
(6] (4.73%) (3.27%) (4.56%) (4.29%) (4.74%)

R U2 =1047 kN? | U2 =226 kN* | U2 =689 kN?| U2 =711 kN?] u? =651 kN’
N X Xy X Xai X Xaj X Xai X Xai X Xa
Olem| om |emss’] eom | emvs® | om |cemvs®] em | emvs?| em |envs?| em | emys?
MDAl 3 1 4@ (5) (6) M1 ®O 1 Gl ldablay ] ady | ds
B |40]|21.35] 130 | 144 45 1071 70 10.7 | 38 10.7 | 46 108 | 77
1124)062| 123 | 0.15 43 0221 71 020)] 39 1018 48 | 0.14 | 42
2123|1059 113 | 0.16 40 | 025] 66 |020 | 36 | 0.18] 43 J 0.14 | 37
31221065 111 | 0.19 33 029 ]| 53 022 30 | 0.21 34 016 | 38
4121]063]| 102 1 0.21 29 030} 46 | 0.23 30 1022 30 | 0.15 31
5120]1065]| 91 0.22 32 030 | 49 | 022 ]| 38 | 0.2] 40 | 0.14 ] 38
6|19]065] 103 | 0.23 39 0.31 66 | 022] 46 | 020]| 46 | 0.18 ] 39
711.71060]) 1351 0.22 S50 1034] 68 |020] 47 | 020] 51 020 ]| 42
8§]15]041] 163 | 0.16 64 027]1 105 J0.15] 60 | 0.16] 64 | 0.15] 60

Table 3-2: Peak Response Quantities of a Fixed-Base 8 Story Building Under 1g El Centro

Earthquake

F Nonlinear Nonlinear Nonlinear

L { D, | Without | Linear Control Control 1 Control 2 Control 3

O Control | Upy= 5475kN | U = 4966 kN | Unx = 5192 kN | Unx = 5683 kN
(0] (20.21%) (18.33%) (19.16%) (20.97%)
R u? =5608 kN*> | u2=5368 kN? | u2=5510 kN*> | u? =11602 kN
N X; X; u; X; u; X; u; X; u,
O] cm cm cm kN cm kN cm kN cm kN
1@ 3) ) S) 6 ()] (8) (&) (10) (b
1124} 4388 435 4961 432 4966 4.25 5192 432 5683
2]123] 410 4.36 4893 4.35 4803 4.26 5010 4.30 5451
3122 5.38 4.24 5475 4.36 4911 428 5068 432 5428
41 2.1 5.47 4.21 4613 4.29 4345 4.23 4438 408 4731
5120| 687 3.97 4013 4.09 3853 3.98 3891 3.72 4098
6|19]| 848 3.79 3355 386 3358 3.65 3372 3.22 3502
7117] 1064 3.82 2303 3.60 2617 3.80 2441 2.79 2542
8|15 461 3.65 573 3.69 1306 3.53 1212 3.50 1231
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particular, the ductilities of the fifth, sixth and seventh story units are very large. Hence, it is
important to install controllers at every floor to apply control forces effectively.

The objective for the control design is to prevent a collapse of the building by reducing the
ductility of each story unit to be smaller than 2.5 cm. We first consider the LQR control law,
Eq.(3.64), in which the structural system is lincarized first at Z=0. In this case, we choose

R(i,i)=50x107°  i=1,2, .8, Q,G,i)=0.1,i=1,2, ..8 and Q(i,)= [15, 16, 22, 18,15, 11,6, 1,0,

0.0,0,0,0,0,0]x10*. All other elements of the matrices above are zero. The peak interstory drifts
and the peak control force for each controller are shown in columns (4) and (5), respectively, of Table
3-2, designated as “Linear Control”. Also shown in the table are the maximum of peak control forces,
U max » and the maximum required control energy, F among all actuators. The maximum control
force, U . » has also been expressed in paranthesis as the percentage of the total building weight that
is 2764.8 metric tons. The peak control force is about 20.21% because the earthquake has a PGA of
lg.

For the polynomial controllier, we consider the case when Q; =0, i =2, 3, ...k. The diagonal
weighting matrix Q is chosen as Q(i,i)=[15.3, 15.5, 17.6, 16.1, 14.2,11.9,9,3.3,0,0,0,0, 0, 0, 0,
0]x103, whereas weighting matrices R and Q, are the same as the linear controller above. The
peak interstory drifts and the peak control forces are shown in columns (6pand (7), respectively, of
Table 3-2, designated as “Nonlinear Control 1. It is observed that the peak control force and the
maximum required energy are smaller than those of the linear controller for a similar response
reduction of the building. Next, we consider a general case, where Q, #0 and Q; =0 fori=3, 4,..,
k. The weighting matrices Q, , R and Q are kept to be the same as in the case of Nonlinear Control
1, except that Q(7,7)=7000 and Q(8,8) = 2500. Q, is chosen to be a diagonal matrix with diagonal
elements Q,(i.i) = [0.9,0.9,09,08,08,08,08,0.5,0,0,0,0,0,0,0,0]. The peak interstory
drifts and the peak control forces are shown in columns (8) and (9), respectively, of Table 3-2,
designated as “Nonlinear Control 2”. It is observed from Table 3-2 that the performance of both
nonlinear controllers is better than that of the linear controller. A comparison between the results for

both nonlinear controllers indicates that a better reduction for the interstory drifts is achieved by

Nonlinear Control 2 at the expense of increased peak control force and control energy.
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as good as that of the cubic-order controller, in the sense that for the same level of the peak response
reduction, these higher-order control laws require a bigger peak control force and a larger control
energy. In fact, the performance for different orders of control laws depends heavily on the nature of
nonlinearity of the structure considered. For the hysteretic-type nonlinearity considered in both
examples above, (i.e., hysteretic rubber bearings and yielded building), the cubic control law has the

best performance.
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SECTION IV

STATIC OUTPUT POLYNOMIAL CONTROL FOR LINEAR AND
NONLINEAR STRUCTURES

The optimal polynomial controllers proposed in sections II and 111, respectively. for linear and
nonlinear structures. require full-state feedbacks. In this section, these optimal controllers are
extended to static output feedback controllers, that utilize only the information measured from a
limited number of sensors installed at critical locations without an observer. The derivations are based
on a similar algorithm for static output feedback lincar controller proposed by Levine and Athans
(1970). The performance of these static output controllers is demonstrated by simulation results for:
(1) active control of a 3-story linear building, and (ii) hybrid control of a base-isolated 8-story building

using rubber-bearing isolators.
4.1 FULL-STATE POLYNOMIAL CONTROLLE

4.1.1 SPECIAL NONLINEAR STRUCTURES

Consider an n degree-of-freedom nonlinear structure subjected 1o a one-dimensional earthquake

ground acceleration, X, (). The vector equation of motion is given by,
MX (1) + F.[X(D]+ F [X(0)] = HU() + ni (1) 4.
in which X(t) =[x, (1), xa(t).... x,,(l)]T is an n vector with x,(t) being the drift of the ith designated

story unit; U ={uy.u,...., u, ()T is a r-vectcr consisting of r control forces: and 7 is an n vector
denoting the influence of the earthquake excitation. The superscript T above indicates the transpose
of a matrix or a vector. In Eq.(4.1), M is a (nxn) mass matrix; H is a (nxr) matrix denoting the
location of r controllers; Fcl)'((l)] is an n-vector denoting the nonlincar damping force: and F [X(1)]
is an n-vector denating the nonlinear stiffness force.

For many civil engineering structures. such as inelastic or hysteretic structures. the

nonlinear damping and stiffness can be separated into linear and nonlincar parts as follows

F(X(D]=CX()+F,: F[X()]=KX()+F, (4.2)

4-1



in which C and K are (nxn) linear damping and stiffness matrices, respectively, and F,. = F, [X(1))
and F,; = F_([X(t)] are n-vectors representing the nonlinear parts. Let us introduce a 2n nonlinear

state vector q(Z)
W2)=Z+A"'f(2) (4.3)

in which Z = [XT(t). )'(T(t)]T is a 2n state vector; A is a (2nx2n) elastic system matrix; and ?(Z) isa

2n nonlinear vector

0 I N 0
A=[—M"K -M"C] ‘ ”Z)'{—M"(mem)} @4

Then, the equation of motion, Eq.(4.1), in the state space can be expressed as
Z(t) = AQ(Z) +BU(1) + E(t) (4.5)
in which B is (2nxr) matrix for controller locations; and E(t) is a 2n excitation vector, respectively,

given by

B=| 5 1. Ew={ 2 (4.6)
TIMHJ "M (1) '

For such special nonlinear structures, an optimal full-state poiynomial controller was derived in
Eq.(3.49) of section III as follows

- k - . -
U =-R'BTATEG(2)-R'BT 2 (G™M,9)' ' ATM,5(2) 4.7)
i=2

in which A = A(Z) is the derivative matrix of q(Z),
A=A2)=39(Z)/oZ =1+ A~ 3f (2)/az (4.8)
and positive-definite matrices P and Ndi, i=2,3...k, are obtained by solving Riccati matrix equations,

Eqgs. (3.52) and (3.55)

PA + ATP - PBR'BTP + Q=0 49)
M,A+A™, -M,BR'B™, +Q, =0 (4.10)
where
A=A-BR'BTP 4.11)

The controller in Eq.(4.7) has been obtained by minimizing the performance index, Eq.(3.47)



oo k R _
J= j{aqu +UTRU + [ Z(ﬁTMiﬁ)"lﬁTQiﬁ] + h(ii)}dt (4.12)
0 i=2

where [see Eq.(3.48) and (3.56))
h@) = [Ez(aTM@“‘ q'M, ]BR"BT[E2 (ﬁTMm"‘a]
= i=

k ,
-'}.‘.2(6TMiﬁ)"'6TMiBR"BTMiﬁ (4.13)
1=
Note that the second term in Eq.(4.12) is quadratic in control, whereas the first term and the third
term in summation are polynomials in q(Z) of different orders. Weighting matrices Q, R and Q,

(1=2,3,...,k) can be chosen by the designer to penalize the selected response quantities. However,

matrices M, (i=2,3,....k) are implicit function of the weighting matrices Q, (i=2,3,...,k) defined by
Eq.(4.10).
4.1.2 LIN R

For linear structures in which the nonlinear part f(Z)in Eq.(4.3) is zero, i.e., q(Z)=Z and

A(Z)=I, the state equation of motion, Eq.(4.5), becomes

Z(t) = AZ(t) + BU(t) + E(t) (4.14)
and the optimal polynomial controller in Eq.(4.7) becomes
U =-R'BTPZ(1)-R'BT iz(ZTMll)'“' M,Z (4.15)
i=
The gain matrices P and M, (i=2, 3, ...., k) are determined from the Riccati equations, Eqs.(4.9)-
(4.11), as follows
PA+ATP-PBR'BTP+Q=0 (4.16)
M,A+A™; -M,BR"'B™; +Q, =0 (4.17)
where
A=A-BR7'BTP (4.18)
The optimal polynomial controller in Eq.(4.15) minimizes the polynomial performance index
)= T{ 2Toz + uTRU + [iiz Z™,2)" ZTQiZ] + h@@) } & (4.19)
-0 =
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As a result, closed-loop systems A = A — BR'BTP, Eq.(4.18), and (A- BR"BTMi )y fori=2,3, ...,

k are stable. The stability of the closed-loop systems in Eqs.(4.21) and (4.23) ensures the stability of
the system in Eq.(4.14) for the full-state feedback controller in Eq.(4.15).

Consider a m-dimensional output vector y(t),

y(t) =cZ(1) (4.25)
where c is a (mx2n) observation matrix and m is the number of sensors installed on the structure. We

construct an output polynomial controller as follows

k .
um=-R7'BTNy-R7TBT Z(yTek;cTy)' = 1s, y (4.26)
i=2

in which N and S, are (2nxm) output gain matrices to be determined, and K; is related to S;. Such

an outpu' controller reduces to the state controlier in Eq.(4.15) when c¢ is a (2nx2n) identity matrix

as will be shown later on.

A substitution of y(t) in Eq.(4.25) into Eq.(4.26) leads to the following

k
U(t)=-R'BTNcZ(1)- R'BT 3(zTeK;cZ)'"''S,cZ(1) (4.27)
1=2

where € =cc. Note that the positive definite multinomial ZTM;Z in the second term of the full-
state controller in Eq.(4.15) has been replaced by the positive definite multinomial ZTEKiEZ in the
static output controller, Eq.(4.27). Consequently, the static output controlier in Eq.(4.27) will
stabilize the system in Eq.(4.14) if we can find the gain matrices N and S; such that closed-loop
systems A - BR 'BTNc and A-BR'BT(N+S,)c for i=2,3,...k, are stable. Methods to obtain N
and S;, such that these closed-loop systems are stable, are presented as follows.

A static output feedback controller for linear systems, Eq.(4.21), was proposed by Levine and
Athans (1970) by minimizing a performance index, j 1 =E(J}), where E(J,) is the stochastic average
of the performance index J,in Eq.(4.22); with the result

Uty = - Fy(t) (4.28)
The feedback gain matrix F is obtained from
F=R7'BTK,LcTlcLc'] (4.29)
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where the closed-loop system of Eq.(4.35). A, . is stable,

A, =A-BR'B"Nc-BFc (4.39)
Again, equating the feedback gain matrix F, above to the feedback gain matrix in the second pan
of the controller of Eq.(4.27). i.e., R_IBTle‘. one obtains

F =R'BTS,c (4.40)
Then. §, is obtained by substituting Eq.(4.40) into Eq.(4.36) as

S, =K,L,cTeL,cT}! (4.41)
Substituting  Eq.(4.40) into Eq.(4.39), the stable closed-loop system K, becomes
A, = A—BR"BT(N+SIC). Thus. we have derived N and S, such that closed-loop systems
A, =A-BR'BTNc and A, = A-BR'BTNc-BF,c fori= 2. 3. ... k arc stable. It should be
noted that K, in Eq.(4.26) is related to S, through Eq.(4.41).

For the case of full-state feedback. the observation matrix ¢ is an identity matrix, and Egs.(4.30)

and (4.37) reduce to.
K,A+ATK, -K,BR'B'K, +Q=0 (4.42)
K,A+ATK, -K,BR'BTK, +Q, =0 (4.43)
respectively. Consequently. one has P=N=K_,. M, =S, =K, and the quadratic term ZTEK,EZ

reduces to ZTM,Z. Hence. the static output controlier in Eq.(4.27) reduces exactly to the optimal

full-state feedback controller in Eq.(4.15) as a special case.

4. v N TIC N
NONLINEAR STRUCTURES

For nonlinear structures, the system equation is given by Eq.(4.5). The full-state polynomal
controller is given by Eqgs. (4.7)-(4.8) and the gain matrices Pand 1\71, should be determined from

Eqs.(4.9)-(4.10). For many civil engineering structures, either nonlinear or hysteretic, Z=0 is the only

cquilibrium point that is stable. Further, for these civil engineering structures

f(Z) 220 = 31(2)/3Z| 2.0 =0 and hence A, = A(Z)|z=o =1. Based on these premises, constant
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reliable and useful. The simulation results presented in the next section are based on such a method
using IMSL double precision subroutine “DUMING”. Due to space limitations, details for the

iteration procedures are not presented.
4.5 NUMERICAL RESULTS

Consider a three-story linear building model equipped with an active bracing system in the first
story unit. The mass, stiffness and damping coefficient of each story unit are m; = | metric ton, k;=
980 kN/m and c; = 1.407 kN.s/m, respectively, for i=1, 2 and 3. The El-Centro (NS component)

earthquake with a peak ground acceleration of 0.3g, shown in Fig. 3-2, is used as the input excitation.
Only the interstory drift and velocity of the first story unit are measured and used for the design of
static output controllers. The performance of the third order (cubic) static output controller in

Eq.(4.26), i.e. Q, #0,Q;=0, i = 3, 4.k, will be compared with that of the linear static output
controller in Eq.(4.28) for three levels of response reductions. For the linear controller, a diagonal

state weighting matrix Q=[10%, 10*, 10, 1, 1, 1] is used. Since there is only one controller, the

control weighting matrix R is a scalar. Three cases of response reductions corresponding to three

different R values, i.e.. R =0901x10~°, 0.1698x10~7 and 0.7095x10~", have been considered.

The peak interstory drifts, x;, and the peak absolute acceleration of floors, X;, for i =1,2 and 3 are
shown in Columns (4)-(5), (8)-(9) and (12)-(13) of Table 4-1. The maximum control force U and the
required control energy F in 20 seconds of the earthquake cpisode are also shown in Table 4-1.

The control energy F is computed as the integration of the square of the control force U(t) over 20
seconds. The building response quantities without control are shown in Columns (2) and (3) for

comparison. To obtain similar levels of response reductions using the third order controller, the
following weighting matrices for three cases are chosen: Q=[IO4 ,10%, 102, 1, 1, 1}, Q,=[ 8000,
400, 10, 0, 0, 0], R=0.1608x1077; Q=[10%, 10°, 102, 1, 1, 1), Q,=[ 4200, 1, 1, O, O, O],

R=0.1698x107%; and Q=[10%, 102, 10, 1, 1, 1], Q,=[ 2200, 150, 10, 0, 0, 0}, R=0.1698x1073,
respectively. The simulation results for the peak response quantities are shown in Columns (6)-(7),

49
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magnitude of the R matrix can be designed with a larger value. This eliminates the convergence
problems in the iteration process quite effectively. Hence, the proposed static output polynomial

controller has a computational advantage over the linear controller.
4.5.2 A BASE-] ATED ELASTO-PLASTIC BUILDIN

An eight-story building that exhibits bilinear elasto-plastic behavior is considered. The mass of
each floor is identical with m; =345.6 metric tons. The ith element, F;[x;(V], of the nonlinear

stiffness force, F[X(t)], is modelled as
in which k; = preyielding elastic stiffness of the ith story unit, o, = ratio of the post-yielding to

preyiclding stiffness, D,;= yield deformation = constant, and v, is a nondimensional hysteretic

component of the deformation, with |vi| <1, where

. - . . n, -1 . n,
It should be noted that the model of the nonlinear stiffness force, F[X(t)], in Eq.(4.46) is similar to

the one expressed by Eq.(4.2). Preyielding stiffnesses, k, (i=1,2..8) in Eq.(4.46), of eight-story units

are 340400, 325700, 284900, 268600, 243000, 207300, 168700 and 136600 kN/m, respectively, and
postyielding stiffnesses are 0.1k, for i=12,....8, i.e., @;=0.1 in Eq.(4.46). Linear viscous damping is

assumed such that F . in Eq.(4.2) is zero. The linear viscous damping coefficients for each story unit
are c;=490, 467, 410, 386, 348, 298, 243 and 196 kN.sec/m, respectively, where c; is the ith

diagonal element of the C matrix in Eq.(4.2). The damping coefficients given above result in a
damping ratio of 0.38 % for the first vibrational mode. The fundamental frequency of the unyielded
building is 5.24 rad/sec. The yielding level for each story unit varies with respect to the stiffness; with
the results, Dy, =24, 23,22, 2.1, 20, 1.9, 1.7 and 1.5 cm, Eq.(4.47). The bilincar elasto-plastic

behavior can be described by the hysteretic model in Eq.(4.47) with A,=1.0, B,=1.0, n; =95 and
y,=1.0fori=12,....8. The El Centro NS (1940) earthquake with a peak ground acceleration of 0.3g,

as shown in Fig. 3-2, is used for the input excitation.

4-13



total building weight, that is 3,214.8 metric tons. It is observed that the drift of rubber bearings has
been reduced by 50%.
For the nonlinear output controller presented in this study, i.e., Eq.(4.45), we first consider the

case in which Qi =0, =2, 3,..., k. In other words, we only consider the first term of the controller in

Eq.(4.45). In this case, we choose R=8.4x107%, and all elements of the Q matrix cre zero except

Q(10,10)=99. Again, only x, and x, were measured. The peak response quantities based on this

controller are shown in Columns (7) and (8) of Table 4-2, designated as “Nonlinear 1. We observe
that the overall performance of this controller is slightly better than that of the Linear 1 controller.

Next, we consider a more general case, in which Q, #0, and Q; =0 for i=3, 4,..., k. Weighting

matrices are chosen as follows: R=8.4x 107 and all the elements of Q and Q, are zero except
Q(10,10)=70 and Q,(10,10)=0.3. The peak response quantities based on this nonlinear controller

are shown in Columns (9) and (10) of Table 4-2, designated as “Nonlinear 2”. It is observed that,

while the overall performance is similar to that of the Nonlinear 1 controller, the peak control force U

has been increased by 18.3 % and the required control energy, F has decreased slightly.

With hybrid control, the building response quantities are well within the elastic range except the
drift of rubber bearings. Hence, only the reduction for the drift of rubber bearings will be compared
for different controllers. The results presented in Table 4-2 are based on the El Centro earthquake
with a peak ground acceleration (PGA) of 0.3g. Based on the same design for various controllers
presented in Table 4-2, simulation results for the percentages of reduction for the peak drift of rubber
bearings as é function of PGA are shown in Fig. 4-3. It is observed from Fig. 4-3(a) that the
percentages of the peak drift reduction for both Linear 1 and Nonlinear 1 controllers are quite similar
and remain almost constant with the increase of PGA. On the other hand, the percentage of the peak
drift reduction for rubber bearings for Nonlinear 2 increases as the PGA increases. Because of such a
load-adaptive property, Nonlinear 2 controller is more effective in limiting the peak response of
rubber bearings when the earthquake intensity exceeds the design one (i.e., 0.3g). It should be
mentioned that the trend for the percentage of the response reduction for the superstructure is quite

different from that for rubber bearings. In fact, as PGA increases, the percentage of the response
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reduction for the superstructure decreases for all these controllers. However, since these response

quantities are well within the elastic range, they are not presented.

The required peak control force, U, and the control energy, F are presented in Figs. 4-3(b)
and 4-3(c), respectively. These quantities have been normalized, respectively, by the corresponding
results for Linear 1 controller subjected to a 700 gals of PGA input. As observed from Figs. 4-3(b)
and 4-3(c), the peak control force and the control energy required by Linear | and Nonlinear |
controllers are almost the same. These quantities are significantly higher for the Nonlinear 2
controller. Consequently, the increase in the percentage of the response reduction for rubber bearings
for Nonlinear 2 controller, as shown in Fig. 4-3(a), is achieved at the expense of the increase of the
peak control force and total control energy, as shown in Figs. 4-3(b) and 4-3(c).

In summary, for active control of a 3-story linear building, it is shown that the static output
polynomial controller has significant advantages over the linear static output controller in terms of the
peak response reduction and the required control energy. For linear controller, the percentage of the
peak response reduction remains constant for all level of the peak ground acceleration (PGA).
However, for the static output polynomial controller, the percentage of reduction for the peak
response increases as the PGA increases. In the case of hybrid control of a base-isolated building, the
static output polynomial controller has advantage in terms of the peak response reduction only for the
rubber-bearing isolators. In addition, the design of the static output polynomial controller has a

computational advantage in terms of the rate of numerical convergence.
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SECTION V

CONCLUSIONS AND DISCUSSION

In section 11, a new optimal controller, that is polynomial of any order in terms of the states of
the system, is proposed for applications to seismically excited linear structures. A performance index.
that is quadratic in control and polynomial of any order of the states is considered. The minimization
of the performance index is based on the solution of the Hamilton-Jacobi-Bellman equation using a
polynomial function of the states, which satisfies all the properties of a Lyapunov function. The
optimal polynomial controller is derived analytically and the gain matrices are computed easily by
solving matrix Riccati and Lyapunov equations. Such an optimal polynomial controller provides more
degrees of freedom for the designer to penalize (or reduce) different response quantities. The
performance of the controller has been investigated through numerical simulations for a wide range of
earthquake intensities and different earthquake records.

In the case of SDOF structures, the optimal polynomial controller requires larger peak control
force but smaller control energy in order to achieve the same level of peak response reductions as the
LQR controller. For the earthquake ground motions which are predominantly harmonic, such as the
Mexico earthquake, the optimal polynomial controller requires the same peak control force as that of
the LQR controller, but using a significantly lower level of control energy, for the same level of the
peak response reduction. In the case of MDOF structures, the differences in the peak control force
and the control effort are quite small for both the optimal polynomial controller and the LQR
controller, for the same level of the peak response reduction at the given design earthquake intensity.
The percentage of the peak response reduction for the LQR controller remains constant with respect
to the peak ground acceleration (PGA). However, the peak response reduction for the optimal
polynomial controller increases with the increase of PGA. As a result, when the intensity of the actual
earthquake is smaller than the design one, the level of peak response reductions, the required peak
control force and the control effort are smaller for the optima! polynomial controller. However, as the
actual earthquake intensity exceeds the design one, the optimal polynomial controller is capable of

exerting a larger control force and control effort to achieve a higher level of peak response reductions.
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The most important advantage of the optimal polynomial controller for linear structures is its
strong dependence on the structural response. As a result, the polynomial controller is capable of
reacting fast to unexpected strong earthquakes to achieve a higher level of the peak response
reduction. Likewise, the optimal polynomial controller possesses some kind of adaptivity to the
stochastic nature of earthquakes. These properties of the optimal polynomial controller are
significamt for practical applications of control systems to protect the integrity of civil engineering
structures.

In section IIl, we propose an optimal controller for peak response control of seismically
excited nonlinear and hysteretic structures. A performance index, that is quadratic in control and
polynomial of any order of nonlinear states, is minimized based on the solution of the Hamilton-
Jacobi-Bellman equation using a polynomial function of nonlinear states, which satisfies all the
broperiies of a Lyapunov function. The resuitng opuimal ¢ontroller is polynomial in nonlinear states
f the cystem. Gain matrices for different parts of the controller are computed easily by solving
Riccati and Lyapunov matrix eguations.

Numerical simulations have been conducted for (i) a fixed-base elasto-plastic eight-story
building equipped with active control systems and subjected to a strong earthquake, and (ii) the same
building equipped with a hybrid control system consisting of actuators and lead-core rubber bearings.
Simulation results indicate that the performance of the optimal polynomial controller presented is
quite reasonable. For the building equippzd with a hybrid control system, the main advantage of such
a controller is its ability to increase the percentage of reduction for the peak response of rubber
bearings with the increase of the carthquake intensity. Such a load-adaptive capability is desirable in
protecting the base isolation system, in particular when the magnitude of earthquakes exceeds the
design one. For the fixed-basc clasto-plastic building subjected to a 1g design earthquake, the
purpose of control is to prevent a catastrophic failure by reducing the ductility of the building to be
smaller than 2.5 Simulation results indicate that the optimal polynomial controller presented has a
slightly better capability than the linear controller for reducing the building ductility.

In section IV, we propose two static output polynomial controllers corresponding to optimal
polynomial controllers for linear and nonlinear structures presented in Sections II and IIf, respectively.
The static output controllers utilize only the information measured from a limited number of sensors

installed at strategic locations without an observer, thus facilitating practical implementations of
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active/hybrid control systems on civil engineering structures. For linear structures, the output
controller is a polynomial of the states, whereas the output controller is a polynomial of nonlinear
states for nonlinear and hysteretic structures. These static output controllers reduce to the optimal
polynomial controllers when the full-state vector is measured. Simulation results indicate that the
static output polynomial controllers proposed are viable control strategies for active/hybrid control of
seismically excited civil engineering structures.

For active control of linear structures, simulation results demonstrate that the output
polynomial controller has some advantages over the corresponding linear controller. These
advantages include (i) a less requirement for the control energy, (ii) a load-adaptive capability to limit
the peak response quantities of the structure when the magnitude of the carthquake exceeds the
design one, and (iii) less difficulty involved in the design of the controller in terms of numerical
convergence. For control of nonlinear or hysteretic structures, simulation results indicate that the
most significant advantage of the static output polynomial controller over the corresponding linear
controller is its load-adaptive capability to limit selected peak response quantities of the structure,
when the magnitude of the earthquake exceeds the design one.

Finally, the optimal polynomial controllers and the corresponding static output polynomial
controllers, for linear, nonlinear and hysteretic structures, proposed in this report are viable control
strategies. These new controllers represent additions to control methods available in the literature for

active/hybrid control of seismically excited civil engineering structures.
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"Damping of Structures: Part | - Theory of Complex Damping.” by Z. Liang and G. Lee. 10/10/91,
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published.

"Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings.” by G.F. Demetriades,
M.C. Constantinou and A.M. Reinhorn, 5/20/92.
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0Ozaki and S. Fujii, 2/4/94, (PB94-181740, A09. MF-A02 and PB%- 181757, Ai2, MF-A03).
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“Proceedings from the Fifth U.S.-Japan Workshop on Earthquake Resitant Design of Lifeline Facilities
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Part 1 - Fluid Viscous Damping Devices,” by A.M. Remhorn, C. Li and M.C. Constantinou, 1/3/95,
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Part I - Friction Devices.” by C. Li and A.M. Reinhorn, 7/6/95.
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