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Introduction

The universe is full of magical things, patiently waiting for our wits
to grow sharper.

- Eden Phillpotts

The stability of structures has long been a concern of structural engineers. For
many years, researchers have studied why certain structures fail and how to pre-
vent these failures. The first and perhaps the most famous person to study the
stability of structures in detail was Leonhard Euler. He is credited with deriving
the critical buckling load of an ideal, slender column. This value of the buckling

load is well known to most engineers.

The phenomenon of huckling can be illustrated by means of an example.
Figure 1 shows a structural system that consists of a rigid bar of length ¢ and an
elastic rotational spring of stiffness k. The system is loaded by the vertical load
P Supposing that the bar is disturbed by some external force so that it rotates
slightly through a small angle 8, then, if the axial load P is small, the system will
return to its original straight configuration after the disturbing force is removed.
Under these conditions, the system is termed stable. However, if the axial load P
is large, the system will continue to rotate around the pin at the base even after
the external disturbing force is removed. Under these conditions, the system is

unstable and is said to buckle by undergoing a large rotation of the bar.



A static stability analysis of the displaced system will reveal the smallest axial
load that renders the system unstable. As the system rotates, the restoring mo-
ment developed in the rotational spring is equal to £0. Assuming the rotation is
small, the overturning moment that is caused by the axial load acting through the
displacement at the top of the column is P¢6. Equilibrium of the moments about
the pin at the base requires that k8 — P¢€ sin6 = 0. This equation always helds
for 6 = 0. For equilibrium in the deformed configuration (i.e., 8 = 0), the axial
load P must be equal to k8/¢ sin@. For values of 8 near zero, P = /€. This value
of P is known as the critical loed and is given the designation P,,. For axial loads
less than the critical load, the system is stable. For axial loads larger than the crit-

ical load, the system is unstable and will rotate around the pin at the base.

This example demonstrates that even though a system meay be in equilibrium,
it is possible for that equilibrium state to be unstable. A:cording to Langhaar
(1962),

an equilibrium configuration of a mechanical system is said to be
stable if accidental forces, shocks, vibrations, eccentricities,
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Figure 1 - Simple structural model



imperfections. inhomogeneities, residual stresses, or other prob-
able irregularities do not cause the system to depart excessively or
disastrously from that configuration. In a mathematical sense, sta-
bility 1s usually interpreted to mean that infinitesimal distur-
bances will cause only infinitesimal departures from the given
equihbrium configuration.

The behavior of a long, slender column is similar to the behavior of the spring—
bar system 1n Figure 1. Like the spring-bar system. tlexable columns cannot carry
arbitrarily large loads and remain stable. As the axial load on the system in-
creases, the critical load will eventually be reached, and the column will buckle,
Euler was the first to compute the value of the maximum load the column could
carry and remain straight. By studying the equilibrium equations of the column
in the deformed configuration, just as we did for the spring-bar system, Euler was
able to calculate the critical load. For values of the axaal load less than the eritical
load. the column will remain straight. For axial loads larger than the critical load,

the column will buckle.

Failure of structures is a dynamic process. In certain circumstances, it is nec-
essary to approach buckling and stabilitv from a dynamical point of view. Faor
some mechanical systems, the static model is not able to predict the exact path
the structure will take in getting to a stable configuration once buckling occurs
(Hjelmstad 1994). When the process is fast, the inertia of the systern is mobilized,
and a method that incorporates the dynamics of the system is required to describe
it.

Differential equations of motion can be used to characterize the dynamics of
mechanical systems. For example, for an n-degree-of-freedom system, the accel-

eration of degree-of-freedom : can be described by the differential equation

q;(t) = f;(q [7q2v ~--»qulv sz »-»,qn. t) (1)



where ¢,,q9,,q; are the acceleration, velocity, and displacement, respectively, of
degree-of-freedom i, ¢ represents time, and £, in general, is some nonlinear func-
tion of these variables. These nonlinear functions do not require special properties
of the restoring force or system damping. For exarnple, the restoring force need
not be elastic for Eq. (1) to be valid. The solution to the equations of motion will
depend upon theinitial conditions and the system parameters. Geometrically, the
solution path can be traced as a function of time. For example, one could imagine
the trajectory of an object being shot from a canon. The flight of the object will
depend upon the initial velocity and the angle at which it was shot. The mation
of the object could be described by a curve in a plane. Different paths would result
for different initial conditions. Under certain circumstances, some of these curves
may intersect one another, and intersecting curves would imply that the same
position may correspond to different velocities. Because the trajectory for a given
set of initial conditions may intersect other trajectories, many times a different

space is chosen to graphirally illustrate the motion.

A dynamic process can also be represented graphically in the phase space on
a plot of velocity versus displacement (Meirovitch 1986, Baker and Golub 1990).
The group of all solutions to the governing differential equations that arise be-
cause of differing initial conditions is termed the phase portrait. The phase por-
trait has the property that no trajectories intersect one another with the exception

of equilibrium points (Meirovitch 1986).

As with static stability, we are most interested in the stability of the motion
in the neighborhood of each of the equilibrium points. Most of the early contribu-
tions made to the understanding of the stability of dynamical systems are attrib-
uted to Lyapunov (loc. cit.,, Leipholz 1976). Simply put, Lyapunov proposed that

a system is stable whenever the motion following a sufficiently small initial dis-



turbance. relative to the perturbed motion, remains as small as desired in the dis-
placements and velocities for all positive time following the disturbance. Mathe-
matically stated. a solution is stable in the sense of Lyapunov if, for any arbitrary

positive constant e, there exists a positive quantity & suck that
Xy <0 = xat)-Xtr'<e 0st<x 20

where x,defines the initial position and velocity of the svstem, &¢1and xt) refer
to the unperturbed and perturbed motions respectively, and ¢ refers to time. The
Euclidian norm 1s used because it provides a measure of the deviation of the am-
plitude of the motion from the initial state to any time ¢. Applying this method
requires that the behavior of the dynamic system be addrezsed for all time subse-
quent to the perturbation. One difficulty encountered when using the Lyapunov
definition is that it is not always clear how to set approvriate limnits on €. Clearly.
this approach to determining the stability properties of the dynamic system is

more complicated than determining the static stability properties of a system.

Poincare 1s credited with interpreting Lyapunov’s criteria in a geometrical
context using phase portraits tsee Baker and Gollub 1990 for a more detailed dis-
cussion), Poincaré noted certain differences in the trajectories of stable motions
versus unstahle motions. For example, stable periodic solutions. when plotted in
the phase space, produce closed trajectories around an equilibrium point. On the
other hand. an unstable equihibrium peint has trajectories that form a saddle
shape through the equilibrium point or spiral away from the point (for a detailed
discussion of phase portraits and the determination of the stability propertiesin
a geometric sense. see Baker and Gollub 1990 or Saaty and Bram 1964). Thus,
the stability of the motion for a given system can be ascertained from a phase por-

trait. To illustrate. consider the free vibration response of the structure shown in



Figure 1. The total energy of the system, which is the sum of the potential energy

and the kinetic energy, is given as
2
E@ = %mfzﬂ + %kﬂz + Pt cos8 = const. (3

For this example, the effect of gravity is included in the axial load P, and it is as-
sumed that the energy is gradually input into the system so that there is no dy-
narnic response associated with the transfer of energy into the system. Conserva-
tion of energy requires that E(8) = 0. Computing the derivative of the energy
functional allows us to determine the governing differential equation of motion

to be
6 + w%@ - nsingl = 0 (4)

where w? = k/mé2, n = P/P,,and P,, = k/€. Because curves in the phase plane
represent trajectories of constant energy when the system is undamped (Meiro-
vitch 1986), Eq. (3) can be used to construct the phase portrait for a particular
magnitude of the axial load. Figure 2 shows the phase portraits for three different
axial loads —one less than the static buckling load, one equal to the static buckling
load, and one larger than the static buckling load. For the different phase por-
traits shown in Figure 2, E, < E, < E,. This figure clearly shows that the dy-
namic stability properties of the system depend upon the amount of energy input

to the system via the initial conditions and the amplitude of the axial load.

It is interesting to compare the dynamic stability properties of this model with
the static stability properties (for a general discussion on stability criteria for both
static and dynamic systems, see the paper by Komarakul-na-nakorn and Arora

"990). Initially, the static stability properties of the structure depicted in Figure 1

were determined under the assumption that the rotation would remain small.
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Figure 2 - Dynamic stability of inverted pendulum system

Generally speaking, the critical load is obtained as the solution to a linear eigen-
value problem. As such, the magnitude of the buckled shape is unknown - only

the buckled shape itself can be determined. In order to determine the configura-
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Figure 3 - Bifurcation diagram for a rigid bar with a rotational spring

tion of the structure after buckling takes place, it is necessary to account for large
deformations. For the system of Figure 1, considering a large rotation causes the
governing equilibrium equation to change. Under these conditions, the overturn-
ing moment is calculated from the relationship P¥¢ sin@, and the equation govern-

ing the equilibrium of the column is

k6 — Pésing = 0. (5)

Eguation (5) allows a determination of the equilibrium configuration of the
system in the vertical as well as the deformed configuration. The bifurcation dia-
gram for the inverted pendulum of Figure 1 is shown in Figure 3. A bifurcation
diagram is a plot of the load versus deformation of the system that reveals all stat-
ic equilibrium states. In Figure 2 we note that, when the axial load is less than
P.,, the motion is stable about the origin because the trajectories in the phase
plane are closed about this point. In the case of the static loading, this equilibrium
configuration corresponds to the stable portion of the bifurcation diagram
(Figure 3) when the structure is in the unrotated position (i.e., @ = 0). When the
axial load magnitude increases to the value of the critical load, the phase portrait
shows that the motion has become larger about the origin and the trajectories
have become elongated. The trajectories that intersect this equilibrium point



form a saddle shape which indicates unstable equilibrium. This mode of behavior
1s consistent with the static bifurcation diagram. For values of axial load that are
larger than the static buckling load, the static bifurcation diagram shows that the
A = 0 configuration is not a stable equilibrium position, and a stable equilibrium
configuration exists only for larger values of 8. Again, the dynamic response de-
picted in the phase portrait is consistent with this condition. The origin of the
phase portrait for P/P,, = 1.25is an unstable equilibrium point, and stable equi-
librium points exist only for larger values of 8. The equilibrium points in the phase
portrait correspond exactly to the equilibrium positions indicated by the static bi-
furcation diagram. Therefore, in light of these comparisons, one can observe that

there 1s a strong relationship between static and dynamic stability analyses.

Although phase portraits allow one to assess the stability of the motion in a
direct fashion, it is still necessary to monitor the response as ¢ » x in order to
classify a motion as stable or unstable. It must be pointed out, however, that for
a determination of the critical states of the system and the behavior at these
points, a complete solution to the dynamic equations of motion may not be neces-
sary. Much research has been devoted to ascertaining the stability limits without
actually caleulating the response ofthe system as a function of time. A straightfor-
ward approach to this problem, which makes use of an energy criterion, was
intraduced by Lagrange in 1788. In the early 1800’s, the technique was proven
by Dirichlet. The basic theorem, which applies only to systems containing conser-
vative forces and dissipative forces derivable from a potential, is as follows: as-
suming the total energy of the system in question is continuous, the equilibrium
of the system is stable provided the Hessian of the energy functional of the system

is positive definite.



The law of conservation of energy states that the work of all the forces, both
internal and external, acting on a mechanical system is equal to the change of ki-
netic energy of the system. This law can be used to establish equilibrium equa-
tions. When a mechanical system begins to move, the kinetic energy of the system
must increase. By the law of kinetic energy, the forces acting on the system must
be doing net positive work. From this reasoning, the French mathematician -J.
Fourier (Joc. cit., Langhaar 1962) conversely deduced that a motionless mechani-
cal system remains at rest if the net work done by all the forces in the system is
less than or equal to zero for any small displacement that does not violate the
constraints. A system is in static equilibrium if the conditions allow the system
tcremain at rest. Expressing work in variational form leads to the conclusion that
in order for the system to be in equilibrium, the first denvative of the energy fune-

tional must be equal to zero (Hjelmstad 1994, Langhaar 1962).

A stability criterion can be established by invoking the definition of stability
for a mechanical system in the context of the energy functional. If the system can
move an infinitesimal amount away from its equilibrium configuration and have
positive work done by the forces, then the kinetic energy of the system will in-
crease. Under these conditions, the system is said to be unstable. If only negative
work can be done, then the equilibrium state is stable. If either negative or posi-
tive work can be done, then the system is said to be in a state of nentral equlibni-
um. Thus, for a conservative system, stable equilibrium requires that the energy
functional be a relative minimum. The second derivative test is used to establish
extremum properties of a functional. Ifthe second derivative is greater than zero,
the energy is a relative minimum, and the equilibrium state is stable. Conversely,

ifthe second denivativeis less than zero, the state is unstable. If the second deriva-

10



tive is equal to zero, no conclusion can be drawn, and L'Hopital’s Rule must be

used to establish the stability characteristics.

The Lagrange-Dirichlet theorem provides a general definition of stability for
conservative dynamic systems. For the static case, this theorem yields the same
results computed using static stability theory because the static case is a special
form of the general dynamic case. Unfortunately, the Lagrange-Dirichiet theorem
applies only to dissipative forces derivable from a potential. Whereas dissipative
forces that are derivable from a potential (e.g., velocity proportional damping) or
are conservative (e.g., gyroscopic forces) cannot destabilize a structure, those
which do not meet these criteria can have a destabilizing effect (Bazant and Cedc-
lin 1991, Bernal 1987). Plasticity, as well as viscoelasticity, viscoplasticity, frac-
ture, and other types of damage are dissipative phenomena that are not derivable
from a potential. The presence of these types of dissipative forces greatly compli-
cates the problem. The reason dissipative forces that are derivable from a poten-
tial cannot destabilize a system is due to the fact that these dissipative forces re-
duce the energy of the system without altering any of the system parameters.
Figure 4 shows the phase portrait of the inverted pendulum when velocity propor-
tional damping is included. For clarity, only part of the phase portrait has been
shown for P/P,, = 1.25. Note how the motion of the system converges upon the
equilibrium point as the energy of the system is dissipated under free vibration.
Since the energy of the system is decreasing, (i.e., approaching a minimum), this
system must be stable. The same conclusion cannot be drawn for nonconservative
forces due to the nature of the path dependency of these forces. For example, the
response of a structure following yielding depends not only on its current configu-
ration, but it also depends upon the load path it took in getting to the current
state. Black, Wenger, and Popov (1980) have shown that the buckling capacity of

11



a strut loaded cyclically past its yield state diminishes greatly with increased
plastic werking of the material. Thus, the strut becomes unstable at a lower ap-
plied load. Therefore, while the vielding itself may dissipate energy, its occurrence
causes a change in system parameters. The way in which these parameters vary
greatly affects the stability properties of the system.

In a very simplistic way, yielding may be thought of as a process that can be
associated with the following three phenomena: (1) nonlinear material response;
(2) dissipation of energy; and (3) permanent set in the material. Although it is the
combination of these three effects acting together that will control the response

of the system, a better understanding of the problem might be gained by studying

Figure 4 - Phase portraits with energy dissiaption via damping
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the individual effects of these three phenomena on the stability properties of the
system. Figure 4 shows that energy dissipation, without changes in the other
properties of the system, forces the free vibration response toward a stable config-
uration. Thus, the stability of the system of Figure 1 is improved with energy dis-
sipation.

Next, consider nonlinear material response. Nonlinear material response,
even for a static problem, causes difficulty in determining the stability properties
of a system (Chen and Lui 1987). To illustrate, Figure 5 shows the response of the
inverted pendulum from Figure 1 based upon a nonlinear material model. The as-
sumed relationship between the moment and rotation is given as

.‘M(B) = ﬁ—% (6)

where u = k/M,. In Figure 5. it was assumed that £k = 100 and M,, = 6. Com-
parison between the bifurcation diagrams of Figure 3 and Figure 5 shows that
there is a dramatic difference in the static stability properties of the system be-
tween the linear model and the nonlinear one. While for the linear system the
equilibrium path emanating from the bifurcation point 1s stable, this path is un-
stable in the presence of nonlinear material response. Furthermore, the dynamic
stability properties, also depicted in Figure 5, change dramatically when nonlin-
ear material properties are considered. For the dynamic response, it was assumed
that w®> = k/m¢? = 1. The phase portraits for the two levels of axial load consid-
ered in Figure 5 show dramatically different stability characteristics from those
depicted in Figure 2 even though both models are undamped and assumed to be-
haveelastically. Clearly, the material properties of the system have a large impact

on the response of the system as well as its stability properties.

13



Finally, consider a permanent offset in the material. For the static case, a per-
manent offset in the material amounts to performing a stability analysis with an
initial imperfection. The bifurcation diagram, including an initial imperfection of
8, 1s shown in Figure 6. As one can see, the unrotated configuration § = ¢ is no

longer an equilibrium configuration. Two equilibrium paths exist. and the stabil-

Bif o Di
M P
- Unstable
k 6. — Stable
—
Phase Portrait forn = 0.75
] Unstable Equilibrium

Stable Equilibrium

Figure 5 - Response for inverted pendulum with nonlinear material properties
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— — Unstable
—— Stable

Imperfect
Figure 6 - The effect of an imperfection for inverted pendulum

ity of these paths is shown in Figure 6. For this structure, a limit load is obtained
rather than a critical load for the configuration ¢ = 6. Unlike the perfect system.
a stable equilibrium state does not exist for all values of the rotation. As the mag-
nitude of the rotation increases, though, the solution approaches that of the per-
fect system just as it does when the initial imperfection is small. Clearly, for the
static case, the presence of imperfections impacts dramatically upon the stability
properties. For the dynamic case, however, the effects of initial imperfections are
negligible. The size and direction of the imperfection will simply control the equi-
librium point about which the system oscillates. The presence of the imperfection
though, unlike the static case, does not affect the stability characteristics. The
phase portrait for the inverted pendulum including initial imperfections is also

given by Figure 2.

While we are primarily interested in the dynamic stability characteristics of
inelastic systems, it is important to first have a thorough understanding of the
dynamic stability properties of elastic systems since, at least initially, most struc-
tures respond elastically. A significant amount of research literature is available
that pertains to the dynamic stability of elastic systems (e.g.. Kounadis 1993, Si-
mitses 1990, Leipolz 1976, Mclvor and Bernard 1973, Holzer 1970, Bolotin 1964,

15



etc.). A wide variety of system types with various boundary and loading condi-
tions, including impact loadings _(Kounadis 1993, Kounadis 1991) can be found.
Most approaches to defining stabillitj limits for -zlegtic dynamical systems are
grounded in an energy criterion (Berdichevsky and Kim 1995, Joshi 1995, Lee
1995). Because the forces for an elastic system are conservative, this approach
works quite well. Often, nonlinear elastic systems are linearized around an equi-
librium point to determine stability characteristics. Doing so allows one to make
use of the Routh-Hurwitz criterion which holds that if all of the eigenvalues of the
linearized equations are less than zero, then the solution is stable (Afolabi 1995).
Chaos theory and graphical methods are also used to help assess stability charac-
teristics via maps. Various researchers have studied chaotic vibrations in simple
oscillators and in columns (Addison 1895, Cusumano and Moon 1995, Ravindra

and Mallik 1995, Kalathas and Kounadis 1991).

Other types of dynamic stability problems exist for elastic systems other than
those mentioned above. One such example is an elastic system under follower
forces. Follower forces are nonconservative because their direction changes in ac-
cord with the motion of the system. Nonconservative problems of this type have
been well covered in the literature (Zuo and Schreyer 1998, Prasad and Herr-
mann 1972, Bolotin 1963). Another problem is that of parametric resonance.
Parametric resonance many times is a result of time dependent coefficients in the
governing equations of motion. A classic example of such an equation is the Ma-
thieu-Hill equation (Bolotin 1964, Saaty and Bram 1964). Because the behavior
of the Mathieu-Hill equation has been well studied, many researchers try to cast
the governing equations of a parametrically excited system of interest in terms

of the Mathieu-Hill equation (Chen and Yeh 1995, Lee 1995, Thylwe and Grava-

6



dor 1995, Yuan and Dickinson 1995, Cederbaum and Mond 1994} A more in-

depth discussion of the Mathieu-Hill equation appears later in this manuscript.

For nontonservative systems with inelastic material properties, a different
approach is needed for determiningthe siability properties of the system. [t is still
desirabie. Liowover, to farmulate a procedure that does not require integrating the
nonlinear differential equations of motion. One approach that has been tried
makes use of the econd law of thermodynamics (Bazant and Cedolin 1991). Al-
though this approach is general and does not require solution to the differential
equations, it does assume that the svstem loses stability from a static state. Con-
sequentiy. this approach is not applicable to systems that lose stability in a dy-

namic way.

Another method that has been introduced makes use of Hamilton's variation-
al principle of dynamics (Komarakul-na-nakern and Arora 1990). With this ap-
proach. the concept of adjacent states is employed. Hence. using the known re-
sults for the motion of the system in an unperturbed state, one can study the
behavior of the system in an adjacent or perturbed state. It is possible to simplify
the expressions for the perturbed motion since this state must satisfy the ap-
propriate boundary conditions. According to Hamilton’s Principle, the kinemati-

cally admissible deviation from an equilibrium state can be expressed as follows:

t.

i

SH(t) = JtéT ~ O + dWoodt = 0 (7

t

u

where T is the kinetic energy, /1 is the potential energy of the conservative forces,
und W, 1s the work done by the nonconservative forces in going from the state
at ¢, to the state at ;. The equation of motion for the nonconservative system 1s

obtained using Eq. (7). Likewise, using this same procedure, the equation of mo-

17



tion for the perturbed state can be expressed. To characterize the stability, the
perturbed motion must be compared with the unperturbed motion. If it is as-

sumed that the motion in the perturbed state is characterized by
T = de”, U, = wie”, i, = o¥ie™, and 0u, = dae (8)

for some amplitude @ and frequency w, and if the nonlinear material constitutive
model can be expressed in an incremental linearized form, then the stability of the
system may be determined (Komarakul-na-nakorn and Arora 1990). This proce-
dure is an adaptation of the Routh-Hurwitz criterion (Meirovitch 1986). Since the
perturbed displacement behaves exponentially, it can be easily shown that the
system remains stable for values of w less than zero. Substituting back into Eq.
(8), one is left with a load-frequency dependent, quadratic eigenvalue problem in
w. Due to the nature of the problem, the resulting matrix is typically not symmet-
ric. Accordingly, the resulting eigenvalues are usually complex. The stability cri-
terion is that the real portion of all the eigenvalues he negative for the system to
be stable. Because of the load dependency of the eigenvalue problem, an iterative
procedure is required to determine the critical load, or the load at which the sys-
tem changes from being stable to being unstable. At the critical load, the real por-
tion of at least one of the eigenvalues will become zero while the rest remain nega-
tive. Thus, the solution procedure commences with determining the eigenvalues
for the load currently applied to the structure. If the above criterion is not met,
the loads are adjusted. This procedure continues until the critical load is deter-
mined. An iterative procedure such as this is typically required for the solution

to a nonlinear problem.

Most of the previous research dealing with the dynamic stability of inelastic

systems utilizes an elastic-perfectly-plastic material model (Capecchi 1993, Kara-
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giozova and Jones 1992, Maier and Pergeo 1992, Yue and Zheng 1992, Jones and
Reis 1880 or a bilinear material model tMacRae 1994, Lee 1981 1. Generally
speaking. the study of hysteretic oscillators has not received a great deal of atten-
tion in the research literature. The reason this lack of attention exists is that
many of the fields for which nonlinear dynamic systems have received extensive
study do not typically encounter hysteretic material response ' Capecchi 1993, Bu-
tenin 1965 . Previous study of the response of hysteretic oscillators has proceeded
tvpically in one of two wavs The first approach involves an incremental analvsis
of the lineanzed equations to obtain the stability properties of the system. Many
times, nonlinear geometrical effects are ignored (Yue and Zheng 1992, Jones and
Reis 195800, The second method 1involves a graphical approach. studyving the re-
sponse of the system in the context of phase portraits for a suitable choice of van-
ables. Using both approaches. significant advancements toward the understand-

ing of hysteretic osciliators have been made.

An example of a study that attempts to characterize the dynamic stability
properties of an inelastic svstem using phase portraits is the one by Sun, Berg,
and Hanson <1973+ In this study. Sun, Berg. and Hanson monitored the behavior
of a structuren free vibration under various initial conditions. The stability of the
svstem was based upon an energy approach similar to the one illustrated for the
elastic pendulum discussed earlier. The initial energy input into the system was
compared with the amount of energy the system could dissipate through inelastic
material response. Sun, Berg, and Hanson assumed an elastic-perfectly-plastic
constitutive model for this research. The stability of the system was determined
using phase portrait diagrams. As before, if the trajectory in the phase plane re-
matned a closed orbit. the motion was classitied as stable. Otherwise. the system

was identified as unstable.
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Of special interest in the context of civil engineering is the understanding of
the inelastic dynamic stability properties of structures subjected to earthquake
loadings. Various approaches to this problem have been presented in the litera-
ture. For example, Bernal (1987) has suggested a conceptually simple, yet com-
putationally intensive approach. Using the ground motion from various earth-
quakes as input, the structure can be analyzed repeatedly with different system
parameters. The effects of these changes on the response of the system can then
be studied. Statistical correlation of the data to the variation of the model parame-
ters can then be used to determine what Bernal has termed an “inelastic P-4 am-
plification factor.” For Bernal’s study. a SDOF system was used, and the material
response was assumed to be elastic-perfectly-plastic. The amplification factors
were arrived at by comparing the response of the system for the case where no
axial load was present to the case where axial load was present. Almost 200 sets
of results were computed in this investigation. In order to consclidate all of this
information, Bernal tried to statistically correlate the data. By comparing the
maximum response to the minimum response and the overall deviation of the
data, Bernal was able to prescribe amplification factors for inelastic systems. Us-
ing this procedure, it is possible to determine how a certain structure will respond
to a given ground motion. Thus, in effect, the inelastic P-4 amplification factor

establishes a serviceability criterion to be employed during design.

In a more recent article, MacRae (1994) extends the results of Bernal's study
to include other constitutive models. MacRae’s study incorporates a bilinear ma-
terial response and other hysteresis loops of general shape. MacRae discusses
changes in the elastic and inelastic stiffness due to the P-4 effect. The effects that
these changes in stiffness have on the response of structures is discussed in the

context of earthquake excitations. MacRae bases the stability of the system with
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general-shaped hysteresis loops upon the hysteresis center curve concept. The hys-

teresis center curve is defined as
1
Hib) = E(Hyf + Hyb) (9)

where H,;, and H},h are the upper and lower yield limits on any elastic response
line. Conclusions and recommmendations for design are based upon the observa-
tion that, for earthquake loadings, single degree-of-freedom oscillators tend to os-
cillate with approximately the same magnitude of acceleration in both the posi-
tive and negative directions independent of the shape of the hysteresis curve that

describes the material response.

Rationale for the Study

Given the current level of knowledge regarding the dynamic stability of non-
linear, hysteretic systems, there is a great need to develop a better understanding
of how such systems behave. Currently, there are not any general observations
or classifications of behavior for such systems. Although an extensive amount of
information exists regarding the dynamic response of elastic systems and the
static response of inelastic systems, very little attention has been directed toward
understanding the behavior of inelastic systems under dynamic [oadings. As are-
sult. the conditions under which a dynamic, inelastic system becomes unstable

remain largely unknown.

Previously, it was claimed that inelastic material behavior may be thought of
as the combination of nonlinear material response, energy dissipation, and per-
manent offset. Of course, in reality, these three effects cannot be separated from
one another. In order to determine the dynamic stability properties. it is impor-
tant to understand the effects of these three phenomena acting in concert. Addi-

tionally, the actual response of an inelastic system involves further complication.
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With hysteretic behavior, sudden changes in stiffness will take place due to load-
ing and unloading in response to the load. Furthermore, concern must be directed
toward understanding the relationship between the energy input to the system
by the external loads and the energy dissipated by the inelastic material re-
sponse. For inelastic material response, unlike the case of velocity proportional
damping, energy dissipation is not constantly occurring. At the onset of unloading
and reloading, the material will behave elastically, and the energy dissipation will
be negligible. Lastly, it is necessary to understand how the external forces acting
on the system affect the stability properties since some structures are more effi-
cient at mobilizing this input energy while other structures are more efficient at
dissipating it.

Most previous studies in this area have concentrated on using an elastic-per-
fectly-plastic or bilinear material model. The stability properties for other types
of hysteretic behavior have not been explored. In addition, inelastic material be-
havior implies that the system experiences damage in response to load. Damage
to the system, modeled through changes in the constitutive relationship, is an as-

pect of the dynamic stability of inelastic systems that has yet to be addressed.

Determining the dynamic stability properties of a damage-prone system un-
dergoing large motions, however, has proven to be quite difficult. The differential
equation that characterizes such a system is nonlinear and nonconservative, and
a closed-form solution has not been obtained under these circumstances. Instabil-
ity may result during the dynamic excitation or after the external forces cease to
act. Thus, study is needed to determine how damage-prone systems respond to

dynamic excitations.
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Objective and Overview

The cbjective of this investigation is to provide a definition of what it means
for a nonlinear, dynamic system to be stable. Nonlinearity in both the material
response and in the geometry of deformation will be considered. Furthermore, the
effects of including a damage mechanism in the constitutive relationship will also
be addressed. The results presented will discuss the role each parameter of the
model has in affecting the behavior ofthe system. From a practical, civil engineer-
ing point of view, of special concern is understanding how structures respond to
earthquakes. For this reason, a discussion is included concerning how the results

of this study may relate to seismic-resistant design.

The following chapter covers preliminary material on dynamic modeling, ny-
merical integration, and constitutive modeling. Following these preliminary top-
ics. the dynamic stability properties of a hysteretic system are explored. Applica-
tion of the results are then applied to the earthquake engineering problem.
Finally. a summary and conclusions are presented along with recommendations

for future research.

23



2

A Model Problem for the Study of Dynamic Stability

All the mathematical sciences are founded on relations betweern
physical laws and laws of numbers, so that the aim of exact science
ts to reduce the problem of nature to the determination of quantities
by operations with numbers.

— James Maxwell

Introduction

In the analysis and design of structures, engineers often use simple models to
help understand and predict the behavior of more complex systems. The main ad-
vantage to employing simple models is that they are easier to study and to solve
than more complicated ones, yet, they can give an accurate representation of the
true structural response despite their simplicity. In addition, for very complicated
systems, it is often convenient to analyze simple structures first in order to devel-
op an understanding of the important aspects of the problem. For these reasons,

a simple structural medel is considered in this research.

Equations of Equilibrium for the N-DOF System
Shown in Figure 7 is the structural system used in this investigation. It is
comprised of concentrated masses at the end of each rigid link. Rotational re-

straint of each link is provided by nonlinear springs. These assumptions are often
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employed in structural dynamics problems and are known as the shear building
approximation with lumped masses (Berg 1989, Clough and Penzien 1993). The
system has N degrees-of-freedom, namely, the rotation of each link measured
from the vertical. In this study. both the effects of large rotations and yielding in
the springs are considered. Thus, nonlinear effects in geometry and material
properties are both taken into account. Constitutive modeling will be discussed
in detail in the next section. The structure may be excited dynamically by means
of time-dependent axial loads Pr¢/ that can be applied at any or all masses, and/or
a horizontal base acceleration of x,. The system can be set in motion by means

of initial velocities and/or displacemenis at the onset of the analysis. Although it

Xo

€ x(ltle,

Figure 7 - N-DOF model
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may appear that such a simple pendulum-type system is incapable of exhibiting

complex behavior, the results of this study show otherwise.

In order to proceed with the analysis, the governing equations of motion for
the system must be derived. These equations can be constructed using a Newto-
nian approach (Greenwod 1988, Meirovitch 1986). Referring to Figure 7, it is first
necessary to define the position, velocity, and acceleration for each mass. The posi-

tion of the i*" mass is defined as follows:
1
R; = xze; + er (10)
=

wherer, = ¢ j(sin 0,e, + cosh jeg), and e, and e, are unit vectors that point in the
direction of the coordinate axes in the x,~«x, frame. The velocity is cbtained by dif-
ferentiating the position vector with respect to time. Thus,

}
Jj=1

and 7, = ¢ J(cc's()jel - sin Bjez)ﬂj. Finaliy, the acceleration is given by

i
R, =ige, + > 7, (12)

j=1

) 2 " 2 g
with #; = t’j[(cosejej — sin6,0; )el - (sinﬂjej + COngBj)ez].FOTSImp]IC]ty, de-

fine
. .2 . -2
A; = cos0,8, - sinff; and B, = sinb,f, + cosd,6; (13)
so that 7, = t’j[Ajel - Bjez].
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Figure 8 - Free-body diagram

Figure 8 shows a free-body diagram of the system using d’Alembert’s principle
of dynamic equilibrium ({oc. cit., Berg 1989) for the inertial forces. Equilibrium

requires

M, +M, 1% (P, +Q, +mRy) =0, n=1.,N 1 (14)

- My +ryx (Py+ myRy) = 0. (15)

Equtlibrium of the free-body diagram shown in Figure 9 requires that

Q. = i(.ﬂ, +mR,). (16)

1=n
Substituting the relationship for @, obtained from Eq. (16) along with the
relationships for R, A, and B fromEqs. (12} and (13) respectively, the differential
equation of motion for each mass of the system can be determined. To proceed,
these values are substituted into Eq. (14). Let us assume planar motion. Noting
that all moments cause a couple about the e, axis, the dot product of both sides

of Eq. (14} with the unit vector eg leads to the scalar equation
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Figure 9 - Free-body diagram of top portion of structure

N
My-M,,  +eg-rnx > (P +mR}=0 (17)

i=n
where M, = e, - M,.. Eq. (17) can be simplified by evaluating the cruss products

and making use of appropriate simplifications. The first cross product reduces to

N N
€3 raX ) P, =& > (sin6,P, - cosb,F) (18)
i=n 1=n
where it has been noted that P, = Fe, + Pe,. The second cross product is calecu-
lated as

N e
e, r, X Zm‘-R, =
r=n

(19)

— £nc080,x, i m; + i mt, i fj[ - sinG,,Bj - cosO,.AJ-]
=1

i=n 1=n



Substituting Eq=. 118} and (19 1into Eq. (17) and making use of trigonometric
ldentities, the governing equations of motion for the system can be calculated. In

general. we have the svstem of equations

MO8 + C88 + R = L (20
‘ T . T 2 G2 27
where 8 = 4,.0,,.... 8y . &= {Hl.ﬁq,...,H\-] .and @ = (6.8, .“H_V} It is
. , 2 . |

passible to express the components of each of the coefficient matrices. First let,
Ay
m,, = N m, (2D

pa—

Enungn

which is the total mass above level mrn(j, n\ Assuming that the external loads
all act in the negative vertical direction so that P, = — Pe,. then
_ Ay
P.=\p (22)
=1
is the total vertical load above level n. Then,

Mn_: = ’ﬁn_r(”(jcos(d" B 9,'- 23
C’U = ﬁ'{i‘”(} sinl:f?,, - (‘1‘]‘), (24)
R. =M, 8, .,-6)—-M,t, -6, . (25)

with M __, = 0and 4, = 0, and
L, = €,sin8,P, + xp€,co86,M,,. (26>

Observe that M,, = M, so that M(@) is symmetric while C,, = - C,, so that

C1@)is anti-symmetric.

Special Cases: Consider the specific case N = 1. The governing differential

equaticn for this case is
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me%g — P€sind + migfcos® + M6} = 0 (27)

where M(6) is the moment in the nonlinear spring.
For the case N = 2, the equations are slightly more involved. To simplify the
expressions, let us assume that m; = m, = m, 6,=¢=¢ P, =0, and

P, = P. Then, the coefficient matrices are given as

M= C=
me2cos(6, — 6,) me? - m€sin@By - 6) 0 |
R= L=

Constitutive Models

Constitutive theory defines the governing relationships between stress and
strain. It represents our ability to accurately determine how a certain material
will respond to a given loading. Unlike kinematics and equilibrium, constitutive
laws are almost always empirically based. Experimental data are used to help es-
tablish the validity of such models. When developing a constitutive model, one
tries to formulate mathematical expressions that accurately represent the ob-
served behavior for the material of interest. Certain assumptions, however, may

be employed that reasonably approximate the actual system response.

The variety and number of constitutive models that have been studied and
proposed in the research literature are tremendous. Many of these models are ca-
pable of accounting for complex load histories (Ohno 1982, Chaboche 1988, Ishi-
kawa, Sasaki, and Nakagawa 1994, Sugiura, Chang, and Lee 1991). In order to
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evaluate the effects that the constitutive relationship has on the computed re-
sponse, two different material models are considered in this investigation - an
elastic-perfectly-plastic model and a modified. cyclic Ramberg-Osgood model.
Both models account for varied, cyclic loads. It should be pointed vut that these
models are not being used to represent any one particular material. In using the
two constitutive relationships, we are focusing on how the response changes with
the tvpe of model. Accordingly, the greatest concern i1s understanding the con-

ceptual difference between the two models.

Elastic-Perfectly-Plastic Material Model

Figure 10 shows the stress-strain relationship for an elastic-perfectlv-plastic
material in a uniaxial stress state. In the subsequent text, "elastoplastic” and
“elastic-plastic” share the same meaning as elastic-perfectly-plastic. Prior to
vielding, the material responds elastically with stiffness E. After vielding the ma-
tenal offers no further resistance, and upon unloading, the material behaves elas-
tically again. One interesting feature of this model 1s the abrupt change in stiff-
ness that occurs in the transition from the elastic state to the plastic state or from

the plastic state to the elastic state.

This elastoplastic model i1s often used to model mild structural steels. Al-

though mild structural steels will, after continued loading, exhibit some strain

Figure 10 - Elastic-plastic material model
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hardening, this feature is not included in the model. Because strain hardening is
notincluded, it is generally assumed that this model conservatively estimates the
actual displacements of the real system. While valid for monotonic loadings, this
condition may not always hold under cyclic loads. The role of the the material

model on the computed results is discussed in detail in Chapter 3.

Local Governing Equations. Although Figure 10 gives a schematic repre-
sentation of the material model, one must develop a mathematical framework
that accurately describes this relationship in order to carry out the desired com-
putations. Once the defining equations have been established, suitable algo-
rithms can be developed to numerically determine the solution in an efficient
manner. Already, much research has been devoted to this area (Hill 1950, Simo
and Hughes 1988, etc.). In fact, the mathematical description of this model was
clearly presented in Simo and Hughes (1988) and has been used without modifica-

tion in this research.

It is assumed that the total strain ¢ is composed of an elastic portion, €, and

a plastic portion, ¢/. Mathematically stated,
€= ¢ + ¢€P. (28)
The stress is assumed to be linearly related to the elastic strain such that
o = Eet = E(e — €P). (29)

Based on the model we are trying to incorporate, we must recognize certain
other physical limitations and describe them mathematically. One such limita-
tion is that the stress o cannot exceed (either positively or negatively)a,. This im-

plies that the admissible stresses must lie in the closed interval [0y, o, |. Addition-
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ally, if the applied stress is less than the yield stress, then there can be no change

in the plastic strain. Mathematically, this implies the following:
e =0 if flo) = |g| -0, < 0. (30
Thus, Eq. (29) along with Eq. (30} imply that
flo) < 0 =0 = Ee. (31)

Since there is no change in the plastic strain if the stress is less than ¢, and
since the stress cannot exceed gy, this leads to the conclusion that the only way
in which the the value of €” can change isif flo} = |¢| - o, = 0. Therefore, ifthe
stress reaches the value of g, then the spring will yield in the direction of the ap-
plied force. If we call y = 0 the absolute value of the plastic strain rate, then we
are led to the following:

e =,201if 0=o,

(32)
= —y=<0if o= -o,

The sign of the plastic strain rate will depend upon whether or not the structure

is under tension or compression.

Reiterating from above, it is first required that the stress at the current config-
uration be admissible and that the slip rate be positive. Accordingly, if flo) < 0,
then the material has not yielded, and the plastic strain rate must be zero. Other-
wise, the material has yielded. If the material has yielded, then this implies that
flo) = 0 and that the plastic strain rate must be greater than zero. Mathematical-

ly,
yfla(t)) = 0. (33)
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Eq. (33), along with the requirements that y > 0 and flo) < 0, are often referred
te as the Kuhn-Tucker conditions (Luenberger 1984). Further, we specify that

y > 0 only if the material continues yielding or if

yfo) = 0. (34)

Eq. (34) is known as the consistency condition. With this consistency requirement
established mathematically, we can readily determine the state of the system

once yielding occurs. From abave, we have the following relationship:

of _ a0 _ of o of .
f=5 =30 = 3gble — ) = 5:E¢ -y E signlo) (35)
since
a[[ 2n(0) of (o) and sign(o) +11foz20 (36)
=— |o| = sign(o) = <= = sign(o) and signi{o) =
90 £ do & £ -1ifoa<0
Because [sign (0)]¢ = 1, Eqs. (35) and (36) imply that
f=0-—>y=¢signio. (37)

Using the result of Eq. (37) along with Eq. (32) leads to the result that

e =¢ for flo) =0, Ro) = 0. (38)

Determination of Points on the Stress-Strain Curve. Points on the
stress-strain curve are computed using a step-by-step approach. Accordingly, as-
suming that the current point on the curve is known and the increment in total
strain from the previous converged step is given, we desire to determine the corre-
sponding point on the stress-strain curve for the new value of strain. The method

for making these calculations is based upon an elastic predictor—orrector meth-
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od. The first step in this process is based upon the assumption that over the given
time step. the material behaves elastically. Then, based on these trial values. we
can determine whether or not vielding actually took place. If yielding did not oc-
cur, our elastic prediction was correct, and we can proceed to the next step. Other-
wise, we must correct our inttial prediction to account for the yielding. The steps
needed to determine the stress-strain state of the system are summarized 1n Al-

gorithm 1.

Algorithm 1

1. Starting conditions:n =0, a, =0, ¢, =0, ¢ =0

2. Given the increment in the total strain, update the strain field for the
body tie.. €, 1 = g, + de,).
3. Compute f1'%) = |o, + Edes| — oy
If ffl"f{ < 0, then
on,«— 0, + Ede,

)

€f — ¢f

n~n-+1
Otherwise, vielding has occurred
Op+ 0y - SIgRIO, + Ede,)
ko e+ IFTSLE) - signlo,. )
n—n+1
4. Go to step 2.

Cyclic Ramberg-Osgood Material Model

In order to model the behavior of a material such as mild structural steel, cur
constitutive relationship should include the features of strain hardening and the
Baushinger effect. In addition, the transition from the elastic state to the plastic
state should be smooth. None of these features are included in the elastic-perfect-

ly-plastic material model covered in the last section. In this section, the modified
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Ramberg-Osgood model used in this investigation is presented. For this model,
unlike its original form, it is assumed that the response of the material is elastic
prior to yielding and that the material response is governed by the monotonic

stress-strain curve prior to unloading.

Based upon a large pool of experimental data, one can observe various trerds
in the behavior of steel subjected to varied, cyclic loads. The first general observa-
tion is that, prior to any load reversals, the response of the material is governed
by the meonatonic load curve. This curve is charactenized by three separate re-
gions. The first region is the linear-elastic respense. With continued loading, the
stress eventually exceeds the proportional limit, and yielding occurs. After vield-
ing, the matenal remains on the yield plateau, the second region of the curve, un-
til strain hardening ensues. The strain hardening portion of the curveis a nonhn-
ear relationship between the stress and strain and represents the third and final

region of the monotonic load curve.

A second general observation is that, at a load reversal point, the initial re-
sponse for unloading in the opposite direction is elastic. With continued loading,
the material eventually responds plastically. As the material makes the transi-
tion from the elastic state to the plastic one, the tangent modulus changes from
E, the initial elastic stiffness, to some constant value E,. Datalias and Popov
{1975) called this final, constant slope a bounding line, for it represents a bound
in the stress-strain space. Aktan, Karlson, and Sozen (1973) made similar ob-
servatians for steel reinforcing bars. They termed the curve that best described
this behavior an envelope curve. Once a load reversal occurs, the subsequent be-
havior of the material, as suggested by various investigations, is entirely nonlin-
ear. This nonlinearity is attnbuted to the Baushinger effect. According to Black,

Wenger, and Popov (1980), inclusion of the Baushinger effect is essential for cap-

36



turing the deterioration of buckling strength of a steel member due to previous
plastic working of the material. Furthermore, experimental data for structural
steel under cyclic loads have shown that the response to subsequent loadings de-
pends not only on the current configuration, but it also depends to a large extent.
upon the load path taken in getting to the current configuration (see, for example,
Dafalias and Popov 1975). Thus, in addition to the Baushinger effect, the load his-

tory plays a crucial role in determining the response of the matenial.

Another key observation, which makes sense from a theoretical point of view,
is that loading in one direction has a significant influence on the response of the
material for loading in the opposite direction. Accordingly, the position of the
bounding line or envelope curve will depend upon the current stress state and the
previous loading history. If a load reversal occurs from a point that represents a
maximum stress excursion for loading in that direction (Z.¢., a point on the yield
surface), the bounding line for loading in the other directica will shift. If, on the
other hand. a load reversal occurs at a point that is less than the maximum stress
in that direction (i.e., a point not on the yield surface), the bounding line for load-
ingan the opposite direction will remain unchanged. Instead, the curve will merge

with the bounding line defined from the previous maximum stress (see Figure 11).

As with the elastic-plastic model, it is necessary to first establish the mathe-
matical equations that describe the general observations mentioned above before
any analyses can be performed. In what follows, the local governing equations

that describe these general observations are presented.

The cyclic stress-strain relationship for a typical structural steel under a com-
plex loading 1s shown in Figure 11. The well-known Ramberg-Osgood equation
has been implemented in this study to characterize this complicated relationship

between stress and strain. One drawback, however, in using the Ramberg-Osgood
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Figure 11 - Cyclic Ramberg-Osgood material model

equation is that, in its original form, it does not include provisions for cyclic load-
ing conditions. Accordingly, modifications must be made before it can be incorpo-

rated into our model.

The basic form of the Ramberg-Osgood equation is given as

€-¢ = ";0,'[1 + i:o__‘:;ir_l] (39)
where ¢,,0; are the strain and stress, respectively, at the beginning of the curve,
E is the initial modulus of elasticity, and g, and y are constitutive parameters.
The value y can take on a wide range of values to account for different amounts
of hardening. Because the stress-strain relationship is history dependent, the pa-
rameters g, and i will vary as the analysis proceeds. The method for determining

their value is given below.
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Figure 12 - Monotonic stress-strain curve

Although use of the Ramberg-Osgood equation with the scaling parameters
may seem to be somewhat ad hoc, it does provide a convenient means of consis-
tently reproducing experimental data. Basically, two different forms of the equa-
tion are used. At the start of the analyses, before any load reversals take place,
the monotonic curve 1s used to determine the relationship between stress and
strain. Once a load reversal occurs, the parameters used in the modified form of
the Ramberg-Osgood equation will depend upon the current stress state and load-

ing history. Details of the procedure are given subsequently.

The Monotonic Load Curve. The monotonic load curve for a typical struc-
tural steel is shown in Figure 12. The curve consists of three regions - the linear
or elastic region (A-B), tine yield plateau (B-C), and the strain-hardening region
(C-D). A modified form of Eq. (39) is used to determine the stress-strain relation-

ship for the monotonic load curve:
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where ¢, = 0,/E, and 0,and m are parameters that are determined from exper-

imental test data.

Envelope Curves. Figure 13 shows the envelope curves for the cyclic stress-
strain relationship defined herein. One complete stress-strain cycle (A-B-C) is as-
sumed to be comprised of two half-cycles. One half-cycle loads in compression
(A-B), and the other half-cycle loads in tension (B-C). The point at which the half-
cycle starts is given the designation (g, ¢,), and the slope of the stress-strain curve
at the reversal point is equal to the elastic stiffness. The following formula, which
is a modified form of the Ramberg-Oagood equation, is used to define the stress-

strain relationship for each half-cycle:
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7 O’Fvsrgnf'a ~q) (41)
Tn | ! o

The quantity ¢, is defined as 0,,/E, and the functien signixj is defined as follows:

. +1ifxrz=0
signix) = (42)
-1ifx<0

As mentioned above, we will need to adjust the parameters ¢, and y during the
analyses. These two parameters will reflect the historv dependency of the nonlin-
ear stress-strain relationship. The way in which these parameters are deter-
mined wiil depend upon the point from which unloading commences and upon the
stress history up through the latest half-cycle. The two separate ways of deter-
mining the values of g, and y will depend on whether or not the absolute value
of the stress at the load reversal point (¢, in Figure 13) is larger in magnitude than

the previous maximum stress. The details are included in the following section.

Determination of Ramberg-Osgood Envelope Parameters. If the un-
loading curve originates at an initial stress that is greater in magnitude than the
previous maximum stress, then the parameters 0, and y can be calculated from

the following equation {Aktan, Karlson, and Sozen, 1973}
0, = A+ T{0max = Opyin)- (43)

In Eq. (43). the constants 4 and r, as well as the exponent ¥, are chosen so as to
match up well with the experimental curve. For example, for Grade 60 reinforcing

steel, Aktan, Karlson, and Sozen (1973) reported the following data:

y =6, A= 07938, r = 055723 for 1/2 cycle from compression, and

I
=
N
i

v 0.7735, t = 0.47989 for 1/2 cycle from tension.
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Although these values matched the test data, in reality it would be difficult to de-
termine the values of 1 and r with such high precision. Also in Eq. (43), 0q,, refers
to the maximum tensile stress prior to the current half-cycle, and o refers to
the maximum compressive stress prior to the current half-cycle. These parame-
ters can be adjusted to account for other types of steels different than Grade 60

reinforcing steel (see Sittipunt and Wood 1993).

The main drawback of Eq. (43) is that it is only accurate for stress histories
that are symmetric. The values of the parameters have been determined from load
cycles in which the amount of strain in both the compression half-cycle and ten-
sion half-cycle are the same. Because not all loading situations encountered are
symmetric, it is necessary to develop an alternate method for calculating o, and
y that addresses this issue. Based on observations of various unsymmetric load
tests, the following two guidelines are used to help determine the values of the

parameters o, and y when unsymmetric load cycles occur (Dafalias and Popov

1975):

G1. When the initial stress ¢, is less than the previous maximum stress
for loading in that direction, the stress-strain curve will join up with
and follow the previous half-cycle of loading in that direction (i.e.,
there is no further expansion of the yield surface).

G2. The ultimate strength of the material will control the maximum
attainable stress in both tension and compression. When the stress
approaches this limiting value, the stress-strain curve tends to flatten
out so that this maximum value is not exceeded.

Based on these two guidelines, Sittipunt and Wood (1993) introduce the notion of
acommon point and an ultimate point (see Figure 14). A common point is defined
as the point on the stress-strain curve where the curve from the current half-cycle

of loading joins up with the stress-strain curve from the previous half-cycle of
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loading. An uitimate point is defined to be the point on the stress-strain curve that
is the limiting value of stress for loading in that direction. Its value is determined
from both the properties of the material and the maximum stress excursion in the
current loading direction. The way in which these twao points are incorporated into

the analysis procedure can best be illustrated by means of an example.

Consider the loading history shown in Figure 14. Starting from the origin, the
material is loaded in tension until it reaches point A. Because point A represents
the maximum stress for loading in this direction, loading in the compression half-
cycle from A to B is controlled by Eq. (41) with o, calculated from Eq. (43) and y
obtained from experimental results. Again, since the stress at B represents the
maximum in that direction, loading of the curve in tension from B to C is con-
trolled by the same equations. We now must determine the parameters for loading
in compression from C. Based on the guideline G1, since the stress at Cisless than

the stress at A (the maximum from the previous half-cycle in that direction), the
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stress-strain curve should merge with the previous curve at the common point.
Therefore, we need to determine the values of ¢, and y that will force the stress-
strain curve to merge with the previous envelope curve from A to B at the common
point. At the common point, both curves will have equal values for the stress,
strain, and tangent stiffness E;. Since we know the value of the stress, strain, and
stiffness at the initial point, we can determine the parameters 0, and y (Sittipunt

and Wood 1993). Defining,

_ ; )
¢ Ee;, —€) - (a0, —0) (a4
then
v = (E’i - 1)5, and (45)
[
g, = 65T (46)

where €, and o, are the strain and stress, respectively, at the beginning of the cur-
rent half-cycle of loading, €, and o,are the strain and stress, respectively, at the
common point or ultimate point, £ is the elastic modulus of the matenal, and E,

is the tangent modulus of the curve at point (e,,0,).

The correctness of these calculations must now be verified. The procedure for
doing so consists of first evaluating Eqs. (45) and (46) at the common point. After
calculating g, and y, the stress at the uitimate point should be calculated based
on these values of the parameters. If the calculated stress at the ultimate point
is less than the maximum allowable stress, the curve needs no adjustment. If,
however, the calculated stress at the ultimate point is greater than the bounding
line value or maximum allowable stress for loading in that direction, then the

curve needs to be adjusted. At the ultimate point, the stress should equal the max-
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imurm allowable stress and the tangent stiffness should equal zero. Under these
conditions, it 1s necessary to recompute ¢, and y'by evaluating Egs. (45) and (46)

at the ultimate point.

The Ramberg-Osgood equation, with the modifications presented above. can
adequately describe the cyclic response of mild structural steel. Algerithm 2
summarizes the procedure used to determine a point on the stress-strain curve.

As with the elastoplastic model, a step-by-s*ep approach is used.

Algorithm 2

1. The data base and increment in total strain are assumed known. The
data base includes the values of all variables needed for subsequent cal-
culations including the maximum tensile stress and strain, the maxa-
mum compressive stress and strain, the value of the stress and strain
at the last load reversal, curve parameter constants, the total strain
increment from the previous step, and the values of stress and strain
from the last step.

2. With the given increment in strain, determine if loading is changing
directions. Thus,1f

A€ pq - d€pe. < 0 = changein loading directions. 47)
If the load is changing directions. this indicates loading from a new ini-
tial point. If the value from the previous step 1s greater than the pre-
vious maximum for loading in that direction, update the value of the
maxarnum stress and strain. Also update the values of stress and strain
from the last load reversal. If the loading is in the same direction as the
previous strain increment, the data base does not need to be updated.

3. Now, with the strain and loading direction known, we need to determine
the stress. The appropriate equation must be used based upon the fol-
lowing tests:

3.a. Has the material yielded yet? If not, then o0 = Ee¢. Otherwise, goto3.b.
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Figure 15 - Elastic-plastic vs. Ramberg-Osgood material models

3.b. Has the material undergone & load reversal yet? If not, then use Eq.
(40). Otherwise, go o 3.c.

3.c. Is the value of the initial stress larger than the previous maximum? If
so, use Eq. (41) in conjunction with Eg. (43). Otherwise, calculate the
stress at the common point using Eq. (41} in conjunction with Egs. (45)
and (46). Also, calculate the stress at the ultimate point. If the calcu-
lated stress at the ultimate point exceeds the maximum allowable
stress, recalculate the parameters in Eqs. (45) and (46) using the ulti-
mate point instead. Otherwise, use the values obtained previously.

Summary and Comparizan of Models. Figure 15 shows a comparison of
the two material models presented in this chapter that are used in subsequent
analyses. Both models represent loading along the same strain path. That is,
starting from the origin, both models are given the same strain increment, and
the corresponding stress is determined based upon the guidelines presented earli-
er. Clearly, there are differences in the response calculated for the two different

models. While the stress never exceeds the yield stress for the elastic-plastic mod-
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el, the Ramberg-Osgood model produces a stress that is much larger than this val-
ue in both tension and compression. Furthermore, the energy dissipated, as mea-
sured by the area under the stress-strain curve, is much larger for the
Ramberg-Osgood model for a given maximum strain. Chapter 3 includes further

discussion on how the choice of material model affects the computed results.

Incorporation of Damage in the Constitutive Models

Figure 16 shows the cyclic response of a material that displays cyclic strain
softening. A consequence of strain softening is that the stiffness of the material
degrades under constant amplitude strain cycling. Empirical data suggest that
one possible way to model this damage is to modify the modulus of elasticity of the
system | Lematitre and Chaboche 1994, Kachanov 1986). Thus, if E, is Young’s Mo-

dulus of the virgin material, free from damage, then

ED) = EJ(1 - D) (48)
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represents the the damaged modulus. According to Kachanov (1986), the choice
of variable(s) to affect the damage model is not simple. For this study, it would
have also been possible to include the strain hardening exponent y and/or the
constitutive parameter o, in the damage model. The choice of variables to include
is generally based upon a direct generalization of observed behavior. In addition,
from a practical point of view, it is desirable to choose as simple a model that will
yield acceptable results. In our model, simply reducing the elastic modulus ac-
cording to Eq. (48) without modifying o, or y gives good agreement between the

calculated results and observed behavior.

Various researchers have introduced different measures of damage D that a
system experiences in response to load (Kachanov 1986, Lemaitre and Chaboche
1994, McCabe and Hall 1989, Lubarda 1994, Fajfar 1992, Kutt and Bieniek 1988,
Sugiura, Chang, and Lee 1991). Damage models for inelasticity generally depend
on the maximum deformation and the accumulated energy dissipated by the sys-
tem. Other factors, such as temperature, radiation, and corrosion, could also
cause damage but are less important in applications involving large strain cycling
of the material. A good first approximation for the damage model is to consider
a linear dependence upon the maximum deformation and energy aissipated. To
wit,

D =ad +B8€ (49)

where a and § are constants that depend upon material properties, D = d/d, is
the deformation normalized by the yield deformation, 8§ = Ey/0,d, is the hyster-
etic energy dissipated normalized by 0,d, where d,, is the ultimate displacement
of the material under monotonic loading conditions, and o, is the yield strength
of the material. The coefficients @ and g can be interpreted as the parameters that

determine the rate of damage of the material under cyclic loading.
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At the end of each converged step. the total amount of damage is calculated,
and the modulus E(D; is modified. Thus. for both the elastoplastic model and the
cvelic Ramberg-Osgood model. one simply replaces the value of E with E\D) in
each formula it oceurs. The damage form of the Ramberg-Osgood equation is now

given as

0 -g, ja = a !
€ —€ = D 1+ f(L, "U,i 50)

The effects of including a damage mechanism in the constitutive relationships

are discussed in detail in Chapter 3.

Numerical Integration of Governing Nonlinear Equations

Since the differential equations that describe the motion of the system being
considered cannot be solved analytically. one must resort to a numerical proce-
dure in order to make any headway toward a solution. Accordingly, one must en-
sure that the numerical procedure used gives accurate results. Otherwise, the re-
sults obtained from the analysis can be at best misleading. and at worst,
completely unrepresentative of the motion the system actually experiences. In
addition to accuracy, the numerical solution procedure used must be stable. In the
context of numerical integraticn, stability implies that any errors in the displace-
ments, velocities, and accelerations at some time ¢, which may be due to computer
round-off error, do not grow with theintegration (Bathe 1982). The accuracyof the
numerical integration scheme refers to the ability of the method to replicate the
exact solution. The accuracy and stability properties of the numerical integration
scheme control the maximum allowable time step size that yvields results with the

desired level of precision.
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Direct Integration Methods: A Brief Introduction. Using direct integra-
tion to solve the equations of motion implies that the solution will be found at dis-
crete times only. Therefore, a step-by-step numerical procedureis used to advance
the solution from the last converged state to the next converged state. Many dif-
ferent direct integration techniques exist (Bathe 1982). The assumed variatiou
of the displacements, velocities, and accelerations over the time step 4¢ are what
determine the accuracy and stability properties of the numerical procedure. It is
generally agreed that among the different direct integration procedures available
that the Newmark Method provides the best overall performance with regard to

stability and accuracy (Bathe 1982).

Even though the Newmark Method is unconditionally stable for linear prob-
lems, the time step size must still he chosen appropriately. According to Bathe
(1982), using a step size of 4¢ = 0.01 T, will ensure sufficient accuracy. Some addi-
tional issues arise when applying direct integration techniques to nonlinear prob-
lems. For nonlinear problems, the system can experience sudden changes in stiff-
ness or resistance due to yielding and unloading. If the time step chosen is too
large, these effects may not be accurately captured. Because nonlinear problems
are path-dependent in their solution by nature, any errors introduced during the
incremental analysis can have a large impact on the behavior calculated at a later
time. Consequently, when using direct integration techniques to solve nonlinear
problems, the user should employ a procedure that is unconditionally stable for
the linear case and include equilibrium iterations with a tight enough tolerance
to ensure that the true behavior of the system is accurately determined (Hughes
1977). For this research, the tolerance was set so that the magnitude of the residu-
al forces or load 1mbalance (as determined from the equilibrium equations),

normalized by the magnitude of the load vector, was less than 10 % (see Bathe



{1982) for general guidelines on setting tolerances for numerical integration of

nonlinear prohlems).

Newmark’s Method. Newmark's Method for numerical integration of the
equations of motion is based upon the following assumptions:

v, =0, +Atl(l = ya, + ya:-+1} ;1)

d,, ,=d +dt + 432[[% - ﬁ)az + ﬂai+]] (52)

where d, = u(t), v, = u(t), and @, = iit,)). The parameters # and y can be se-
lected to obtain different stability and accuracy characteristics. Typically, the
choicesof § = 1/4 and ¥ = 1/2 are made. The reason for this choice of parame-
tars is that, for linear systems, Newmark's Method is unconditionally stable and
second order accurate. The Newmark estimations for d, , ; and v, , ; must be aug-
mented by an equilibrium equation to complete the estimate of the state at time

14

i+ 1

In general, we are interested in the following system of equations:

GU U = 0. {53)

For nonlinear problems, the solution proceeds iteratively. The iteration procedure
can be efficiently implemented as a Newton-Raphson scheme. Because we will be
considering increments in the displacement, it is convenient to rearrange Egs.
(51) and (52) in terms of the unknown displacements. Thus, for § = 1/4 and
y = 1/2, the acceleration and velocity in terms of the unknown displacement are

given as
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a; . =&i+ﬁd;+1 (54)

Viv1 =Y +_,_%di+1 (55)
where
g, = —a,—4d +d_ )4’ - 4v /4 (56)
b, = —v, - 2d, +d, )4t | (57)
Eq. (53) requires that
G(“in: Vii1r di+l)0- (568)

Substituting the Newmark relationships from above leads to the expression

= 4 P 2 :
G(“i + 2%t +A—td:+l'd|‘+1) =0=6(d,,,) (59)

Linearizing (-;(d,- +1) about the configuration d}_, gives

G(d:

i+1

4 G, 200G L 3G v _
)+{mﬁ+ﬁ-ﬁ+ﬁ d'»+l—0 (60)

where the general model G = M(6)6 + C'(G)é'?2 + R(6) - L@ = 0 is used in
Eq. (60) (see Eq. (20)). Finally, the displacements are updated with the expression

ditl = dr | +ad

t+1 i+1

(e1)

Eventually, the difference in the new estimate and the old estimate will be within
the set tolerance. At this point, the state of the system is known for the current
time step, and now the state of the system should be determined for the next timne
step. This procedure continues until the response of the nonlinear system has

been determined for all time.
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Variable Time Stepping for Newmark’s Algorithm. An interesting phe-
nomenon occurs when using Newmark's Method to solve single degree-of-freedom
problems with an elastic-plastic material model. In order to aveid problems with
the numerical integration, it may be necessary to use a time step smaller than the
recommended 0.01 T}, for linear systems. Figure 17 shows the effects of using too
large a time step in calculating the maximum displacement of the system shown
in Figure 1. The system response has been determined for a sinusoidal ground ex-
citation with the system starting from rest. The large spikes in the graph appear
due to error accumulation during the course of the analysis. For certain time
steps, the error in defining the transition from the elastic state to the plastic state
or from the plastic state to the elastic state is such that errors systematically accu-
mulate. A closer examination shows that only very specific time step increments
will lead to this type of error. If the time step size is changed slightly, the error

disappears. Figure 18 demonstrates this phenomenon.
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Figure 17 - Effect of time step size on maximum computed displacement
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The systematic errors accrue because of one-sided dipping at the elastic-plas-
tic interface. Figure 19 shows this rounding of the corner effect for a particular
time step increment. In order to make the Newmark algorithm accurate, one
must subdivide the time step in the transition regions. Using a uniformly small
time step in the regions away from the corners is not efficient. Hence, one should
allow the time step to adapt. When the material is near the transition region,
make the time step size small enough to accurately determine the corner of the

curve. Away from this region, allow the time step to increase in size in order to
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Figure 18 - Effect of time step size on stability of Newmark’s Method

54



SOr

=

g

S 30t

=

73}

=] 10+

‘©

s

;28 -10}

&

‘= -80F

Q.

[ 9]
_80 - L L Fl
05 03 0.1 0.1 0.3 0.5

Rotation
Figure 19 - Error accumulation for Newmark'’s Method

speed up the analysis. Of course, since the integration constants used in the New-
mark procedure are dependent on the time step duration, these values must be
updated every time the time step changes. Using this strategy works very well.
In fact, for maximum time steps even greater than those that led to the large error

accumulations above give results that are quite acceptable.

Successive Symmetric Quadratures. Another approach to dealing with
the problems of the Newmark Method for nonlinear problems is to use an alto-
gether different integration scheme. Chen and Robinson (1993) have developed
an integration method that includes the following two essential features: (1) use
of time integration for its smoothing effect; (2) use of an improved quadrature rule
over the trapezoidal rule. This method works quite well and was employed for de-
termining the response for the SDOF system in this research. The details of im-

plementing this method are presented in Appendix Al.



Summary

A mechanical model was presented that will be used to study the dynamic sta-
bility characteristics of a damage-prone system. The corresponding differential
equations of motion were derived for the general case. These equations account
for inelastic material behavior and large rotations. Two nonlinear constitutive
relationships were introduced that will be used to determine the restoring mo-
ments developed in the rotational springs located at the base of each rigid link.
The role of the constitutive model on the observed behavior is studied in detail in
Chapter 3. Following the material on the constitutive models, a damage model
was introduced. The damage model, which depends upon the maximur deforma-
tion and hysteretic energy dissipated, has the effect of reducing the elastic modu-
lus with increasing damage. Finally, the numerical integration procedure used to
determine the response of the system was presented. For nonlinear problems, pro-
visions must be made to account for sudden changes in stiffness that arise due to

yielding and unloading of the material.



3

Dynamic Stability of Hysteretic Systems

There 1s nothing stable in the world - uproar’s your only music.

- John Keats

Dynamic Response without Base Excitation

Even though the primary focus of this study is to investigate the dynamic sta-
bility characteristics of hysteretic, damage-prone systems, it is important to first
consider the linear-elastic response of the system. As discussed previously, study-
ing the linear-elastic response allows one to locate possible regions of instability,
and it provides a benchmark for comparing the dynamic stability properties of the
damage prone system. In this chapter. the structural model presented in Chapter
2is analyzed. First, the SDOF system is considered, and the response is computed
assuming a linear-elastic response. Initially, the lateral base acceleration is set
equal to zero. The effects of accounting for large rotations and inelastic material
properties are then investigated. After, the response of the system to lateral base
excitation and constant axial load is presented. Following this material, the re-
sponse of a 2-DOF model is considered. Finally, the role of inciuding a damage

mechanism in the constitutive relationship is explored.
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Linearized Geometry and Elastic Material Properties. If we make the
assumptions that the rotation is small, the material is elastic, and the base accel-
eration is equal to zero, then the governing differential equation of motion for a

SDOF system is given as

me%8 + (k - Pi)é)é = 0. (62)

If we further assume that the system is undamped, the force due to gravity is neg-
ligible compared to the magnitude of the applied axial load. and the axial load va-

ries with time according to P(t) = P,cos(£2t), then Eq. (62) reduces to

meé28 + (k — P,tcos$2t)6 = 0. (63)

Eq. (63) is the Mathieu Equation (Bolotin 1964, Saaty and Bram 1964} Many
properties of this equation have been well established in the literature (Bolotin
1964, Saaty and Bram 1964, Grimshaw 1990, Shirts 1993). One of its most impor-
tant characteristics is that for certain combinations of axial load magnitude and
frequency, the system becomes dynamically unstable (in the sense of Lyapunov).
In order to determine the regions of stability for the Mathjeu Equation, it is first
assumed that the solution is periodic and can be described by an infinite Fourier
series. Substituting the Fourier series back into Eq. (63) leads to a linear set of
algebraic equations that involve the unknown coefficients of the Fourier series.
It is known from linear algebra that the system of homogenecus equations has
a solution different from zero only when the determinant of the matrix of the sys-
tem coefficients is zero. Since we are considering an infinite series, we must calcu-
late an infinite determinant. [n order to compute an actual value for the determi-
nant, it is necessary to consider a finite subset. The accuracy of the computed

determinant is improved as the number of terms considered increases.
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In Figure 20, the shaded regions indicate the combination of model parame-
ters that lead to the first three regions of dynamic instability for the Mathieu
Equation. The axes have been normalized such that the ordinate is the ratio of
the frequency of the axial load to the natural frequency, and the abscissa is the
axial load magnitude divaded by the static buckling load. In Figure 20, the system
is unstable, both in a dynamic sense and a static sense, when P,/Pp =z 1. As
Figure 20 1ndicates, the primary region of instabilitv corresponds to the case
where the frequency of the pulsing vertical load 1s twice the natural frequeney of
the system. Under these conditions, the system becomes dynamically unstable for
anv magnitude axial load greater than zere. For verv small values of the axial
load, the effects of gravity become more significant. In this research, however,

only axial loads greater than approximately 40% of the static buckling are consid-
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Figure 20 - Regions of dynamic instability for the Mathieu Equation
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ered so that the effect of gravity is small in comparison to the amplitude of the

axial load.

Figure 21 shows a plot of the rotation versus time for a set of model parame-
ters that falls into one of the regions of instability for the Mathieu Equation. With
increasing time, the rotations approach infinity, and, by any definition, we can
conclude that the system has become unstable. This response confirms the ex-
pected behavior for the given model parameters and the Mathieu Equation. Using
Eq. (63) to calculate the response, one would be ied to believe that, in the time
duration shown, the pendulum rotates completely ahout the hinge at the bottom
more than twice. Clearly, the calculated response is not consistent with the as-

sumption of small rotations.

In order to gain a better understanding of the response of the system for a set
of model parameters that falls into one of the regions of instability, we must refine

our original hypothesis to include the possibility of large rotations. Although us-
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ing the geometrically exact modei complicates the analysis, it is necessary to ob-
tain more information about the system after the rotations become large. It
should come as no surprise that one must consider large deformations for this
problem. This stepis also essential for static stability problems (Hjelmstad 1994).
For such problems. the linearized analysis may indicate the critical load, but it
cannot provide information about the system once buckling has occurred. Conse-
quently, the next step in our analvses will be to investigate the response of the

geometrically exact model.

Exact Geometry and Elastic Material Properties. If we modify our pre-
vious assumptions to account for large rotations, then the governing equation of

motion takes the form
mt’8 + kO ~ (P.fcostRt)rsind = 0. {64)

While the geometrically exact model gives more accurate results, it is much more
difficult to solve analytically. In fact, a closed form solution of Eq. (64 ) has not been
found for the case where the nonlinear differential equation has time-varying co-
efficients (Bolotin 1964, Grimshaw 1990). Consequently, the analysis is accom-
plished by numerically solving Eq. (64) for a wide array of model parameters. By
considering a variety of different system properties, we can gain a better under-
standing of the general nature of this structure. Figure 22 compares the results
of the geometrically exact analysis with those of the linearized analysis. The prop-
erties of the system for Foth analyses are the same, the only difference is the
approximation that sin@ = @ for the linearized system. Thus, Figure 22 illus-

trates the difference between using Eq. (63) and Eq. (64) to compute the response.
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While the linearized model helps us locate potential regions of instability, it fails

to capture some significant aspects of the behavior.

If the response of the system computed from Eq. (64) is monitored for a longer
period of time, a peculiar phenomenon is observed. Figure 23 shows the variation
of the displacements with time for the same system considered above but for a
greater duration. Figure 23 shows that the system experiences some sort of “beat-
ing” phenomenon. Classical beating motion occurs in the presence of two vibra-
tions of different frequencies that are very close to one another (den Hartog 1985,
Timoshenko 1948, Meirovitch 1986, Lu and Hall 1990). Beating occurs frequently
with acoustic vibrations and in other areas of the physical sciences. Figure 24
shows a plot of the displacement versus time for a classical beating system. What
is interesting about the fact that beating occurs in our model is that it will take
place even when the driving frequency is much different than the natural fre-

quency of the system.
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(Meiravitch 1986) but is affected by the amplitude. The free vibration of a geomet-
rically exact oscillator is not exactly sinusoidal (the analytical solution isin terms
of elliptic integrals (Kamke 1959, Saaty and Bram 1964)). Consequently, at cer-
tain times, the frequency of vibration due to the initial conditions is in phase with
the driving frequency, and at other times, it is not. When the two frequencies are
in phase, the motion becomes large. When they are out of phase, the amplitude
diminishes. Whether or not the two parts of the response are in phase will depend
upon the displacement amplitude, which in turn depends upon the axial load
magnitude and theinitial conditions. Based on these observations, one could spec-
ulate that the system would respond similarly for other types of periodic axial

loads.

The impact the initial conditions have on the cbserved behavior can be demon-
strated by considering the response of the system when a very small amount of
Jdampingis included (0.005 of critical damping). The response for the damped sys-
tem is shown in Figure 25. Initially, before the steady-state is reached, one can
see the start of the beating behavior due to the interaction between the steady-
state and transient responses. However, with time, as the transient portion of the
motion gets damped out, a steady-state oscillation of the same frequency of the
axial load is observed. Other researchers report similar findings for other systems
of this type (Cedarbaum and Mond 1994, Sun, Berg, and Hanson 1973). In fact,
small changes in the initial conditions may alter the subsequent response from
a stable motion to an unstable motion and vice versa. Also, depending on the ini-
tial system properties, we may see different pathways to instability. This depen-
dence is discussed further below.

Another phenomenon we notice with the geometrically exact system 1s that

the motion does not become unbounded. For the model with linearized geometry,
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we could discern when the system became unstable because,with continued time,
the displacement and velocity of the system tended toward infinity. With geomet.-
rically exact model, the rotation may become large, but it remains finite. Thus,
we need an appropriate means of identifying instability for the geemetrically ex-
act system and a suitable definition for “dynarmic instability.” First, if the system
becomes unstable before undergoing at least one complete cycle of motion (see
Figure 26) or becomes unstable after the external excitation has ceased, then this
will not be considered a case of dynamic instability. If, on the other hand, the sys-
tem undergoes at least one complete cycle of motion without becoming unstable
and then becomes unstable while excited by external furces. then this will be
known as dynamic instability. Furthermore, instability for the system under con-
stderation will be defined as the case where the column has undergone a rotation
around the base of # = + z. Although this value of the rotation is much larger
than the rotation any real structure would ever be expected to withstand, it

makes good sense, from a behavioral point of view, to counsider such large displace-
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Figure 25 - Effects of damping on nonlinear, elastic analysis
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ments. Only in this position does the axial load stabilize the motion in the sense
that the system will oscillate about the configuration ¢ = + xx (see Figure 26).
Had a smaller limit been chosen, this condition would not hold. This limit is ap-
propriate especially in light of the response indicated by the static stability bi-
furcation diagram (see Figure 3). For the static system, after the buckling load is
exceeded, increased axial load will cause the syatem to tend toward the configura-
tion 8 = = n. Therefore, we are simply applying Lyapunov’s stability criterion for
this particular dynamic system. From this point forward, we will be most con-

cerned with loss of stability in the dynamical sense.

Exact Geometry and Nonlinear Material Properties. It is quite reason-
able to assume that inelastic material respense will occur in a system undergoing
large deformations. When nonlinear material properties are included. the model
will be more representative of a real structural material (e.g., steel). Especially

recently, there has been a sizeable amount of effort devoted to understanding the
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behavior and stability characteristics of dynamical systems that have an elastic-
plastic material model (Bernal 1987, Jones and Reis 1980, Karagiozova and
Jones 1992, Yue and Zheng 1992, Newmark and Hall 1982, Maier and Perego
1992, Capecchi 1993, MacRae 1994). In fact, many researchers have made their
observations and conclusions based upon a simple structure similar to the one
presented here. However, most researchers have simplified the geometry of the
problem to the linear case. As shown above, using linearized geometry can be
helpful in determining some possible regions of instability, but the linearized
medel cannot give an accurate representation of the system once the rotations

have became large.

The fact remains that we have no clear-cut measure that can accurately pre-
dict whether a given set of model parameters will lead to large or small rotations
once inelastic material response occurs. Although it is challenging even for the
elastic case, the results will show that it is almost impossible to predict the results
of the nonlinear system based simply on the input parameters. In fact, under
some circumstances, the elastic case is a poor predictor of the inelastic model

whereas under other circumstances, it can serve as a good predictor.

Consider first some of the resuits that. one might expect once inelastic material
properties are included. We will initially concentrate on the elastic-plastic model.
Doing so will allow a comparison of our results to those of previous studies. For
this system, we would expect the maximum rotation to increase with increasing
axial load. Results show, however, that this relationship does not always exist.
The correlation between the maximum displacement and axial load is shown in
Figure 27. Clearly. when the driving frequency is twice the natural frequency, the
value of the maximum displacement is nearly the same for all axial loads. Addi-

tionally, we would expect that the displacements would be the largest for the fre-
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quencies that correspond to the regions of instability in Figure 20. The instability
regions indicate the system properties that lead to large displacements. Since
yielding in the system will not occur unless the displacements exceed a certain
level, and since once yielding occurs the displacements will become large. we can
see that the elastic model provides a good estimate of the stability regions for the

case where the material is elastic-plastic.

Figure 20 shows for the linear-elastic case that the primary region of instabili-
ty occurs when the frequency of the axial load is twice the natural frequency of
the system. Instability under these circumstances will occur for any magnitude
of the axial load greater than zero. The next region of instability occurs when the
axial load frequency is equal to that of the natural frequency of the system. How-
ever, under these conditions, instability will occur only if the magnitude of the ax-
ial load is greater than approximately 40% that of the static buckling load. It is

these two regions that are of primary interest in the material that follows. In par-
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ticular, we will be focusing on the following four pairs of driving frequency and ax-

ial lead magnitude:

1. Axaal load frequency is twice the natural frequency and the magni-
tude i1s 80% of the static buckling load;

2. Axaal load frequency 1s twice the natural frequency and the magni-
tude 1s 50% of the static buckling load;

3. Axial load frequency is equal to the natural frequency and the mag-
nitude is 80% of the static buckling load;

4. Axial load frequency is equal to the natural frequency and the mag-
nitude is 50% of the static buckling load.
Understanding these four cases will improve our understanding of the system and
coutribute to our ability to recognize general trends in the response of this struc-
ture. Just as the linear-elastic case served as a good starting point in trying to un-
derstand the significance of including nonlinear geometry in our formulation of
the problem, these test cases will help form the foundation of our understanding

of the significance of including nonlinear material properties.

Let us first examine the behawvior of these four cases when the material re-
sponds elastically. Figure 28 shows the displacement versus time for these test
cases. Besides those differences mentioned above. all other parameters are the
same for each test case (i.e., there is no damping, each system starts from rest,
etc.). Although the exact dependence of the response on the driving force ampli-
tude and frequency is not clear, one can observe some interesting facets of behav-
tor regarding Figure 28. First, the number of beats increases as the axial load in-
creases. Second, the number of beats increases when the applied frequency of the
axial load increases. The occurrence of more beats implies that the duration of an
individual beat decreases with increasing axial load magnitude and driving fre-

quency. Hence, each individual beat builds up and dissipates more rapidly under
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these conditions. This property is very important. Its significance will be ex-

plained below.

We can characterize the inelastic res ponse of the system with three quantities
— the maximum rotation, the displacement shift. and the steady state amplitude
after yielding occurs. The displacement shift and steady state amplitude are de-
fined pictorially in Figure 29. Figure 30 also shows these two quantities but on
a plot of the spring moment versus the rotation using the Ramberg-Osgood mate-
rial model. Although not shown, these values are defined the same way for the

elastoplastic model.

Figure 31 shows a comparison between the results obtained using the elastic-
plastic material model and the Ramberg-Osgood material model. Results are
shown for two different hardening exponents. For n =25, the Ramberg-Osgood
equation models a material with essentially nohardening. A plot of the stress ver-
sus the strain looks almost like that of the elastic-plastic model with the exception

that the transition from the elastic state to the plastic state does not occur at a
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sharp corner (see Figure 32). For n =9, the Ramberg-Osgood equation more accu-
rately models a material that strain hardens. Figure 11 shows the response of a
material with a hardening exponent n =9. The results for » =25 have been in-
cluded in Figure 31 in order to compare the results obtained using the elastoplas-

tic model.

As one can clearly see, when n =25, there is very good agreement between the
elastic-plastic model and the Ramberg-Osgood model. The slight differences be-
tween the two are attributed to the fact that the transition from the elastic state
to the plastic state is much smoother for the Ramberg-Osgood material model.
The right hand portion of the figure is consistent with the model presented in
Chapter 2 to model a material that strain hardens (e.g., structural steel). As one
would expect, the results obtained from the elastic-plastic material model are
much different from those obtained using the Ramberg-Osgood model with hard-
ening. Historically, the elastic-plastic constitutive relationship has been

employed because it is assumed that the elastic-plastic model conservatively esti-
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Figure 32 - Ramberg-Osgood model for n = 25.

mates the displacements the actual structure is likely to experience. Relative to
the elastic-plastic model, the real materia] will strain harden, and thus, will have
some reserve strength capacity that is not accounted for by the elastic-plastic
model. Accordingly, the real structure should experience smaller displacements
than those computed using the elastic-plastic model under the same loading
conditions. While this observation always holds true for menotonic loading condi-
tions, it does not necessarily hold for the case of cyclic loads. One can clearly see

that these results are much different from the left hand portion of the figure.

The results have been plotted against the strain at which yielding occurs be-
cause the computed response is most sensitive tosmall changes in this parameter.
A more in-depth discussion regarding the sensitivity of the computed results to
the yield strain is included below. In addition, the reason we see large jumps in
the data for the different displacement quantities is also considered below. For all

yield strains considered, the maximurn displacement calculated with the Ram-
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berg-Osgood model is always greater than that computed using the elastie-plastie
model. For the quantities of displacement shift and steady state amplitude, some-
times the elastic-plastic model gives a larger value and sometimes the Ramberg-
Osgood model computes a greater value. Thus, based on these three criteria, it is
clear that the choice of material model greatly affects the computed response of
the structure. From the results presented above, the presence of the sharp corner
in the transition regions for the elastoplastic model does not lead to significantly
different behavior than for the case where this transition is smooth. However, the

presence of strain hardening does lead 1o significantly different behavior.

For this research, each of the variables associated with the physical structure
was assumed to be a parameter that could vary Therefore, for any particular
analysis, it is necessary to define the parameters that describe the physical struc-
ture (i.e., the elastic stiffness, the length of the column, the magnitude of the
mass, and the axial load magnitude and frequency). Some of the parameters
associated with the inelastic material models though were fixed. For example, in
using the cyclic Ramberg-Osgood model, only two different hardening exponents
were considered — namely n = 9 and n = 25. Although it is possible for the pa-
rameter n to take on other values, different values were not considered in this re-
search. The only parameters for the inelastic material response that could vary
from analysis to analysis were the moment and rotation at winch yielding occurs
(these two quantities are related by the initial elastic stiffness), the maximum al-
lowable moment capacity, and the maximum allowable rotation of the material.
In this investigation, the ultimate moment and rotation capacities were set large
enough s. that the response of the structure would not be limited by a failure of

the matenal.
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The system respanse clearly depends upon the choice of parameters. Variation
of each of the parameters that describes the physical structure, however, changes
only the initial natural frequency of the system. Accordingly, it is possible to pre-
dict the initial elastic response of the structure by knowing the relationship be-
tween the external loads and the natural frequency of the system. Once vielding
occurs, results have shown that the most important factor controlling the re-
sponse is the yield strength of the system. Again, since we are not modeling any
one material in particular, the yield strain is a parameter that is allowed to vary.
Because the analyses did not account for the possibility of failure of the material.
itis clear why the rotation at which yielding occurs is the most important parame-

ter controlling the inelastic response of the structure.

intuitively, one might anticipate that the lower the yield strength of the sys-
ter 1, the greater the magnitude of response. Thus, given two systems with equal
st’ ffness, one would expect that the system that yields first to experience a greater
rctation or displacement. For both material models considered, however, it is in-
te resting to note that the maximum response decreases with decreasing yield
strain. This result is the opposite of what one would expect under monotonic or
strtic loading conditions. For dynamic loadings with inelastic material response,
the maximum displacement increases with increasing yield strain. Therefore, we
see that information obtained from static loading conditions may not provide a

good indication of the dynamic stability properties of an inelastic system.

Figure 33 through Figure 40 compare the results for the four different test
cases considering different yield strengths and the Ramberg-Osgood material
model. The percentage of the yield strength plotted as the abscissa in these eight
figures is based upon the yield strength required to keep the system elastic when
the axial load is 0.8 P.,. When the applied axial load magnitude is only 0.6P,,,the
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Figure 33 - Displacement shift as a function of yield strength

system does not require as much strength to remain elastic. Consequently, this
would explain why the system response for the case of the lower axial load levels
off at what appears to be a value less than that required for elastic response. Put

another way, the results have been normalized against the case where the axial

load is 0.8P,,.

Looking at Figure 33 through Figure 40, we immediately notice the large
variability in the data. Furthermore, we see large jumps in the displacement shift
for relatively small differences in the yield strength of the system. Reexamining
Figure 28 may help to explain why this occurs. When the vield strength is less
than a certain value, yielding will occur before the displacements have had a
chance to grow very large. However, if the yield strength is higher, the system will
remain elastic longer. Consequently, the displacement at the time of yield will be
greater, thereby causing the displacement shift to be larger (see Figure 41). This
effect is greatest at the beginning portion of the beat when the rate of change of

the rotations is greatest. Toward the middle pertion of the beat, the rate of change
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Figure 34 - Displacement shift as a function of yield strength

of rotations isrelatively small (the amplitude remains essentially unchanged over

this time period), and the differences in the displacement shift are much smaller.

The relatively flat portion of the beat corresponds directly to the relatively
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Figure 35 - Displacement shift as a function of yield strength
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constant portion of the curves in Figure 33 through Figure 36. These results help
illustrate why the rate at which the beats build up and dissipate for the elastic

case is significant.
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Figure 37 - Steady state amplitude as a function of yield strength
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Figure 38 - Steady state amplitude as & function of yield strength

Also, with few exceptions, the motion subsequent to yielding remains elastic.
For most of the cases considered, when yielding occurs, there is a large nonlinear

excursion followed by motion that remains bounded within the new yield surface
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Figure 39 - Steady state amplitude as a function of yield strength
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without beating (Figure 29} Although there are some exceptions, this type of re-

sponse is the general trend. Therefore, we witness a steady state response after

yielding for much the same reason we did before when we considered the elastic

system with damping. Yielding of the material dissipates the energy of the system

as does damping. Thus, the transient portion of the response no longer plays as
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Figure 41 - Explanation for jump in displacement shift
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important a role in the behavior of the system once yielding takes place. Further-
more, after a large yield excursion, the nature of the system changes, and the fre-
quency of the axial load does not excite the system in the same way it did before

vielding occurred.

Another interesting facet of behavior we see in studying Figure 33 through
Figure 40 is that there does not appear to be an “almost elastic” system (see
Figure 42). That is, we see that the displacement shift and amplitude of the
steady state mation are large for values of yield strength that are very close to the
strength required to prevent yielding. The reason we see such large displace-
ments under these circumstances can best be explained from a total energy per-
spective. Sun, Berg, and Hanson (1973) used this approach for their study of the
free vibration of elastoplastic systems. Initially, based uponits properties, the sys-
tem is capable of dissipating a certain amount of energy. Systems that experience
large rotations are more efficient at capturing energy from the external forces. Os-

cillations occur because of the exchange of strain energy and kinetic energy with
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Figure 42 - “Almost elastic” system
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a balance to total captured energy. Yielding dissipates captured energy In the
case of tire "almost elastic” svstem, prior to yielding. there is a large build-up of
kinetic energy. Once vielding occurs, the system can only dissipate energy in ac-
cord with the energy available to dissipate. Consequently, unlike before, the re-

storing forces are not sufficient to arrest the motion of the system,

Now consider the system behavior for verv small yield strengths (e g,
< 25% M. and an axial load magnitude of 0.8 P., Thus, the main focus here 1s
to examine the differences in the behavior of the system for the following two situ-
ations with all other properties being the same: (1) the frequeney of the axial load
is twice the natural frequency; and (2) the frequency of the axial load 1s equal to
the natural frequency. These frequencies correspond to the first two critical re-
gions of Figure 20. Figure 34 shows a dramatic difference in the behavior of the
svstem for these two cases. When the driving frequency is twice the natural fre-
quency. if the vield strength of the system is continually lowered. one notes that
the displacement shift and the rotation of the system also become smaller and
smaller. Therefore, one could say that lowering the yield strength causes the sys-
tem to tend toward a more favorable configuration. On the other hand. when the
drving frequency is equal to the natural frequency. the opposite effect occurs.
Thus, as the yield strength of the system is lowered, the displacement shift grows
and grows to a very large value. Consequently. one might say that lowering the
vield strength under these circumstances causes the system to tend toward a less
favorable configuration. What is quite peculiar about these results is that theydo
not occur when the axtal load magnitude is decreased to 0.5P, (see Figure 351.
That is. for either frequency considered, lowering the vield strength of the system

tends to decrease the magnitude of the rotation of the system. These observations
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alone give a good indication why it is so difficult to discern irends in the behavior

. of this system.

Another interesting ocbservation worth noting is that for all four test cases con-
sidered, the steady state amplitude following yielding in the spring, in general,
increases with increasing yield strength. Initially, at low yield strengths, the am-
plitude is less than that for the elastic case. With increasing yield strength
though, the steady state amplitude continues to grow, and it eventually exceeds
the amplitude observed for the elastic case. Thus, provided any magnitude dis-
placement shift can be tolerated, systems with yield strengths much lower than
that required to keep the system elastic will display steady state oscillations
smaller than the system would undergo if the spring did not yield. However, sys-
tems with yield strengths of intermediate value will display steady state oscilla-

tions that are larger in magnitude than those of the elastic case.

Lastly, another intriguing result to consider is that under some circum-
stances, the magnitude of the axial load does not greatly affect the maximum re-
sponse of the system. For other conditions though, it does seem to have an impor-
tant effect. To illustrate, when the driving frequency is twice the natural
frequency, there is little difference in the size of the displacement shift for either
axial load magnitude considered (see Figure 33). This result contradicts our intu-
ition concerning the relationship between displacement and axial load. Contrary
to this observation, when the driving frequency is equal to the natural frequency,
we see that the results are more in line with what is expected (see Figure 36). That

is, the rotations are smaller when the axial load is smailer.



Dynamic Response with Base Excitation

In the beginning part of this chapter, we discussed that even though the lin-
ear-elastic model may not provide a good indication of the true structural re-
sponse, it does furnish valuable insight regarding the nature of the system. Ana-
lyzing the system with assumed linear-elastic behavior points out potential
regions of instability. Initially, if it is assumed that the lateral ground motion is
sinusoidal, the axial load is constant with time, and the system is undamped, then
the linear-elastic analysis indicates only one region of instability — the case in
which the frequency of the lateral ground motion is close to the natural frequency
of the structure. Of course, from Eq. (27), it is noted that the natural frequency
of the structure is dependent upon the axial load. Specifically. the natural fre-
quency of the system is computed from the relationship

Wy = L(’g - P) (65)

Since the static buckling load occurs when the natural frequency of the system is

equal to zero, Eq. (65) confirms that P, = &/¢.

In the previous sections, for a sinusoidally varying axial load, we found that
the most important parameter affecting the dynamic stability properties of the
inelastic system is the value at which yielding occurs. Although other factors have
a strong influence on the computed results, it is the yield strength that is the most
influential. In this section of the chapter, we are interested in determining wiueth-
er or not the results obtained for the pulsing axial load correspond to this different
load case of lateral base excitation Accordingly, we could go through the same pro-
cedure as above for the other load case. Without needlessly including this prelimi-
nary material, we find again that, for the case of laterally base-excited structures,

the vield strength is the parameter for which small variations lead to significant
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changes in the computed response. The response of the SDOF model to a sinusoi-

dal lateral base excitation is summarized in Figure 43.

Similar to our previous results, Figure 43 indieates that the maximum dis-
placement increases with increasing yield strength. Furthermore, these results
also show that, once yielding occurs, the magnitude of the axial load does not im-
pact the results as greatly as it would for an elastic system. Thus, one may con-
clude that high strength can be detrimental to the dynamic stability of the sys-
tem, and it is more important to have greater ductility than greater strength.
When the system has a relatively large strength, the displacements become fairly
large before yielding occurs. It is the P-4 effect of the axial loads acting through
these large displacements that leads to the dynamic instability. If the system is
allowed to yield earlier, then the displacements will remain small, and the system
will remain stable. From the results presented in Figure 43, we see that the na-

ture of the response for the two different loading cases is similar, and the trends
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Figure 43 - Maximum rotation vs. yield rotation for
sinusoidal lateral ground motion



in the results described previously also hold for the case of laterally base-excited

systems.

Stability of Systems with 2-DOF

Although the single degree-of-freedom system that has been considered u~
until this point has provided us with some insight into dynamie stability prob-
lems, the extension to multiple degree-of-freedom problems is essential. All real
structural systems consist of many degrees of freedom. and it is important to

study the dynamic stability characteristics of such systems.

In the preceding chapter, the governing equations of motion for the 2-DOF
node] were presented. Recall that the terms in the equations of motion for each
mass are nonlinear and coupled. Also, note that the damping matrix is non-zero
even in the absence of velocity proportional damping. Furthermore, the mass ma-
trix is not diagonal as it normally would be in the case of the linearized analysis.
Unlike the typical linear-elastic analysis of MDOF systems. the system here can-
not be easily uncoupled into the solution of of two SDOF systems. Because of the
general form of the governing differential equations, previous studies into the be-

havier of MDOF systems have been sparse (Kalathas and Kounadis 1991).

In order to gain further insight on the dynamic stability properties of this
2.DOF system. four basic situations are considered: (1) the bottom spring is stiffer
than the top spring; (2) the top spring is stiffer than the bottom spring; (3) both
springs have equal stiffness; and (4) the spring properties vary so that yielding
in both springs occurs at approximately the same time. Clearly, each one of these
situations comprises many individual examples. The number of free parameters
for this problem is quite large. Including an additional member with an added de-

gree-of freedom not only introduces twice the number of variables, but it more
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than doubles the complexity of the problem because one must also consider vari-
ous combinations of these parameters. Thus, in order to quantitatively describe
which parameters and which combination of parameters most significantly im-
pact the results as we did for the SDOF system, an excessively large number of
ar.alyses would be required. In order to avoid this situation, in this section, we will
study the response of the MDOF structure by means of a few examples that fall
into each of the four situations described above. Of course, this will just give us

anoverall indication or a qualitative indication of the behavior of this 2-DOF mod-

el.

Bottom spring stiffer than the top spring. Certainly, if the bottom spring
is much stiffer than the top spring, then, in the limit as the stiffness of the bottom
spring approaches infinity, the top member responds like the SDOF system stu-
died earlier. Therefore, under these circumstances, results obtained previously
can be used to ascertain the stability characteristics of the system. Figure 44
shows the respanse of the top member of the 2-DOF system for different ratios of
spring stiffness between the top and bottom springs. The response is shown for
a sinusoidal ground motion and a constant axial load on the top member only.
Aside from these differences, all cther parameters were assumed equal for the two

members.

Certainly, Figure 44 inuicates that when the spring stiffness of the bottom
spring is much larger than that of the top spring, the response of the top member
is very well approximated as a SDOF system. Even as the relative difference in
spring stiffness between the two members becomes smaller, the SDOF response
gives a reasonably good estimate of the response of the top member. Physically,
as the stiffnesses of each of the springs become more similar, we would not expect

the MDOF system to behave identically like the SDOF system. When the stiffness
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of the lower spring is decreased, the bottom member begins to undergo larger dis-
placements. Thus, because the motion of the two members is coupled, the inertia
of the lower member has a greater impact on the top member. Even though the
responses are not exact, both systems realize the same pathway to instability.
Thus, under these circumstances, the SDOF system gives a good indication of the

type of response we can expect for the MDOF system.
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Top spring stiffer than the bottom spring. Similarly to the previous case,
in the limit as the stiffness of the top spring approaches infinity, there will be no
relative rotation between the top and bottom members. Consequently, the re-
sponse of the system sheuld be well approximated by the SDOF system studied
earlier. In making this comparison. the height of both columns for the MDOF case
should be equal to the height of the the column for the SDOF system. Additionally.

in order for the MDOF system to behave exactly as the SDOF system, the mass
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Figure 45 - Comparrison of response using different masses for my
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on top of the lower column must be set equal to zero. Otherwise, we will not be
modeling the SDOF previously studied. Instead, we will be modeling a SDOF sys-
tem that has a mass both at the top of the column and at the mid-height. Figure 45
shows a comparison of the responses for assuming that the lower mass is equal
to zero and for assuming that the lower mass is equal to the top mass. Because
assuming both masses are equal is a more realistic assumption, it is appropriate
todevelop an alternate method for relating the results with the SDOF system. For
the sake of comparison, it is reasonable to assume that an “equivalent” SDOF sys-
tem would be one that has the same total mass as the the 2-DOF system with a
column height that is equal to the height of the location of the center of mass for
the 2-DOF system (see Figure 46). The responses of the system for different rela-

tive stiffnesses between the top spring and bottom spring are shown in Figure 47.

Real System “Equivalent” System
P(t)
P

P
j—

Figure 46 - “Equivalent” SDOF system
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The results are compared with the equivalent SDOF system. Once again, even
though the responses are not exact, both systems realize the same pathway to in-
stability. Thus, when the top spring is stiffer than the bottom spring, the SDOF
system provides valuabie insight to the type of behavior we can expect for the
MDOF system.

Both members are the same. When both members share identical proper-
ties, then the structure truly responds as a multi-degree-of-freedom system. Un-
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Figure 48 . Elastic response of MDOF system with identical members

der these circumstances, it may be difficult for the SDOF model to accurately pre-
dict the response of the MDOF structure. Because of this difficulty, it may be
helpful to first look at the elastic response of the 2-DOF model. Figure 48 shows
the elastic response of the system. In Figure 48, the dashed lines correspond to
the rotation of the top member, and the solid lines correspond to the rotation of
the bottom member. As one would expect, the elastic response increases with in-
ereasing axial load. The important thing to note concerning Figure 48 is that the
maximum response of the top member remains bound within the response of the
lower member. Therefore, the bottom member dominates the response. Compar-
ing these results to the linearized case, this implies that the first mode or lower

energy mode controls the dynamic response of the system.

The maximum response of the MDOF system including nonlinear material

properties is shown in Figure 49. As the figure clearly shows, even for the inelastic
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Figure 49 - Inelastic response of MDOF system with identical members

system, the bottom member dominates the response. This is true not only for the
case in which the bottom spring yields and the top spring remains elastic, but it
also holds for the case in which both springs yield. These results hold only when
the top member yields well after the bottom member. The case in which both
springs yield at approximately the same time is discussed below. Like the elastic
case, Figure 49 indicates that the first mode or lower energy mode also controls
the dynamic stability characteristics of the inelastic system. Furthermore, the re-
sults are very similar to those obtained earlier for the SDOF system. Thus, once
again, the results obtained from the SDOF system can be used to predict the na-
ture of the response of the MDOF system when both members are the same.

To further illustrate, the typical elastic response of the 2-DOF system is shown

in Figure 50. The syatem is excited by a sinusoidal ground motion and a constant
axial load. As Figure 50 clearly shows, the system responds primarily in the first
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Figure 50 - Typical elastic response for 2-DOF system with identical elements

mode. Accordingly. the rotation in the lower spring always exceeds the rotation
of the top spring. Consequently, if both members have the same yield strength,
then the bottom spring will yield first. Should the bottom spring yield, then this
helps dissipate energy. As a result, thie elastic response of the top member dimi-
nishes. This phenomenon is illustrated in Figure 51. Under these circumstances,
the stability of the system is governed by the response of the bottom member.
Evenifthe top member also yields. provided the yield strength is not so small that
both members yield at nearly the same time, the 2-DOF system realizes the same
pathway to instability as the SDOF system. A comparison of the results between
the top and bottom members of the 2-DOF system is illustrated in Figure 52. Con-
sequently, under these circumstances, our knowledge of the stability properties
of the SDOF system can be used to predict the nature of the response for the
2-DOF system.

Both Springs Yield at Approximately the Same Time. Both springs yield-

ing at approximately the same time can occur in two different ways. First, if both
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members have identical properties, then both springs can yield at approximately

the same time if the yield strength of each spring is small. Second, this situation
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Figure 52 - Dynamic instability of 2-DOF model with two
identical members. Both springs yield and response based
upon Ramberg-Osgood model.
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response based upon Ramberg-Osgood model.

may arise if the yield strengih of the bottom member is relatively high and the
vield strength of the top member is relatively low. Regardless of how the situation
develops, the nature of the response is the same. Under these circumstances, the
results from the SDOF response cannot be used to accurately predict the stability
characteristics of the MDOF system because the response of the bottom member
no longer controls the response of the entire system. For certain parameters, it
is possible that the top member will undergo larger rotations than the bottom
member. In addition, the system may also vibrate predominantly in the second

mode. Consequently, the results obtained from the SDOF model no longer apply.

To illustrate these phenomena, we will first consider a case in which the top
member response is greater than that of the bottom member. For this example,
the yield strength of both members is relatively small, and yielding of both springs
occurs at approxaimately the same time. Figure 53 shows the response of such a

system. Clearly, the top member response is larger and not limited by the re-
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sponse of the bottom member. However, this situation does not always hold when
both springs yield at nearly the same time. For other parameters, the response
of the bottom member may be larger than that of the top member. Thus, instabili-
ty in the 2-DOF system may be attributable to the top member, the bottom mem-
ber, or both members when each spring vields at roughly the same time. These
patterns of behavior are shown in Figure 54. Figure 55, and Figure 56 respective-
ly.

One last phenomenon worth noting is, after yielding oceurs in both springs,
the system may oscillate primarily in the second made. For the previous cases, the
response of the bottormn member was always in phase with the response of the top
member. Figure 57 demonstrates that in-phase motion between the two members
does not necessarily hold for the case in which the springs yield at nearly the same

time.

100



5.0
|
| Bottom Member Response
, ~ ~ Top Member Response ‘
25 ‘
I
-
]
] ? . e T T T T
5 oo} ——
nd
k ‘
c '
= i
-2.5
| .
50— ‘ ' .
0 10 20 30 40 50

Time (sec)

Figure 55 - Dynamic instability caused by top member with both mem-.
bers yielding at the same time using the ramberg-Osgood model and
two identical members

5.0’—77 -

T Bottorn Member Response

i = ~ Top Member Response
2.5 L

|

|

= -
2 -
< i L —
g o0 ——
- !
o
L 1
g |
4 | N B
25+ .
50— i 1 " L
0 10 20 30 40 50
Time (sec)

Figure 56 - Dynamic instability in both members with both members
yielding at the same time using the Ramberg-Osgoed model and two
identical members

101



To summarize, for the case in which both springs yield at approximately the
same time, various new patterns in behavior were observed. The type of behavior
realized by the system is highly dependent upon the parameters of the system.
Unfortunately, no clear relationship could be found between the parameters and
the computed response. Furthermore, some of the conclusions reached earlier for
the SDOF system do not hold for this particular case. For example, for the SDOF
system, it was observed that lowering the yield strength of the system contributed
to increased dynamic stability This does not always hold for the case in which
both springs yield at approximately the same time. Additionally, other pathways
to instability exist under these conditions. That is, the top member may become
dynamically unstable by itself, the bottom member may become dynamically un-
stable by itself, or both members may become unstable due to the coupling of their

motions. Therefore, we can conclude from these results that we cannot use the re-
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Figure 57 - “otion beitween members cut of phase after both
members yield at the same time using the Ramberg-Osgood model
and two identical members
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sponse from the SDOF model to effectively predict the response of the 2-DOF sys-
tem when both springs yield at the same time. However. for the other cases consid-
ered, the SDOF model can accurately indicate the dynamic stability

characteristics of the MDOF system.

Stability of Systems Prone to Damage

Compellingevidence exists to suggest that, with regard to arresting the poten-
tial for dynamic instability, damage is not necessarily bad . In fact, under dynamic
excitation, damar.e of the system will help dissipate energy and may lessen the
response. However. once damage occurs. the structure will not be able to dissipate
the same amount of energy it could prior to the damaging event. If there 1s too
much damage, the system will collapse. Collapse of a damaged system is shown
in Figure 58. The system experiences so much damage that it simply can no long-
er support the axial load. The general trend of the results that include damage
in the constitutive model is summed up in the following: the system that experi-
ences damage will initially experience larger amplitude motion than for the case
in which damage 1s not considered. Should the extent of the damage not be large
enough to cause the system to become unstable, then the system that includes
damage will undergo a motion that diminishes in comparison to the model with-
out damage, and the displacements will remain small with time. If, however, the
duration of the motion is long, extensive damage may lead to a situation in which
the system becomes unstable due to a loss of restoring force. Consequently, the
system becomes unstable in the sense that it cannot carry the loads, even statical-

ly, that it was originally designed to support.

To illustrate the dramatic effect that including damage can have on the com-

puted results, consider Figure 59 and Figure 60. Immediately, one can recognize
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Figure 58 - Dynamic instability for damage model

that both the displacement shift and the steady state amplitude of the response
after yielding are much smaller for the case in which damage has been included

in the material model. Again, one should not be misled into believing that damage
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Figure 39 - Comparison of damage and no damage models
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is always beneficial. For this particular plot, the motion was only considered while
the external force was exciting the system, and the amount of damage was not
sufficient to cause failure. Varying the system parameters could lead to very dif-
ferent results. For example, consider the case where the system accumulates a
great deal of damage in response to the external exciting forces. Figure 58 shows
the variation of displacement with time for the system under such conditions. The
system accrues so much damage eariy on that it no longer has the ability to dissi-
patethe input energy. As a result, dynamic instability is detected for this case. An
interesting thing happens though if the system does not accumulate damage as
quickly as that shown in Figure 58. If the values of @ and 8 in the damage modei
are smaller, then the results are much different. To demonstrate, reconsider the
system depicted in Figure 58. Keeping all system properties the same except for
reducing the values of ¢ and 5, one would observe the response shown in

Figure 61. Thus, depending on the nature of the system, similar loading condi-
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Figure 60 - Comparison of damage and no damage models
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tions may produce two entirely different responses. Clearly, the response of the

system depends greatly upon the parameters a and 8.

It is also interesting to consider the response of the structure once the ground
motion has ceased. This will provide some insight as to how a system may behave
after an earthquake. For example, even though the damaged system of Figure 61
remains stable during the ground excitation, it may be possible for the structure
to become unstable once the lateral base motion has ended. If the external excit-
ing force stops when the system is in an unfavorable configuration, it is possible
for the system to collapse even though it is perfectly stable during the excitation.
The results again show that the parameters a and § play a crucial role on the be-
havior realized by the system. Figure 62 shows a system that is stable while the
exciting force is acting but becomes unstable after the exciting force stops (the ex-
citing force stops at ¢ = 50 sec). Once again, if the values of the damage parame-

ters a and 3 are decreased, the system will remain stable after the ground motion

0.025

—— No Damage Model
----- Damage Model

0.015

o
[~
=
0.005
= A
g fAAAAAAAAAAAAAAA
s ¢ e d L £Y] i AL 7] e we T4 wa “* e v '
S -0.005} '
-0.015-
_0_025 | I i 1
0 10 20 30 40 50
Time (sec)

Figure 61 - Model comparison with reduced response from damage model
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Figure 62 - Model comparison with damaged system becoming unstable
after ground excitation ends with sinusoidal axial load

ends. For this particular system, the steady state oscillation will be smallerin am-
plitude but greater in displacement shift than the model without damage (see
Figure 63). The response after the dynamic excitation stops will depend upon the
axial ivad magnitude. When the axial load is large, the steady state amplitude
and displacement shift are greater for the damage model after the ground motion
ends. This result is shown in Figure 63. The contrary is observed when the axial
load is small (see Figure 64). Thus, we again see how sensitive the computed re-
sponse and stability characteristics are to including damage in the constitutive

relationship.

Based upon the behavior illustrated in the previous plots, it is clear that the
system can respond in a variety of ways depending upon the rate at whichdamage
accumulates in the system. The rate of damage accumulation is entirely depen-
dent upon the magnitude of the parameters a and §. Thus, the role of the damage

model and its effects on the stability of the system can be observed for different

107



0.025
-——— No Damage Model
ooisfh T Damage Model
T
£ o005
=
2
hed
;% -0.005—
-0.015 r
~0.025 1 } . 1
)] 15 30 45 60 75

Time (sec)

Figure 63 - Model comparison with damaged system remaining
stable after ground excitation ends with sinusoidal axial load

values of @ and §. For example, Figure 65 shows a plot of the stability regions for
a sinusoidal lateral base acceleration acting at a frequency equal to the natural

frequency with an amplitude of 0.2 g. The lateral base acceleration is assumed to
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Figure 64 - Model comparison with damaged system undergoing smaller
response after ground excitation ends with sinusoidal axial load
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act for a duration of 30 seconds, but the motion of the system is monitored for 50
seconds in order to determine if instability occurs after the ground motion stops.

Furthermore, because the ground will not permit a rotation greaterthan t/2, this
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Figure 66 - Regions of instability for a sinusoidal lateral base motion
with frequency equal to 0.75 wy,
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Figure €7 - Regions of instability for a sinusoidal lateral base motion
with frequency equal to 1.07 w,

will be the new stability limit. Gi course, the response of the oscillator will depend
upon the frequency of the lateral base motion. For a lateral base frequency of
0.75w,, the results are much different and much more interesting. The stability
regions for the this case are shown in Figure 66. From this figure, it is easy to see
that the mere presence of damage does not necessarily lead to instability. The rate
at which the damage accumulates has a tremendous impact on the dynamic sta-
bility characteiistics of the system. Finally, the regions of stability for a lateral
base motion acting at a frequency equal to 1.07w,, are shown in Figure 67.

In order to understand why we observe the dynamic stability characteristics
illustrated by the previous plots, it is useful to study the response for some partic-
ular cases. The response of the structure when no damage accumulation is in-
cluded in the material model is shown in Figure 68. The dashed horizontal lines
in Figure 68 correspond to a rotation of @ = x/2, and the vertical line at¢t = 30

sec is a reminder that the sinusoidal ground motion ends at this time. Figure 68

110



=
~
h /‘~,____4‘/—"-'
E ~\.\,‘,~W‘WM‘U\ -
3
fan}
Ed
[=]
=

— e —— o

z . _ e
o TTT oy T T T T e T T ha
Time (sec)

Figure 68 - Response for no damage model under sinusoidat
lateral base excitation of amplitude 0.2 g

clearly shows that the motion of the system is stable, both in a dynamic sense dur-

ing the motion and 1n a static sense after the ground motion ceases.
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One peculiarity we see in studying the stability regions, especially Figure 66,
is regions of stability between regions of instability. For smaller values of a and
£ that correspond to the first region of instability, the system becomes unstable
fairly late in the response (i.e., for ¢ > 20 sec). Thus, just enough damage occurs
in the system such that shortly before the ground motion ends, the system be-
comes unstable in a dynamic sense {see Figure 69). For slightly larger values of
a and §, the motion of the system is stable. Figure 70 shows instability after the
ground motion stops acting. If the values of 2 and § are increased further, the sys-
tem becomes unstable in a dynamic sense. However, under these conditions, the
motion of the system becomes unstable earlier than the first region of instability
(see Figure 71). The reason we see this pattern of behavior is due to the dynamic
nature of the problem, the nature of the dynamic loading, and the way in which

the stiffness of the system varies in response to the loads.

When o and £ are large, dynamic instability occurs because the system under-
goes so much damage that it is incapable of supporting loads of any kind. For the
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first region of dynamic instability, the pathwav to instabilitv is different. The
damage parameters for this cage are such that the stiffness of the system decays.
but not particularly fast. For the sinusoidal ground motion. the svstem is excited
primarily by one particular driving frequency — namely. the initial natural tre-
quency of the linear-elastic system. Once vielding occurs and the svstem begins
to accumulaie damage, the effective period of the structure, and. hence. the fre-
quency that most excites the structL -e changes. Since the stiffness of the system
is changing with the load history and damage accumulation. the effective periad
of the svstem must also change. If the damage parameters happen to fall into the
first region of dynamic instability. the stiffness of the svstem is altered just
enough that the constant-frequency ground motion still excites the system. and
thedisplacements grow. As the displacements grow, the system experiences more
damage. and the damaged structure cannot support the axial load of the svstem
once the displacements are large. For the region of stahility between the two re-

gions of dvnamic instability, the damage that occurs is such that the stiffness of
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Figure 71 - Dynamic instability for second region of instability
under sinusoidal lateral] base excitation of amplitude 0.2 g
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the system is altered early enough in the response in a way that the displacements
have not had a chance to grow very large, but the stiffness of the system is differ-
ent enough so that it is no longer excited by the frequency of the ground motion.
Therefore, as these results indicate, the rate of damage accumulation and the na-
ture of the dynamic loads can greatly affect the behavior and stability properties
of this system.

Summary and Conclusions

Certainly, the inclusion of geometric and material nonlinearity has a tremen-
dous impact on the analysis results for the model considered in this study. The re-
sults have shown that this system is capable of displaying very complex behavior.
In order to apply the results we have obtained to real structures, it is clear that
we need a thorough understanding of MDOF systems. Unfortunately, merely in-
cluding one additional degree-of-freedom greatly complicates the analysis. The
problem is not only made more difficult due to the fact that we have twice as many
free parameters as the SDOF system, but we must also be concerned with the
combination of these parameters. Further complicating the problem is the form
of the governing differential equations. If we account for large rotations and in-
elastic material response, then the governing differential equations are highly
nonlinear and coupled. Accordingly, traditional solution methods cannot be used
to obtain the response.

Given these complications, it would appear that we would have little success
in predicting the response of the 2-DOF system. However, our analyses showed
otherwise. Under most circumstances, we can use the results from the SDOF
mode! to accurately assess the stability properties and nature of the response for

the 2-DOF system. Only for the case in which both springs yield at approximately
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the same time does this condition not hold. Fortunately, this is a situation that
is seldom encountered. In order to have both springs yield at approximately the
same time, either both springs have to have a very small yield strength, or the
springs need to be of much different properties. Neither of these scenarios is real-
isticin an actual structure. Therefore, in general, the response of a MDOF system
can be approximated reasonably well by a SDOF system, which, from a physical
point of view, makes good sense. A good example to consider is the response of a
cantilever column. For the cantilever column, the maximum moment in the sec-
tion occurs at the fixed end. For inelastic material modeling under these circum-
stances, it is reasonable to assume the formation of a plastic hinge at the base.
Thus, based on this approximation of the plastic hinge, a SDOF oscillator like the
one considered in detail in this chapter can model the continuos cantilever col-

umn. Details for making this comparison are given in Chapter 4.

Inclusion of a damage mechanism in the constitutive relationships can lead
to very interesting results. In fact, the way in which damage accumulates directly
controls the dynamic stability characteristics of 2 damage-prone system. As the
results of this chapter have shown, the reduction in stiffness caused by damage
does not necessarily lead to dynamic instability. Under certain circumstances, in-
clusion of the damage mechanism may actually reduce the response computed as
compared to the case when damage is not included in the constitutive relation-
ship. What is interesting about the results obtained in this study is that many are
counter-intuitive and contradict the results one would obtain under static or
manotonic loading conditions. From the findings presented in this chapter, it is
clear that additional parameters are needed to characterize the dynamic stability
properties of a damage-prone system over those needed to characterize the static

stability properties.
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4

Application to Earthquake Engineering

All things have second birth;
The earthquake is not satisfied once.

~ William Wordsworth

Before seeing how some of the results from the previous chapter may be ap-
plied to seismic engineering problems, it is important to understand the current
philosophy behind the design of structures to resist earthquake loadings. For
earthquakes considered to be small, the strength of the structure should be large
enough that the building remains safe and stable without experiencing any dam-
age. For a moderately sized earthquake, it is considered acceptable if the building
experiences some damage provided this damage is limited to non-structural ele-
ments. For example, yielding of the structural steel should not occur, but cracking
of plaster walls may take place. Under very large seismic motions, the system will
likely experience some structural damage in dissipating the energy of the earth-
quake. Thus, it is fully expected that steel will yield and that concrete will crack
during a very strong ground motion. The major concern is that even though the
structural system has been damaged, it should not collapse. The structure must
remain safe after the largest of earthquakes. Otherwise, there exists a great po-
tential for the loss of human life. This philosophy forms the basis of building code
provisions regarding the design of structures to resist earthquakes.
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There is good reason why structures are designed this way. If structures were
designed to resist elastically the forces that arise from an earthquake, then in cer-
tain areas of high seismicity, designers would have toinclude a lateral force resist-
ing capability equal to or larger than the weight of the structure itself. Since it is
customarily assumed that the design life of most structures is no more than 50
years, and since the likelihood of occurrence of an extremely large earthquake is
small, it would be prohibitively expensive to require that structures be built to

elastically withstand such large earthquake forces.

The building owner, of course, must weigh this approach against the cost of
repaining the structure in the event that a large earthquake actually dees oceur.
Under some circumstances, it may be mcre cost effective to design the structure
in such a way that even a severe earthquake will not damage the structure so
much that it is incapable of meeting its original design intent. For example, in the
manufacturing of computer chips, having the production line shut down may
equate to millions of dollars lost, and the owner of such a facility may find it a wise
investment to guard against this possibility In addition, some structures are con-
sidered to be so essential that they must remain fully operational even after the
largest of earthquake. Examples of such structures include hospitals and nuclear
power plants. In an attempt to address scme of the issues of allowable damage
versus initial cost, new philosophies have emerged regarding the design of seis-
mic-resistant structures. These new approaches try to optimize the cost of the
structure taking such factors as performance and acceptable level of damage into

consideration.

The procedure most often used for designing structures to resist earthquake
forces is the Equtvalent Lateral Force (ELF) method (UBC 1994, FEMA 1992).

With the ELF method, lateral forces are applied statically to the structure to ac-
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count for the earthquake motion. In using this method, the dynamie response of
the structure need not be computed. Furthermore, when using the ELF proce-
dure, code requirements are satisfied if the structure can elasticaily withstand the
statically applied lateral forces. According to the code provisions, even though
vielding may take place during the actual earthquake, the structure will remain
stable and capable of supporting the gravity loads if it can adequately resist these
lateral forces. The code, therefore, does not require a nonlinear analysis for de-
sign. Thus, if one is designing a steel column to resist seismic loads, the stability
of the column is based upon its ability to resist the lateral and vertical loads with-
out directly accounting for the fact that the loads are actually varying with time
and the structure is responding dynamically. Analytical results from the previous
chapter have shown that, under certain circumstances, the results obtained from
static analyses do not give a good indication of the dynamic stability properties
of a mechanical system. Consequently, understanding how this finding correlates
to the current seismic design procedure is a problem that warrants special consid-

eration.

Currently, earthquake resistant design procedures incorporate the concept of
damage simply by means of a ductility factor. The ductility factor is defined as the
ratio of the maximum displacement to the yield displacement. The advantage to
using such a measure is its simplicity. Incorporating this value into the design,
in effect, attempts to account for the nonlinear material behavior the structure
is likely to experience during the course of an earthquake. The ductility factor
theory is based on the assumption of equality between the maximum displace-
ments of two SDOF systems — one having an purely linear-elastic behaviar, the
other having an elastic-perfectly-plastic one (Newmark and Hall 1982). Use of the
ductility factor, though, has received a great deal of criticism. The main thrust of

118



this criticism is that the design of the structure is based on a single value. Hence,
there is no accounting for the duration and frequency content of the dynamic load-
ing when the ductility factor is used by itself. Furthermore, it is based upon a sim-
ple elastic-perfectly-plastic material model. The underlying hypothesis of the duc-
tility factor approach loses its validity in both the case of very stiff and very
flexible structures {McCabe and Hall 1992). Proper use of the method implicitly
assumes structural regularity and a global collapse mechanism (Balio and Casti-

glion1 1994).

Other measures have been suggested that better account for damage than the
ductility factor (McCabe and Hall 1992, Balio and Castiglioni 1994, Castiglioni
and Loas 1992, Fajifar 1992, Loh and Ho 1990. Park, Ang, and Wen 1984). Some
of these measures are modified forms of the ductility factor. For example, the cu-
mulative displacement ductility index (Loh and Ho 1990), which is simply the sum
of all absolute inelastic deformations normalized by the vield strain, accounts for
damage that results from cycles of inelastic deformation. Most other measures
that have been introduced incorporate the energy absorbed by the structure into
the damage model. Many aspects of low eycle fatigue theory lend credibility to this
approach. Furthermore, results from the previous chapter for the sinusoidally va-
rving ground acceleration have shown that the dynamic stability characteristics
of a system depend strongly upan the hysteretic energy dissipated through inelas-
tic material response. Therefore, a damage model that is based upon the displace-
ment ductility and the energy dissipated may be better able to model damage dur-

ing an earthquake than a model that depends solely on the displacement ductility.

Anexample of a damage model that includes a dependence upon the hysteretic
energy dissipated is the McCabe and Hall (1992) model. McCabe and Hall (1992)

suggest a damage measure that depends quadratically upon the dissipated ener-
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gy. This quadratic formulation, according to McCabe and Hall, agrees more close-
ly to test results when many varving amplitudes of plastic strain are involved. Re-
sults from this study are based upon an assumed elastoplastic material response.
Another model that is used quite frequently is the Park and Ang (Park, Ang, and
Wen 1984) damage model. This model takes both displacement ductility and hys-
teretic energy dissipated into account for determining the extent of damage. This
model has received much validation as to its accuracy by many researchers. In
fact, the damage model presented in Chapter 2 is a modified form of the Park and
Ang model.

Comparison with Current NEHRP Design Provisions

Perhaps one of the best ways to evaluate the findings presented in this re-
search is to study the dynamic response of a structure designed in accord with the
current NEHRP (FEMA 1992) design provisions. In doing so, we will simply de-
sign the SDOF system presented in the last chapter in accord with the ELF proce-
dure. Based upon this design, we will evaluate the dynamic performance of the
structure in response to two separate earthquake motions, and we will determine
the role of damage accumulation on the dynamic stability characteristics of the
system. Following the presentation of the dynamic analyses, interpretation of
how these results may apply to real, MDOF systems is considered.

In comparing the results of our analyses of the SDOF system with the NEHRP
code provisions, it is important to recognize some inherent limitations of this ap-
proach. The NEHRP provisions have been developed based upon our experiences
regarding the performance of actual structures to previous earthquakes. Though
a SDOF model will give us insight into the behavior of real structures, a SDOF

model cannot include all the features of a real building. Unlike our model, real
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structures are at least slightly damped and are composed of many elements. The
system we will be studying neglects velocity proportional damping because we are
only considering a system that yields, and, in the inelastic response of structures.
the amount of energy dissipated through velocity proportional dampingis negligi-
ble compared to the amount of energy dissipated through inelastic material re-
sponse. Damping in a real structure, however, may be important in that it may
reduce the response so that the material never yields. Thus, for the sake of these
analyses, the NEHRP provisions are being used as a guideline for design, and the
results are not necessarily a reflection on the adequacy of the code equations

Rather, we are trying to determine whether or not the philosophy of a static design

procedure 1s appropriate under seismic excitations.

SDOF System Example

Static Design using ELF Method. For this example, the SDOF system stu-
died in the preceding chapter is designed in accord with the current NEHRP de-
sign provisions using the ELF procedure. To begin, we first need to determine the
base shear. The base shear depends upon the soil conditions at the site, the type
of structure and structural system incorporated. the importance of the structure,

and the fundamental period of the structure. Mathematically,
V=CW (66)

where C,1s the seismic design coefficient, and Wisthe total dead load of the struc-
ture. According to the code, our system is an inverted pendulum type structure.
This means that we have a structure that has a large portion of the mass concen-
trated at the top, and, thus, has essentially one degree-of-freedom. Accordingly.
it is appropriate to assume that the axial load of the column is due entirely to dead

load.
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The seismic design coefficient (C,), which depends upon the fundamental peri-

od of the structure, is determined from the following formula:

124,88 _ 254,
Cs - 'R"""T‘z/'s" S ""_"R (67)

where A, is the coefficient representing effective peak velocity-related accelera-
ticn, A, is the coefficient representing effective peak acceleration, S is the coeffi-
cient for soil profile characteristics, R is the response modification factor for the
type of structural system, and T is the fundamental period of the structure. Ac-
cording to the NEHRP provisions, the natural period can be estimated using the
code equation, or the code allows us to compute the natural period exactly. The
fundamental period of the SDOF structure can be computed exactly from the rela-

tionship

T 2 (68)
i _ P

mé? m{

The axial load P is simply the total dead load or total weight of the structure. Us-
ing the NEHRP guidelines, the governing load case for this model is

(1.1 + 0.54,)Q, + (%)QE (69)

where @, is the dead load effect due to the axial load, and @ is the laterally ap-
plied earthquake load effect. For the design of steel structures, the NEHRP code
incorporates the AISC LRFD design procedure with some slight modifications.
Therefore, once the base shear has been calculated, the AISC LRFD code is used
to complete the design.
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Table 1 - NEHRP Coefficients and Section Properties

Example
Drift Limit J s R | O h k
00154 15 25 ! 25 15 f 300,000 k-fi
P, A, A, v T w
20,000.0 kip 04 0.4 120 kip | 0.5329 sec 300 kip

Threugh trial and error, it was determined that in order for the structure to
satisfy the code requirements, the axial load of the svstem must be small. The rea-
son why the load must be small is that the earthquake load contributes signifi-
cantly to the overturning or stahility of the cantilever column. For this example,
it was assumed that the axial load of the structure was only = 1.5% of the static
buckling load, or that W = @, = 300 kips. The system parameters for this ex-
ample are summed up in Table 1. With the axial load known, we can determine

the period of the structure. Using Eq. (68), the period of the structure is given as

T = 27 = 0.53 sec
/1300.00041211386.1) _ 386
Yy 300:180¢ 180

From Eq. (67), the value C is calculated as follows:

(1.200.4X15) _ o, . 254,

_(2.5)0.4) _
12.5)0.5294)%3 R

=C=—g5 -0

Finally, Eq. (66) tells us that the base shear 1s

V =CW = (0.4)300) = 120 kips.

Now that the base shear is known, the NEHRP provisions allow the structure
to be designed using the AISC LRFD provisions. For the load combination shown
in Eq. (69), the factored axial load is P, = 1.3Q, = 390 kips, and the lateral
earthquake load is @z = 120 kips. The adequacy of the column is verified by its

compliance with the controlling interaction equation. To verify the interaction
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equation, we must calculate the factored axial load and the amplified moment
from the earthquake load. The controlling interaction equation is based upon the

level of axial load in the column. Since

P, _ 300 =
P, ~ (085)20.000) (018 <015
the governing interaction equation is
P, M,
+ =1 M
2¢Pn ¢th (

According to the specification, the required flexural strength is determined as fol-

lows:
M,=BM, +BM, (71

where M, is the required flexural strength in the member assuming there is no
lateral translation of the frame, M), is the required flexural strength in a member
as aresult oflateral translation of the frame only, and B, and B, are amplification
factors. For this example, it is assumed that the the flexural resistance is provided
completely by the rotational spring at the bottom. The column itself is rigid. Ac-
cordingly, when there is no lateral translation of the frame, no moment is devel-
oped in the spring, and M, is zero. When lateral translation does occur, a moment
is developed in the rotational spring, and we must determine the amplification
factor B3. The code presents two different formulas to calculate B;. The formula

used in this example is

o
[ -3
]
—

(72)

|
M3
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where P, is the required axial load strength for all columns in a story, and XP,
is the sum of the cntical loads in a story for the case where joint translation is per-

matted. Thus. for this example

-1
B, = —L-— =1.015

20,000

Even if we assume that the maximum moment that this structure can support is

the vield moment. then the interaction equation is

1300%1.3) L 120115%1.015)
210.85120, 000 0.907200!

= 0.29 < 1.00 == OK

Therefore, according to the code, this column has adequate strength to safely
carry the applied loads. The column must also satisfy certain serviceability crite-
ria including a maximum drift criterion. We can calculate the rotation in the
spring by summing moments about the base because we know the relationship
between rotation and moment for the elastic spring. Doing so, we determine a tip

deflection of 1.08 in. The NEHRP code utilizes the following drift criterion:

8y = C g s 0.0154,; {(73)

where J, is the calculated inelastic deflection, C, is the deflection amplification
factor (based on properties of the structural system), d,, is the deflection deter-
mined by elastic analysis, and A, is the story height. Using Eq. (73), the inelastic

deformation is calculated as

(2.5)51.08) =27 in <9 = OK.

allowable

Finally, the code requires a check to determine if we need to consider P-4 ef-
fects. P-A effects need not be considered when the stability factor € < 0.10. The

stability factor is defined as
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P

= Vol (74)

where P, is the total vertical design load above level x (for the purposes of these
calculations, factored loads need not be considered), 4 is the design story drift oc-

curring along with V,, and V, is the seismic shear force. Accordingly,

(300X1.08)

T20i80)2s) ~ 0006 < 010= 0K

Thus. we have just verified the adequacy of this design by the current NEHRP
provisions. Again, in order to satisfy the code provisions, only a very small axial

load is permitted.

Dynamic Analyses. We are now ready to evaluate the dynamic performance
of the structure designed statically in accord with ELF procedure of the code. In
doing so, two separate earthquake records are considered ~ E1 Centro and Mexico
City. The N-S component of the 1940 Imperial Valley earthquake, El Centro sta-
tion ground accelerogram is shown in Figure 72. The 1985 Mexico City ground
motion, E-W component measured at the SCT1 station is given in Figure 73.

The response of the system to the El Centro earthquake is shown in Figure 74
when no damage is included in the constitutive model. The rotations have been
plotted between +2 and —2 because we are defining instability for the case where
6 = n/2.Forareal structure, of course, a much smaller limit would be set. Recall,
however, that we are interested in studying the behavior of this system and un-
derstanding how the philosophy behind the code provisions relates to the com-
puted dynamic response. In studying Figure 74, one would classify the motion of
this system as stable. However, even though the motion is stable, the system ex-

periences a much larger rotation than that estimated by the NEHRP code using

126



1.0

0.6-

Acceleration &)

0 10 20 30 40 50
Time (sec)

Figure 72 - El Centro ground record
Eq. (73). The steady state displacement after yield is approximately ¢.10 rad. For
a column that is 15 /2 tall, this amounts te a tip deflection of 18 in. This value ex-
ceeds the inelastic displacement calculated using Eq. (73) by more than 15 in. In

addition. if damage is included in the constitutive relationship. it 1s possible to get
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Figure 73 - Mexico City ground record
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even larger displacements and, possibly, instability. As we saw in the last chapter,
the type of behavior that results depends highly upon the damage parameters a
and 8. The dynamic stability properties as a function of a and § for the El Centro
ground motion are shown in Figure 75. This plot demonstrates that the dynamic
stability properties depend upon both the displacement ductility and the energy
dissipated by the spring. Plots of instability after the ground motion subsides and

dynamic instability are shown in Figure 76 and Figure 77 respectively.

The response of the undamaged system to the Mexico City earthquake is
shown in Figure 78. We again see that the motion of the system is stable. Howev-
er, we note that the steady state tip displacement for this case is also quite large
(= 14 in). Once damage is included in the constitutive relationship, the steady
state amplitude after yielding occurs increases, and instability can result. Inter-
estingly though, the damage parameters that lead to instability for the Mexico
City earthquake are different from those for the El Centro earthquake. The main

reason for this difference is that the Mexico City earthquake is of a much longer
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Figure 74 - Response to El Centrvo ~ no damage model
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Figure 75 - Regioas of stability for the El Centro ground motion

duration, and the frequency content of the motion is also different from the E)
Centro motion. The response of the structure to the Mexico City earthquake as
a function of a and 8 is shown in Figure 79. The response for « = 0.04 and

B = 0.001 is shown in Figure 80. Clearly, for this choice of damage parameters,
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Figure 76 - Instability after ground motion subsides for
El Centro with « = 0.01, f = 0.018
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Figure 77 - Dynamie instability for El Centro with a » 0.02, § = 0.01

we observe dynamic instability. Figure 79 shows that while the dynamic stability
properties depend upon both the displacement ductility and the energy dissipated
by the spring, the dependence is much stronger upon the displacement ductility

(the values of a are = 10 times the values of § in the region of dynamic instabili-
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Figure 78 - Responwse to Mexico City - no damage model
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Figure 79 - Regions of stability for the Mexico City ground motion

ty). The response to the El Centro motion also showed a greater dependence upon
the displacement ductility but not to the extent as that for the Mexico City motion.

The differences between the two result from the fact that the dynamic character-
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Figure 80 - Dynamic instability for Mexico City
ground motion with a = 0.04, § = 0.0001
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istics of the two ground motions are much different. Clearly, the choice of ground
record plays an important role on the dynamic stability properties of the damage-

prone system.

Application of Results to Continuous Systems

Results from the last chapter indicated that the dynamic stability characters-
tics of a MDOF damage-prone system can be well approximated by analyzing the
dynamic performance of a suitably chosen SDOF system. In fact, the SDOF
approximation is often used in structural dynamics problems (Clough and Pen-
zien 1993). Under certain circumstances, even the response of a continuous sys-
tem with continuous displacements over the domain of the structure can be weil
approximated using a SDOF system. The requirement for such an approximation
to be accurate is that the structure hehaves essentialiylike a SDOF system in that
the structural displacements, though continuous, are capable of being expressed
in a single form or shape. If this approximation holds, then the solution will simply
give the amplitude of the assumed displaced shape. For these conditions, the

structure may be analyzed in exactly the same way as a true SDOF system.

An example of a continuous system having an infinite number of degrees of
freedom that can be well approximated by SDOF system behavior is the cantile-
ver tower shown in Figure 81 (Clough and Penzien 1993, Berg 1989). For the case

of elastic material response, the governing equation of moticn takes the form
m'Z+c'Z+ (k- kG)Z = pegr (75)

where m" is the generalized mass, ¢ is the generalized damping, &" is the gen-
eralized flexural stiffness, & is the generalized geometric stiffness, and p.yisthe

generalized effective load. The expressions for each of the generalized variables
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s
Figure 81 - Flexible structure approximated as a SDOF system

is dependent upon the assumed displaced shape. Tb illustrate, the generalized

vanables are computed as follows:
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Figure 82 - System comparison

where m(x) is the distributed mass per unit length, y(x) is the assumed displaced
shape, and N is a constant vertical load applied at the top of the structure that
is positive when acting in compression.

Consider now the cantilever column shown in Figure 82. Physically, this could
represent a bridge pier or perhaps a water tower. For the real cantilever column,
the largest moment occurs at the base. Thus, should the loads be large enough to
cause the elastic limit of the material to be exceeded, the section at the base will
be the first to yield or form a plastic hinge (Gaylord, Gaylord, and Stallmeyer
1992, Chen and Lui 1987). Once a plastic hinge forms, the column can rotate. Un-
der these conditions, the total rotation of the column will be due mainly to the in-
elastic response at the base. The additional elastic deformation in the top portion
of the column is negligible in comparison to the inelastic deformation. Conse-
quently, the SDOF model developed in the previous chapter can be used to model

the dynamic response of the real cantilever column.
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To model such a system requires the appropriate choice of model parameters
for the idealized SDOF structure. In choosing the parameters, we need to match
the principal dynamical variables of the cantilever column with the idealized sys-
tem. The appropriate choice of variables, however, will involve some trade-offs.
It will not be possible to match exactly the variables of the continuous system with
the idealized system, but, by making good choices, we can minimize the error be-
tween the two systems. For a dynamic, yielding system, our previous results indi-
cate that the two variables that most significantly control the response are the
initial natural frequency of the structure and the strain at which yielding occurs.
The initial, elastic response of the structure will depend upon the relationship be-
tween the frequency content of the external loads in relation to the natural fre-
quency of the system. As we saw in the last chapter, the frequency is important
for both linear and nonlinear systems. Ifthe external loads are not in the frequen-
cy range that excites the structure and leads to large displacements, then yielding
will not oceur. If yielding does not occur, one does not need to resort to numerical
techniques to determine the response because a closed-form solution exists under
these conditions. In addition to matching the frequencies of both the idealized sys-
tem and the continuous system, we would like bath systems to have the same load

intensity and yield strain.

For the cantilever column, the transverse displacement u(x,t} is a function of
both position and time. Because we are assuming that the cantilever column has
no distributed mass along its length, the only inertial force of the system is due
to the tip mass. The governing equation of motion is obtained by requiring equilib-
rium of a free-body diagram of the tip mass (see Figure 83). Assuming that the

rotary inertia, /, of the tip mass is zero implies the following relationships:
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ML,t)=20
NLY=P (77)
Vil +f,=0

If we assume that EI and P are constant and that the moment at any cross

section of the beam can be calculated from the relationship M(x,¢) = 3%u/ax?,

then the governing equilibrium equation is
Elu"" +Pu'"' =0 (78)

where a prime (') indicates partial differentiation of u(x,¢) with respect to x. The
general solution to Eq. {78) is

ulx,t) = a,(t) + a,{tlx + ay(t)sindx + a,¢)cosix (79)
where 4 = /P/EI. Applying the boundary conditions wil] allow us to solve for the
coefficients at) for i = 1,4. For the cantilever column, the fixed-end boundary
conditions require the displacement and rotation to be equal to zero. At the free-
end, the moment must be equal to zero, and the shear plus the inertial force must

also be equal to zero. For a uniform beam with a constant axial load, Eq. (78) im-

plies that the shear at any cross section can be determined from the relationship

VL)
ML)

N(L)

f; = Mu(L,t)

Figure 83 - Free-body diagram of tip mass
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V = - Elu"' - Pu’. Mathematically stated, the boundary conditions require

the following:

0.ty = 0=a,+a,=0 (80)
wi0,t) =0=a, +Aay; =0 (81)
MLty = EIu''(L,t) = 0 =>a4sinil + a cosAl, = 0 (32)
VIL,.O)+ f; = — Elu"(L,t) — PutL,t) + mullL.t) = 0 (83

where a dot () indicates partial differentiation with respect to time. Solving Egs.
180) through (82) in terms of 2, and substituting these values into Eq. (83) allows

us to determine the governing differential equation of motion

3
a, + [ 2 (ALY cosdL 0 (84)

T ol cosAL — sinaL |74 T

where w? = EI/mL? is the natural frequency when no axial load is present.

Therefore, the naturai frequency of the continuocus system as function of the load
18

. (AL )3 cos AL
®AL cosAL — sindL

wa)

(85)

The expression for the static buckling load for an inelastic cantilever column, us-

ing the tangent modulus theory, is given as

= gl
(P+m)cr=Pcr= 4L2

(86)

where E, is the tangent modulus of the material (Chen and Lui 1987). Of course,

the critical buckling load could also be calculated by setting the natural frequency
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equal to zero (Meirovitch 1986, Clough and Penzien 1993). Finally, we can desig-

nate the moment at which yielding occurs at the critical section to be M,.

Recall that for the SDOF system that the natural frequency is given as

k P
wstOF = ——-—mLz [1 - -E:]’ (87}
the critical buckling load is

= R
(P + m)erspor = Perspor = T (88)

and that the yield moment is M, ¢/,

By considering the first two terms in the Taylor series expansion for sinAL and
cos AL, it is possible to express the natural frequency of the continuous cantilever
column in terms of its critical load as

w? = %—%[1 - %2},%] (89)

Of course, we get a better approximatian of the natural frequency by consider-
ing more terms in the expansion. As mentioned earlier, modeling the cantilever
column as a SDOF system requires us to match the key dynamic variables for
both systems. The variables we are most interested in matching are the initial
natural frequencies, the moments at which yielding occurs, and the load intensi-
ties. From the relationships derived above, we can get a measure of the error in
our approximation by comparing these dynamic variables for the two systems.
Since the frequency of both the continuous system and the SDOF system both de-
pend explicitly upon the load, we can simply define the error as the square root
of the sum of the squares of the differences between the key dynamic variables.

Accordingly,
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where, for convenience, the quantities with a hat (* ) refer to the cantilever column
and the quantities with a tilde ( ~) refer to the SDOF system. The combination of
model parameters that produces the smallest error will resultin the best approxi-

mation of the continuous svstem’s response by the SDOF system.

By means of a few assumptions, Eq. (90) can be simplified considerably. First,
define the equivalent stiffness of the cantilever column as k = EI/L.Further let
us assume that the column length and mass are the same for both the cantilever
column and the SDOF system so that L=L=Landm=r =m. By way of
these assumptions, the error in Eq. (901 is minimized (= ) for the choice of param-
eters

k= 3F. = %1} and M, = 1\‘4,. 9D

where n = P/P... For this choice of parameters, we would expect the analysis re-
sults of the SDOF svstem to correlate best with the results for the continuous case.
We could make the results even better by using a better approximation of the fre-
quency of the continuous system. From this derivation, it is easy to see how the
analysis results of the SDOF system may be applied to understanding the behav-

tor of a MDOF or continuos system.

Summary and Conclusions
In this chapter, a SDOF system was designed in accord with the current
NEHRP equivalent lateral force procedure, and the dynamic performance of this

design was investigated. The results showed that the response of the system, ne-
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glecting damage, was stable. The displacements, however, were larger than those
calculated using the code equation. Once damage was introduced into the consti-
tutive relationship, we saw that the system could become unstable dynamically
as well as after the motion stopped. These results are consistent with the results
obtained in the previous chapter in that, under certain circumstances, the static
model does not provide a good indication of the dynamic response. Based upon
these results, as well as those obtained earlier, we can conclude that additional
parameters are required to ascertain the dynamic stability characteristics of a
damage-prone system over those needed to classify the static stability properties.

In the latter portion of the chapter, we saw that the response of a MDOF or
continuous system may be approximated by a SDOF model. The approximation
will be best for structures that have a dynamic response that is well described by
a single shape. In order to have the SDOF model best represent the MDOF sys-

tem, it is necessary to match the key dynamic variables for the two systems.
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5

Summary and Conclusions

It is the engineers canstant challenge to conceive the new from the
old, and 1t is his lot to worry about hus curious kind of time travel
that transcends the instruments of calculation and forces him al-

ways to think about the future to avoid the failures of the past.
— Henry Petroski

The dynamic stability characteristics of a nonlinear system have been investi-
gated by means of a simple mechanical model. Although the system was simple,
it contained many of the essential features of the the behavior of more complex
systems. The governing differential equations of motion were derived for the gen-
eral N-dimensional system, and detailed analyses were performed for the one-de-
gree-of-freedom and two-degree-of-freedom systems. In this study, both large
rotations and inelastic matenal properties were included. Consequently, the re-
sulting differential equations were highly nonlinear, and, for the MDOF case,

coupled. As a result, these equations could only be solved numerically.

Numerical integration of the governing differential equations must be done
with care. Traditional numerical solution techniques for structural dynamics
problems can result in a loss of accuracy. Accordingly, special techniques have
been employed to eliminate these problems, and criteria for discerning numerical

1inaccuracy from structural stability have been established.
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Because the number of free parameters was quite large, even for the SDOF
system, analyses were performed to determine which of the variables most signifi-
cantly influenced the computed results. At first, a very simple system was stu-
died. Then, the effects of including nonlinear geometry, and then both nonlinear

seometry and inelastic material response were investigated.

Initially, by assuming small rotations, elastic material response, and an axial
load of the form P, cos2¢, the governing differential equation took the form of the
well studied Mathieu Equation. Analyzing the response of the system described
by the Mathieu Equaticn provided a means of verifying our results and develop-
ing an appropriate definiticn of dynamic instability. Once the geometrically exact
model was considered, the system response was characterized by a beating phe-

nomenon.

The type of matenial model chosen to represent the inelastic response played
a major role in determining the dynamic stability charactenstics of the system.
In this research, two separate material models were considered — an elastoplastic
model and a cyclic Ramberg-Osgood model. In its original form, the Ramberg-Os-
good model is incapable of modeling cyclic response, and special provisions were
employed to remedy this problem. By studying these two material models, we
were able to observe the importance that strain hardening has and that a kink
in the loading curve has on the dynamic stability properties of the system. The
results obtained using the two separate material models under the same loading
conditions were quite interesting. Normally, one would anticipate that, under the
same loading conditions, the elastoplastic model would displace more than the
Ramberg-Osgood model because the elastoplastic model does not account for the
additional strength capacity that results from strain hardening. The results

showed, however, that this assumption does not necessarily hold under cyclic
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loading conditions. In fact, for the examples considered in this study, the maxi-
mum displacement that was computed with the Ramberg-Osgood model was al-
ways larger than the maximum displacement computed using the elastoplastic
model. Although the inclusion of strain hardening had a dramatic impact on the
computed results, the presence of a kink in the loading curve did not lead to signifi-

cantly different results (see Figure 31).

Based on the responses of a large number of systems, using a wide variety of
different model parameters, it was determined that the initial natural frequency
and the yield strength are the two most important quantities controlling the be-
havior of the structure. The frequency is important because it will dictate whether
or not the dynamic loading will lead to large or small rotations. If the rotations
are large enough to causing yielding of the material, the dynamic stability charac-
teristics of the system will depend upon the value of the yield strength. Contrary
to the conclusion one would draw for static or monotonic loading conditions, a
more favorable dynamic response can be achieved for lower yield strengths. If
yielding occurs early, the displacements and velocities have not had a chance to
become very large, and the inelastic response of the spring is able to dissipate the
energy of the system. However, if the yield strength of the system is large, prior
to yielding, the system will have had ample time to generate large displacements
and velocities. The inelastic response of the spring cannot dissipate this higher

energy state, and the system is more prone to dynamic instability.

The extension to multiple-degree-of-freedom systems was made. Formulating
the governing equations for the 2-DOF case revealed that introducing an addi-
tional degree of freedom did not simply double the difficulty of the problem. Not
only did we have to deal with twice the number of free parameters, but we also

had to be concerned with the different combinations of these parameters. Again,
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based upon the analyses of a large number of systems, it was concluded that, un-
der most circumstances, the results obtained from the SDOF model could be used
to assess the nature of the response for the 2-DOF system. Only when both
springs yielded at approximately the same time were we not able to predict the
results of the 2-DOF structure using the SDOF model. However, physically, this
case is seldom encountered. Consequently, one ¢an usually gain a good under-
standing of the response of a MDOF system by analyzing an appropriate SDOF

system.

Under large amplitude strain cycling, experimental evidence has shown that
certain metals, such as structural steel, experience cyclic softening. Cyclic strain
softening was accounted for in the constitutive relationships by means of a dam-
age mechanism. Many different factors can contribute to damage of the material,
however, many researchers agree that the two most important factors are related
to the maximum displacement of the system and the energy dissipated by the
spring in response to the cyclic loading. As a result, it was assumed that a reason-

able damage measure would depend linearly upon these two variables.

Analysis results have shown that the dynamic stability properties of the sys-
tem are highly sensitive to the rate of damage accumulation. The mere presence
of damage though does not necessarily lead to larger displacements. Of greater
mmportance is how the damage manifests itself during the dynamic response.
Compared to analyses that do not include damage, it is possible for the model that
does include damage to experience either greater or smaller displacements de-
pending upon the development of damage during the response. Damage in the
system will help dissipate energy in response to the current loads even though the
structure’s ability to dissipate future loads is diminished because of the damage.

Certainly, when too much damage occurs, the structure will collapse.
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Based on the modei that included damage in the constitutive relationship, the
SDOF system was designed in accord with the current NEHRP provisiens. The
dynamic performance was evaluated by studying the response of the structure to
two earthquake motions. The capacity of the structure was well above the code
requirements, but the structure was found to become unstable for various
amounts of damage accumulation in the system. In response to the earthquake
loadings. the results showed an increased potential for dynamic instability as the
rate of damage accumulation increased. However, instability resulted for values
of displacement ductility well below those specified in the code for this type of
structure. These results. along with those obtained from the other loading cases
indicate that the response of a dynamic system, prone to damage, cannot easily
be predicted using the results from static analyses. In fact, what is interesting
about many of the results obtained in this study is that they contradict the results
one would obtain under static or monotonic loading conditions. This result is im-
portant given that current building codes utilize an equivalent static design pro-

cedure for structures required to resist earthquakes.

The parameters that have the greatest influence on the response have been
identified. In their current state, the results are not directly applicable to design.
More empirical data are needed to accurately determine how damage accumu-
lates under dynamic loadings. Accordingly, possible future research will focus on
developing design criteria that will take into account when nonlinear, inelastic
systems may be prone to dynamic instability. Also, in order to develop a general
design criter.a, a greater variety of model parameters will need to be studied as
will more MDOF systems. James Thurber once wrote that, “It is better to know
some of the questions than to know all the answers.” Certainly, questions remain

that need to be answered regarding the behavior of dynamic systems prone to
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damage. It is hoped that the research presented here has provided some insight

to the problem and has demonstrated the need to study such systems.
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Al

Successive Symmetric Quadratures (SSQ)

Ifin other sciences we should arrive at certainty without doubt and
truth without errors, it behooves us to place the foundations of
knowledge in mathematics.

- Roger Bacon

As discussedin Chapter 2, the key reason why the Newmark Method has prob-
lems with the elastoplastic model is that the integration scheme cannot precisely
determine the corners that define the transitions between the plastic and elastic
states. Over a particular time step, a rapid change cccurs in the restoring moment
thatis not accurately captured. Therefore, if the effects of this rapid variation can
be diminished, then the errors associated with not correctly determining the cor-
ners of the stress-strain curve will also be diminished. Based upon this idea, Chen
and Robinson (1993) first integrate the conventional equations of maotion twice
over time in order to smooth the effects of the rapid changes in the restoring func-
tion. These integrated equations are then used in the numerical integration
scheme to determine the new variables (the integrated displacements, velocities,
and accelerations), and the rapid variations in the functions do not appear in the
solution to these new differential equations. Once the integrated values are deter-
mined, the results are then simply converted back to actual system displace-

ments, velocities, and accelerations. Using this procedure, the time step size does
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not have to rema.n small enough to try to capture the corners of the stress-strain
curve. Larger time step sizes can be used with accurate results because the twice

integrated equations of motion are much more smooth.

In addition to smoothing the data by means of time integration, Chen and Ro-
binson (1993) also introduce an improved quadrature rule to numerically inte-
grate the integrated equations of motion. This method, like the Newmark Method
for linear systems, is unconditionally stable. The basic idea behind the new
scheme is that more accurate results can be obtained if the accelerations over the
time step are allowed to vary quadratically instead of linearly as in the Newmark
Method. Thus, for each time step increment, the system properties are deter-
mined at both the mid-point and end-point of the time step. The fellowing formu-

lae are used to update the unknown variables:

Upeaia = U + 356U+ 8U,, 75 = Uey g, (92)
Urear = Us + 358U, + 16U, , ., + 4U,, 541, (93)
Upeae = Us + 356U, + 8U,, 45 = Upy st (94)
Upeae = U + 58U, + 16U, g3 + 4U, 54t (95)

The SSQ procedure requires approximately four times as many computations as
the Newmark Method per tiv e step. However, the SSQ method allows the use of
larger time step sizes because errors caused by rapid variations in the resistance
function are dramatically reduced. In order to obtain the same level of accuracy
with the Newmark Method, a much smaller time step must be used. Thus, the
overall computation time needed for accurate results is less for the SSQ Method.

Figure B4 shows a comparison of the two methods for a nonlinear system that ex-
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Figure 84 - Comparison of SSQ Method and Newmark's Method

periences many loading cycles in which yielding occurs. As the figure clearly

shows, even for a time step that is five times larger than the one used for the New-
mark Method, the SSQ Method gives very good results.

The procedure for employing the SSQ method for use with SDOF systems is
easily summarized. The governing differential equation of motion for a nonlinear,

SDOF system, in general, is given as

mx + cx + Rix) = ~ mxg (96}

where m is the mass, ¢ is the damping coefficient, x, is the acceleration of the
ground, x is the system acceleration, x is the system velocity, x is the system dis-
placement, and R(x) is the nonlinear restoring force. The integrated variables are
defined 1n the following way:

[

P(t) = Jx(&)dE N

0
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t t €
Q) = IP(t)dﬁ = Ijr(v)d'rdcf (98)
0 00

Expressing (36) in terms of the system acceleration leads to the relationship

i= - % - &x - AR (99)

The integrated variables can be expressed in terms of the actual variables in the

following ways:

Qt) = P(t) = x(¢)

Q) = P(e) (100)

t t

t
P() = x(t) = — Jii'gdt - %[xdt - %IR(:C)dt
0 0 0

Based on these relationships, we can calculate the actual displacement and veloc-

ity as follows:

t
xr = —rg+r,,—-,%(x—x,,) —%JR(x)dt (101)
0
t &
X = -xgt+x,+ Xt + ,—f‘—(x,,t - Q) - ;}I-I JR(:)d&dt (102)
00
The 88Q solution algorithm, employing these relationships, is summarized in Al-
gorithm Al
Algorithm Al
Assume that we are at a converged state and would like to advance the
solution to the end of the next time step.

1. Using a subscript I and a subscript 2 to indicate the mid-point and end-
point of the time step, respectively, update the values for ¢,,4,,¢,,9;
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based upon the values of ¢, and ¢, For the first iteration, the values of
¢, and g, are set equal to the converged value from the previous time

step. ODtherwise, they are set equal to the value calculated from the pre-
vious iteration. The unknown values are updated with the relationships

9, =49, + 51215‘1: + 8qy — glit,
q2 = qr + 2—14-{\4qr + 16ql + 4q2ut,

q, =4, + 5%(5@, + 8gy — qoklt,

g, =q, i{q, + 16g, + 4q,L1¢.

A subscript ¢ refers to the converged value from the previous time step.

2. Calculate the nonlinear restoring force in the spring at the nuddle and
end of the time step based upon the approximated values for x; and x,,
which, from Equation (100), are simply equal to the values of ¢, and g,
used in step 1). (For this particular researc! . the nonlinear restoring

force could be based on either an elastoplastic model or the cyclic Ram-
berg-Osgood model.)

3. Evaluate the single integral of the restoring force using the same quad-

rature rules used to update the integrated displacements and velocities.
Thus,

r= T + E%\Sr, + 8ry - ryldt,
rL=T, + 51—4-{40 + 16r, + 4r, )4t

where r | is the integrated value of the restoring force at the mid-point of
the time step, and r) is the calculated value of the restoring force at the mid-
point of the time step determined in step (2). Likewise, the subseript ¢ on
a variable refers to the converged value from the last time step. and the
subscript 2 still refers to the values at the end of the time step.

4. Calculate the double integral of the restoring force with the values from
step (3).



Tij = Tyt %(‘”!f * A6t 4’12)‘"'

5. Based on these values, calculate ¢, and ¢,.
gi = — xg, + Xp + Xt + (et — q;) — -,}Tr”‘, where i € 1,2

6. If the difference between the calculated values for ¢, and ¢, in step (5)
and the ones used in step (1) are within an acceptable tolerance, then
the solution has converged. Determine the real acceleration, velocity,
and displacement from Equations (99), (101), and (102) respectively,
and proceed to the next time step. Otherwise, return to step (1} using
the new values for g, and g, calculated in step (5) as the new estimate.
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