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1
Introduction

The universe is full ofmagical things, patiently waiting for our wits

to ~row ..,harper.

- Eden Phillpotts

The stability ofstructures has long been a concern ofstructural engineers. For

many years, researchers have studied why certain structures fail and how to pre

vent these failures. The first and perhaps the most famous person to study the

stability of structures in detail was Leonhard Euler. He is credited with deriving

the critical buckling load of an ideal, slender column. This value of the buckling

load is well known to most engineers.

The phenomenon of huckling can be illustrated by means of an example.

Figure 1 shows a st nlctural system that consists of a rigid bar of length l and an

elastic rotational spring of stiffness k. The system is loaded by the vertical load

P Supposing that the bar is disturbed by some external force so that it rotates

slightly through a small angle 8, then, if the axial load P is small, the system will

return to its original straight configuration after the disturbing force is removed.

Under these conditions, the system is termed stable. However, if the axial load P

is large, the system will continue to rotate around the pin at the base even after

the external disturbing force is removed. Under these conditions, the system is

unstable and is said to buckle by undergoing a large rotatiC'n of the bar.
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Astatic stability analysis ofthe displaced system will reveal the smallest axial

load that renders the system unstable. As the system rotates, the restoring mo

ment developed in the rotational spring is equal to k9. Assuming the rotation is

small, the overturning moment that is caused by the axial load acting through the

displacement at the top of the column is Pie. Equilibrium of the moments about

the pin at the base requires that he - Pi sin8 = O. This equation always holds

for (J = O. For equilibrium in the defonned configuration (i.e., () ~ 0), the axial

load P must be equal to kell sine. For values ofB near zero, P = kif. This value

ofP is known as the criticallaad and is given the designation Per. For axial loads

less than the critical load. the system is stable. For axial loads larger than the erit

icalload, the system is unstable and will rotate around the pin at the base.

This example demonstrates that even though a system may be in equilibrium,

it is possible for that equilibrium state to be unstable. A~cording to Langhaar

(1962),

an equilibrium configuration of a mechanical system is said to be

stable if accidental forces, shocks, vibrations, eccentricities.

P
P

m

k

Firure 1 • Simple structural mode!
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imperfections. inhomogeneities, residual stresses, or other prob

able Irregularities do not cause the system to depart excessiwly or

disastrously from that configuration. In a mathematical sense. sta

bility is usually interpreted to mean that infinitesimal distur

bances will cause only infinitesimal departures from the given

equilibrium configuration.

The beha\ior ofa long, slender column is similar to the behavior of the spring

bar system in Figure 1. Like the spring-bar system. t1exible columns cannot carry

arbitrarily largE' loads and remain stable. A£, the axial load on thE' system in

creases. the critical load will eventually be reached. and thE' column will buckle.

EulH was the first to compute the value of the maximum load, the column could

carry and remain straight. By studying the equilibrium equations of the column

in the defonned configuration, just as we did for the spring-bar system. Euler was

able to calculate the critical load. For values ofthe axial load less than the critical

load, the column will remain straight. For axial loads larger than the critical load,

the column will buckle.

Failure ofstructures is a dynamic process. In certain circumstances. it is nec

essary to approach buckling and stability from a dynamical point of view. For

some mechanical systems. the static model is not able to predict the exact path

the structure will take in getting to a stable configuration once buckling occurs

(Hjelmstad 1994!. When the process is fast. the inertia of the system is mobilized.

and a method that incorporates the dynamics of the system is required to describe

it.

Differential equations of motion can be used to characterize the dynamics of

mechanical systems. For example, for an n-degree-of-freedom system, the accel

eration of degree-of-freedom i can be described by the differential E"quation

(1)
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where q" q" q i' are the acceleration, velocity, and displacement, respectively, of

degree-of-freedom i, t represents time, and Ii, in general, is some nonlinear func

tion ofthese variables. These nonlinear functions do not require special properties

of the restoring force or system damping. For example, the restoring force need

not be elastic for Eq. (1) to be valid. The solution to the equations of motion will

depend upon the initial conditions and the system parameters. Geometrically, the

solution path can be traced as a function oftime. For example, one could imagine

the trajectory of an object being shot from a canon. The flight of the object will

depend upon the initial velocity and the angle at which it was shot. The motion

ofthe object could be described by a curve in a plane. Different paths would result

for different initial conditions. Under certain circumstances, some ofthese curves

may intersect one another, and intersecting curves would imply that the same

position may correspond to different velocities. Because the trajectory for a given

set of initial conditions may intersect other trajectories, many times a different

space is chosen to graphirally illustrate the motion.

A dynamic process can also be represented graphically in the phase space on

a plot ofvelocity versus displacement (Meirovitch 1986, Baker and Golub 1990).

The group of all solutions to the governing differential equations that arise be

cause ofdiffering initial conditions is termed the phase portrait. The phase por

trait has the property that no trajectories intersect one another with the exception

of equilibrium points (Meirovitch 1986).

As with static stability, we are most interested in the stability of the motion

in the neighborhood ofeach of the equilibrium points. Most of the early contribu

tions made to the understanding ofthe stability ofdynamical systems are attrib

uted to Lyapunov (loe. cit., Leipholz 1976). Simply put, Lyapunov proposed that

a system is stable whenever the motion following a sufficiently small initial dis-
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turhance. relati\'e to the perturbed motion. remains as small as desired in the dis

placements and velocities for all positive time following the disturbance. Mathe

matically stated. a solution is stable in the sense of Lyapuno\ if. for any arbitrary

positIve constant E. there exists a positive quantity 0 such that

where xpdefines the initial position and velocity of the system. Xltl and Xlt) refer

to the unpt:'rturbed and perturbed motions respectively. and t refers to time. The

Euclidian nann is used because it pro\-ides a measure of the de\-iation of the am

plitude of the motion from the initial state to any time t. Appl:-;ng this method

reqUlres that the beha\-ior of the dynamic system be addressed for all time subse

quent to the perturbatlOn. One difficulty encountered when using the Lyapunov

definition is that it is not always clear how to set appro1)riate limits on E. Clearly.

this approach to detennining the stability properties of the dynamic system is

more complicated than determining the static stability properties of a system.

Poincare is credited with mterpreting Lyapuno,··s criteria in a geometrical

context using phase portraits (see Baker and Gollub 1990 for a more detailed dis

cussion I. Poincare noted certain differences in the trajectories of stable motions

....ersus unstable motions. For example. stable periodic solutions. when plotted in

the phase space. produce closed trajectories around an equilibrium point. On the

other hand. an unstable equlhbrium point has trajectories that fonn a saddle

shape through the equilibrium point or spiral away from the point lfor a dE-tailed

discussion of phase portraits and the detennination of the stability properties in

a geometric sense. see Baker and Gollub 1990 or Saaty and Bram 1964). Thus.

the stability of the motion for a given system can be ascertained from a phase por

trait. To illustrate. consider the free vibration response of the structure shown in
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Figure 1. The total energy ofthe system, which is the sum ofthe potential energy

and the kinetic energy, is given as

(3)

For this example, the effect ofgravity is included in the axial load P, and it is as

sumed that the energy is gradually input into the system so that there is no dy

namic response associated with the transfer ofenergy into the system. Conserva

tion of energy requires that E(O) = O. Computing the derivative of the energy

functional allows us to determine the goveming differential equation of motion

to be

(4)

wherew2 = kjml 2 ,rJ = PjPer, and Per = k/l'.Becausecurvesinthephaseplane

represent trajectories of constant energy when the system is undamped (Meiro

vitch 1986), Eq. (3) can be used to construct the phase portrait for a particular

magnitude ofthe axial load. Figure 2 shows the phase portraits for three different

axial loads -one less than the static buckling load, one equal to the static buckling

load, and one larger than the static buckling load. For the different phase por

traits shown in Figure 2, E 1 < E 2 < E 3. This figure clearly shows that the dy

namic stability properties ofthe system depend upon the amount ofenergy input

to the system via the initial conditions and the amplitude of the axial load.

It is interesting to compare the dynamic stability properties ofthis model with

the static stability properties (for a general discussion on stability criteria for both

static and dynamic systems, see the paper by Komarakul-na-nakorn and Arora

. 990). Initially, the static stability properties ofthe structure depicted in Figure 1

were determined under the assumption that the rotation would remain small.
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Phase Portrait for r; - 1.25
fJ

Stable Equilibrium
Unstable Equilibrium

Phase Portrait for 1) =1.00
()

Unstable Equilibrium

--f+I-f~----~~----+-+-t++--fj

Phase Portrait for 7J - 0.50
()
,

Stable Equilibrium

~~~

Figure 2 - Dynamic stability of inverted pendulum system

Generally speaking, the critical load is obtained as the solution to a linear eigen

value problem. As such, the magnitude ofthe buckled shape is unknown - only

the buckled shape itself can be detennined. In order to determine the configura-
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Fipre 3 - Bifurcation dialfl'&lll for a rigid bar with a rotational SPrinl

tion of the structure after buckling takes place, it is necessary to account for large

deformations. For the system of Figure 1, considering a large rotation causes the

governing equilibrium equation to change. Under these conditions, the overturn

ing moment is calculated from the relationship pe sin6, and the equation govern

ing the equilibrium of the column is

h6 - Pisin6 = O. (5)

Equation (5) allows a determination of the equilibrium configuration of tile

system in the vertical as well as the deformed configuration. The bifurcation dia

gram for the inverted pendulum of Figure 1 is shown in Figure 3. A bifurcation

diagram is a plot ofthe load versus deformation ofthe system that reveals all stat

ic equilibrium states. In Figure 2 we note that, when the axial load is less than

Per, the motion is stable about the origin because the trajectories in the phase

plane are closed about this point. In the case ofthe static loading, this equilibrium

configuration corresponds to the stable portion of the bifurcation diagram

(Figure 3) when the structure is in the unrotated position (i.e., (J = 0). When the

axial load magnitude increases to the value ofthe critical load, the phase portrait

shows that the motion has become larger about the origin and the trajectories

have become elongated. The trajectories that intersect this equilibrium point
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form a saddle shape which indicates unstable equilibrium. This mode of behavior

is consistent with the static bifurcation diagram. For values of axial load that are

larger than the static buckling load, the static bifurcation diagram shows that the

() = 0 configuration is not a stable equilibrium position, and a stable equilibrium

configuration exists only for larger values of 0. Again, the dynamic response de

picted in the phase portrait is consistent with this condition. The origin of the

phase portrait for P/ Per = 1.25 is an unstable equilibrium point, and stable equi

librium points exist only for larger values of0. The equilibrium points in the phase

portrait correspond exactly to the equilibnum positions indicated by the static bi

furcation diagram. Therefore. in light of these comparisons, one can observe that

there is a strong relationship between static and dynamic stability analyses.

Although phase portraits allow one to assess the stability of the motion in a

direct fashion, it is still necessary to monitor the response as t -+ x in order to

classify a motion as stable or unstable. It must be pointed out, however, that for

a detennination of the critical states of the system and the behavior at these

pOInts, a complete solution to the dynamic equations of motion may not be neces

sary. Much research has been devoted to ascertaining the stability limits without

actually calculating the response ofthe system as a function oftime. Astraightfor

ward approach to this problem, which makes use of an energy criterion, was

introduced by Lagrange in 1788. In the early 1800's, the technique was proven

by Dirichlet. The basic theorem. which applies only to systems containing conser

vative forces and dissipative forces derivable from a potential, is as follows: as

suming the total energy of the system in question is continuous, the equilibrium

ofthe system is stable provided the Hessian ofthe energy functional of the system

is positive definite.
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The law of conservation ofenergy states that the work of all the forces, both

internal and external, acting on a mechanical system is equal to the change ofki

netic energy of the system. This law can be used to establish equilibrium equa

tions. When a mechanical system begins to move, the kinetic energy ofthe system

must increase. By the law ofkinetic energy, the forces acting on the system must

be doing net positive work. From this reasoning, the French mathematician .1.

Fourier <loc. cit., Langhaar 1962) conversely deduced that a mot.ionless mechani

cal system remains at rest if the net work done by all the forces in the system is

less than or equal to zero for any small displacement that does not violate tht>

constraints. A system is in static equilibrium if the conditions allow the system

to remain at rest. Expressing work in variational form leads to the c'Jnclusion that

in order for the system to be in equilibrium, the first derivative ofthe energy func

tional must be equal to zero (Hjelmstad 1994, Langhaar 1962).

A stability criterion can be established by invoking the definition of stability

for a mechanical system in the context of the energy functional. Ifthe system can

move an infinitesimal amount away from its equilibrium configuration and have

positive work done by the forces, then the kinetic energy of the system will in

crease. Under these conditions, the system is said to be unstable. Ifonly negative

work can be done, then the equilibrium state is stable. Ifeither negative or posi

tive work can be done, then the system is said to be in a state ofneutral equilibri

um. Thus, for a conservative system, stable equilibrium requires that the energy

functional be a relative minimum. The second derivative test is used to establish

extremum properties ofa functional. Ifthe second derivative is greater than zero,

the energy is a relative minimum, and the equilibrium state is stable. Conversely,

ifthe second derivative is less than zero, the state is unstable. Ifthe second deriva-

10



tive is equal to zero, no conclusion can be drawn, and L'H6pital's Rule must be

used to establish the stability characteristics.

The Lagrange-Dirichlet theorem provides a general definition of stability for

conservative dynamic systems. For the static case, this theorem yields the same

results computed using static stability theory because the static case is a special

fonn ofthe general dynamic case. Unfortunately, the Lagrange-Dirichlet theorem

applies only to dissipative forces derivable from a potential. Whereas dissipative

forces that are derivable from a potential (e.g., velocity proportional damping) or

are conservative (e.g., gyroscopic forces) cannot destabilize a structurE', those

which do not meet these criteria can have a destabilizing effect (Bazant and Cedo

lin 1991, Bernal 1987), Plasticity, as well as viscoelasticity, viscoplasticity, frac

ture, and other types ofdamage are dissipative phenomena that are not derivable

from a potential. The presence ofthese types of dissipative forces greatly compli

cates the problem. The reason dissipative forces that are derivable from a poten

tial cannot destabilize a system is due to the fact that these dissipative forces re

duce the energy of the system without altering any of the system parameters.

Figure 4 shows the phase portrait ofthe inverted pendulum when velocity propor

tional damping is included. For clarity, only part of the phase portrait has been

shown for PIPer = 1.25. Note how the motion ofthe system converges upon the

equilibrium point as the energy of the system is dissipated under free vibration.

Since the energy of the system is decreasing, (i.e., approaching a minimum), this

system must be stable. The same conclusion cannot be drawn for nonconservative

forces due to the nature of the path dependency of these forces. For example, the

response ofa structure following yielding depends not only on its current configu

ration, but it also depends upon the load path it took in getting to the current

state. Black, Wenger, and Popov (1980) have shown that the buckling capacity of

11



a strut loaded cyclically past its yield state diminishes greatly with increased

plastic working of the material. Thus, the strut becomes unstable at a lower ap

plied load. Therefore, while the yielding itselfmay dissipate energy, its occurrence

causes a change in system parameters. The way in which these parameters vary

greatly affects the stability properties of the system.

In a very simplistic way, yielding may be thought of as a process that can be

associated with the following three phenomena: (1) nonlinear material response;

(2) dissipation ofenergy; and (3) pennanent set in the material. Although it is the

combination of these three effects acting together that will control the response

ofthe system, a better understanding ofthe problem might be gained by studying

Phase Portrait for n - 0.75
(}

Pbase Portrait for U = 1 25
(J

Fipre 4 • Pbue portrait. with eDerJY dilliaptiOD via d.-pin.
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the indi\idual effects of these three phenomena on the stability properties of the

system. Figure 4 shows that energy dissipation, without changes in the other

properties of the system, forces the free vibration response toward a stable config

uration. Thus, the stability ofthe system of Figure 1 is improved with energy dis-

sipation.

Next, consider nonlinear material response. Nonlinear material response,

even for a static problem, causes difficulty in determining the stability properties

ofa system IChen and Lui 1987>. To illustrate, Figure 5 shows the response of the

inverted pendulum from Figure 1 based upon a nonlinear material model. The as

sumed relationship between the moment and rotation is given as

keMW) = .)
1 + /i(}-

(6)

where ,U = klMo . In Figure 5, it was assumed that k = 100 and M" = 6. Com

parison between the bifurcation diagrams of Figure 3 and Figure 5 shows that

there is a dramatic difference in the static stability properties of the system be

tween the linear model and the nonlinear one. While for the linear system the

equilibrium path emanating from the bifurcation point is stable, this path is un

stable in the presence ofnonlinear material response. Furthermore, the dynamic

stability properties, also depicted in Figure 5, change dramatically when nonlin

ear material properties are considered. For the dynamic response, it was assumed

that w 2 = k/mf'l. = 1. The phase portraits for the two levels ofaxial load consid

ered in Figure 5 show dramatically different stability characteristics from those

depicted in Figure 2 even though both models are undamped and assumed to be

have elastically. Clearly, the material properties of the system have a large impact

on the response of the system as well as its stability properties.

13



Finally, consider a permanent offset in the material. For the static case, a per

manent offset in the material amounts to performing a stability analysis with an

initial imperfection. The bifurcation diagram, including an initial imperfection of

80 , is shown in Figure 6. As one can see, the unrotated configuration (J = 0 is no

longer an equilibrium configuration. 'lWo equilibrium paths exist. and the stabil-

M
Bifurcation Dia~am

p

------t-------- (J

------t------(J
......... ""'"

'.~.

Unstable

Stable

Phase Portrait for r) - 0.75
(J Unstable Equilibrium

Phase Portrait for r) = 1 25

(J Unstable Equilibrium

FiIUft 5 . ReapoJue for inverted pendulum with nonliDear material properties
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ity of these paths is shown in Figure 6. For this structure, a limit load is obtained

rather than a critical load for the configuration tJ = Ocr. Unlike the perfect system.

a stable equilibrium state does not exist for all values ofthe rotation. As the mag

nitude ofthe rotation increases, though. the solution approaches that ofthe per

fect system just as it does when the initial imperfection is small. Clearly, for the

static case, the presence of imperfections impacts dramatically upon the stability

properties. For the dynamic case. however. the effects of initial imperfections are

negligible. The size and direction of the imperfection will simply control the equi

librium point about which the system oscillates. The presence of the imperfection

though, unlike the static case, does not affect the stability characteristics. The

phase portrait for the inverted pendulum including initial imperfections is also

given by Figure 2.

While we are primarily interested in the dynamic stability characteristics of

inelastic systems. it is important to first have a thorough understanding of the

dynamic stability properties ofelastic systems since, at least initially, most struc

tures respond elastically. A significant amount of research literature is available

that pertains to the dynamic stability ofelastic systems (e.g.. Kounadis 1993, Si

mitses 1990, Leipolz 1976, McIvor and Bernard 1973. Holzer 1970, Bolotin 1964.

15



etc.). A wide variety of system types with various boundary and loading condi

tions, including impact loadin~s (Kounadis 1993, Kounams 1991) can be found.

Most approaches to defining stability limits for·-eh~ic;.dynamicalsystems are

grounded in an energy criterion (Berdichevsky and Kim 1995, Joshi 1995, Lee

1995). Because the forces for an elastic system are conservative. this approach

works quite well. Often, nonlinear elastic systems are linearized around an equi

librium point to determine stability characteristics. Doing so allows one to make

use ofthe Routh-Hurwitz criterion which holds that ifall ofthe eigenvalues ofthe

linearized equations are less than zero, then the solution is stable (Afolabi 1995).

Chaos theory and graphical methods are also used to help assess stability charac

teristics via maps. Various researchers have studied chaotic vibrations in simple

oscillators and in columns lAddison 1995, Cusumano and Moon 1995, Ravindra

and Mallik 1995, Kalathas and Kounadis 1991).

Other types ofdynamic stability problems exist for elastic systems other than

those mentioned above. One such example is an elastic system under follower

forces. Follower forces are nonconservative because their direction changes in ac

cord with the motion ofthe system. Nonconservative problems of this type have

been well covered in the literature (Zuo and Schreyer 1996, Prasad and Herr

mann 1972, Bolotin 1963). Another problem is that of parametric resonance.

Parametric resonance many times is a result oftime dependent coefficients in the

governing equations of motion. A classic example of such an equation is the Ma

thieu-Hill equation (Bolotin 1964, Saaty and Bram 1964). Because the behavior

of the Mathieu-Hill equation has been well studied, many researchenl try to cast

the governing equations of a parametrically excited system of interest in terms

ofthe Mathieu-Hill equation (Chen and Yeh 1995, Lee 1995, Thylwe and Grava-

16



dor 1995, Yuan and Dickinson 1995. Cederbaum and ~lond 1994). A more in-

depth discussion of the Mathieu-Hill equation appears later in this manuscript.

For nomonservative systems with inelastic material properties, a different

approach IS needed for detenniningthe slability properties of the system. It is still

deslrablt'. h0WC'.'2~. to fl"lrmulate a procedure that does not require integrating the

nonlinear differential equations of motion. One approach that b<1" been tried

makes use of the econd law of thermodynamics lBazant and Ced<'llll 1991l. Al

though this approach is general and does not require solution to the di~ferential

equations. it does assume that the system loses stability from a static state. Con-

sequently. this approach is not applicable to systems that lose stability in a dy-

namic way.

Another method that has been introduced makes use of Hamilton's variation-

al principle of dynamics I Komarakul-na·nakorn and Arora 1990). With this ap

proach. the concept of adjacent states IS employed. Hence, using the known re

sults for the motion of the system in an unperturbed state, (,ne can study the

behavior of the system in an adjacent or perturbed state. It is possible to simplifY

the expressions for the perturbed motion since this state must satisfY the ap

propriate boundary conditions According to Hamilton's Principle, the kinemati

cally admissible deviation from an equilibrium state can be expressed as follows:

r1

JH(tl = f (bT - bn + JWnc)dt = 0

t(1

(7)

where T is the kinetic energy, n is the potential energy of the conservative forces,

and W71C is the work done by the nonconservative forces in going from the state

at t \1 to the state at t 1· The equation of motion for the nonconservative system is

obtained using Eq. (7). Likewise, using this same procedure, the equation of mo-
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tion for the perturbed state can be expressed. To characterize the stability, the

perturbed motion must be compared with the unperturbed motion. If it is as

sumed that the motion in the perturbed state is characterized by

for some amplitude u and frequency w, and if the nonlinear material constitutive

model can be expressed in an incremental linearized form, then the stability ofthe

system may be determined CKomarakul-na-nakom and Arora 1990). This proce

dure is an adaptation ofthe Routh-Hurwitz criterion (Meirovitch 1986). Since the

perturbed displacement behaves exponentially, it can be easily shown that the

system remains stable for values of w less than zero. Substituting back mto Eq.

(8), one is left with a load-frequency dependent, quadratic eigenvalue problem in

w. Due to the nature ofthe problem, the resulting matrix is typically not symmet

ric. Accordingly, the resulting eigenvalues are usually complex. The stability cri

terion is that the real portion of all the eigenvalues be negative for the system to

be stable. Because ofthe load dependency ofthe eigenvalue problem, an iterative

procedure is required to determine the critical load, or the load at which the sys

tem changes from being stable to being unstable. At the critical load, the real por

tion ofat least one ofthe eigenvalues will become zero while the rest remain nega

tive. Thus, the solution procedure commences with determining the eigenvalues

for the load currently applied to the structure. If the above criterion is not met,

the loads are adjusted. This procedure continues until the critical load is deter

mined. An iterative procedure such as this is typically required for the solution

to a nonlinear problem.

Most of the previous research dealing with the dynamic stability of inelastic

systems utilizes an elastic-perfectly-plastic material model CCapecchi 1993, Kara-
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giozova and Jones 1992. :\laier and Pergeo 1992. Yue and Zheng 1992. Jones and

Reis 19801 or a bilinear material model IMacRae 1994. Lee 19811. Generally

speaking. the study of hysteretic oscillators has not received a great deal of atten

tion in the research literature. The reason this lack of attention exists is that

many of the fields for which nonlinear dynamic systems have received extensive

st udy do not typically encounter hysteretIc material response j Capecchi 1993. Bu

tenm 1965 I. PrevlOUS study of the response ofhysteretic oscillators has proceeded

typically In one of two ways The first approach mvolves an incremental analysis

of the lineanzed equations to obtam the stability properties of the system. :\Iany

times. nonlinear geometrical effects are ignored' Yue and Zheng 1992. Jones and

Reis 1980 I. The second method involves a graphical approach. studymg the re

sponse of the system in the context of phase portraits for a suitable choice ofvari

abies. l'slng both approaches. sigmficant advancements toward the understand

Ing of hysteretic oscillators have been made.

An example of a study that attempts to characterize the dynamic stability

properties of an inelastic system using phase portraits is the one by Sun. Berg.

and Hanson I 19i3 '. In this study. Sun. Berg. and Hanson monitored the behavior

ofa structure m free \;bration under various initial conditions. The stability ofthe

system was based upon an energy approach similar to the one Illustrated for the

elastic pendulum discussed earlier. The mitial energy input into the system was

compared \\;th the amount ofenergy the system could dissipate through inelastic

material response. Sun. Berg. and Hanson assumed an elastic-perfectly-plastic

constitutive model for thIS research. The stability of the system was determined

usmg phase portrait diagrams. As before. if the trajectory in the phase plane re

mamed a closed orbit. the motion was classified as stable. Otherwise. the system

was identified as unstable.
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Of special interest in the context of civil engineering is the understanding of

the inelastic dynamic stability properties of structures subjected to earthquake

loadings. Various approaches to this problem have been presented in the litera

ture. For example, Bernal (1987) has suggested a conceptually simple, yet com

putationally intensive approach. Using the ground motion from various earth

quakes as input, the structure can be analyzed repeatedly with different system

parameters. The effects of these changes on the response of the system can then

be studied. Statistical correlation ofthe data to the variation ofthe model parame

ters can then be used to detennine what Bernal has termed an "inelastic P-..1 am

plification factor." For Bernal's study, a SDOF system was used, and the material

response was assumed to be elastic-perfectly-plastic. The amplification factors

were arrived at by comparing the response of the system for the case where no

axial load was present to the case where axial load was present. Almost 200 sets

of results were computed in this investigation. In order to consolidate all ofthis

information, Bernal tried to statistically correlate the data. By comparing the

maximum response to the minimum response and the overall deviation of the

data, Bernal was able to prescribe amplification factors for inelastic systems. Us

ing this procedure, it is possible to determine how a certain structure will respond

to a given ground motion. Thus, in effect, the inelastic P-,1 amplification factor

establishes a serviceability criterion to be employed during design.

In a more recent article, MacRae (1994) extends the results ofBernal's study

to include other constitutive models. MacRae's study incorporates a bilinear ma

terial response and other hysteresis loops of general shape. MacRae discusses

changes in the elastic and inelastic stiffness due to the P-LJ effect. The effects that

these changes in stiffness have on the response of structures is discussed in the

context ofearthquake excitations. MacRae bases the stability of the system with
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general-shaped hysteresis loops upon the hysteresis center curve concept The hys

teresis center curve is defined as

(9)

where H.'I and H"I> are the upper and lower yield limits on any elastic response

line. Conclusions and recommendations for design are based upon the observa

tion that, for earthquake loadings, single degree-of-freedom oscillators tend to os

cillate with approximately the same magnitude of acceleration in both the posi

tive and negative directions independent of the shape ofthe hysteresis curve that

descnbes the material response.

Rationale for the Study

Given the current level of knowledge regarding the dynamic stability of non·

linear, hysteretic systems, there is a great need to develop a better understanding

of how such systems behave. Currently, there are not any general observations

or classifications of behavior for such systems. Although an extensive amount of

information exists regarding the dynamic response of elastic systems and the

static response ofinelastic systems, very little attention has been directed toward

understanding the behavior ofinelastic systems under dynamic loadings. As a re

sult, the conditions under which a dynamic, inelastic system becomes ullstable

remain largely unknown.

Previously, it was claimed that inelastic material behavior may be thought of

as the combination of nonlinear material response, energy dissipation, and per

manent offset. Of course, in reality, these three effects cannot be separated from

one another. In order to determine the dynamic stability properties. it is impor

tant to understand the effects of these three phenomena acting in concert. Addi

tionally, the actual response ofan inelastic system involves further complication.
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With hysteretic behavior, sudden changes in stiffness will take place due to load

ing and unloading in response to the load. Furthermore, concern must he directed

toward understanding the relationship between the energy input to the system

by the external loads and the energy dissipated by the inelastic material re

sponse. For inelastic material response, unlike the case of velocity proportional

damping, energy dissipation is not constantly occurring. At the onset of unloading

and reloading, the material will behave elastically, and the energy dissipation will

be negligible. Lastly, it is necessary to understand how the external forces acting

on the system affect the stability properties since some structures are more effi

cient at mobilizing this input energy while other structures are more efficient at.

dissipating it.

Most previous studies in this area have concentrated on using an elastic-per

fecdy-plastic or bilinear material model. The stability properties for other types

of hysteretic behavior have not been explored. In addition, inelastic material be

havior implie& that the system experiences damage in response to load. Damage

to the system. modeled through changes in the constitutive relationship, is an as

pect of the dynamic stability of inelastic systems that has yet to be addressed.

Determining the dynamic stability properties of a damage-prone system un

dergoing large motions. however, has proven to be quite difficult. The differential

equation that characterizes such a system is nonlinear and nonconservative, and

a closed-fonn solution has not been obtained under these circumstances. Instabil

ity may result during the dynamic excitation or after the external forces cease to

act. Thus, study is needed to determine how damage-prone systems respond to

dynamic excitations.
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Objective and Overview

The objective of this investigation is to provide a definition of what it means

for a nonlinear. dynamic system to be stable. Nonlinearity in both the material

response and in the geometry ofdeforrnation will be considered. Furthennore. the

effects of including a damage mechanism in the constitutive relationship will also

be addressed. The results presented will discuss the role each parameter of the

model has in affecting the behavior ofthe system. From a practical, civil engineer

ing point of view. of special concern is nnderstanding how structures respond to

earthquakes. For this reason. a discussion is included concerning how the results

of this study may relate to seismic-resistant design.

The following chapter covers preliminary material on dynamic modeling, nu

merical integration, and constitutive modeling. Following these preliminary top

ics. the dynamic stability properties of a hysteretic system are explored. Applica

tion of the results are then applied to the earthquake engineering problem.

Finally. a summary and conclusions are presented along with recommendations

for future research.
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2
A Model Problem for the Study of Dynamic Stability

All the mathematical sciences are founded on relations between,

physical laws and laws ofnumbers, so that the aim ofexact science

is to reduce the problem ofnature to the determination ofquantities

by operations with numbers.

- James Maxwell

Introduction

In the analysis and design ofstructures, engineers often use simple models to

help understand and predict the behaviorofmoce complex systems. The main ad·

vantage to employing simple models is that they are easier to study and to solve

than more complicated ones, yet, they can give an accurate representation ofthe

true structural response despite their simplicity. In addition, for very complicated

systems, it is often convenient to analyze simple structures first in order to devel

op an understanding of the important aspects of the problem. For these reasons,

a simple structural model is considered in this research.

Equations of Equilibrium for the N·DOF System

Shown in Figure 7 is the structural system used in this investigation. It is

comprised ot concentrated masses at the end of each rigid link. Rotational re

straint ofeach link is provided by nonlinear springs. These assumptions are often
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employed in structural dynamics problems and are known as the shear building

approximation with lumped masses !Berg 1989, Clough and Penzien 199:3) The

system has ]V degrees-of-freedom, namely, the rotation of each link measured

from the vertical. In this study. both the effects of large rotations and yielding in

the springs are considered. Thus, nonlinear effects in geometry and material

properties are both taken into account. Constitutive modeling will be discussed

in detail in the next section. The structure may be excited dynamically by means

of time-dependent axial loads PW that can be applied at any or all masses, and/or

a horizontal base acceleration of XN . The system can be set in motion by means

of initial velocities and/or displacements at the onset of the analysis. Although it
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Figure 7 - N-DOF model
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may appear that such a simple pendulum-type system is incapable ofexhibiting

complex behavior, the results of this study show otherwise.

In order to proceed with the analysis, the governing equations of motion for

the system must be derived. These equations can be constructed using a Newto

nian approach (Greenwod 1988, Meirovitch 1986). Referring to Figure 7, it is first

necessary to define the position, velocity. and acceleration for each mass. The posi

tion of the i th mass is defined as follows:

,
R; = xge1 + Irj

j=l

(0)

whererj = eAsin6jel + cos9je2),andelande2 areunitvectorsthatpointinthe

direction ofthe coordinate axes in the x l-x2 frame. The velocity is obtained by dif

ferentiating the position vector with respect to time. Thus,

,
Hi = Xg("l + L>")

j-I

I

Ri = xgel + If)
j-l

(11i

(12)

with;Oj = t j [ (cosOiij - sinOjOnet - (sino/ij + cos8j8J)e2 ) Forsimplicity, de

fine
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Figure 8 . Free-body diagram

Figure 8 shows a free-body diagram ofthe system using d'Alembert's principle

of dynamic equilibrium (loc. cit.. Berg 1989) for the inertial forces. Equilibrium

requires

1, ...• N - 1, (14)

(15)

Equilibrium of the free-body diagram shown in Figure 9 requires that

IV

I(p, + mil.). (16)

Substituting the relationship for Qn obtained from Eq. (16) along with the

relationships for R, AI' and B
l
from Eqs. (2) and (l3)respectively, the differential

equation of motion for each mass of the system can be determined. To proceed.

these values are substituted into Eq. (14). Let us assume planar motion. Noting

that all moments cause a couple about the ea axis, the dot product of both sides

of Eq. (14) with the unit vector e 3 leads to the scalar equation
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Figure 9 • Free-body diapoam of top portion of structure

,.,.
M n - M n + 1 + e3 . r n x I(P i + m,Ri) = 0

i=n

07)

where Mn = e3 . M n · Eq. (17) can be simplified by evaluating the cross products

and making use of appropriate simplifications. The first cross product reduces to

N N

e3 . r,. x I PI = t,. L(sin8nPi - cos8nF.) (18)

where it has been noted that Pi = Fle 1 + P,e 2• The second cross product is calcu

lated as

N

e3 . r n x I mjij =
,-,.

(19)

N N ,

- t'ncos8,.xg I m, + L mit,. I t'j[ - sin8nBj - cosO..Aj ]

i=n I-II )'1
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Substituting Eqs. (181 and (19) mto Eq. (17) and making use of trigonometric

identities. the governing equations of motion for the system can be calculated In

general. we ha\'(' the ..ystem of equations

.}

M(9)8 + C\9)(j- + RiB) = L(8) (20)

where 8 = ,H 1.H 2•.• H.\.T. 8 = 1.(:11.(:12..... (:1.\'(. and i/ = {ti~.(:I;...,fl~'( It is

possible to express the components of each of the coefficient matrices. First let.
.\'

m"l= '\ 7Il, \211

which is the total mass abO"e level In inlj. 11 \. Assuming that the external loads

all act in the negative 'rertical direction so that PI = - P,e 2• then
s

IS = '\p
f. ~ I

,= 1

is the total vertical load above level 11. Then.

\231

en} mn./nf,sinlfln - fl
J

), (24)

with M n + 1 - 0 and tlo == O. and

Observe that Mn} = Min so that M(8) is symmetric while C n} - - C,,, so that

09) is anti-symmetric.

Special Cases: Consider the specific case N = 1. The governmg differential

equation for this case is
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me2(j - Pesin 9 + mi,l cos 9 + M(9) = 0

where M(9) is the moment in the nonlinear spring.

(27)

For the case N = 2, the equations are slightly more involved. Th simplify the

expressions, let us assume that ml = m2 = m, II = e2 = e, P 1 = 0, and

P 2 = P. Then, the coefficient matrices are given as

L = j2meXgCOS9 1 - PfSin91j
mfxgcos82 - pesin62

Constitutive Models

Constitutive theory defines the governing relationships between stress and

strain. It represents our ability to accurately determine how a certain material

will respond to a given loading. Unlike kinematics and equilibrium, constitutive

laws are almost always empirically based. Experimental data are used to help es

tablish the validity of such models. When developing a constitutive model, one

tries to formulate mathematical expressions that accurately represent the ob

served behavior for the material ofinterest. Certain assumptions, however, may

be employed that reasonably approximate the actual system response.

The variety and number of constitutive models that have been studied and

proposed in the research literature are tremendous. Many ofthese models are ca·

pable of accounting for complex load histories <Oboo 1982, Chaboche 1989, Ishi

kawa, Sasaki, and Nakagawa 1994, Sugiura, Chang, and Lee 1991). In order to
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evaluate the effects that the constitutive relationship has on the computed re

SpOllS£". two different material models are considerl'd in this investigation - an

elastic-perfectly-plastic model and a modIfied. cyclic Ramberg-Osgood model.

Both models account for varied. cyclic loads. It should be pointed uut that these

models are not being used to represent anyone particular material. In using the

two constitutive relationships. we are focusmg on how the response changes with

the type of model. Accordingly. the greatest concern is understanding the con

ceptual difference between the two models.

Elastic-Perfectly-Plastic Material Model

Figure 10 shows the stress-strain relationship for an elastic-perfectly-plashc

material in a uniaxial stress state. In the subsequent text, "elastoplastic" and

"elastic-plastic" share the same meaning as elastic-perfectly-plastic. Prior to

:,-;elding, the material responds elastically wIth stiffness E. After );elding the ma

terial offers no further resistance, and upon unloading, the material behaves elas

tically again. One interesting feature of this model is the abrupt change in stiff

ness that occurs in the transition from the elashc state to the plastic state or from

the plastic state to the elastic state.

This elastoplastic model is often used to model mild structural steels. Al

though mild structural steels will, after continued loading, exhibit some strain

o

E

-----/-------+--- I:

Figure 10 - Elastic-plastic material model
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hardening, this feature is not included in the model. Because strain hardening is

not included, it is generally assumed that this model conservatively estimates the

actual displacements of the real system. While valid for monotonic loadings, this

condition may not always hold under cyclic loads. The role of the the material

model on the computed results is discussed in detail in Chapter 3.

Local Governing Equations. Although Figure 10 gives a schematic repre

sentation of the material model, one must develop a mathematical framework

that accurately describes this relationship in order to carry out the desIred com

putations. Once the defining equations have been established, suitable algo

rithms can be developed to numerically determine the solution in an efficient

manner. Already, much research has been devoted to this area (Hill 1950, Simo

and Hughes 1988, etc.). In fact, the mathematical description of this model was

clearly presented in Sima and Hughes (1988) and has been used without modifica

tion in this research.

It is assumed that the total strain E is composed ofan elastic portion, E~, and

a plastic portion. EP. Mathematically stated,

(28)

The stress is assumed to be linearly related to the elastic strain such that

(29)

Based on the model we are trying to incorporate, we must recognize certain

other physical limitations and describe them mathematically. One such limita

tion is that the stress a cannot exceed (either positively or negatively) 0,.. This im

plies that the admissible stresses must lie in the closed interval [--Qy, Oy ]. Addition-
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ally, ifthe applied stress is less than the yield stress, then there can be no change

in the plastic strain. Mathematically, this implies the following:

~ = 0 jf {(a) '= Ial - Oy < o.

Thus, Eq. (29) along with Eq. (30) imply that

{(a) < 0 =;> a = Ef.

(30)

(31)

Since there is no change in the plastic strain if the stress is less than a.v. and

since the stress cannot exceed 0V' this leads to the conclusion that the only way

in which the the value of EP can change is if {(a) = Ial - Oy = O. Therefore. ifthe

stress reaches the value ofay, then the spring will yield in the direction of the ap

plied force. Ifwe call y ;::: 0 the absolute value ofthe plastic strain rate, then we

are led to the following:

EP = (' ;::: 0 if a = Oy,

EP = - y :s 0 if a = - Oy.

(32)

The sign of the plastic strain rate will depend upon whether or not the structure

is under tension or compression.

Reiterating from above, it is first required that the stress at the current config

uration be admissible and that the slip rate be positive. Accordingly, if ((a) < 0,

then the material has not yielded, and the plastic strain rate must be zero. Other

wise, the material has yielded. If the material has yielded, then this implies that

fro) =0 Rnd that the plastic strain rate must be greater than zero. Mathematicnl

Iy,

y{(a(t)) = o.

33
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Eq. (33), along with the requirements that y ~ 0 and {(o) S 0, are often referred

to as the Kuhn-Tucker conditions (Luenberger 19841. Further, we specify that

y > 0 only if the material continues yielding or if

y{(o) = o. (34)

Eq. (34) is known as the consistency condition. With tlus consistency requirement

established mathematically, we can readily determine the state of the system

once yielding occurs. From above, we have the following relationship:

since

a~ lui - sign(u) =:;, = sign(u) and sign(u) " I
Because [sign (0»)2 =1, Eqs. (35) and (36) imply that

(= 0 -y = ~ sign (0).

+ 1 if (1 ~ 0

- 1 if (1 < 0
(36)

(37)

Using the result of Eq. (37) along with Eq. (32) leads to the result that

~ = E for {(oj = 0, flo) = o. (38)

Determi"atio" of Poi"t. ora tM Stre..·Strai" Curve. Points on the

stress-strain curve are computed using a step-by-step approach. Accordingly, as

suming that the current point on the curve is known and the increment in total

strain from the previous converged step is given, we desire to detennine the rorre

sponding point on the stress-strain curve for the new value ofstrain. The method

for making these calculations is based upon an elastic predictor-corrector meth-
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od. The first step in this process is based upon the assumption that over the given

time step. the material behaves elastically. Then, based on these trial values, we

can determine whether or not ~;elding actually took place. If yielding did not oc

cur. our elastic prediction was correct, and we ('an proceed to the next step. Other

wise. we must correct our initial prediction to account fOT the yielding. The steps

needed to determine the stress-strain state of the system are summarized in AI-

gorithm 1.

Algorithm 1

1. Starting conditions: n = 0, a" == 0, E" = 0, t:;, = 0

2. Given the increment in the total strain. update the strain field for the

body (i.e., t: n _l = t: n + .JEnl.

3 Compute f.rlal = Ia + E jc I. n+l n L '"n

If f:~ai <; O. then

an -- On +- EdEn

E~ -- E~

n--n+l

Otherwise, yielding has occurred

an -- Oy . sign1an + E.1t: n:

fP -- fP + If.rI01jE) . sign1a )n n ,n+l In"'!

n-n+l

4. Go to step 2.

Cyclic Ramberg.Osgood Material Model

In order to model the behavior of a material such as mild structural steel, our

constitutive relationship should include the features of strain hardening and the

Baushinger effect. In addition, the transition from the elastic state to the plastic

state should be smooth. None of these features are included in the elastIc-perfect

ly-plastic material model covered in the last section. In this section, the modified
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Ramberg-Osgood model used in this investigation is presented. For this model,

unlike its original form, it is assumed that the response of the material is elastic

prior to yielding and that the material response is governed by the monotonic

stress-strain curve prior to unloading.

Based upon a large pool ofexperimental data, one can observe various trer.ds

in the behavior ofsteel subjected to varied, cyclic loads. The first general observa

tion is that, prior to any load reversals, the response of the material is governed

by the monotonic load curve. This curve is characterized by three separate re

gions. The first region is the linear-elastic response. With continued loading, the

stress eventually exceeds the proportional limit, and };elding occurs. After yield

ing, the material remains on the yield plateau, the second region of the curve, un

til strain hardening ensues. The strain hardening portion of the curve IS a nonhn

ear relationship between the stress and strain and represents the third and final

region of the monotonic load curve.

A second general observation is that, at a load reversal point, the initial re

sponse for unloading in the opposite direction is elastic. With continued loading,

the material eventually responds plastically. As the material makes the transi

tion from the elastic state to the plastic one, the tangent modulus changes from

E, the initial elastic stiffness, to some constant value E t . Dafatias and Popo\"

(1975) called this final, constant slope a bounding line, for it represents a bound

in the stress-strain space. Aktan, Karlson, and Sozen (1973) made similar ob

servations for steel reinforcing bars. They termed the curve that best described

this behavior an envelope curoe. Once a load reversal occurs, the subsequent be

havior of the material, as suggested by various investigations. is entirely nonlin

ear. This nonlinearity is attributed to the Baushinger effect. According to Black,

Wenger, and Popov (1980), inclusion ofthe Baushinger effect is essential for cap-
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turing the deterioration of buckling strength of a steel member due to previous

plastic working of the material. Furthermore. experimental data for structural

~teel under cyclic loads have shown that the response to subsequent loadings de

pends not only on the current configuration, but it also depends to a large extent

upon the load path taken in getting to the current configuration (see, for example,

Dafalias and Popov 1975). Thus, in addition to the BaushingeTf~ffect,the load his

tory plays a crucial role in determining the response of the material.

Another key observation. which makes sense from a theoretical point ofview.

is that loadmg in one direction has a significant influence on the response of the

material for loading in the opposite direction. Accordingly, the position of the

bounding line or envelope curve will depend upon the current stress state and the

previous loading history If a load reversal occurs from a point that represents a

maximum stress excursion for loading in that direction (i.e.. a point on the yield

surface), the bounding line for loading in the other directicn will shift. If, on the

other hand, a load reversal occurs at a point that is less than the maximum stress

in that direction (i.e., a point not on the yield surface), the bounding line for load

ing in the opposite direction will remain unchanged. Instead, the curve will merge

with the bounding line defined from the previous maximum stress (see Figure 11)

As with the elastic-plastic model, it is necessary to first establish the mathe

matical equations that describe the general observations mentioned above before

any analyses can be performed. In what follows, the local governing equations

that describe these general observations are presented.

The cyclic stress-strain relationship for a typical structural steel under a com

plex loading is shown in Figure 11. The well-known Ramberg-Osgood equation

has been implemented in this study to characterize this complicated relationship

between stress and strain. One drawback, however, in using the Ramberg-Osgood
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equation is that, in its original form, it does not include provisions for cyclic load

ing conditions. Accordingly, modifications must be made before it can be incorpo

rated into our model.

The basic form of the Ramberg-Osgood equation is given as

(39)

where E i ,(1i are the strain and stress, respectively, at the beginning of the curve,

E is the initial modulus of elasticity, and (10 and 1/1 are constitutive parameters.

The value 1/1 can take on a wide range ofvalues to account for different amounts

ofhardening. Because the stress-strain relationship is history dependent, the pa

rameters Go and 1IJ will vary as the analysis proceeds. The method for determining

their value is given below.
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Although use of the Ramberg-Osgood equation with the scaling parameters

may seem to be somewhat ad hoc, it does provide a convenient means of consis

tently reproducing experimental data. Basically, two different forms ofthe equa

tion are used. At the start of the analyses, before any load reversals take place,

the monotonic curve is used to determine the relationship between stress and

strain. Once a load reversal occurs, the parameters used in the modified form of

the Ramberg-Osgood equation will depend upon the current stress state and load

ing history. Details of the procedure are given subsequently.

The Monotonic Load Curve. The monotonic load curve for a typical struc

tural steel is shown in Fi~.ure 12. The curve consists ofthree regions - the linear

or elastic region (A.B), t~le yield plateau (B·C), and the strain-hardening region

(C·D). A modified form of Eq. (39) is used to determine the stress-strain relation

ship for the monotonk load curve:
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(40)

where Eo = 0 0 / E, and 0 0 and m are parameters that are determined from exper

imental test data.

En.velope Curve•. Figure 13 shows the envelope curves for the cyclic stress

strain relationship defined herein. One complete stress-strain cycle (A-B·C) is as

sumed to be comprised of two half-eycles. One half-eycle loads in compression

(A·B), and the other half-cycle loads in tension (B-C). The point at which the half·

cycle starts is given the designation (OJ, Ej), and the slope ofthe stress-strain curve

at the reversal point is equal to the elastic stiffness. The following fonnula, which

is a modified form of the Ramberg-Osgood equation, is used to define the stress

strain relationship for each half-eycle:
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€ - €, a - a, 10 - 0d"'. '
-- = -- + --I srgn!o - 0 l.

Eo 0" 0 0 I ' I
(41)

The quantity Eo is defined as o,,/E, and the function sign/:d is defined as follows:

j+ 1 if x ~ 0
sign(x) ==

- 1 if x < 0
(42)

As mentioned above. we will need to adjust the parameters 0 0 and 'I' during the

analyses. These two parameters will reflect the history dependency of the nonlin

ear stress-strain relationship. The way in which these parameters are deter-

mined will depend upon the point from which unloading commences and upon the

stress history up through the latest half-cycle. The two separate ways of deter

mining the values of 0 0 and II' will depend on whether or not the absolute value

of the stress at the load reversal point (°
1
in Figure 13) is larger in magnitude than

the previous maximum stress. The details are included in the following section.

Determination of Ramberg-Osgood Envelope Parameters. If the un

loading curve originates at an initial stress that is greater in magnitude than the

previous maximum stress, then the parameters 00 and 'P can be calculated from

the following equation (Aktan, Karlson, and Sozen, 1973):

(43)

In Eq. (43). the constants A. and r, as well as the exponE'nt 'P, are chosen so as to

match up well with the experimental curve. For example, for Grade 60 reinforcing

steel, Aldan, Karlson. and Sozen (1973) reported the following data:

'i' = 6. A = 0.7938. r = 0.55723 for 112 cycle from compression, and

It' = 7, ;. = 0.7735, r = 0.47989 for 112 cycle from tension.
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Although these values matched the test data. in reality it would be difficult to de

termine the values of A. and r with such high precision. Also in Eq. (43), amax refers

to the maximum tensile stress prior to the current half-cycle, and amin refers to

the maximum compressive stress prior to the current half-cycle. These parame

ters can be adjusted to account for other types of steels different than Grade 60

reinforcing steel (see Sittipunt and Wood 1993).

The main drawback ofEq. (43) is that it is only accurate for stress histories

that are symmetric. The values ofthe parameters have been determined from load

cycles in which the amount of strain in both the compression half-cycle and ten

sion half-cycle are the same. Because not all loading situations encountered are

symmetric, it is necessary to develop an alternate method for calculating ao and

"" that addresses this issue. Based on observations ofvarious unsymmetric load

tests, the following two guidelines are used to help determine the values of the

parameters au and 1JJ when unsymmetric load cycles occur (Dafalias and Popov

1975):

Gl. When the initial stress ai is less than the previous maximum stress
for loading in that direction, the stress-strain curve will join up with
and follow the previous half-cycle ofloading in that direction <i.e.,
there is no further expansion of the yield surface).

G2. The ultimate strength of the material will control the maximum
attainable stress in both tension and compression. When the stress
approaches this limiting value, the stress-strain curve tends to flatten
out so that this maximum value is not exceeded.

Based on these two guidelines, Sittipunt and Wood (1993) introduce the notion of

a common point and an ultimate point (see Figure 14,). A common point is defined

as the point on the stress-strain curve where the curve from the current half-cycIe

of loading joins up with the stress-strain curve from the previous half-cycle of
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loading. An ultimate point is defined to be the point on the stress-strain curve that

is the limiting value ofstress for loading in that direction. Its value is determined

from both the properties ofthe material and the maximum stress excursion in the

current loading direction. The way in which these two points are incorporated into

the analysis procedure can best be illustrated by means of an example.

Consider the loading history shown in Figure 14. Starting from the origin. the

material is loaded in tension until it reaches point A. Because point A represents

the maximum stress for loading in this direction, loading in the compression half-

cycle from A to B is controlled by Eq. (41) with Go calculated from Eq. (43) and 1Jl

obtained from experimental results. Again, since the stress at B represents the

maximum in that direction. loading of the curve in tension from B to C is con

trolled by the same equations. We now must determine the parameters for loading

in compression from C. Based on the guideline G1, since the stress at C is less than

the stress atA (the maximum from the previous half-cycle in that direction). the
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stress-strain curve should merge with the previous curve at the common point.

Therefore. we need to detennine the values of ao and 'P that will force the stress

strain curve to merge with the previous envelope curve from A to B at the common

point. At the common point. both curves will have equal values for t.he stress,

strain. and tangent stiffness Et. Since we know the value of the stress. strain. and

stiffness at the initial point. we can determine the parameters 00 and 1J! (Sittipunt

and Wood 1993). Defining.

then

V' = (:/ - 1 )0, and

(44)

(45)

(46)

where £ i and OJ are the strain and stress. respectively. at the beginning ofthe cur

rent half-cycle ofloading, £2 and a 2are the strain and stress, respectively, at the

common point or ultimate point, E is the elastic modulus of the material, and E,

is the tangent modulus of the curve at point (£2,°2),

The correctness ofthese calculations must now be verified. The procedure for

doing so consists offirst evaluating Eqs. (45) and (46) at the common point. After

calculating 00 and 'P, the stress at the ultimate point should be calculated based

on these values of the parameters. Ifthe calculated stress at the ultimate point

is less than the maximum allowable stress, the curve needs no adjustment. If.

however, the calculated stress at the ultimate point is greater than the bounding

line value or maximum allowable stress for loading in that direction, then the

curve needs to be adjusted. At the ultimate point, the stress should equal the max-
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imum allowable stress and the tangent stiffness should equal zero. Under these

conditions, it is necessary to recompute 0" and If' by evaluating Eqs. (45) and (46)

at the ultimate point.

TheRamberg-Osgood equation. with the modifications presented above, can

adequately describe the cyclic response of mild structural steel. Algorithm 2

summarizes th€' procedure used to determine a point on the stress-stram curve.

As with the elastoplastic model. a step-by-;:tep approach is used.

1. The data base and increment in total strain are assumed known. The

data base includes the values of all variables needed for subsequent cal

culations including the maximum tensile stress and strain, the maxi

mum compressiv€' stress and strain, the value of the stress anti strain

at the last load reversal, curve parameter constants, the total strain

increment from the previous step. and the values of stress and strain

from the last step.

2. With the given increment in strain, determine ifloading is changing

directions. Thus, if

.JE"ld . LlEnt'u < 0 = change in loading directions. (47)

If the load is changing directions. this indicates loading from a new ini

tial point. If the value from the previous step is greater than the pre

vious maximum for loading in that direction, update the value of the

maximum stress and strain. Also update the values of stress and strain

from the last load reversal. If the loading is in the same direction as thl>

previous strain increment, the data base does not need to be updated.

3. Now. with the strain and loading direction known, we need to determine

the stress. The appropriate equation must be used based upon the fol

lowing tests:

3.a. Has the material yielded yet? Ifnot. then a = EE. Otherwise, go to 3.b.
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3.b. Has the material undergone a load reversal yet? If not, then use Eq.
(40). Otherwise, go to 3.c.

3.c. Is the value of the initial stress larger than the previous maximum? If
so, use Eq. (41) in conjunction with Eq. (43). Otherwise, calculate the
stress at the common point using Eq. (41) in conjunction with Eqs. (45)
and (46). Also, calculate the stress at the ultimate point. If the calcu
lated stress at the ultimate point exceeds the maximum allowable
stress, recalculate the parameters in Eqs. (45) and (46) using the ulti
mate point instead. Otherwise, use the values obtained previously.

SUm.rtUJ.ry cuad COnaparUOR ofModela. Figure 15 shows a comparison of

the two material models presented in this chapter that are used in subsequent

analyses. Both models represent loading along the same strain path. That is,

starting from the origin, both models are given the same strain increment, and

the corresponding stress is determined based upon the guidelines presented earli

er. Clearly, there are differences in the response calculated for the two different

models. While the stress never exceeds the yield stress for the elastic-plastic mod-
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el, the Ramberg-Osgood model produces a stress that is much larger than this val-

ue in both tension and compression. Furthermore, the energy dissipated, as mea

sured by the area under the stress-strain curve, is much larger for the

Ramberg-Osgood model for a given maximum strain. Chapter 3 includes further

discussion on how the choice of material model affects the computed results.

Incorporation of Damage in the Constitutive Models

Figure 16 shows the cyclic response of a material that displays cyclic strain

softening. A consequence of strain softening is that the stiffness of the material

degrades under constant amplitude strain cycling. Empirical data suggest that

one possible way to model this damage is to modify the modulus ofelasticity ofthe

system (Lemaitre and Chaboche 1994, Kachanov 1986). Thus, if Eo is Young's Mo

dulus of the virgin material, free from damage, then

(48)
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represents the the damaged modulus. According to Kachanov (1986), the choice

of variable(s) to affect the damage model is not simple. For this study, it would

have also been possible to include the strain hardening exponent tJl and/or the

constitutive parameter 0 0 in the damage model. The choice ofvariables to include

is generally based upon a direct generalization ofobserved behavior. In addition,

from a practical point ofvie'"" it is desirable to choose as simple a model that will

yield acceptable results. In our model, simply reducing the elastic modulus ac

cording to Eq. (48) without modifying 0 0 or Vi gives good agreement between the

calculated results and observed behavior.

Various researchers have introduced different measures of damage D that a

system experiences in response to load (Kachanov 1986, Lemaitre and Chaboche

1994, McCabe and Hall 1989, Lubarda 1994, Fajfar 1992, Kutt and Bieniek 1988,

Sugiura, Chang, and Lee 1991). Damage models for inelasticity generally depend

on the maximum deformation and the accumulated energy dissipated by the sys

tem. Other factors, such as temperature, radiation, and corrosion, could also

cause damage but are less important in applications involving large strain cycling

of the material. A good first approximation for the damage model is to consider

a linear dependence upon the maximum deformation and energy dissipated. To

wit,

D = a9) + (:Jg (49)

where a and{:J are constants that depend upon matt:rial properties, 9) = d/dy is

the deformation normalized by the yield deformation, g = E H/oydu is the hyster

etic energy dissipated normalized by oydu where d u is the ultimate displacement

of the material under monotonic loading conditions, and Oy is the yield strength

ofthe material. The coefficients a and{:J can be interpreted as the parameters that

determine the rate of damage of the material under cyclic loading.
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At the end of each converged step. the total amount of damage is calculated.

and the modulus E(DJ is modified. Thus. for both the elastoplastic model and the

('vclic Ramberg-Osgood model. one simply replaces the \"alue of E With EID) in

each formula It occurs. The damage form of the Ramberg-Osgood equation is now

given as

_ a - a, [ I. a - 0, !" .. I]
£ - £, - ED 1 + 10 . - 0 I

I I ". I

The effects ofincludmg a damage mechanism in the constitutIve relationships

are discussed in detail m Chapter 3.

Numerical Integration of Governing Nonlinear Equations

Since the differential equations that describe the motion of the system being

considered cannot be solved analytically. one must resort to a num£>rical proce

dure in order to make any headway toward a solution Accordingly, one must en-

sure that the numerical procedure used gives accurate results. Otherwise, the re

sults obtained from the analysis can be at best misleading. and at worst,

completely unrepresentati\'e of the motion the system actually experiences. In

addition to accuracy. the numerical solution procedure used must be stable. In the

context of numerical integration, stability implies that any errors in the displace

ments, velocities. and accelerations at some time t. which may be due to computer

round-off error, do not grow with the integration (Bathe 1982 I. The accuracy ofthe

numerical integration scheme refers to the ability of the method to replicate the

exact solutIon. The accuracy and stability properties of the numerical integration

scheme control the maximum allowable time step size that yields results with the

desired level of precision.
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Direct Integration Methods: A BriefIntroduction. Using direct integra

tion to solve the equations of motion implies that the solution will be found at dis

crete times only. Therefore, a step-by-step numerical procedure is used to advance

the solution from the last converged state to the next converged state. Many dif

ferent direct integration techniques exist (Bathe 1982). The assumed variatlOu

ofthe displacements, velocities, and accelerations over the time step.1 t are what

determine the accuracy and stability properties of the numerical procedure. It is

generally agreed that among the different direct integration procedures available

that the Newmark Method provides the best overall performance with regard to

stability and accuracy (Bathe 1982).

Even though the Newmark Method is unconditionally stable for linear prob

lems, the time step size must still be chosen appropriately. According to Bathe

(1982), using a step size oL1t =0.01 Tn will ensure sufficient accuracy. Some addi

tional issues arise when applying direct integration techniques to nonlinear prob

lems. For nonlinear problems, the system can experience sudden changes in stiff

ness or resistance due to yielding and unloading. If the time step chosen is too

large, these effects may not be accurately captured. Because nonlinear problems

are path-dependent in their solution by nature, any errors introduced during the

incremental analysis can have a large impact on the behavior calculated at a later

time. Consequently, when using direct integration techniques to solve nonlinear

problems, the user should employ a procedure that is unconditionally stable for

the linear case and inc-Iude equilibrium iterations with a tight enough tolerance

to ensure that the true behavior of the system is accurately determined (Hughes

1977). For this research, the tolerance was set so that the magnitude ofthe residu

al forces or load imbalance (as determined from the equilibrium equations),

normalized by the magnitude ofthe load vector, was less than 10 -6 (see Bathe
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(1982) for general guidelines on setting tolerances for numerical integration of

nonlinear prohlemsJ.

Newmark's Method. Newmark's Method for numerical integration of the

equations of motion is based upon the following assumptions:

V,+) = VI + ,1l[O - y)a, + ya,+)] (51)

(52)

where d, = u(l, I, VI = ri(l,l, and a, = ;;(l,). The parameters f3 and y can be se

lected to obtain different stability and accuracy characteristics. Typically, the

choices of j3 = 1/4 and y = 1/2 are made. The reason for this choice of parame

t:!rs is that. for linear systems, Newmark's Method is unconditionally stable and

second order accurate. The Newmark estimations for d, ... ) and v, +) must be aug

mented by an equilibrium equation to complete the estimate of the state at time

t I'" ,.

In general, we are interested in the following system of equations:

G(U, U, lJ) = O. (53)

For nonlinear problems, the solution proceeds iteratively. The iteration procedure

can be efficiently implemented as a Newton-Raphson scheme. Because we will be

considering increments in the displacement, it is convenient to rearrange Eqs.

(51) and (52) in terms of the unknown displacements. Thus, for f3 = 1/4 and

y = 1/2, the acceleration and velocity in terms ofthe unknown displacement are

given as
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where

- 4 d
"i+l = "i + .1t2 i+l

- 2 dv1 + 1 = vi + LIt i+l

(54)

(55)

(56)

(57)

Eq. (53) requires that

(58)

Substituting the Newmark relationships from above leads to the expression

Linearizing G<di + 1) about the configuration eli+ 1 gives

i;(d~ ) + [~aG + ~aG + aGl>ld" = 0
t+l .1t2dG LIt av adJ 1+1

(60)

- .2
where the general model G = M(8)8 + C(8)8 + R(8) - L(9) = 0 is used in

Eq. (60) (see Eq. (20». Finally, the displacements are updated with the expression

(61)

Eventually, the difference in the new estimate and the old estimate will be within

the set tolerance. At this point, the state of the system is known for the current

time step, and now the state ofthe system should be determined for the next time

step. This procedure continues until the response of the nonlinear system has

been determined for all time.
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Variable Time Stepping for Newmark's AlgorithlfL An interesting phe

nomenon occurs when using Newmark's Method to solve singlf> degree-of-freedom

problems with an elastic-plastic material model. In order to avoid problems with

the numerical integration, it may be necessary to use a time step smaller than the

recommended 0.01 Tn for linear systems. Figure 17 shows the effects of using too

large a time step in calculating the maximum displacement of the system shown

in Figure 1. The system response has been determined for a sinusoidal ground ex

citation with the system starting from rest. The large spikes in the graph appear

due to error accumulation during the course of the analysis. For certain time

steps, the error in defining the transition from the elastic state to the plastic state

or from the plastic state to the elastic state is such that errors systematically accu

mulate. A closer examination shows that only very specific time step increments

will lead to this type of error. If the time step size is changed slightly, the error

disappears. Figure 18 demonstrates this phenomenon.
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Figure 17 • Effect of time step size on muimum computed displacement
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The systematic errors accrue because ofone-sided dipping at the elastic-plas

tic interface. Figure 19 shows this rounding of the corner effect for a particular

time step increment. In order to make the Newmark algorithm accurate, one

must subdivide the time step in the transition regions. Using a unifonnly small

time step in the regions away from the corners is not efficient. Hence, one should

allow the time step to adapt. When the material is near the transition region,

make the time step size small enough to accurately determine the corner of the

curve. Away from this region, allow the time step to increase in size in order to

.1t = O.2TII L1t = a.OITn

L1t = O.002Tn

L1t = O.ITI!

LIt = O.05Tn
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Fil(Ure 18 • Effect of time step size on IRabWty of Newmark's Method
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speed up the analysis. Ofcourse, since the integration constants used in the New

mark procedure are dependent on the time step duration, these values must be

updated every time the time step changes. Using this strategy works very well.

In fact, for maximum time steps even greater than those that led to the large error

accumulations above give results that are quite acceptable.

Successive Symmetric Quadratureso Another approach to dealing with

the problems of the Newmark Method for nonlinear problems is to use an alto

gether different integration scheme. Chen and Robinson (1993) have developed

an integration method that includes the following two essential features: (1)use

oftime integration for its smoothing effect; (2) use ofan improved quadrature rule

over the trapezoidal rule. This method works quite well and was employed for de

termining the response for the SDOF system in this research. The details afim

plementing this method are presented in Appendix AI.
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Summary

A mechanical model was presented that will be used to study the dynamic sta

bility characteristics of a damage-prone system. The corresponding differential

equations of motion were derived for the general case. These equations account

for inelastic material behavior and large rotations. Two nonlinear constitutive

relationships were introduced that will be used to determine the restoring mo

ments developed in the rotational springs located at the base of each rigid link.

The role ofthe constitutive model on the observed behavior is studied in detail in

Chapter 3. Following the material on the constitutive models, a damage model

was introduced. The damage model, which depends upon the maXImum deforma

tion and hysteretic energy dissipated, has the effect of reducing the elastic modu

Ius with increasing damage. Finally, the numerical integration procedure used to

determine the response ofthe system was presented. For nonlinear problems, pro

visions must be made to account for sudden changes in stiffness that arise due to

yielding and unloading of the material.
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3
Dynamic Stability of Hysteretic Systems

There is nothing stable in the world - uproar's your onl.v music.

- John Keats

Dynamic Response without Base Excitation

Even though the primary focus of this study is to investigate the dynamic sta

bility characteristics ofhysteretic, damage-prone systems, it is important to first

consider the linear-elastic response ofthe system. As discussed previously, study·

ing the linear-elastic response allows one to locate possible regions of instability,

and it provides a benchmark for comparing the dynamic stability properties ofthe

damage prone system. In this chapter, the structural model presented in Chapter

2 is analyzed. First, the SDOF system is considered, and the response is computed

assuming a linear-elastic response. Initially, the lateral base acceleration is set

equal to zero. The effects of accounting for large rotations and inelastic material

properties are then investigated. After, the response ofthe system to lateral base

excitation and constant axial load is presented. Following this material, the re

sponse of a 2-DOF model is considered. Finally, the role of including a damage

mechanism in the constitutive relationship is explored.
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Linearized Geometry and Ekutic Material Properties. If we make the

assumptions that the rotation is small, the material is elastic, and the baSE' accel

eration is equal to zero, then the governing differential equation of motion for a

SDOF system is given as

(62)

Ifwe further assume that the system is undamped, the force due to gravity is neg

ligible compared to the magnitude ofthe applied axial load. and the axial load va

ries with time according to P(t) = Po cos(.Qt), then Eq. (62) reduces to

(63)

Eq. (63) is the Mathieu Equation (Bolotin 1964, Saaty and Bram 1964). Many

properties of this equation have been well established in the literature (Bolotin

1964, Saaty and Bram 1964, Grimshaw 1990, Shirts 1993). One ofits most impor

tant characteristics is that for certain combinations of axial load magnitude and

frequency, the system becomes dynamically unstable (in the sense of Lyapunov).

In order to determine the regions of stability for the Mathieu Equation. it is first

assumed that the solution is periodic and can be described by an infinite Fourier

series. Substituting the Fourier series back into Eq. (63) leads to a linear set of

algebraic equations that involve the unknown coefficients of the Fourier series.

It is known from linear algebra that the system of homogeneous equatior.s has

a solution different from zero only when the determinant ofthe matrix ofthe sys

tem coefficients is zero. Since we are considering an infinite series, we must calcu

late an infinite determinant. In order to compute an actual value for the determi

nant, it is necessary to consider a finite subset. The accuracy of the computed

determinant is improved as the number of terms considered increases.
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In Figure 20. the shaded regions indicate the combination of model parame

ters that lead to the first three regions of dynamic instability for the Mathieu

Equation. The axes have been normalized such that the ordinate is the ratio of

the frequency of the axial load to the natural frequency. and the absci5sa is the

axial load magnitude divided by the static buckling load. In Figure 20. the system

is unstable, both in a dynamic sense and a static sense, when PolPE ;:= 1. AB

FIgure 20 indicates, the primary region of instability corresponds to the case

where the frequency of the pulsing vertical load is twice the natural frequency of

the system. Under these conditions, the system b£>comes dynamically unstable for

any magmtude axial load greater than zero. For very small values of the axial

load. the effects of gravity become more significant. In this research, however,

only axial loads gfPater than approximately 40l7r ofthe static buckling are consid-
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Figure 20 - Regions of dynamic instability for the Mathieu Equation
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ered so that the effect of gravity is small in comparison to the amplitude of the

axial load.

Figure 21 shows a plot of the rotation versus time for a set of model parame

ters that falls into one ofthe regions ofinstability for the Mathieu Equation. With

increasing time. the rotations approach infinity, and, by any definition, we can

conclude that the system has become unstable. This response confirms the ex

pected behavior for the given model parameters and the Mathieu Equation. Using

Eq. (63) to calculate the response, one would be led to believe that, in the time

duration shown. the pendulum rotates completely about the hinge at the bottom

more than twice. Clearly, the calculated response is not consistent with the as

sumption of small rotations.

In order to gain a better understanding ofthe response of the system for a set

ofmodel parameters that falls into one ofthe regions ofinstability, we must refine

our original hypothesis to include the possibility oflarge rotations. Although us-
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ing the geometrically exact model complicates the analysis, it is necessary to ob

tain more information about the system after the rotations become large. It

should come as no surprise that one must consider large deformations for this

problem. This step is also essential for static stability problems (Hjelmstad 1994).

For such problems. the linearized analysis may indicate the critical load, but it

cannot provide information about the system once buckling has occurred. Conse

quently, the next step in our analyses will be to mvestigate the response of the

geometrically exact model.

Exact Geometry and Elastic Material prpperlies. If we modify our pre

vious assumptions to account for large rotations, then the governing equation of

motion takes the form

m{l·fJ + kfJ - (Pr,icOs(!"Jt)lsmfJ = O. (64)

While thf> geometrically exact model gives more accurate results. it is much more

difficult to solve analytically. In fact, a closed form solution ofEq. (64) has not been

found for the case where the nonlinear differential equation has time-varying co

efficients <Bolotin 1964, Grimshaw 1990). Consequently, the analysis is accom

plished by numerically solving Eq. (64) for a wide array of model parameters. By

considering a variety of different system properties, we can gain a better under

standing of the general nature of this structure. Figure 22 compares the results

of the geometrically exact analysis with those ofthe linearized analysis. The prop

erties of the systtom for }->",th ali:dyses are the same, the only difference is the

approximation that ~iile = fJ for the linearized system. Thus, Figure 22 illus

trates the difference between using Eq. (63) and Eq. (64) to compute the response.
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While the linearized model helps us locate potential regions of instability, it fails

to capture some significant aspects of the behavior.

If the response ofthe system computed from Eq. (64) is monitored for a longer

period oftime, a peculiar phenomenon is observed. Figure 23 shows the variation

of the displacements with time for the same system considered above but for a

greater duration. Figure 23 shows that the system experiences some sort of"beat

ing" phenomenon. Classical beating motion occurs in the presence of two vibra

tions ofdifferent frequencies that are very close to one another (den Hartog 1985,

Timoshenko 1948, Meirovitch 1986, Lu unu Hall 1990). Beatingoccurs frequently

with acoustic vibrations and in other areas of the physical sciences. Figure 24

shows a plot ofthe displacement versus time for a classical beating system. What

is interesting about the fact that beating Ol:curs in our model is that it will take

place even when the driving frequency is much different than the natural fre

quency of the system.

62



c:
o

'';;
ca
~

o
~ -3

o 10

Geometrically Exact

20 30
Time (sec)

40 50

Figure 23 • Beating phenomenon

1\vo key factors contribute to the pattern of behavior shown in Figure 23.

First, unlike the linearized system, the frequency of the motion is not constant
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(Meirovitch 1986) but is affected by the amplitude. The free vibration ofa geomet

rically exact oscillator is not exactly sinusoidal (the analytical solution is in terms

of elliptic integrals (Kamke 1959, Saaty and Bram 1964)). Consequently, at cer

tain times, the frequency ofvibration due to the initial conditions is in phase with

the driving frequency, and at other times, it is not. When the two frequencies are

in phase, the motion becomes large. When they are out of phase, the amplitude

diminishes. Whether or not the two parts ofthe response are in phase will depend

upon the displacement amplitude, which in turn depends upon the axial load

magnitude and the initial conditions. Based on these observations, one could spec

ulate that the system would respond similarly for other types of periodic axial

loads.

The impact the initial conditions have on the observed behavior can be demon

strated by considering the response of the system when a very small amount of

damping is included (0.005 ofcritical damping). The response for the damped sys

tem is shown in Figure 25. Initially, before the steady-state is reached, one can

see the start of the beating behavior due to the interaction between the steady

state and transient responses. However, with time, as the transient portion ofthe

motion gets damped out, a steady-state oscillation of the same frequency of the

axial load is observed. Other researchers report similar findings for other systems

of this type (Cedarbaum and Mond 1994, Sun, Berg, and Hanson 1973). In fact,

small changes in the initial conditions may alter the subsequent response from

a stable motion to an unstable motion and vice versa. Also, depending on the ini

tial system properties, we may see different pathways to instability. This depen

dence is discussed further below.

Another phenomenon we notice with the geometrically exact system is that

the motion does not become unbounded. For the model with linearized geometry,
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we could discern when the system became unstable because,with continued time,

the displacement and velocity of the system tended toward infinity. With geomet

rically exact model. the rotation may become large, but it remains finite. Thus,

we need an appropriate means ofidentif)ring instability for the geometrically ex

act system and a suitable definition for "dynamic instability.M First, ifthe system

becomes unstable before undergoing at least one complete cycle of motion (see

Figure 26) or becomes unstable after the external excitation has ceased, then this

will not be considered a case of dynamic instability. If, on the other hand, the sys

tem undergoes at least one complete cycle of motion without becoming unstable

and then becomes unstable while excited by external forces. then this will be

known as dynamic instability. Furthermore, instability for the system under con

sideration will be defined as the case where the column has undergone a rotation

around the base of (J == ± .•. Although this value of the rotation is much larger

than the rotation any real structure would ever be expected to withstand, it

makes good sense, from a behavioral point ofview, to consider such large displace-

6 P = 0.4 P,,, Q = 2.0 w .. ; = 0.005

10080

Geometrically Exact

I I I

20 40 60
Time (sec)

o

3

Figure 25 - Effects of damping on nonliDear, elastic analysis
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ments. Only in this position does the axial load stabilize the motion in the sense

that the system will oscillate about the configuration 8 = ± :r (see Figure 26).

Had a smaller limit been chosen, this condition would not hold. This limit is ap

propriate especially in light of the response indicated by the static stability bi··

furcation diagram (see Figure 3). For the static system, after the buckling load is

exceeded, increased axial load will cause the system to tend toward the configura

tion (J = ± :fr. Therefore, we are simply applying Lyapunov's stability criterion for

this particular dynamic system. From this point forward, we will be most con

cerned with loss of stability in the dynamical sense.

Ezaet Geometry and NOJlli1U!tU MCJI~riol Pro~rtie•. It is quite reason

able to assume that inelastic material resp<'nse will occur in a system undergoing

large defonnations. When nonlinear material properties are included. the model

will be more representative of a real structural material (e.g., steen. Especially

recently. there has been a sizeable amount ofeffort devoted to understanding the
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behavior and stability characteristics ofdynamical systems that have an elastic

plastic material model (Bernal 1987, Jones and Reis 1980, Karagiozova and

Jones 1992, Vue and Zheng 1992, Newmark and Hall 1982, Maier and Perego

1992, Capecchi 1993, MacRae 1994). In fact, many researchers have made their

observations and conclusions based upon a simple structure similar to the one

presented here. However, most researchers have simplified the geometry of the

problem to the linear case. As shown above, using linearized geometry can be

helpful in determining some possible regions of instability, but the linearized

model cannot give an accurate representation of the system once the rotations

have become large.

The fact remains that we have no clear-cut measure that can accurately pre

dict whether a given set of model parameters will lead to large or small rotations

once inelastic material response occurs. Although it is challenging even for the

elastic case, the results will show that it is almost impossible to predict the results

of the nonlinear system based simply on the input parameters. In fact, under

some circumstances. the elastic case is a poor predictor of the inelastic model

whereas under other circumstances, it can serve as a good predictor.

Consider first some ofthe results that one might expect once inelastic material

properties are included. We will initially concentrate on the elastic-plastic model.

Doing so will allow a comparison of our results to those of previous studies. For

this system, we would expect the maximum rotation to increase with increasing

axial load. Results show, however. that this relationship does not always exist.

The correlation between the maximum displacement and axial load is shown in

Figure 27. Clearly, when the driving frequency is twice the natural frequency, the

value of the maximum displacement is nearly the same for all axial loads. Addi

tionally, we would expect that the displacements would be the largest for the fre-
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quencies that correspond to the regions ofinstability in Figure 20. The instability

regions indicate the system properties that lead to large displacements. Since

yielding in the system will not occur unless the displacements exceed a certain

level. and since once yielding occurs the displacements will become large. we can

see that the elastic model provides a good estimate of the stability regions for the

case where the material is elastic-plastic.

Figure 20 shows for the linear-elastic case that the primary region ofinstabili

ty occurs when the frequency of the axial load is twice the natural frequency of

the system. Instability under these circumstances will occur for any magnitude

afthe axial load greater than zero. The next region ofinstability occurs when the

axial load frequency is equal to that of the natural frequency of the system. How

ever, under these conditions, instability will occur only ifthe magnitude ofthe ax

ialload is greater than approximately 40% that of the static buckling load. It is

these two regions that are ofprimary interest in the material that follows. In par-
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ticular, we will be focusing on the following four pairs ofdriving frequency and ax

ialload magnitude:

1. Axial load frequency is twice thl" natural frequency and the magni

tude is 80O/C of the static buckling load;

2. Axial load frequency is twicl" thp natural frequency and the magni

tude is 50'lr of the static buckling load;

:3. Axial load frequency is equal to the natural frequency and the mag

nitude is 80CTr of the static buckling load;

4. Axial load frequency is equal to the natural frequency and the mag

nitude is 50rt,- of the static buckling load.

Understanding these four cases will improve our understanding ofthe system and

contribute to our ability to recognize general trends in the response ofthis struc-

ture. Just as the linear-elastic case served as a good starting point in trying to un-

derstand the significance of including nonlinear geometry in our formulation of

the problem, these test cases will help form the foundation of our understanding

of the significance of including nonlinear material properties.

Let us first examine the behavior of these four cases when the material re-

sponds elastically. Figure 28 shows the displacement versus time for these test

cases. Besides those differences mentioned above. all other parameters are the

same for each test case (i.e., there is no damping, each system starts from rest,

etc. ) Although the exact dependence of the response on the driving force ampli-

tude and frequency is not clear, one can observe some interesting facets ofbehav-

lOr regarding Figure 28. First, the number of beats increases as the axial load in

creases. Second, the number ofbeats increases when the applied frequency ofthe

axial load increases. The occurrence of more beats implies that the duration of an

individual beat decreases with increasing axial load magnitude and driving fre

qup.ncy. Hence, each individual beat builds up and dissipates more rapidly under
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Figure 29 • Shift and steady state amplitude after yielding

these conditions. This property is very important. Its significance will be ex-

plained below.

We can characterize the inelastic response ofthe system with thrl'l' quantiti€'s

- the maximum rotation, the dispLacement shift, and the steady state amplitude

after yil'lding occurs. The displacement shift and steady state amplitude arl' de

fined pictorially in Figure 29. Figure 30 also shows these two quantities but on

a plot of the spring moment versus the rotation using the Ramberg-Osgood mate

rial model. Although not shown. these values arl' defined the same way for the

elastoplastic model.

Figure 31 shows a comparison between the results obtained using the elastic

plastic material model and the Ramberg-Osgood material model. Results are

shown for two different hardening exponents. For n = 25, the Ramberg-Osgood

equation models a material with essentially no hardening. A plot of the stress ver

sus the strain looks almost like that of the elastic-plastic model with the exception

that the transition from the elastic state to the plastic state does not occur at a
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sharp corner (see Figure 32). For n = 9, the Ramberg-Osgood equation more accu

rately models a material that strain hardens. Figure 11 shows the response of a

material with a hardening exponent n = 9. The results for n = 25 have been in

cluded in Figure 31 in order to compare the results obtained using the elastoplas

tic model.

Ai; one can clearly see, when n =25, there is very good agreement between the

elastic-plastic model and the Ramberg-Osgood model. The slight differences be

tween the two are attributed to the fact that the transition from the elastic state

to the plastic state is much smoother for the Ramberg-Osgood material model.

The right hand portion of the figure is consistent with the model presented in

Chapter 2 to model a material that strain hardens (e.g., structural steel). As one

would expect, the results obtained from the elastic-plastic material model are

much different from those obtained using the Ramberg-Osgood model with hard

ening. Historically. the elastic-plastic constitutive relationship has been

employed because it is assumed that the elastic-plastic model c:onsermtiuely esti-
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mates the displacements the actual structure is likely to experience. Relative to

the elastic-plastic model, the real material will strain harden, and thus, will have

some reserve strength capacity that is not accounted for by the elastic-plastic

model. Accordingly, the real structure should experience smaller displacements

than those computed using the elastic-plastic model under the same loading

conditions. While this observation always holds true for monotonic loading condi

tions, it does not necessarily hold for the case of cyclic loads. One can clearly see

that these results are much different from the left hand portion oftbe figure.

The results have been plotted against the strain at which yielding occurs be

cause the computed response is most sensitive to small changes in this parameter.

A more in-depth discussion regarding the sensitivity of the computed results to

the yield strain is included below. In addition, the reason we see large jumps in

the data for the different displacement quantities is also considered below. For all

yield strains considered, the maximum displacement calculated with the Ram-
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berg-Osgood model is always greater thal1 that computed using the elastic-plastic

model. For the quantities ofdisplacement shift and steady state amplitude, some

times the elastic-plastic model gives a larger value and sometimes the Ramberg

Osgood model computes a greater value. Thus, based on these three criteria, it is

clear that the choice of material model greatly affects the computed response of

the structure. From the results presented above, the presence of the sharp corner

in the transition regions for the elastoplastic model does not lead to significantly

different behavior than for the case where this transition is smooth. However, the

presence of strain hardening does lead to significantly different behavior.

For this research, each of the variables associated with the physical structure

was assumed to be a parameter that could vary. Therefore, for any particular

analysis, it is necessary to define the parameters that describe the physical struc

ture (i.e., the elastic stiffness, the length of the column, the magnitude of the

mass, and the aKial load magnitude and frequency). Some of the parameters

associated with the inelastic material models though were fixed. For example, in

using the cyclic Ramberg-Osgood model, only two different hardening exponents

were considered - namely n = 9 and n = 25. Although it is possible for the pa

rameter n to take on other values, different values were not considered in this re

search. The only parameters for the inelastic material response that could vary

from analysis to analysis were the moment and rotation at wl!ich yielding occurs

(these two quantities are related by the initial elastic stiffness), the maximum al

lowable moment capacity, and the maximum allowable rotation of the material.

In this investigation, the ultimate moment and rotation capacities were set large

enough s -' that the response ofthe structure would not be limited by a failure of

the material.
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The system response clearly depends upon the choice ofparameters. Variation

ofeach ofthe parameters that describes the physical structure, however, changes

only the initial natural frequency ofthe system. Accordingly, it is possible to pre

dict the initial elastic response of the structure by knowing the relationship be

tween the external loads and the natural frequency of the system. Once yielding

occurs, results have shown that the most important factor controlling the re

sponse is the yield strength of the system. Again, since we are not modeling any

one material in particular, the yield strain is a parameter that is allowed to vary.

Because the analyses did not account for the possibility offailure ofthe material.

it is clear why the rotation at which yielding occurs is the most important parame

ter controlling the inelastic response of the structure.

intuitively, one might anticipate that the lower the yield strength (lfthe sys

tel 1, the greater the magnitude of response. Thus, given two systems with equal

st; ffness, one would expect that the system that yields first to experience a greater

rc tation or displacement. For both material models considered, however, it is in

u resting to note that the maximum response decreases with decreasing yield

strain. This result is the opposite of what one would expect under monotonic or

strtic loading conditions. For dynamic loadings with inelastic material response,

the maximum displacement increases with increasing yield strain. Therefore, we

see that information obtained from static loading conditions may not provide a

good indication of the dynamic stability properties of an inelastic system.

Figure 33 through Figure 40 compare the results for the four different test

cases considering different yield strengths and the Ramberg-Osgood material

model. The percentage ofthe yield strength plotted as the abscissa in these eight

figures is based upon the yield strength required to keep the system elastic when

the axial load is O.SPer .When the applied axial load magnitude is only O.5Per, the
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Figure 33 . Displacement shift as a function of yield strength

system does not require as much strength to remain elastic. Consequently, this

would explain why the system response for the case of the lower axial load levels

off at what appears to be a value less than that required for elastic response. Put

another way, the results have been normalized against the case where the axial

load is 0.8Per .

Looking at Figure 33 through Figure 40, we immediately notice the large

variability in the data. Furthermore, we see large jumps in the displacement shift

for relativply small differences in the yield strength of the system. Reexamining

Figure 28 may help to explain why this occurs. When the yield strength is less

than a certain value, yielding will occur before the displacement1'l have had a

chance to grow very large. However, ifthe yield strength is higher, the system will

remain elastic longer. Consequently, the displacement at the time ofyield will be

greater, thereby causing the displacement shift to be larger (see Fig-..lfe 41 l. This

effect is greatest at the beginnlllg portion of the beat when the rate of change of

the rotations is greatest. Toward the middle portion ofthe beat, the rate ofchange
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ofrotations is relatively small (the amplitude remains essentially unchanged over

this time period), and the differences in the displacement shift are much smaller.

The relatively flat portion of the beat corresponds directly to the relatively
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constant portion of the curves in Figure 33 through Figure 36. These results help

illustrate why the rate at which the beats build up and dissipate for the elastic

case is significant.
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Also, with few exceptions, the motion subsequent to yielding remains elastic.

For most of the cases considered, when yielding occurs, there is a large nonlinear

excursion followed by motion that remains bounded within the new yield surface
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without beating (Figure 29). Although there are some exceptions, this type ofre

sponse is the general trend. Therefore, we witness a steady state response after

yielding for much the same reason we did before when we considered the elastic

system with damping. Yielding of~hematerial dissipates the energy ofthe system

as does damping. Thus, the transient portion of the response no longer plays as
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important a role in the behavior ofthe system once yielding takes place. Further

more, after a large yield excursion, the nature ofthf> system changes, and the fre

quency of the axial load does not excite the system in the same way it did before

yielding occurred.

Another interesting facet of behavior we see in studying Figure 33 through

Figure 40 is that there does not appear to be an "almost elastic" system (see

Figure 42). That is, we see that the displacement shift and amplitude of the

steady state motion are large for values ofyield strength that are very close to the

strength required to prevent yielding. The reason we see such large displace

ments under these circumstances can best be explained from a total energy per

!lpective. Sun, Berg, and Hanson (1973) used this approach for their study of the

free vibration ofelastoplastic systems. Initially, based upon its properties, the sys

tem is capable ofdissipating a certain amount ofenergy. Systems that experience

large rotations are more efficient at capturing energy from the external forces. Os

cillations occur because of the exchange ofstrain energy and kinetic energy with
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a balance to total captured energy. Yielding dissipates captured energy. In the

case ot tIle "almost elastic" system. prior to yielding. there is a large build-up of

kinetic energy Once yielding occurs. the system can only dissipate energy in ac

cord with the energy available to dissIpate. Consequently. unlike before. the re

storing forces are not sufficient to arrest the motion of the system,

Now consider the system behavior for very small };eld strengths (e.g.

< 25r;· ,U,.) and an axial load magnitude of O.8P,., Thus. the main focus here is

to examme the differences in the behavior of the system for the followin~two situ

ations with all other properties being the same: (1) the frequency ofthe axial load

is twice the natural frequency; and 12) the frequency of the axial load IS equal to

the natural frequency. These frequencies correspond to the first two cntical re

gions of Figure 20. Figure 34 shows a dramatic difference in the behavior of the

system for these two cases. \\-ben the driving frequency is tWIce the natural fre

quency. if the yield strength of the system is continually lowered. one notes that

the displacement shift and the rotation of the system also become smaller and

smaller. Therefore, one could say that lowering the yield strength causes the sys

tem to tend toward a more favorable configuration. On the other hand. when the

driving frequency is equal to the natural frequency. the opposite effect occurs.

Thus. as the yield strength of the system is lowered, the displacement shift grows

and grows to a very large value. Consequently. one might say that lowering the

yield strength under these circumstances causes the system to tend toward a less

favorable configuration. What is quite peculiar about these results is that they do

not occur when the axial load magnitude is decreased to O.5Pcr (see Figure 35l.

That is. for either frequency considered. lowering the yield strength of the system

tends to decrease the magnitude of the rotation of the system. These observations
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alone give a good indication why it is so difficult to discern 'Crends in the behavior

of this system.

Another interesting observation worth notingis that for all four test cases con

sidered. the steady state amplitude following yielding in the spring. in general.

increases with increasing yield strength. Initially. at low yield strengths. the am

plitude is less than that for the elastic case. With increasing yield strength

though. the steady state amplitude continues to grow. and it eventually exceeds

the amplitude observed for the elastic case. Thus. provided any magnitude dis

placement shift can be tolerated. systems with yield strengths much lower than

that required to keep the system elastic will display steady state oscillations

smaller than the system would undergo if the spring did not yield. However. sys

tems with yield strengths of intermediate value will display steady state oscilla

tions that are larger in magnitude than those of the elastic case.

Lastly. another intriguing result to consider is that under some circum

stances. the magnitude ofthe axial load does not greatly affect the maximum re

sponse ofthe system. For other conditions though. it does seem to have an impor

tant effect. To illustrate, when the driving frequency is twice the natural

frequency. there is little difference in the size ofthe displacement shift for either

axial load magnitude considered (see Figure 33). This result contradicts our intu

ition concerning the relationship between displacement and 8Xlalload. Contrary

to this observation. when the driving frequency is equal to the natural frequency.

we see that the results are more in line with what is expected (see Figure 36). That

is. the rotations are smaller when the axial load is smaller.
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Dynamic Response with Base Excitation

In the beginning part oftms chapter, we discussed that even though the lin

ear-elastic model may not provide a good indication of the true structural re

sponse, it does furnish valuable insight regarding the nature of the system. Ana

lyzing the system with assumed linear-elastic behavior points out potential

regions of instability. Initially, if it is assumed that the lateral ground motion is

sinusoidal, the axial load is constant with time, and the system is undamped, then

the linear-elastic analysis indicates only one region of instability - the case in

which the frequency ofthe lateral ground motion is close to the natural frequency

of the structure. Of course, from Eq. (27), it is noted that the natural frequency

of the structure is dependent upon the axial load. Specifically. the natural fre

quency of the system is computed from the relationship

w = )_1(!i _p)
II me f (65)

Since the static buckling load occurs when the natural frequency ofthe system is

equal to zero, Eq. (65) confirms that PE = kif.

In the previous sections. for a sinusoidally varying axial load, we found that

the most important parameter affecting the dynamic stabiliiy properties of the

inelastic system is the value at which yieldingoccurs. Although other factors have

a strong influence on the computed results, it is the yield strength that is the most

influential. In this section ofthe chapter, we are interested in determining W lleth

er or not the results obtained for the pulsing axial load correspond to this different

load case oflateral base excitation Accordingly, we could go through the same pro

cedure as above for the other load case. Without needlessly including this prelimi

nary material, we find again that, for the case oflaterally base-excited structures,

the yield strength is the parameter for which small variations lead to significant
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changes in the computed response. The response ofthe SDOF model to a sinusoi

dallateral base excitation is summarized in Figure 43.

Similar to our previous results, Figure 43 indicates that the maximum dis

placement increases with increasing yield strength. Furthermore, these results

also show that, once yielding occurs, the magnitude ofthe axial load does not im

pact the results as greatly as it would for an elastic system. Thus, one may con

clude that high strength can be detrimental to the dynamic stability of the sys

tem, and it is more important to have greater ductility than greater strength.

When the system has a relatively large strength, the displacements become fairly

large before yielding occurs. It is the P-LJ effect of the axial loads acting through

these large displacements that leads to the dynamic instability. If the system is

allowed to yield earlier, then the displacements will remain small, and the system

will remain stable. From the results presented in Figure 43, we see that the na

ture of the response for the two different loading cases is similar, and the trends
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in the results described previously also hold for the case oflaterally base-excited

systems.

Stability of Systems with 2·DOF

Although the single degree-of-freedom system that has been considered u-;

until this point has provided us with some insight into dynamic stability prob

lems. the extension to multiple degree-of-freedom problems is essential. All real

structural systems consist of many degrees of freedom. and it is important to

study the dynamic stability characteristics of such systems.

In the preceding chapter. the governing equations of motion for the 2-DOF

nodel were presented. Recall that the terms in the equations of motion for each

mass are nonlinear and coupled. Also, note that the damping matrix is non-zero

even in the absence ofvelocity proportional damping. Furthennore, the mass ma

trix is not diagonal as it normally would be in the case of the linearized analysis.

L'nlike the typical linear-elastic analysis of MDOF systems. the system here can

not be easily uncoupled into the solution ofof two SDOF systems. Because of the

general form ofthe governing differential equations. previous studies into the be

havior ofMDOF systems have been sparse (Kalathas and Kounadis 1991),

In order to gain further insight on the dyna.nic stability properties of this

2-DOF system. four basic situations are considered: (1) the bottom spring is stiffer

than the top spring; (2) the top spring is stiffer than the bottom spring; (3) hoth

springs have equal stiffness; and (4) the spring properties vary so that };elding

in both springs occurs at approximately the same time. Clearly, each one ofthese

situations comprises many individual examples. The number of free parameters

for this problem is quite large. Including an additional member with an added dE'

gree-offreedom not only introduces twice the number of variables, but it more

87



than doubles the complexity of the problem because one must also consider vari

ous combinations of these parameters. Thus, in order to quantitatively describe

which parameters and which combination of parameters most significantly im

pact the results as we did for the SDOF system, an excessively large number of

ar.alyses would be required. In order to avoid this situation, in this section, we will

study the response of the MDOF structure by means of a few examples that fall

into each of the four situations described above. Of course, this will just give us

an overall indication or a qualitative indication ofthe behavior ofthis 2-DOF mod

el.

Bottom .pring differ than tlte top spring. Certainly, if the bottom spring

is much stiffer than the top spring, then, in the limit as the stiffness of the bottom

spring approaches infinity, the top member responds like the SDOF system stu

died earlier. Therefore, under these circumstances, results obtained previously

can be used to ascertain the stability characteristics of the system. Figure 44

shows the response ofthe top member ofthe 2-DOF system for different ratios of

spring stiffness between the top and bottom springs. The response is shown for

a sinusoidal ground motion and a constant axial load on the top member only.

Aside from these differences, all t~therparameters were assumed equal for the two

members.

Certainly, Figure 44 intiicates that when the spring stiffness of the bottom

spring is much larger than that ofthe top spring, the response of the top member

is very well approximated as a SDOF system. Even as the relative difference in

spring stiffness between the two members becomes smaller, the SDOF response

gives a reasonably good estimate of the response of the top member. Physically,

as the stiffnesses ofeach ofthe springs become more similar, we would not expect

the MDOF system to behave identically like the SDOF system. When the stiffness
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ofthe lower spring is decreased, the bottom member begiIUI to undergo larger dis

placements. Thus, because the motion ofthe two members is coupled, the inertia

of the lower member has a greater impact on the top member. Even though the

responses are not exact, both systems realize the same pathway to instability.

Thus, under these circumstances, the SDOF system gives a good indication ofthe

type of response we can expect for the MDOF system.
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Top spring stiffer than the bottom spring. Similarly to the previous case,

in the limit as the stiffness of the top spring approaches infinity, then> will be no

relative rotation between the top and bottom members. Consequently. the re

sponse of the system shl'uld be well approximated by the SDOF system studied

earlier. In making this comparison. the height ofboth columns for the MDOF case

should be equal to the height ofthe the column for the SDOF system. Additionally.

in order for the MDOF system to behave exactly as the SDOF system, the mass
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on top of the lower column must be set equal to zero. Otherwise, we will not be

modeling the SDOF previously studied. Instead, we will be modeling a SDOF sys

tem that has a mass both at the top ofthe column and at the mid-height. Figure 45

shows a comparison of the responses for assuming that the lower mass is equal

to zero and for assuming that the lower mass is equal to the top mass. Because

assuming both masses are equal is a more realistic assumption, it is appropriate

to develop an alternate method for relating the results with the SDOF system. For

the sake ofcomparison, it is reasonable to assume that an "equivalent" SnOF sys

tem would be one that has the same total mass as the the 2-DOF system with a

column height that is equal to the height of the location of the center of mass for

the 2-DOF system (see Figure 46). The responses of the system for different rela

tive stiffnesses between the top spring and bottom spring are shown in Figure 47.

ReaISy"~m

P(t)

!
m

"Equwakn'" Sydem

P(tJ

a-x,
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The results are compared with the equilJalent SOOF system. Once again, even

though the responses are not exact, both systems realize the same pathway to in

stability. Thus, when the top spring is stiffer than the bottom spring, the SOOF

system provides valuable insight to the type of behavior we can expect for the

MDOF system.

Botla membe,.. are llu! .came. When both members share identical proper

ties, then the structure tnlly responds as a multi-degree-of-freedom system. Un-
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Figtin' 48 • Elastic response of MOOF system with identical members

der these circumstances, it may be difficult for the SDOF model to accurately pre

dict the response of the MDOF structure. Because of this difficulty, it may be

helpful to first look at the elastic response of the 2-DOF model. Figure 48 shows

the elastic response of the system. In Figure 48, the dashed lines correspond to

the rotation of the top member, and the solid lines correspond to the rotation of

the bottom member. As one would expect, the elastic response increases with in

creasing axial load, The important thing to note concerning Figure 48 is that the

maximum response of the top member remains bound vr/ithin the response of the

lower member. Therefore, the bottom member dominates the response. Compar

ing these results to the linearized case, this implies that the first mode or lower

energy mode controls the dynamic response of the system.

The maximum response of the MDOF system including nonlinear material

properties is shown in Figure 49. As the figure clearly shows, even for the inelastic
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Fipre 49 • Inelutie re.poue of MDOF system with identical members

system, the bottom member dominates the response. This is true not only for the

case in which the bottom spring yields and the top spring remains elastIc, but it

also holds for the case in which both springs yield. These results hold only when

the top member yields well after the bottom member. The case in which both

springs yield at approximately the same time is discussed below. Like the elastic

case, Figure 49 indicates tl.at the first mode or lower energy mode also controls

the dynamic stability characteristics ofthe inelastic system. Furthermore, the re

sults are very similar to those obtained earlier for the SDOF system. Thus, once

again, the results obtained from the SDOF system can be used to predict the na

ture of the response of the MDOF system when both members are the same.

To further illustrate, the typical elastic response ofthe 2-DOF system is shown

in Figure 50. The system is excited by a sinusoidal ground motion and a constant

axial load. As Figure 50 clearly shows, the system responds primarily in the first
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Figure 50 • Typical elastic response for 2-DOF system with identical elements

mode. Accordingly, the rotation in the lower spring always exceeds the rotation

of the top spring. Consequently, if both members have the same yield strength,

then the bottom spring will yield first. Should the bottom spring yield, then this

helps dissipate energy. As a result, the elastic response of the top member dimi

nishes. This phenomenon is illustrated in Figure 51. Under these circumstances,

the stability of the system is governed by the response of the bottom member.

Even ifthe top member also yields. provid.ed the yield strength is not so small that

both members yield at nearly the same time, the 2-DOF system realizes the same

pathway to instability as the SDOF system. A comparison ofthe results between

the top and bottom members ofthe 2-DOF system is illustrated in Figure 52. Con

sequently, under these circumstances. our knowledge of the stability properties

of the SDOF system can be used to predict the nature of the response for the

2-DOF system.

Both Springs Yield at Approximately the Same Time. Both springs yield-

ing at approximately the same time can occur in two different ways. First, if both
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may arise if the yield strength of the bottom member is relat.ively high and the

yield strength ofthe top member is relatively low. Regardless ofhow the situation

develops, the nature of the response is the same. Under these circumstances, the

results from the SDOF response cannot be used to accurately predict the stability

characteristics of the MDOF system because the response of the bottom member

no longer controls the response of the entire system. For certain parameters, it

is possible that the top member will undergo larger rotations than the bottom

member. In addition. the system may also vibrate predominantly in the second

mode. Consequently, the results obtained from the SDOF model no longer apply.

To illustrate these phenomena, we will first consider a case in which the top

member response is greater than that of the bottom member. For this example,

the yield strength ofboth members is relatively small, and yielding ofboth springs

occurs at approximately the same time. Figure 53 shows the response of such a

system. Clearly, the top member response is larger and not limited by the re-
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sponse ofthe bottom member. However, this situation does not always hold when

both springs yield at nearly the same time. For other parameten, the response

ofthe bottom member may be larger than that ofthe top member. Thus, instabili

ty in the 2-DOF system may be attributable to the top member, the bottom mem

ber, or both members when each spring yields at roughly the same time. These

patterns ofbehavior are shown in Figure 54. Figure 55, and Figure 56 respective

ly.

One last phenomenon worth noting is, after yielding occurs in both springs,

the system may oscillate primarilyin the second mode. For the previous eases, the

response ofthe bottom member was always in phase with the response ofthe top

member. Figure 57 demonstrates that in-phase motion between the two members

does not necessarily hold for the case in which the springs yield at nearly the same

time.
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To summarize, for the case in which both springs yield at approximately the

same time, various new patterns in behavior were observed. The type ofbehavior

realized by the system is highly dependent upon the parameters of the system.

Unfortunately, no clear relationship could be found between the parameters and

the computed response. Furthermore, some ofthe conclusions reached earlier for

the SDOF system do not hold for this particular case. For example, for the SDOF

system, it was observed that lowering the yield strength ofthe system contributed

to increased dynamic stability. This does not always hold for the case in which

both springs yield at approximately the same time. Additionally, other pathways

to instability exist under these conditions. That is, the top member may become

dynamically unstable by itself, the bottom member may become dynamically un

stable by itself, or both members may become unstable due to the coupling oftheir

motions. Therefore, we can conclude from these results that we cannot use the re-

5.0..--------------------.
-- Bottom Member Response

- - Top Member Response

2.5
~

-a
III

-=s::
0.0

,
.~...
III ,

~
,

-2.5

-50 L.-__---L -.l.. .......L.. --L... ...J

o W W M ~ W
Time (sec)

Ficure 57 - ~·fotioD betweea meaaben out orphue after both
memben yield a& &he um. time um.. &be RamberI.()qood model

and two identicalmemben

102



sponse from the SDOF model to effectively predict the response of the 2-DOF sys

tem when both springs yield at the same time. However. for the other cases consid

ered, the SDOF model can accurately indicate the dynamic stability

characteristics of the MDOF system.

Stability of Systems Prone to Damage

Compelling e\;dence exists to suggest that, with regard to arresting the poten

tial for dynamic instability, damage is not necessarily bad. In fact, under dynamic

excitation, dama;~e of the system will help dissipate energy and may lessen the

response. However, once damage occurs. the structure will not be able to dissipate

the same amount of energy it could prior to the damaging e-,ent. If there is too

much damage, the system will collapse. Collapse of a damaged system is shown

in Figure 58. The system experiences so much damage that it simply can no long

er support the axial load. The general trend of the results that include damage

in the constitutive model is summed up in the following: the system that experi

ences damage will initially experience larger amplitude motion than for the case

in which damage is not considered. Should the extent of the damage not be large

enough to cause the system to become unstable. then the system that includes

damage will undergo a motion that diminishes in comparison to the model with

out damage, and the displacements will remain small with time. If, however, the

duration of the motion is long, extensive damage may lead to a situation in which

the system becomes unstable due to a loss of restoring force. Consequently. the

system becomes unstable in the sense that it cannot carry the loads, even statical

ly, that it was originally designed to support.

To illustrate the dramatic effect that including damage can have on the com

puted results. consider Figure 59 and Figure 60. Immediately, one can recognize
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that both the displacement shift and the steady state amplitude of the response

after yielding are much smaller for the case in which damage has been included

in the material model. Again, one should not be misled into believing that damage
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is always beneficial. For this particular plot, the motion was only considered while

the external force was exciting the system, and the amount of damage was not

sufficient to cause failure. Varying the system parameters could lead to very dif

ferent results. For example, consider the case where the system accumulates a

great deal of damage in response to the external exciting forces. Figure 58 shows

the variation ofdisplacement \\;th time for the system under such conditions. The

system accrues so much damage early on that it no longer has the ability to dissi

pate the input energy. As a result, dynamic instability is detected for this case. An

interesting thing happens though if the system does not accumulate damage as

quickly as that shown in Figure 58. If the values of Q andj1 in the damage model

are smaller, then the results are much different. To demonstrate, reconsider the

system depicted in Figure 58. Keeping all system properties the same except for

reducing the values of a and fl. one would observe the response shown in

Figure 61 Thus, depending on the nature of the system, similar loading condi-

p = a.8PO' and Q = 2.0wn
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Figure 60 - ComparisoD of damage and DO damage models
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tions may produce two entirely different responses. Clearly, the response of the

system depends greatly upon the parameters a and p.

It is also interesting to consider the response ofthe structure once the ground

motion has ceased. This will provide some insight as to how a system may behave

after an earthquake. For example, even though the damaged system ofFigure 61

remains stable during the ground excitation, it may be possible for the structure

to become unstable once the lateral base motion has ended. If the external excit-

ing force stops when the system is in an unfavorable configuration, it is possible

for the system to collapse even though it is perfectly stable during the excitation.

The results again show that the parameters a and pplaya crucial role on the be

havior realized by the system. Figure 62 shows a system that is stable while the

exciting force is acting but becomes unstable after the exciting force stops (the ex

citing force stops at t = 50 sec). Once again, if the values afthe damage parame

ters a andp are decreased, the system will remain stable after the ground motion

0.025

0.015
No Damage Model
Damage Model

"0
as
~

0.005I::
.~..
as....
~ -0.005

-0.015

-0.025 L..- '--__--' --' --'-:-__-:'

o W W ~ ~ ~

Time (sec)
Fipre 81 . Model comp...uon with reduced rupoIIM! from duaap moclel

106



No Damage Model
Damage Model

0.025
1

0.015

"'C

i:: 0.005
c:

.S:...
~ ',/.. '~..~...~..>..,,:,.. v".':• •./"o••v...'--..'"'.."'.. '-./"'..-I'v"'-- --...-.~~~_-i
~

7560
-0.025 .....1 -----'--------_-"-- --'- __

o 15 30 45
Time (sec)

Figure 62 . Model comparison with damaged system becoming unstable
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ends. For this particular system, the steady state oscillation will be smaller in am

plitude but greater in displacement shift than the model without damage (see

Figure 63). The response after the dynamic excitation stops will depend upon the

axial load magnitude. When the axial load is large, the steady state amplitude

and displacement shift are greater for the damage model after the ground motion

ends. This result is shown in Figure 63. The contrary is observed when the axial

load is small (see Figure 64). Thus, we again see how sensitive the computed re

sponse and stability characteristics are to including damage in the constitutive

relationship.

Based upon the behavior illustrated in the previous plots, it is clear that the

system can respond in a variety ofways depending upon the rate at which damage

accumulates in the system. The rate of damage accumulation is entirely depen

dent upon the magnitude of the parameters a and p. Thus, the role of the damage

model and its effects on the stability of the system can be observed for different
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Figure 65 - Regions or instability for a sinusoidal lateral base motion
with frequency equal to w,.

act for a duration of 30 seconds, but the motion of the system is monitored for 50

seconds in order to determine if instability occurs after the ground motion stops.
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will be the new stability limit. C;course, the response ofthe oscillator will depend

upon the frequency of the lateral base motion. For a lateral base frequency of

0.75wn , the results are much different and much more interesting. The stability

regions for the this case are shown in Figure 66. From this figure, it is easy to see

that the mere presence ofdamage does not necessarily lead to instability. The rate

at which the damage accumulates has a tremendous impact on the dynamic sta

bility characte:.-istics of the system. Finally, the regions of stability for a lateral

base motion acting at a frequency equal to 1.07W n are shown in Figure 67.

In order to understand why we observe the dynamic stability characteristics

illustrated by the previous plots, it is useful to study the response for some partic

ular cases. The response of the structure when no damage accumulation is in

cluded in the material model is shown in Figure 68. The dashed horizontal lines

in Figure 68 correspond to a rotation of 6 = :tr/2, and the vertical line at t = 30

sec is a reminder that the sinusoidal ground motion ends at this time. Figure 68
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clearly shows that the motion ofthe system is stable, both in a dynamic sense dur

ing the motion and in a static sense after the ground motion ceases.
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Figure 69 - Dynamic instability under sinusoidal lateral

base excitation of amplitude 0.2 g
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One peculiarity we see in studying the stability regions, especially Figure 66.

is regions of stability between regions of instability. For smaller values of a and

/3 that correspond to the first region of instability, the system becomes unstable

fairly late in the response (i.e., for t > 20 sec). Thus, just enough damage occurs

in the system such that shortly before the ground motion ends, the system be

comes unstable in a dynamic sense (see Figure 69). For slightly larger values of

a and /3. the motion of the system is stable. Figure 70 shows instability after the

ground motion stops acting. Ifthe values ofa and pare increased further, the sys

tem becomes unstable in a dynamic sense. However, under these conditions. the

motion ofthe system becomes unstable earlier than the first region ofinstability

(see Figure 71). The reason we see this pattern of behavior is due to the dynamic

nature of the problem, the nature of the dynamic loading, and the way in which

the stiffness of the system vanes in response to the loads.

When a and pare large, dynamic instability occurs because the system under

goes so much damage that it is incapable ofsupporting loads ofany kind. For the
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first region of dynamic instability. the pathway to instability is different. The

damage parameters for this case are such that the stiffness of the system decays.

but not particularly fast. For the sinusoidal ground motIOn. the s~'stem is excIted

primarily by one particular dri\;ng frequency - namely. the initial natural fre

quency of the linear-elastic system. Once .\;elding occurs and the system begins

to accum ulate damage. the effective period of the structure. and. hence. the fre-

quency that most excites the structt. 'e changes. Since the stiffness of the :,ystem

IS changing with the load history and damage accumulativn. the pffecti\'e period

of the system must also change. If the damage parameters happen to fall into the

first reglOn of dynamic lOstability. the stiffness of the system is altt.>rl'd just

enough that the constant-frequency ground motion still excites the system. and

the displacements grow. As the displacements grow. the system experiences more

damage. and the damaged structure cannot support the axial load of the syst~m

once the displacements are large. For the region of stability between the two re-

gions of dynamIC instability, the damage that occurs is such that the stiffness of

\' \ l \ I
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Figure 71 • Dynamic iDlitabUity for second I't.'gion of iDlitability
under sinullOidailaterai bue excitation of amplitude 0.2 R
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the system is altered earlyenough in the response in a way that the displacements

have not had a chance to grow very large, but the stiffness of the system is differ

ent enough so that it is no longer excited by the frequency of the ground motion.

Therefore, as these results indicate, the rate ofdamage accumulation and the na

ture ofthe dynamic loads can greatly affect the behavior and stability properties

of this system.

Summary and Conclusions

Certainly, the inclusion ofgeometric and material nonlinearity has a tremen

dous impact on the analysis results for the model considered in this study. The re

sults have shown that this system is capable ofdisplaying vt!ry complex behavior.

In order to apply the results we have obtained to real structures, it is clear that

we need a thorough understanding of MDOF systems. Unfortunately, merely in

cluding one additional degree-of-freedom greatly complicates the analysis The

problem is not only made more difficult due to the fact that we have twice as many

free parameters as the SOOF system, but we must also be concerned with the

combination of these parameters. Further complicating the problem is the form

of the governing differential equations. If we account for large rotations and in

elastic material response, then the governing differential equations are highly

nonlinear and coupled. Accordingly, traditional solution methods cannot be used

to obtain the response.

Given these complications, it would appear that we would have little success

in predicting the response of the 2-00F system. However, our analyses showed

otherwise. Under most circumstances, we can use the results from the SDOF

mod,"l to accurately assess th'! stability properties and nature ofthe response for

the 2·DOF system. Only for the case in which both springs yield at approximately
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the same time does this condition not hold. Fortunately, this is a situation that

is seldom encountered. In order to have both springs yield at approximately the

same time, either both springs have to have a very small yield strength, or the

springs need to be ofmuch different properties. Neither ofthese scenarios is real

istic in an actual structure. Therefc,re, in general, the response ofa MDOF system

can be approximated reasonably well by a SDOF system, which, from a physical

point of view, makes good sense. A good example to consider is the response of a

cantilever column. For the cantilever column, the maximum moment in the sec

tion occurs at the fixed end. For inelastic material modeling under these circum

stances, it is reasonable to assume the formation of a plastic hinge at the base.

Thus, based on this approximation ofthe plastic hinge, a SDOF oscillator like the

one considered in detail in this chapter can model the continuos cantilever col

umn. Details for making this comparison are given in Chapter 4.

Inclusion of a damage mechanism in the constitutive relationships can lead

to very interesting results. In fact, the way in which damage accumulates directly

controls the dynamic stability characteristics of a damage-prone system. As the

results of this chapter have shown, the reduction in stiffness caused by damage

does not necessarily lead to dynamic instability. Under certain circumstances, in

clusion ofthe damage mechanism may actually reduce the response computed as

compared to the case when damage is not included in the constitutive relation

ship. What is interesting about the results obtained in this study is that many are

counter-intuitive and contradict the results one would obtain under static or

monotonic loading conditions. From the findings presented in this chapter, it is

clear that additional parameters are needed to characterize the dynamic stability

properties ofa damage-prone system over those needed to characterize the static

stability properties.
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4
Application to Earthquake Engineering

All things have second birth;

The earthquake is not satisfied once.

- William Wordsworth

Before seeing how some of the results from the previous chapter may be ap

plied to seismic engineering problems, it is important to understand the current

philosophy behind the design of structures to resist earthquake loadings. For

earthquakes considered to be small, the strength ofthe structure should be large

enough that the building remains safe and stable without experiencing any dam

age. For a moderately sized earthquake, it is considered acceptable ifthe building

experiences some damage provided this damage is limited to non-structural ele

ments. For example, yielding ofthe structural steel should not occur, but cracking

ofplaster walls may take place. Under very large seismic motions, the system will

likely experience some structural damage in dissipating the energy of the earth

quake. Thus, it is fully expected that steel will yield and that concrete will crack

during a very strong ground motion. The major concern is that even though the

structural system has been damaged, it should not collapse. The structure must

remain safe after the largest ofearthquakes. Otherwise, there exists a great p0

tential for the loss ofhuman life. This philoaophy forms the basis ofbuilding code

provisions regarding the design of structures to resist earthquakes.
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There is good reason why structures are designed this way. If structures were

designed to resist elastically the forces that arise from an earthquake, then in cer

tain areas ofhigh seismicity, designers would have to include a lateral force resist

ing capability equal to or larger than the weight of the structure itself. Since it is

customarily assumed that the design life of most structures is no more than 50

years, and since the likelihood ofoccurrence of an extremely large earthquake is

small, it would be prohibitively expensive to require that structures be built to

elastically withstand such large earthquake forces.

The building owner, of course, must weigh this approach against the cost of

repairing the structure in the event that a large earthquake actually does occur.

Under some circumstances, it may be mCr'e cost effective to design the structure

in such a way that even a severe earthquake will not damage the structure so

much that it is Incapable ofmeeting its original design intent. For example, in the

manufacturing of computer chips, having the production line shut down may

equate to millions ofdollars lost, and the owner ofsuch a facility may find it a wise

investment to guard against this possibility. In addition, some structures are con

sidered to be so essential that they must remain fully operational even after the

largest ofearthquake. Examples ofsuch structures ioclude hospitals and nuclear

power plants. In an attempt to address some of the issues of allowable damage

versus initial cost, new philosophies have emerged regarding the design of seis

mic-resistant structures. These new approaches try to optimize the cost of the

structure taking such factors as performance and acceptable level ofdamage into

consideration.

The procedure most often used for designing structures to resist earthquake

forces is the Equivalent Lateral Force (ELF) method (UBe 1994, FEMA 1992).

With the ELF method, lateral forces are applied statically to the structure to ac-
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count for the earthquake motion. In using this method, the dynamic response of

the structure need not be computed. Furthermore, when using the ELF proce

dure, code requirements are satisfied ifthe structure can elastically withstand the

statically applied lateral forces. According to the code provisions, even though

yielding may take place during the actual earthquake, the structure will remain

stable and capable ofsupporting the gravity loads if it can adequately resist these

lateral forces. The code, therefore, does not require a nonlinear analysis for de

sign. Thus, ifone is designing a steel column to resist seismic loads, the stability

of the column is based upon its ability to resist the lateral and vertical loads with

out directly accounting for the fact that the loads are actually varying with time

and the structure is responding dynamically. Analytical results from the previous

chapter have shown that, under certain circumstances, the results obtained from

static analyses do not give a good indication of the dynamic stability properties

ofa mechanical system. Consequently, understanding how this finding ~orrelates

to the current seismic design procedure is a problem that warrants special consid

eration.

Currently, earthquake resistant design procedures incorporate the concept of

damage simply by means ofa ductility factor. The ductility factor is defined as the

ratio of the maximum displacement to the yield displacement. The advantage to

using such a measure is its simplicity. Incorporating this value into the design,

in effect, attempts to account for the nonlinear material behavior the structure

is likely to experience during the course of an earthquake. The ductility factor

theory is based on the assumption of equality between the maximum displace

ments of tWD SDOF syst.ems - one having an purely linear-elastic behavior, the

other having an elastic-perfectly-plastic one (Newmark and Hall 1982). Use ofthe

ductility factor, though, has received a great deal ofcriticism. The main thrust of
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this criticism is that the design ofthe structure is based on a single value. Hence.

there is no accounting for the duration and frequency content of the dynamic load

ing when the ductility factor is used by itself. Furthermore. it is based upon a sim

ple elastic-perfectly-plastic material model. The underlying hypothesis ofthe duc

tility factor approach loses its validity in both the case of very stiff and very

flexible structures (McCabe and Hall 1992). Proper use of the method implicitly

assumes structural regularity and a global collapse mechanism lBalio and Cash

glioni 1994).

Other meas ures have been suggested that better account for damage than the

ductility factor (McCabe and Hall 1992, Balio and Castiglioni 1994, Castiglioni

and Loas 1992. Fajifar 1992, Loh and Ho 1990. Park, Ang, and Wen 1984). Some

of these measures are modified forms of the ductility factor. For example, the cu

mulative displacement ductility index (Loh and Ho 1990), which is simply the sum

of all absolute inelastic deformations normalized by the yield strain, accounts for

damage that results from cycles of inelastic deformation. Most other measures

that have been introduced incorporate the energy absorbed by the structure into

the damage model. Many aspects oflow cycle fatigue theory lend credibility to this

approach. Furthermore, results from the previous chapter for the sinusoidally va

rying ground acceleration have shown that the dynamic stability characteristics

ofa system depend strongly upon the hysteretic energy dissipated through inelas

tic material response. Therefore, a damage model that is based upon the displace

ment ductility and the energy dissipated may be better able to model damage dur

ing an earthquake than a model that depends solely on the displacement ductility.

An example ofa damage model that includes a dependence upon the hysteretic

energy dissipated is the McCabe and Hall (992) model. McCabe and Hall (1992)

suggest a damage measure that depends quadratically upon the dissipated ener·
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gy. This quadratic formulation, according to McCabe and Hall, agrees more close

ly to test results when many varying amplitudes ofplastic strain are involved. Re

sults from this study are based upon an assumed elastoplastic material response.

Another model that is used quite frequently is the Park and Ang (Park, Ang, and

Wen 1984) damage model. This model takes both displacement ductility and hys

teretic energy dissipated into account for determining the extent ofdamage. This

model has received much validation as to its accuracy by many researchers. In

fact, the damage model presented in Chapter 2 is a modified form ofthe Park and

Ang model.

Comparison with Current NEHRP Design Provisions

Perhaps one of the best ways to evaluate the findings presented in this re

search is to study the dynamic response ofa structure designed in accord with the

current NEHRP (FEMA 1992) design provisions. In doing so, we will simply de

sign the SDOF system presented in the last chapter in accord with the ELF proce

dure. Based upon this design, we will evaluate the dynamic performance of the

structure in response to two separate earthquake motions, and we will determine

the role of damage accumulation on the dynamic stability characteristics of the

system. Following the presentation of the dynamic analyses, interpretation of

how these results may apply to real, MDOF systems is considered.

In comparing the results ofour analyses ofthe SooF system with the NEHRP

code provisions, it is important to recognize some inherent limitations of this ap

proach. The NEHRP provisions have been developed based upon our experiences

regarding the performance ofactual structures to previous earthquakes. Though

a SooF model will give us insight into the behavior of real structures, a SDOF

model cannot include all the features of a real building. Unlike our model, real
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structures are at least slightly damped and are composed of many elements. The

system we will be studying neglects velocity proportional damping because we are

only considering a system that yields, and. in the inelastic response ofstructures.

the amount ofenergy dissipated through velocity proportional damping is negligi

ble compared to the amount of energy dissipated through inelastic material re

sponse. Damping in a real structure. however. may be important in that it may

reduce the response so that the material never yields. Thus, for the sake of these

analyses. the NEHRP provisions are being used as a guideline for design. and the

results are not necessarily a reflection on the adequacy of the code equations

Rather. we are trying to determine whether or not the philosophy ofa static design

procedure is appropriate under seismic excitations.

SDOF System Example

Static Design using ELF Method. For this example, the SDOF system stu

died in the preceding chapter is designed in accord with the current NEHRP de

sign provisions using the ELF procedure To begin, we first need to determine the

base shear. The base shear depends upon the soil conditions at the site. the type

ofstructure and structural system incorporated. the importance of the structure.

and the fundamental period ofthe structure. Mathematically,

v""c,w (66)

where C, is the seismic design coefficient. and W is the total dead load ofthe struc

ture. According to the code, our system is an inverted pendulum type structure.

This means that we have a structure that has a large portion of the mass concen

trated at the top, and. thus, has essentially one degree-of-freedom. Accordingly.

it is appropriate to assume that the axial load ofthe column is due entirely to dead

load.
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The seismic design coefficient (Cs), which depends upon the fundamental peri

0d of the structure, is determined from the followmg fonnula:

C - 1.2A~ 2·5Aa
s - RT2/3 :::;-r (67)

where A v is the coefficient representing effective peak velocity-related accelera

tion, A a is the coefficient representing effective peak acceleration, S is t.he coeffi

cient for soil profile characteristics, R is the response modification factor for the

type of structural system, and T is the fundamental period of the structure. Ac

cording to the NEHRP provisions, the natural period can be estimated usi.ng thE!

code equation, or the code allows us to compute the natural period exactly. The

fundamental period ofthe SDOF structure can be computed exactly from the rela

tionship

(68)

The axial load P is simply the total dead load or total weight ofthe structure. Us

ing the NEHRP guidelines, the governing load case for this model is

(69)

where QD is the dead load effect due to the axial load, and QE is the laterally ap

plied earthquake load effect. For the design ofsteel structures, the NEHRP code

incorporates the AISC LRFD design procedure with some slight modifications.

Therefore, once the base shear has been calculated, the AISC LRFD code is used

to complete the design.
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Table 1 . NEHRP Coefficients and Section Properties

E:campk

Driff Limit S R I CD h k
I

0.015 h 1.5 25 1
~.5 15 ft 300.000 kItI

Per -,\. Aa i V T W

:20.000.0 kip 04 0.4 I 120 kip 0.529 sec 300 kip

Through trial and error, it was determmed that in order for the structure to

satisfy the code requirements. the axial load of the system must be small. The rea

son why the load must be small il; that the earthquake load contributes slgmfi

cantly to the overturning or stability of the cantilever column. For this example.

it was assumed that the axial load of the structure was only = 1.5'!i ofthe static

buckling load. or that W = Qp = 300 kips. The system parameters for this ex

ample are summed up in Table 1. With the axial load known, we can determine

the period of the structure. Using Eq. (68), the period of the structure is given as

T == --;::===2:=:l===== = 0.53 sec
/,300,000)(12113861) .1861

V 30011180'" - 180

From Eq. (67). the value Cs is calculated as follows:

0.2)(0.4)(1.5) = 044 > 2·5Aa = C = /2.5)(0.4) = 04
(2.5)(0.5294)2,'3' R< (2.5) .

Finally. Eq. (66) tells us that the base shear is

V = C.W = (0.4)(300) = 120 kips.

~ow that the base shear is known, the NEHRP provisions allow the structure

to be designed using the AISC LRFD provisions. For the load combination shown

in Eq. (69), the factored axial load is Pu = 1.3QD = 390 kips, and the lateral

earthquake load is QE = 120 kips. The adequacy of the column is verified by its

compliance with the controlling interaction equation. Th verify the interaction
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equation, we must calculate the factored axial load and the amplified moment

from the earthquake load. The controlling interaction equation is based upon the

level of axial load in the column. Since

;;n = (0.85~~g, 000) = 0.018 < 0.15

the governing interaction equation is

(701

According to the specification, the required flexural strength is determined as fol

lows:

(71)

where M nt is the required flexural strength in the member assuming there is no

lateral translation ofthe frame, Mit is the required flexural strength in a member

as a result oflateral translation ofthe frame only, and Bland B 2are amplification

factors. For this example, it is assumed that the the flexural resistance is prOVided

completely by the rotational spring at the bottom. The column itself is rigid. Ac

cordingly, when there is no lateral translation of the frame, no moment is devel

oped in the spring, and Mnt is zero. When lateral translation does occur, a moment

is developed in the rotational spring, and we must determine the amplification

factor B2. The code presents two different formulas to calculate B2. The formula

used in this example is

B - 1
2 - 1 XP.-yp;
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where J;Pu is the required axial load strength for all columns in a story, and J;Pe

is the sum ofthe critical loads in a story for the case where joint translation is per

mitted. Thus, for tms example

1.015

Even if we assume that the maximum moment that this structure can support is

the yield moment. then the interaction equation is

(300)\1.3) ~ l1201(15)\1.015) = 029 <: 100 ==- OK
210.85)(20.000)· 0.9(7200) . ~.

Therefore. according to the code, this column has adequate strength to safely

carry the applied loads. The column must also satisfy certain serviceability crite

ria including a maximum drift criterion. We can calculate the rotation in the

spring by summing moments about the base because we know the relationship

between rotation and moment for the elastic spring. Doing so, we determine a tip

deflection of 1.08 in. The NEHRP code utilizes the following drift criterion:

(73)

where 6% is the calculated inelastic deflection, Cd is the deflection amplification

factor (based on properties of the structural system). bu is the deflection deter

mined by elastic analysis. and hsr is the story height. Using Eq. (73), the inelastic

deformation is calculated as

(2.5)( 1.08) = 2.7 in < dallOlmble = OK.

Finally, the code requires a check to determine ifwe need to consider P-.J ef

fects. P-,1 effects need not be considered when the stability factor 0 < 0.10. The

stability factor is defined as
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(74)

where P % is the total vertical design load above level x (for the purposes of these

calculations, factored loads need not be considered), .1 is the design story drift oc

curring along with V", and V" is the seismic shear force. Accordingly,

(300)(1.08)
(120)(180)(2.5) = 0.006 < 0.10 ~ OK.

Thus. we have just verified the adequacy of this design by the current NEHRP

provisions. Again, in order to satisfy the code provisions, only a very small axial

load is pennitted.

DyIUUftie Anoly.e•. We are now ready to evaluate the dynamic performance

of the structure designed statically in accord with ELF procedure of the code. In

doing so, two separate earthquake records are considered - EI Centro and Mexico

City. The N-S component of the 1940 Imperial Valley earthquake, El Centro sta·

tion ground accelerogram is shown in Figure 72. The 1985 Mexico City ground

motion, E-W component measured at the SCTl station is given in Figure 73.

The response ofthe system to the EI Centro earthquake is shown in Figure 74

when no damage is included in the constitutive model. The rotations have been

plotted between +2 and -2 because we are defining instability for the case where

(} ~ 7r/2. For a real structure, ofcourse, a much smaller limit would be set. Recall,

however, that we are interested in studying Ule behavior of this system and un

derstanding how the philosophy behind the code provisions relates to the com

puted dynamic response. In studying Figure 74, one would classify the motion of

this system as stable. However, even though the motion is stable, the system ex

periences a much larger rotation than that e&timated by the NEHRP code using
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Figure 72 . EI Centro ground ft>Cord
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o

Eq. (73 \. The steady state displacement after yield is approximately 0.10 rod. For

a column that is 15 ft tall. this amounts to a tip deflectIon of 18 In. This value ex

ceeds the inelastic displacement calculated using Eq. (73) by more than 15 in. In

addition. ifdamage is included in the constitutive relationship. it is possible to get
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Fieure 73 • Mexico City ground record
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even larger displacements and, possibly, instability. As we saw in the last chapter,

the type of behavior that results depends highly upon the damage parameters a

and /3. The dynamic stability properties as a function ofa and f3 for the EI Centro

ground motion are shown in Figure 75. This plot demonstrates that the dynamic

stability properties depend upon both the displacement ductility and the energy

dissipated by the spring. Plots ofinstability after the ground motion subsides and

dynamic instability are shown in Figure 76 and Figure 77 respectively.

The response of the undamaged system to the Mexico City earthquake is

shown in Figure 78. We again see that the motion of the system is stable. Howev

er, we note that the steady state tip displacement for this case is also quite large

(= 14 in). Once damage is included in the constitutive relationship, the steady

state amplitude after yielding occurs increases, and instability can result. Inter

estingly though, the damage parameters that lead to instability for the Mexico

City earthquake are different from those for the EI Centro earthquake. The main

reason for this difference is that the Mexico City earthquake is of a much longer

~~-----------------------I
I I

I
i

:T ! I-2 r ------------------------;
I I

o 10 20 30 40 50
Time (sec)

Fipre 74 • Respoa8e to EI CeDRo - _ cluDap lDOdel
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Figure 75 - Regions of stability for the EI Centro ground motion

duration, and the frequency content of the motion is also different from the EJ

Centro motion. The response of the structure to the Mexico City earthquake as

a function of a and {3 is shown in Figure 79. The response for a = 0.04 and

{3 = 0.001 is shown in Figure 80. Clearly, for this choice of damage parameters,

I_V ~
~~~~=--- J

,
~ I

-~-------------------------i

o 10 20 30 40 50
Time (sec)

Figure 76 - Instability after ground motion subsides for
EI Centro with a '" 0.01, ,- 0.018
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we observe dynamic instability. Figure 79 shows that while the dynamic stability

properties depend upon both the displacement ductility and theenergy dissipated

by the spring, the dependence is much stronger upon the displacement ductility

(the values of a are"" 10 times the values of {3 in the region ofdynamic instabili-
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Fipre 78 • Respo.... to MeDeo City - no damap .odel
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Fipre 79 - Regions of stability for the Mexico City ground motion

ty). The response to the El Centro motion also showed a greater dependence upon

the displacement ductility but not to the extent as that for the Mexico City motion.

The differences between the two result from the fact that the dynamic character-
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istics of the two ground motions are much different. Clearly, the choice ofground

record plays an important role on the dynamic stability properties of the damage

prone system.

Application of Results to Continuous Systems

Results from the last chapter indicated that the dynamic stability characteris

tics ofa MDOF damage-prone system can be well approximated by analyzing the

dynamic performance of a suitably chosen SDOF system. In fact, the SDOF

approximation is often used in structural dynamics problems (Clough and Pen

zien 1993). Under certain circumstances, even the response of a continuous sys

tem with continuous displacements over the domain ofthe structure can be well

approximated using a SDOF system. The requirement for such an approximation

to be accurate is that the structure behaves essentially like a SDOF system in that

the structural displacements, though continuous, are capable ofbeing expressed

in a single form or shape. Ifthis approximation holds, then the solution will simply

give the amplitude of the assumed displaced shape. For these conditions, the

structure may be analyzed in exactly the same way as a true SDOF system.

An example of a continuous system having an infinite number of degrees of

freedom that can be well approximated by SDOF system behavior is the cantile

ver tower shown in Figure 81 (Clough and Penzien 1993, Berg 1989). For the case

of elastic material response, the governing equation of motion takes the form

mOt + cOZ + (kO - kG)Z = P;/f (75)

where m· is the generalized mass, CO is the generalized damping, k ° is the gen

erali7.ed flexural stiffness, kGis the generalized geometric stiffness, and P;ff is the

generalized effective load. The expressions for each of the generalized variables
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Figure 81 - Flexible structure approltimated as a SDOF system

is dependent upon the assumed displaced shape. 1b illustrate, the generalized

variables are computed as follows:

L

m* = fm(x) (x(x)/dx

o
L

k* = fEI(x)(x"(x))2 dx

o L

kG = N f (X'(x)2 dx

o
L

p;rr == - xg Jm(x)x(x)dx

o

(76)
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where m(x) is the distributed mass per unit length, X(x) is the assumed displaced

shape, and N is a constant vertical load applied at the top of the structure that

is positive when acting in compression.

Consider now the cantilever column shown in Figure 82. Physically, this could

represent a bridge pier or perhaps a water tower. For the real cantilever column,

the largest moment occurs at the base. Thus, should the loads be large enough to

cause the elastic limit of the material to be exceeded, the section at the base will

be the first to yield or form a plastic hinge <Gaylord, Gaylord, and Stallmeyer

1992, Chen and Lui 1987). Once a plastic hinge forms, the column can rotate. Un

der these conditions, the total rotation ofthe column will be due mainly to the in

elastic response at the base. The additional elastic deformation in the top portion

of the column is negligible in comparison to the inelastic deformation. Conse

quently, the SDOF model developed in the previous chapter can be used to model

the dynamic response of the real cantilever column.
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To model such a system requires the appropriate choice of model parameters

for the idealized SDOF structure. In choosing the parameters, we need to match

the principal dynamical variables of the cantilever column with the idealized sys

tem. The appropriate choice of variables, however, will involve some trade-offs.

It will not be possible to match exactly the variables ofthe continuous system with

the idealized system, but, by making good choices, we can minimize the error be

tween the two systems. For a dynamic, yielding system, our previous results indi

cate that the two variables that most significantly control the response are the

initial natural frequency of the structure and the strain at which yielding occurs.

The initial, elastic response ofthe structure will depend upon the relationship be

tween the frequency content of the external loads in relation to the natural fre

quency of the system. As we saw in the last chapter, the frequency is important

for both linear and nonlinear systems. Ifthe external loads are not in the frequen

cy range that excites the structure and leads to large displacements, then yielding

will not occur. If yielding does not occur. one does not need to resort to numerical

techniques to determine the response because a closed-form solution exists under

these conditions. In addition to matching the frequencies ofboth the idealized sys

tem and the continuous system. we would like both systems to have the same load

intensity and yield strain.

For the cantilever column, the transverse displacement u(x,tJ is a function of

both position and time. Because we are assuming that the cantilever column has

no distributed mass along its length. the only inertial force of the system is due

to the tip mass. The governing equation ofmotion is obtained by requiring equilib

rium of a free-body diagram of the tip mass (see Figure 83). Assuming that the

rotary inertia,j, of the tip mass is zero implie~ the following relationships:
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M(L,t) "" 0

NeL) "" P

VeL) + f1 = 0

(77)

Ifwe assume that EI and P are constant and that the moment at any cross

section of the beam can be calculated from the relationship M(x,t) = a2ujax2,

then the governing equilibrium equation is

EI u II" + P u" = 0 (78)

where a prime (') indicates partial differentiation of u(x,t) with respect to x. The

general solution to Eq. (78) is

(79)

where A = j P j EI. Applying the boundary conditions will allow us to solve for the

coefficients 0i(t) for i = 1,4. For the cantilever column, the fixed-end boundary

conditions require the displacement and rotation to be equal to zero. At the free

end, the moment must be equal to zero, and the shear plus the inertial force must

also be equal to zero. For a uniform beam with a constant axial load, Eq. (78) im

plies that the shear at any cross section can be determined from the relationship

.....--p

f1 = Mu(L,t)

Fipre 83 •~bod,. diqnID ottip ......
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v = - EI u'" - P u'. Mathematically stated, the boundary conditions require

th~ following:

u'(Q,tl = 0 =uz + AU3 = 0 (81)

M(L,t) = Elu"(L,t) = 0=>u3sin).L + U 4 COSAL = 0 (82)

V(L,tl + fl = - Elu"'{L,tl - Pu'(L.tl + mu{L,tl = 0 \831

where a dot (.) indicates partial differentiation with respect to time. Solving Eqs.

(80) through (82) in terms of u 4 and substituting these values into Eq. (83) allows

us to determine the governing differential equation of motion

[
2 (AL)3 cOSAL ]

u 4 + - W O AL 'L . AL u 4 = 0
COSA - sIn

(84)

where w~ = EI/mL 3 is the natural frequency when no axial load is present.

Therefore. the natural frequency of the continuous system as function of the load

is

2(' ) 2 .,.-;-....:(....;AL~)3,....;.c..;..os....:AL~"'7:'"
w .It = W o AL cOSAL _ sinAL (85)

The expression for the static buckling load for an inelastic cantilever column, us

ing the tangent modulus theory, is given as

(86)

where E t is the tangent modulus of the material (Chen and Lui 1987). Ofcourse,

the critical buckling load could also be calculated by setting the natural frequency
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equal to zero (Meirovitch 1986, Clough and Penzien 1993). Finally, we can desig

nate the moment at which yielding occurs at the critical section to be My.

Recall that for the SDOF system that the natural frequency is given as

2 - k [1 p]
(J) SDOF - mL2 - Per '

the critical buckling load is

- k r
<P + mlcrSDOF = PcrSDOF = L

and that the yield moment is M.vSOOF"

(87)

(881

By considering the first two terms in the Taylorseries expansion for sinAL and

cosAL, it is possible to express the natural frequency ofthe continuous cantilever

column in terms of its critical load as

w2 = 3EI [1 _;r2L]
mL3 8 Per

(89)

Ofcourse, we get a better approximation ofthe natural frequency by consider

ing more terms in the expansion. As mentioned earlier, modeling the cantilever

column as a SOOF system requires us to match the key dynamic variables for

both systems. The variables we are most interested in matching are the initIal

natural frequencies, the moments at which yielding occurs, and the load intensi

ties. From the relationships derived above, we can get a measure of the error in

our approximation by comparing these dynamic variables for the two systems.

Since the frequency ofboth the continuous system and the SDOF system both de

pend explicitly upon the load, we can simply define the error as the square root

of the sum of the squares of the differences between the key dynamic variables.

Accordingly,
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where, for convenience, the quantities with a hat \1\) refer to the cantilever column

and the quantities with a tilde (-) reter to the SDOF system. The combination of

model parameters that produces the smallest error will result in the best approxi

mation of the continuous system's response by the SDOF system.

By means ofa few assumptions, Eq. (90) can be simplified considl'rabl~·.First,
. ,

define the equl\'alent stiffness of the cantilever column as k = El/L. Further, let

us assume that the column length and mass are the same for both the cantilever

column and the SDOF system so that i = L = L and Tn = Til = m. By way of

these assumptions, the error in Eq. \90) is minimized \=0) for the choice ofparam-

eters

\911

where r; = P/P",. For this choice of parameters, we would expect the analysis re

"ults of the SDOF system to correlate best with the results for the continuous case.

We could make the results even better by using a better approximation of the frl'

quency of the continuous system. From this derivation, it is easy to see how the

analysis results of the SDOF system may be applied to understanding the behav-

ior of a MDOF or continuos system.

Summary and Conclusions

In this chapter, a SDOF system was designed in accord with the current

NEHRP equivalent lateral force procedure, and the dynamic perfonnance of this

design was investigated. The results showed that the response ofthe system, ne-
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glecting damage, was stable. The displacements, however, were larger than those

calculated using the code equation. Once damage was introduced into the consti

tutive relationship, we saw that the system could become unstable dynamically

as well as after the motion stopped. These results are consistent with the results

obtained in the previous chapter in that, under certain circumstances, the static

model does not provide a good indication of the dynamic response. Based upon

these results, as well as those obtained earlier, we can conclude that additional

parameters are required to ascertain the dynamic stability characteristics of a

damage-prone system over those needed to classify the static stability properties.

In the latter portion of the chapter, we saw that the response of a MDOF or

continuous system may be approximated by a SDOF model. The approximation

will be best for structures that have a dynamic response that is well described by

a single shape. In order to have the SDOF model best represent the MDOF sys

tem, it is necessary to match the key dynamic variables for the two systems.
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5
Summary and Conclusions

It is the engineer's constant challenge to conceive the new from the

old, and it is his lot to worry about his curious kind of time travel

that transcends the instruments of calculation and forces him al·

ways to think about the future to avoid the failures nfthe pasf.

- HenT')' Petroski

The dynamic stability characteristics ofa nonlint!ar system have been investi

gated by means of a simple mechanical model. Although the system was simple,

it contained many of the essential features of the the behavior of more complex

systems. The governing differential equations ofmotion were derived for the gen

eral N-dimensional system, and detailed analyses were perfonned for the one-de

gree-of-freedom and two-degree-of-freedom systems. In this study, both large

rotations and inelastic material properties were included. Consequently, the re

sulting differential equations were highly nonlinear, and, for the MDOF case,

coupled. As a result, t.hese ('quations could only be solved numerically.

Numerical integration of the governing differential equations must be done

with care. Traditional numerical solution techniques for structural dynamics

problems can result in a loss of accuracy. Accordingly, special techniques have

been employed to eliminate these problems, and criteria for discerning numerical

inaccuracy from structural stability have been established.
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Because the number of free parameters was quite large, even for the SDOF

system, analyses were performed to determine which ofthe variables most signifi

cantly influenced the computed results. At first, a very simple system was stu

died. Then, the effects of including nonlinear geometry, and then both nonlinear

~eometryand inelastic material response were investigated.

Initially, by assuming small rotations, elastic material response, and an axial

load ofthe form Po cos Qt, the governing differential equation took the form ofthe

well studied Mathieu Equation. Analyzing the response of the system described

by the Mathieu Equation provided a means ofvenfying our results and develop

ing an appropriate definiticn ofdynamic instability. Once the geometrically e'Xact

model was considered, the system response was characterized by a beating phe

nomenon.

The type of material model chosen to represent the inelastic response played

a major role in determining the dynamic stability characteristics ofthe system.

In this research, two separate material models were considered - an elastoplastic

model and a cyclic Ramberg-Osgood model. In its original fonn, the Ramberg-Os

good model is incapable of modeling cyclic response, and special provisions were

employed to remedy this problem. By studying these two material models, we

were able to observe the importance that strain hardening has and that a kink

in the loading curve has on the dynamic stability properties of the system. The

results obtained using the two separate material models under the same loading

conditions were quite interesting. Normally, one would anticipate that, under the

same loading conditions, the elastoplastic model would displace more than the

Ramberg-Osgood model because the elastoplastic model does not account for the

additiunal strength capacity that results from strain hardening. The results

showed, however, that this assumption does not necessarily hold under cyclic
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loading conditions. In fact, for the examples considered in this study, the maxi

mum displacement that was computed with the Ramberg-Osgood model was al

ways larger than the maximum displacement computed using the elastoplastic

model. Although the inclusion ofstrain hardening had a dramatic impact on the

computed results, the presence ofa kink in the loading curve did not lead to signifi

cantly different results (see Figure 31).

Based on the responses of a large number of systems, using a wide variety of

different model parameters, it was determined that the initial natural frequency

and the yield strength are the two most important quantities controlling the be

havior ofthe structure. The frequency is important because it will dictate whether

or not the dynamic loading will lead t.o large or small rotations. If the rotations

are large enough to causing yielding ofthe material, the dynamic stability charac

teristics ofthe system will depend upon the value of the yield strength. Contrary

to the conclusion one would draw for static or monotonic loading conditions, a

more favorable dynamic response can be achieved for lower yield strengths. If

yielding occurs early, the displacements and velocities have not had a chance to

become very large, and the inelastic response ofthe spring is able to dissipate the

energy of the system. However, if the yield strength of the system is large, prior

to yielding, the system will have had ample time to generate large displacements

and velocities. The inelastic response of the spring cannot dissipate this higher

energy state, and the system is more prone to dynamic instability.

The extension to multiple-degree-of-freedom systems was made. Formulating

the governing equations for the 2-DOF case revealed that introducing an addi

tional degree offreedom did not simply double the difficulty of the problem. Not

only did we have to deal with twice the number of free parameters, but we also

had to be concerned with the different combinations of these parameters. Again,
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based upon the analyses ofa large number ofsystems, it was concluded that, un

der most circumstances, the results obtained from the SDOF model could be used

to assess the nature of the response for the 2-DOF system. Only when both

springs yielded at approximately the same time were we not able to predict the

results of the 2-DOF structure using the SDOF model. However, physically, thIs

case is seldom encountered. Consequently, one can usually gain a good under

standing of the response ofa MDOF system by analyzing an appropriate SDOF

system.

Under large amplitude strain cycling, experimental evidence has shown that

certain metals, such as structural steel, experience cyclic softening. Cyclic strain

softening was accounted for in the constitutive relationships by means of a dam

age mechanism. Many different factors can contribute to damage ofthe material,

however, many researchers agree that the two most important factors are related

to the maximum displacement of the system and the energy dissipated by the

spring in response to the cyclic loading. AB a result, it was assumed that a reason

able damage measure would depend linearly upon these two variables.

Analysis results have shown that the dynamic stability properties of the sys

tem are highly sensitive to the rate of damage accumulation. The mere presence

of damage though does not necessarily lead to larger displacements. Of greater

Importance is how the damage manifests itself during the dynamic response.

Compared to analyses that do not include damage, it is possible for the model that

does include damage to experience either greater or smaller displacements de

pending upon the development of damage during the response. Damage in the

system will help dissipate energy in response to the current loads even though the

structure's ability to dissipate future loads is diminished because of the damage.

Certainly, when too much damage occurs, the structure will collapse.

144



Based on the model that included damage in the constitutive relationship. the

SDOF system was designed in accord with the current NEHRP provisions. The

dynamic performance was evaluated by studying the response of the structurl' to

two earthquake motions. The capacity of the structure was well above the corle

requirements. but the structure was found to become unstable for various

amounts of damage accumulation in the system. In response to the earthquake

loadings. the results showed an increased potential for dynamic instability as the

rate of damage accumulation increased. However, instability resulted for values

of displacement ductility well helow those specified in the code for this type of

structure. These results. along with those obtained from the other loading casps

indicate that the responsp. of a dynamic system. prone to damage. cannot easily

be predicted using the results from static analyses. In fact, what is interesting

about many ofthe results obtained in this study is that they contradict the results

one would obtain under static or monotonic loading conditions. This result is im

portant given that current building codes utilize an equivalent static design pro

cedure for structures required to resist earthquakes.

The parameters that have the greatest influence on the response have been

identified. In their current state, the results are not directly applicable to design.

More empirical data are needed to accurately determine how damage accumu

lates under dynamic loadings. Accordingly. possible future research will focus on

developing design criteria that will take into account when nonlinear. inelastic

systems may be prone to dynamic instability. Also, in order to develop a general

design criter;a, a greater variety of model parameters will need to be studied as

will more MDOF systems. James Thurber once wrote that, "It is better to know

some of the questions than to know all the answers." Certainly, questions remain

that need to be answered regarding the behavior of dynamic systems prone to
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damage. It is hoped that the research presented here has provided some insight

to the problem and has demonstrated the need to study such systems.
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Al
Successive Symmetric Quadratures (SSQ)

[fin other sciences we should arrive at certainty without doubt and

truth without errors, it behooves us to place the foundations of

knowledge in mathematics.

- Roger Bacon

As discussed in Chapter 2, the key reason why the Newmark Method has prob

lems with the elastoplastic model is that the integration scheme cannot precisely

determine the corners that define the transitions between the plastic and elastic

states. Over a particular time step, a rapid change occurs in the restoring moment

that is not accurately captured. Therefore, ifthe effects ofthis rapid variation can

be diminished, then the errors associated with not correctly determining the cor

ners ofthe stress-strain curve will also be diminished. Based upon this idea, Chen

and Robinson (1993) first integrate the conventional equations of motion twice

over time in order to smooth the effects ofthe rapid changes in the restoring func

tion. These integrated equations are then used in the numerical integration

scheme to determine the new variables (the integrated displacements, velocities,

and accelerations), and the rapid variations in the functions do not appear in the

solution to these new differential equations. Once the integrated values are deter

mined, the results are then simply converted back to actual system displace

ments, velocities, and accelerations. Using this procedure, the time step size does
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not have to rem&Hl small enough to try to capture the corners of the stress-strain

curve. Larger time step sizes can be used with accurate results because the twice

integrated equations of motion are much more smooth.

In addition to smoothing the data by means of time integration, Chen and Ro

binson (1993) also introduce an improved quadrature rule to numerically inte

grate the integrated equations ofmotion. This method, like the Newmark Method

for linear systems, is unconditionally stable. The basic idea behind the new

scheme is that more accurate results can be obtained if the accelerations over the

time step are allowed to vary quadratically instead oflinearly as in the Newmark

Method. Thus, for each time step increment, the system properties are deter

mined at both the mid-point and end-point ofthe time step. The following formu

lae are used to update the unknown variables:

1· .. ..
Ut +t1t = Ut + 24 (4Ut + 16Ut +.1t/2 + 4Ut+~t)Llt,

Ut +tJt = Ut + 2~ (4Ut + 16Ut+LJt/2 + 4Ut+LJ,l1t.

(92)

(93)

(94)

(95)

The SSQ procedure requires approximately four times as many computations as

the Newmark Method per til. \e step. However, the SSQ method allows the use of

larger time step sizes because errors caused by rapid variations in the resistance

function are dramatically reduced. In order to obtain the same level of accuracy

with the Newmark Method, a much smaller time step must be used. Thus, the

overall computation time needed for accurate results is less for the SSQ Method.

Figure 84 shows a comparison ofthe two methods for a nonlinear system that ex-

148



c
o...
ca...
o

0::

-0.1 ~j

~
I

-03~

I

0 SSQ Method .1t = 0.05

Newmark's Method .dt = 0.01

< to p , :r
~'~

, :. "
.

.' ~ ~.~ .' :- .'~" r; .' i ~
,.

" j:
..

~ ' .' i ~ I' n "
o ~ !\ ' : : 0

f ~• ,
~ I ~ ~ ' ' , I, .. I I : ~

j , 0, ,
j

, 0, . f o ,

, , , '
~ t I' . ,

I ~ ~ ~ I .0 ,0 ,
\ : ,0 : , \ I' . . , ..

~J
' .

'~'
" "

. .
~j

.1 I i: i i'~ " 0' '\i .0 "
~ ~ " " W ': ~ II. ~

2 8 10

Firure 84· Comparison ofSSQ Method and Newmark'. Method

periences many loading cycles in which yielding occurs. A!o the figure clearly

shows, even for a time step that is five times larger than the one used for the New

mark Method. the SSQ Method gives very good results.

The procedure for employing the SSQ method for use with SDOF systems is

easily summarized. The governing differential equation ofmotion for a nonlinear,

SDOF system, in general, is given as

mx + ex + R(x) = - mXg (96)

where m is the mass, e is the damping coefficient, xg is the acceleration of the

ground, x is the system acceleration, x is the system velocity, x is the system dis

placement, and R(x) is the nonlinear restoring force. The integrated variables are

defined in the following way:

t

P(t);; fx(~~
o
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t I ~

Q(t) = fP(t)d~ = JfX(TJ)dTJ~
o 0 0

(98)

Expressing (96) in terms of the system acceleration leads to the relationship

.... c· IR()x = - xg - mX - in x. (99)

The integrated variables can be expressed in terms of the actual variables in the

following ways:

Q(t) = pet) = xW

Q(t) = P(t) (l00)

Itt

Pet) = x(t) = - Iigdt - ~ f:edt - ~JR(x)dt

o 0 0

Based on these relationships, we can calculate the actual displacement and veloc

ity as follows:

t

X = - X8 + Xo - ~(x - X o ) - .Ji JR(x)dt (l01)

o
t ~

X = - X g + X o + xot + ~(xot - Q) - AJJR(x)d~dt (102)

o 0
The SSQ solution algorithm, employing these relationships, is summarized in AI-

gorithmAl.

A160rithm Al

Assume that we are at a converged state and would like to advance the
solution to the end of the next time step.

1. Using a subscript 1 and a subscript 2 to indicate the mid-point and end·

point ofthe time step, respectively, update the values for q l' q 2' q l' q 2
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based upon the values of q 1 and q~, For the first iteration, the values of

q 1 and q z are set equal to the converged value from the previous time

step. Otherwise, they are set equal to the value calculated from the pre

vious iteration. The unknown values are updated with the relationships

ql = q/ + 2~l5q/ + 8ql - qJJt,

q2 = q/ + .}4i.4q/ + 16ql + 4q2Ut ,

(1) = q/ + }415q/ + &1 1 - qz).Jt,

Cl2 = q/ .... .}4 IQ / + 16ql + 4q zUt.

A subscript t refers to the converged value from the previous time step.

2. Calculate the nonlinear restoring force in the spring at the middle and

end of the time step based upon the approximated values for Xl and Xz,

which, from Equation (100), are simply equal to the values of ql and qz

used in step (1). (For this particular researc: . the nonlinear restoring

force could be based on either an elastoplastic model or the cyclic Ram

berg-Osgood model.)

3. Evaluate the single integral of the restoring force using the same quad

rature rules used to update the integrated displacements and velocities.

Thus,

_ 1 \A
r, 2 - r,t + 24 !4r( + 16rl + 4rZ!L.t.

where r I 1 is the integrated value of the restoring force at the mid-point of

the time'step, and r l is the calculated value ofthe restoring force at the mid

point of the time step determined in step (2). Likewise, the subscriptt on

a variable refers to the converged value from the last time step, and the

subscript 2 still refers to the values at the end of the time step.

4. Calculate the double integral of the restoring force with the values from

step (3).
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5. Based on these values, calculate ql and q2'

qj = - %8, + %0 + iot; + ~(xoti - elj) - -krlJi' where i E 1,2

6. If the difference between the calculated values for ql and q2 in step (5)

and the ones used in step (1) are within an acceptable tolerance, then

the solution has converged. Determine the real acceleration, velocity,

and displacement from Equations (99), (lOll, and (102) respectively.

and proceed to the next time step. Otherwise, return to step (1) using

the new values for q 1 and q2 calculated in step (5) as the new estimate.
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