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ABSTRACT

" "The seismic resistance achieved by optimizing the design of the conventional
members of a structure equipped with structural control is evaluated. Viscoelastic (VE)
dampers and active bracing system (ABS) are studied individually, as well as combined as
a hybrid system for their effectiveness in reducing the response of seismic structures. Two
convex models are used to estimate the maximum response of structural systems subjected
to uncertain seismic excitations. A reduction factor is used to calibrate the convex models
for a specific excitation. An average reduction factor is also defined by ‘veraging a set of
excitation-specific reduction factors. The average reduction factor can be used for
unknown excitations with an assumed energy bound and certain common earthquake
characteristics.

A procedure for achieving the structural design of actively controlled structures
has been developed. A modified iterated simulated annealing (MISA) method has been
established for optimal design of structural systems under dynamic constraints. In
performing the optimization, the MISA method employs two desirable features; the first is
to achieve an automatic reduction of the search range, and the second is to perform
sensitivity analysis for the design variables. The optimal designs using classical
optimization methods for problems with dynamic constraints are compared with those of
the MISA method.
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The optimal design of the membe:< sf both conventional structures and structures
equipped with active bracing systems, known as active structures, is presented for
uncertain excitations. Three approaches are used for obtaining the optimal structural
design: (1) analysis using the time-history of an actual ground motion (AR), (2) analysis
using the global energy-bound convex model adjusted with an excitation-specific
reduction factor (RGEB), and (3) analysis using the global energy-bound convex model
adjusted with an average reduction factor (ARGEB) for a set of excitations with common
characteristics. The optimal structures obtained using the RGEB and ARGEB convex
models have different sizes for their conventional members from the optimal design based
on a time-history analysis of the actual earthquake (AR).

Structures with different levels of inherent structural damping are used to
investigate the merits of simultaneous structure-control optimization in the case where the
viscoelastic dampers and active control systems are present. A comparison between
optimal designs of structures with conventional members only, and active structures
indicates that the latter are more efficient by combining the conventional and active
members. Ineclastic material behavior is modeled for both conventional and active
structures. The effects of inelastic material behavior are investigated in terms of the
structural response, control force requirements, energy balance of the structural systems

and number of yield events.
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CHAPTER 1
INTRODUCTION

The criteria for designing buildings and other structures are based on the
requirements of safety, serviceability, and resistance to self-straining forces. Safety of
structures is ensurcd by supporting all loads, including gravity and lateral loads, to avoid
exceeding the allowable stresses for the materials of construction in the structural
members and connections. Serviceability of structural systems and their components is
achieved by providing adequate stiffness, to limit transverse deflections, lateral drift and
vibration. Provision always needs to be made for self-straining forces arising from
assumed differential settiements of foundations, and dimensional changes such as
temperature differentials, moisture expansion, shrinkage, and creep. In addition,
structures capable of supporting safely all conventional loads may still suffer local damage,
that is, the loss of load resistance in an element or small portion of the structure.

The most common method of achieving structural integrity is through an
arrangement of the structural elements that provides stability to the entire structural
system. Basically, such an arrangement consists of the provision of sufficient continuity
and energy-absorbing capability in the components and connections of the structure. This
scheme provides a means to transfer loads from any locally damaged region to adjacent



regions capable of resisting these loads without collapse. The designing concepts and
guidelines for the provision of general structural integrity are outlined in the commentary
of the ASCE 7-95 Standard (1996).

Until recently, the structural integrity of buildings, bridges, and other constructed
facilities has been achieved by building structures that rely on their mass and solidity to
resist outside forces. The drawback of this kind of design is that these structures do not
have the ability to adapt to extraordinary dynamic loads. With the need for structural
integrity other factors are currently gaining prominence, such as increased flexibility,
increased safety levels and performance requirements, and demands for better utilization
of material and lower cost. As a result, new ideas for structural integrity and structural
motion control have been developed. These new inventions can be divided into two main
categories: the passive control devices, such as friction dampers, viscoelastic (VE)
dampers and passive tuned mass dampers, and active control (AC) devices such as active
mass dampers, pulse generators, variable stiffness devices, and active bracing systems.

VE dampers dissipate energy in the form of heat or friction. They are usually used
in large numbers for more effectiveness. Initially, VE dampers were mainly introduced in
the design of buildings to reduce floor accelerations due to windstorms within acceptable
levels of human comfort The twin towers of the World Trade Center in New York have
10,000 VE dampers instailed throughout the height of each of the towers which were
installed in 1969 (Wiesner, 1986). In 1982, a passive damping system was designed for
the Columbia Center in Seattle, Washington with 260 VE dampers. The VE dampers
were located alongside the main diagonal bracing members in the core of the building, and
were larger than those used at the World Trade Center, hence a smaller number were



required. VE dampers have been considered lately for seismic structures.

An AC system uses a microcomputer that executes the control algorithm and
controls the motion of the hydraulic system to supply reasonable control forces for the
structure. In a narrow eleven-story building, which is 13x43 & in plan and 108 ft high,
two active mass drivers were installed on the top floor by Kajima Corporation in Japan in
1990 to control lateral and torsional vibrations (ENR, 1990). Kajima's system has worked
successfully several times already during recent earthquakes that occurred in Japan.

Viscoelastic dampers and the active bracing system (ABS) have been shown to be
effective in reducing the seismic response of both reinforced concrete and structural steel
frames. The performance of the systems can be predicted adequately through simpliﬁefl
analytical procedures. The addition of VE dampers could assist the AC system in
improving the damping ability of the structure, which should reduce the required control
forces and the cost of the AC system. On the other hand, the addition of the AC system
could improve the velocity performance of the VE dampers and reduce the possibility of
shear failure of the viscoelastic material in case of large deformations. In the present
work, VE dampers and the ABS are studied together as a hybrid system for their
combined effectiveness in reducing the response of seismic structures.

Integration of passive and active devices with conventional structural systems at
the design stage has not gained much attention. Soong and Manolis (1987) have
envisaged a future type of structure, an active structure, having two types of load resisting
members : the traditional passive members that are designed to support static design loads,

and active members that will assist the structure in resisting dynamic loads.



The U. S. National Workshop on Structural Control Research (1990) has
acknowledged the need for the study of active structures by encouraging that more
attention should be given to “smart structures” research, including active elements
embedded within truss elements. In addition, it was recognized that hybrid control
approaches which combine passive and active members seem to offer opportunities for
improving performance over either active or passive approaches taken individually.

At the latest Applied Technology Council Conference (ATC 17-1, 1993) on
seismic isolation, passive energy dissipation, and active control, the issue of hybrid control
systems has been addressed. A system proposed by Riley et al. (1993) used a sliding base
isolated structure which combines sliding bearings with active servo-hydraulic actuators
operating in parallel with the sliding bearings. Experimental shake table tests have verified
the concept. Another concept uses a hybrid control system which connects the rubber-
bearing isolators of a base-isolated building to an actuator (Yang et al., 1993). Simulation
results indicate that a nonlinear control method is effective for hybrid control of seismic

structures equipped with such a system.

Literatyre Survey
Analysis of structural response to dynamic excitations such as shock, blast, wind,
and earthquake is important in the design of structural systems. Examples include
buildings under loads generated due to blast or explosion (Norris et al., 1959), dynamic
loads in automobiles, traveling cranes, and other mobile machinery (Humar, 1990).

Impulsive loads are also important in the field of earthquake engineering, where it is



assumed that the earthquake acceleration consists of a series of impulses distributed
randomly in time (Housner and Jennings, 1964). In the following section, several fields of
research are reviewed: (1) structural control systems includirg passive and active controls,
(2) convex modeling for estimating the structural response, (3) optimization methods, and

(4) active structures.

tructural Control Systems

The first study of the active control system for civil engineering structures was
proposed by Yao (1972). Martin and Soong (1976) used a combination of structural
flexibility concepts and classical optimal control theory to investigate real-time
controllability, control implementation, and the economics of an active control system.
The idea of combining structural optimization and structural control was conceived by
Kirsch and Moses (1977). Their effort was directed towards either reduction of internal
forces or minimization of the cross-sectional area of an actively controlled continuous
beam, under a given loading condition.

In the area of active control systems for civil engineering structures, Yang (1982)
has presented a transfer matrix approach for the application of the active mass damper and
active tendon systems to seismic buildings. A random vibration analysis was formulated to
obtain the frequency response of the structure. The transfer matrix approach has been
applied to tall buildings in along-wind motion by Yang and Samali (1983). The
performance of the active tendon and active mass damper systems was investigated. A
methodology to analyze the problem by using a large number of modes has been

presented. The transfer approach was used to determine the power spectral density of the



building response directly without computing the natural frequency.

Cheng and Pantelides (1986) have used the transfer matrix approach for
simultaneous optimization and active control of tall buildings subjected to stochastic
earthquake excitations. The control forces were generated by active tendons and active
mass dampers. They attempted to optimize a performance index based on the weight and
stiffness of the structure subject to structural response performance and control force
constraints. Recently, several optimal control algorithms and control parameters for stable
controllers were proposed (Yang et al., 1987, 1991, 1992a, 1992b, and Soong, 1990). In
those studies, the instantaneous optimal open-loop, closed-loop, and open-closed-loop
controls were presented for simplifying the traditional control algorithm of the linear
quadratic regulator method. An energy consideration method and Lyapunov's criteria
were used to define the control parameters for dynamic stability.

A full-scale test with an active bracing system on a fiva-story building was
conducted by Soong et al. and Reinhomn et al. in 1991 and 1992 respectively. A
procedure of designing a full-scale ABS for an earthquake resistant building was
presented. The classic optimal control algorithm of linear quadratic regulator and two
modified control algorithms were implemented.

The first building equipped with viscoelastic (VE) dampers was the twin towers of
the World Trade Center, New York in 1969 for reduction of wind-load effects (Wiesner,
1986). The total damping of the building was determined from experimental work and
found to be in the range of 2.5 to 3.0 % of critical damping. The properties of VE
dampers and the evaluation of the VE damping effect for seismic structures were
investigated by Zhang et al. in 1989. The stiffness and damping ratio of the VE dampers



were estimated using an energy-based theory. The advantage of the VE dampers in
reducing the structural response was proven by numerical examples. In the meantime,
structural response control by adding VE dampers was also presented by Zhang in 1990.
The number, size, and optimal location of VE dampers for supporting the structure, and
their effects on stiffness and damping ratio were studied by Zhang and Soong in 1992.
The effect of temperature on VE dampers and the frequency dependent properties of VE
dampers were investigated by Chang et al. (1992, 1994, and 1995) and by Kasai et al.
(1993). A full-scale vibrational test of VE dampers was investigated by Lai et al. (1995).
The idea of combining VE dampers and active tendons in a structure for reduction
of seismic response was presented by Pantelides in 1991. It was shown that the reduction
of the structure's response can be achieved more efficiently with the above combination.
The two systems could be used to resist various levels of intensity of external loads. The
VE dampers could be used to resist windstorms or moderate earthquakes, while in a

strong earthquake VE dampers and AC systems would be operating together.

Convex Models

The maximum response of structures to uncertain dynamic forces has been
examined using probabilistic methods and Fourier amplitude spectrum envelope methods
(Shinozuka, 1970). Another method uses limited deterministic information which
characterizes the dynamic force (Drenick, 1970, 1973), a “critical excitation” is sought
within the set of allowable dynamic forces such that it maximizes the structural response.
Ben-Haim and Elishakoff (1990) have used convex models to represent uncertain dynamic

forces in applications ranging from vehicle vibration to impact loading of shells. A convex



model of uncertainty is a set of functions specified by global characteristics such as input
load functions, spectral properties, or functions of bounded energy. In effect, the convex
model constrains uncertainty within a known bound.

A study of the dynamics and failure of a thin circular cylindrical shell with
axisymmetric initial imperfections was performed by Elishakoff and Ben-Haim (1999).
The most significant N Fourier coefficients of the initial imperfection profile were assumed
to fall in an ellipsoidal set in N-dimensional Euclidean space. Convex methods have been
compared to probabilistic methods in structural dynamics (Elishakoff, 1990). Convex
models have also been used to model uncertain imperfections in multimode dynamic
buckling of cylindrical shells under symmetric radial impulsive loads (Lindberg, 1992 a, b).
The maximum possible buckling deformations for any imperfection within uniform bounds
could be made comparable to the deformations from the probabilistic models at a
reliability of 99.5 %. The convex model has the advantage that its numerical evaluation
and interpretation is much simpler than the probabilistic model. In addition, the convex
model solution provides a means for quality control of each and every shell by simply
recording the uniform bounds from imperfection measurements. More recently, convex
models have been used to model material uncertainty in the vibrations of viscoelastic
structure (Elishakoff et al. 1994). A safety factor based on convex modelling has been
proposed (Elishakoff, 1994). The probabilistic and convex modelling of acoustically
excited structures have been studied by Elishakoff and Zhu (1994).

Convex models of uncertainty have been compared to stochastic models (Ben-
Haim, 1994 a). It was found that analogous stochastic and convex models of uncertainty

may lead to very different predictions in the range of the response of linear dynamic



systems with uncertain or time-varying disturbances. In a related development, convex
models were used to evaluate the least time to failure of linear elastic systems with
uncertain time-varying input (Ben-Haim, 1994 b). The uncertainty of the load history was
represented by an ellipsoidal Fourier-bound convex model. Recently, Ben-Haim et al.
(1994) have used several convex models to describe earthquake excitation uncertainties
and to predict maximum structural responses to earthquake loads. The concept of convex
modeling and its relationship with the theory of probability and fuzzy sets was described
by Elishakoff (1995). A convex model of the base acceleration in terms of an upper bound
was used along with linear programming to obtain the least favorable structural response.
Convex models specify uncertainties in the absence of detailed probabilistic
information about the possible values of the variables of interest. The concept of convex
modeling provides an altemnative way of analysis of uncertainty when a limited amount of
information is available. In addition, the subjective design decisions that result when using

convex models to include uncertainty do not involve the element of chance.

imization

Modern literature on the topic of design optimization has seen an increase since
the advent of the computer in the last half-century. Accurate and automated optimization
methods originated from many fields as discussed by Haug and Arora (1979), and Schmit
(1981). Optimization algorithms include: (1) mathematical programming methods, (2)
optimality criteria methods, (3) approximation methods, and methods involving random
sequences of designs.

Mathematical programming methods were described by Zoutendijk (1960). Finite
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element analysis methods have been combined with mathematical programming algorithms
for structural optimization (Gellatly and Gallagher, 1966). Optimization research in
aerospace vehicle design, based on the combined technique of fully stressed design with
mathematical programming, was used to design the size and materials of the structure in
the 1970s (Heldenfels, 1973). Mathematical programming methods are currently used as
tools for design synthesis (Vanderplaats, 1984a, 1984b).

Prager and Marcal (1971), Taylor (1969), Khot et al. (1979), and Kiusalaas (1972)
have studied the optimal design of structures using the optimality criteria method.
Procedures for finding the minimum weight design using the optimality criteria method
were developed by Venkayya (1971), Gellatly and Berke (1971), Dobbs and Nelson
(1976), and Fleury (1980).

Approximation methods are based on Taylor series truncation techniques of the
objective and constraints, and include sequential linear programming (Kelley, 1960) and
sequential quadratic programming (Vanderplaats, 1984b). Finally, methods involving
random sequences of designs include genetic algorithms that emulate the natural selection
process of nature and operate on a principle of survival of the fittest (Goldberg, 1989),
and simulated annealing algorithms that emulate the reduction of the temperature in a bar
that goes from a high to a low temperature (Kirkpatrick et al., 1983).

Optimization techniques have for the most part focused on structural optimization
of systems with static constraints. When dynamic or time-varying constraints are imposed,
the feasible region usually becomes disjoint. It is well known that when the feasible region
is not convex, as in the case of disjoint spaces, some local minima may appear. This

situation arises in structures undergoing dynamic loading. Cassis (1974) described this
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phenomenon in detail for planar frames subjected to horizontal vibrations at their
foundation. Estimates for the maximum number of disjoint feasible regions in the
optimization of structural systems subjected to harmonic loads have also been developed
(Johnson, 1976; Johnson et al., 1976, Mills-Curran and Schmit, 1985).

In the area of minimum weight design of damped structures subjected to dynamic
loads, Cassis and Schmit (1976) discussed the disjoint nature of the feasible region for
some combinations of constraints and loadings. The optimum structural design for
dynamic response constraints with deterministic and nondeterministic loadings was
presented by Yamakawa in 1984. The objective function was replaced by the dynamic
response peaks using the root-mean-square values of selected displacements. A solution
of the dynamic constraints problem based on upper bound approximations for the behavior
constraints was developed by Mills-Curran and Schmit (1985). Dynamic stability
constraints were included in a structure-controller synthesis by solving an approximate
problem at each design iteration by Thomas and Schmit (1991).

The simulated annealing method involves random sequences of candidate designs
with a probabilistic acceptance criterion of a better design at each subsequent iteration.
Ackley (1987) developed the iterated simulated annealing method (ISA) and the stochastic
hillclimbing method (SHC). In the SHC method the probability evaluation of a new design
is held constant for the duration of the search. In the ISA method the probability
evaluation of a new design starts at a high value of any adjustable parameter determining
the acceptability of the design (temperature) and is reduced by a decay rate during the
search.

The simulated annealing method was used by Salama et al. (1988) to determine the
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optimal placement of discrete actuators and sensors for truss structures. The simulated
annealing technique has been used for the optimal placement design of active/passive
members of a truss structure by Chen et al. in 1991. The optimal design of steel frames
with discrete member sizes using the simulated annealing method was developed by
Balling in 1991. Simulated annealing is useful in combinatorial problems like the “traveling
salesman” and circuit design problems (Nemhauser and Wolsey, 1988).

The simultaneous control and optimization problem has been studied by Komkov
(1983) and Haftka et al. (1985 and 1986). It was shown that changes that are small in the
configuration of the structure result in large changes in the control force requirements. In
addition, they showed that the magnitude of the control forces in a system that has been
optimized can be reduced by minor changes in stiffness or mass. Hale et al. (1985),
suggest that the objective function to be optimized should contain a cost term that
depends on the structural configuration. Their work produced plots of contours of

different costs versus design parameters.

Active Structures

Active structures are structural systems which are composed of two types of load
resisting members: (a) conventional static members such as beams and columns that are
designed to support static design loads; (b) active members such as active mass dampers,
active braces, or active variable stiffness members that are designed to resist dynamic
loads such as those that a structure may experience in a strong earthquake. The concept
of the active structure has important implications for the design of new structures in

seismic regions that are to be equipped with active systems. The new structure must be
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designed to utilize efficiently both the properties of the conventional static members and
the dynamic properties of the active members. Recent progress in the area of active
structural control has brought the application of active systems from theory and
experiment to actual implementation (Kobori, 1994, and Housner et al., 1994).

The concept of the active structure was introduced by Soong and Manolis (1987).
A structure was optimally designed in terms of minimizing structural cost while
simultaneously the optimal control force for the active control system was obtained. The
structural cost was expressed as the structural volume, the structural design variables were
defined as the member areas, and the control variables were the optimal control forces.
The general theory of optimal control of parametric systems was used to formulate the
active structure optimization solution. The formulation resulted in a2 system of nonlinear
coupled equations whose solution was accomplished iteratively using nonlinear
programming and steepest descent methods.

Cha, Pitarresi, and Soong (1988) presented a numerical design procedure that
optimizes the structural and controller parameters simultaneously. The problem was
treated as one of the general theory of optimal control of parametric systems. The
procedure searches and updates both the structural parameters and control parameters
using a conjugate gradient technique, thus resulting in only one global optimization.
Furthermore, the procedure is not limited to linear structural behavior or lincar control
laws. Numerical examples of active structures including a simple steel frame subjected to
a sinusoidal base excitation, and a king-post bridge beam subjected to a moving load of
constant magnitude and a given velocity have been carried out. It was demonstrated that

the numerical procedure is effective in the design of the structural cross-section, the



14

required control force, as well as the placement of the active members.

The design of active structures was also addressed by Cheng and Pantelides
(1988), and Pantelides (1990), who formulated the solution in two stages: (a) the optimal
control forces were expressed in closed-form as implicit functions of the design variables
(equivalent to the moments of inertia of the structural members); (b) the design variables
were modified iteratively in order to minimize the structural volume with constraints
imposed on the structural displacements, frequencies, and maximum level of control
forces. The definition of the active structure can be extended to include in addition to the
active control systems not only purely static members (Soong and Manolis, 1987), but
also passive control members such as viscoelastic dampers (Tzan and Pantelides, 1994).

The design methods for active structures developed by Soong and Manolis (1987)
and Pantelides (1990), use a time-dependent record of a past earthquake or an artificial
carthquake acceleration as the excitation which is known in advance; the resulting
computational effort required for the optimization process is rather costly. This situation
is common in the structural optimization not only of active structures but also of
traditional deterministic structures which are designed for earthquakes (Bhatti and Pister,
1981, Balling et al., 1983, and Truman and Petruska, 1992). The method proposed in this
report seeks to replace the dynamic optimization of either traditional deterministic
structures or active structures by a simpler static optimization. This can be achieved if the
time-dependent displacements, member stresses, and control forces could be replaced by a

maximum value representing an upper bound of the structural response to the earthquake.
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The seismic resistance achieved using structural control when the conventional
structural members are optimized is evaluated in this research. The concept of an energy-
bound convex model is utilized to obtain the maximum dynamic response and simplify the
design for earthquake excitations. The convex model of the earthquake excitation is more

general than a single earthquake record and that is the primary reason for utilizing it. A

procedure for achieving the structural design of actively controlled structures is

developed. The optimal design of a structure equipped with either an active bracing
system or a set of viscoelastic dampers, known as an active structure, is investigated.
The following objectives are discussed in the indicated chapters of the report.

(1) Theory development: The frequency dependent properties of stiffness and damping
of the viscoelastic (VE) dampers, and control algorithms for the active bracing
system (ABS) arc studied in Chapter 2. The convex model, which is based on the
assumption that the energy of the excitati~n is bounded, is derived in Chapter 3. The
structural optimization procedure for the optimal design of conventional or active
structures is described in Chapter 3.

(2) Theory verification: The optimal material properties of VE dampers and control
parameters of the active bracing system are investigated in Chapter 4. The
effectiveness of reducing the response of seismic structures by combining the VE
dampers and the ABS as a hybrid system is also studied. In Chapter S, two convex
models, the global energy-bound and the local energy-bound convex models, are
used to estimate the maximum response of single-degree-of-freedom (SDOF) and

multiple-degrees-of-freedom (MDOF) structural systems subjected to uncertain
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dynamic excitations. A reduction factor is defined for a specific excitation by
dividing the results obtained from the convex model by the maximum response
obtained from the time-history analysis of the actual record. An average reduction
factor, defined by averaging the reduction factors from a set of excitations with
common characteristic, is developed for the uncertain excitations.

Optimal structural design: A modified annealing strategy is developed for structural
optimization problems with dynamic constraints in Chapter 6. The optimal structural
designs obtained using the method developed here are compared with classical
optimization methods such as the state space method, the method of modified
feasible directions, the sequential linear programming method, and the sequential
quadratic programming method. The constraints obtained from both the time-
history analysis of the actual record and the convex models are studied. The optimal
design of a structure equipped with either a number of active bracing systems or a
number of VE dampers, known as an active structure, is also investigated in Chapter
6. The structure is designed using past earthquake records as well as artificial
earthquake excitations.

Inelastic behavior of structures: An inelastic analysis based on a bilinear elastic-
plastic model is carried out for both conventional and active structures in Chapter 7.
The behavior of the inelastic models is investigated in terms of the response, control
force requirements, energy of the structural systems and number of yield events.
Conclusions: Finally, a brief summary and the conclusions learned from this study

are presented in Chapter 8.



CHAPTER 2

ALGORITHMS FOR PASSIVE/ACTIVE STRUCTURAL CONTROL

A type of passive structural control system, the viscoelastic (VE) damper, is
discussed in this chapter. The active bracing system (ABS) is considered as the active
control system. The existing and proposed algorithms for both control systems are

introduced in this chapter,

Passive structural control is defined as the result of using energy absorbing devices
to reduce the structural response due to either wind or seismic loads. The passive control
devices do not require external power. A viscoelastic (VZ) damper for use in seismic
structures is studied as a passive control system and is shown in Figure 2.1. A hysteretic
damping model was used to describe the behavior of the VE damper in terms of constant
damping (Zhang and Soong, 1992). The response of the VE damper is controlled by two
varisbles - the excitation frequency and the ambient temperature. In the following section,
the influence of the excitation frequency is considered while the temperature is assumed

constant.
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Figure 2.1 Typical viscoelastic damper construction
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Existin el

The viscoelastic (VE) damper can be considered as a kind of energy absorber
which can be described as a combined device of a viscous damper and a spring unit.
Therefore, the additional damping and stiffness due to the VE damper become an
important topic in studying the material properties of the VE damper.

In previous research, the additional stiffness, &,, due to the VE damper has been

presented by Zhang (1990) as

Ic,:——l—————AB .1

where G and G~ are the shear storage and shear loss moduli respectively; 4 and ¢ are the
cross-section area and the thickness of the VE damper; 8 = cos 6, and 8 is the damper
inclination with respect to the horizontal direction.

The added modal damping ratio due to the VE damper was proposed by Chang et

al. (1992) and is defined as

_n¢'Ké_n J.IQ.):E[ _9;1)
‘2¢‘K:¢‘2(’ K8 S22 ol ¢

where ¢ is the mode shape vector; K, K,, and K, are the stiffness matrices due to the

damper-brace elastic stiffness, the stiffness matrix of the structure without VE dampers
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and the stiffness of the structure with VE dampers, respectively; @, and o, are the natural

frequency of the structure without and with VE dampers; n = G /G is the damping loss
factor.

Equation (2.2) provides the calculation of the modal damping ratio for the
structure whose inherent structural damping ratio is zero. A modified formula of the
effective damping for the structure with nonzero inherent structural damping level was

proposed by Chang et al. in 1994 as

= _ ¢TK5¢ B¢TK;¢
§= 6.(1 ¢,K'¢)+ 207K.0 (2.3)

where &, is the damping ratio of the structure without any VE dampers, and the other
quantities were defined in equation (2.2).

The parameters G and G’ are both frequency dependent, and a model which
expresses these two parameters in terms of the excitation freguency was proposed by

Kasai et al. (1993) as

E+bm‘co(an12)ll+am‘ cos(axlz)J+[abm" sin’(axlz)J

[l +aw® cos{an/ 2)]z + [am" sinan/ 2)]1

G0)=G

(2.4a)

[bm‘ sinfan/2)[1 +a0® cos(anlz)]-[am‘ sin(ar /2) 1+ ba® cos(anlz)]
[1+aw° cos(aulz)]’ +[am' sin(tzmlz)]z

G'(0)=G

(2.4b)
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where o is the excitation frequency, and a, b, G, and « are constants. It should be noted

that in real earthquakes more than one excitation frequency is present; therefore

G and G~ can not be determined uniquely for design purposes by using equation (2.4).

Proposed Model

The well known situation of resonance, during which the excitation frequency
equals the natural vibration frequency of the structure, should be prevented in structural
design. In this section, multiple-degree-of-freedom (MDOF) structures are considered
under seismic excitations and equations (2.1), (2.3), and (2.4) are modified for narrow-
band frequency excitations. The VE damper contributions to the damping and stiffness
are derived based on the values of parameters G and G at the values of the natural
frequencies of the structure.

A ftrequency-dependent calculation for the damping loss factor and the damping

ratio is proposed as

S'E8), ou) 07K,
0.](1 - ‘TK:‘) + 2 ¢TK.¢ (25&)

g

‘51("’ o.j) =

(2.5b)

1_'(mu) Gj('”-.i)

where G’ and G can be found by substituting ®;, the jth mode natural frequency of the

structure, into equations (2.4a) and (2.4b) respectively. Thus, the damping contribution of

the first 7 modes is uniquely determined through the damping ratio of equation (2.5) and is
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considered invariant with respect to the remaining excitation frequencies. The stiffness of

the VE damper can also be expressed as a function of structural frequencies as

K, = fG’(co,.,)z :G'(“’-.t)! Ap (2.6)

It should be noted that only the fundamental mode parameters, G‘(w ,_,) and G'(m ,_,) are

used to determine the VE damper stiffness.

Activ ur; ntrol System

Significant progress has been made in recent years in the application of control

theory to civil structures (Wiesner, 1986). The active structural control system considered
herein is the active bracing system (ABS) as shown in Figure 2.2. The ABS has been
studied both theoretically and experimentally and has been tested successfully on a full-
scale structure (Soong and Reinhorn, 1993 and Reinhorn et al, 1992). The optimal
control forces from the ABS can be obtained using various techniques which have been
established specifically for civil structures (Pantelides, 1991). The linear quadratic
)egulator (Soong, 1990) and instantaneous optimal control (Yang et al., 1987) algorithms

have been used for seismic structures with an ABS.
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Existing Models
The standard quadratic performance index for the linear quadratic regulator (LQR)

is given as (Soong, 1990)
J= % [ [ (@) + 4™ () Ruv)] dt @7

in which t, = earthquake duration, £'(t) is the transpose of the state vector

27(t) = {x(t),%(t)}" and x(t) and %(t) are the relative displacement and velocity
response of the structure; O and R are the weighting matrices chosen by the designer. The
optimal control force, «°(t), can be obtained by minimizing / subject to the constraint of

the equation of motion which in state form can be expressed as

2(t) = Az(t) + Bu(t) + HF () (2.82)

A A =[-2-.|. i
"=[-M°'x ! -M"C]' B '[M"b]' o '[M"s] @80)

where M, C and K are the NxN mass, damping, and stiffness matrices, N being the number
of degrees of freedom; O and I are the null and identity matrices; b is an Nxm matrix
which defines the ABS locations with respect to the structure’s topology, m being the
number of controllers; 8 is the effective loading vector which for earthquake excitations is

87 = {~m,,~m,,....-m,} where m, = mass of the ith floor, F(t) is the ground base-
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acceleration. The result of the minimization is given by

W' (t) = —-;-R“ BTP(t)z(t) (2.92)

PA +ATP—%PBR"BTP-2Q =0 (2.9b)

The unknown matrix P(t) can be found by assuming that it is constant with respect to time
from equation (2.9b). Matrix Q could be assigned to be any positive semidefinite matrix.
One way of simplifying the control procedure is to define = I, the identity matrix.
Weighting matrix R is assigned to be an identity matrix multiplied by a constant r, as
shown in the numen'c:;l examples.

The time-dependent performance index, J(t), for instantaneous optimal control

(IOC) was defined as (Yang et al,, 1987)
J(t) = 27 (1)Qz(t) + uT (t)Ru(t) (2.10)
The optimal control forces, #°(t), are obtained by minimizing J(t) subject to the constraint

of the equation of motion of the dynamic system represented by equation (2.8). The result

of the minimization is

u'(t) = ’—:ln-'B'Qz(z) 2.11)
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The time-step at which the control force is evaluated is denoted by At. The details of the
LQR and I0C control algorithms are discussed in Appendix A.

Matrix Q in equation (2.11) is usually assigned to be an identity matrix and Ris a
diagonal matrix multiplied by a constant, r, at the nonzero elements of the diagonal.

Therefore, the equation of motion can be expressed as

Mz (t) + C x(t) + Kx(t) = §F (1) (2.12a)

C' =C+C s (2.12b)
_At

Crss =5 ™M (2.12¢)

where C,gq is the equivalent damping matrix due to the presence of the active structural

control. Equation (2.12) can be usec to obtain the response of a structure equipped with

an ABS control system during a horizontal earthquake.

nov hod for Ev. in Weighting Matrices
A new method for obtaining the Q weighting matrix is presented here by using
Lyapunov's criteria for dynamic stability of a dynamic system. Substitution of equation

(2.11) into equation (2.10) gives

JO=2" (t)[Q+Q'SQ]z(t) (2.13a)

3
= (921) BR"B' (2.13b)
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A necessary and sufficient condition for obtaining a dynamically stable structure-control
system is that the term in brackets in equation (2.13a) satisfies Lyapunov’s criteria for
dynamic stability. The use of the Lyapunov-base () matrix is necessary when the 10C is
employed in a hysteretic inelastic structural system (Yang et al., 1992 a). This

requirement can be expressed as

A*[e+Q'sg)+[e+Q"so)a=-1, (2.14)

The weighting matrix ( can be found from equation (2.14) which is then substituted in
equation (2.11) to obtain the optimal contro! force. Note that equation (2.14) differs from
the result of Yang et al. (1992 a) in that both terms of equation (2.10) are considered in
the present derivation of weighting matrix Q. The weighting matrix R is still assumed to
be a diagonal matrix multiplied by a constant at the nonzero elements of the diagonal. The

elements of R are defined for a specific structure in the numerical examples.

rift Perf ce Ind PI
A performance index for optimal control is proposed in terms of the magnitude of

drift displacements as

J(t) = AzT(t)QAz(t) +u" (1) Ru(t) Q@ ya)
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Az(t) = Dz(t), D=[g-i-q], d= - (2.15b)

o'd

where matrix D defines the relationship between displacement and interstory drift. The

optimal control force can be obtained as
. -At -1 DT AA* . T
w()=—-R"B"Q"z(t); @ =DQD (2.16)

The identity matrix is used for weighting matrix (, and a diagonal matrix is used for
weighting matrix R. The elements of R are defined for the specific structure in the

numerical examples.

Velocity P index (VPI
A control performance index is proposed for reduction of the velocity and
acceleration response of the structure. The feedback measurements required are those of

velocity and acceleration (¢ feedback) which are easier to obtain than displacement and

velocity (z feedback). The performance index is defined as

J= 2 [ [ 000 + 4 R & @17)
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in which t, = earthquake duration, ' is the transpose of the velocity state vector,

&M= {a’:(t),i(t)}T. and X (t) is the acceleration vector. The optimal control force can

be obtained as

u'(t) = R BTP(1)i(t) (2.18)

where matrix P is the Riccati matrix using the assumption that it is a constant. The Riccati

matrix can be found from the following:

PA" + PA"CP +(A")'P-(AT)'Q=0 (2.192)
C=BR'B" (2.19b)

The weighting matrix, @, is defined as the identity matrix, and matrix R is assumed as a
diagonal matrix. Equation (2.19) can be solved by the Runge-Kutta four-order method

which is discussed in Appendix B.



CHAPTER 3
CONVEX MODELS AND OPTIMAL STRUCTURAL DESIGN

The energy-bound convex models for estimating the maximum dynamic response
of the structure for an uncertain earthquake excitation are discussed in this chapter. The
structural optimization using the modified annealing strategy is also presented for the

optimal design of conventional or active structures.

IgY- |

A convex model is a method of quantifying uncertainty, in this case the uncertain
nature of earthquakes or impulses, without resorting to the traditional concepts of
probability, but rather by defining a set of functions which have certain convex global
characteristics or bounds (Ben-Haim and Elishakoff, 1990; Ben-Haim, 1994 b). The
application of convex models to quantify uncertainty is well suited in situations in which
only a limited amount of information is available for the variables of interest, which is
exactly the case for structural systems subjected to uncertain excitations such as
carthquakes. In effect, the convex model constrains the uncertainty, inherent in
earthquake excitations, within a bound that is defined in terms of either a function of
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bounded energy, or an envelope function with upper and lower limits.

It was shown in the previous section that the structural response of an actively
controlled structure can be obtained from either equation (2.8) or equation (2.12).
Numerical simulations have shown that the results obtained by either method are
practically identical. The natural frequencies of the physical structure are basically the
same and the mode shapes are not changed significantly for the levels of damping
considered herein (Pantelides, 1987). Equation (2.12) is used in its normalized form with
respect to the mass matrix to represent the structural response of the controlled structure.

Let the natural frequencies of the N degree-of-freedom controlled structure be @,,...,0,
the corresponding mode shapes be ¢,,...,4,, and the corresponding modal matrix be

o= [¢, W 3 ,...,¢N] . The normalized equation of motion is expressed as

F 4208 Y 40 y=4.f(1) (3.12)

where the normalized properties with respect to the mass matrix are

O'MO=I, OTKD= o :




32

[20.&] 0 ]

OC'D= ' 20,E (3.1b)
L 0 2mN€;l_

§ =& +&..; i=1,.,N (3.1¢)

where I is an NxN identity matrix, £, is the ith mode damping ratio of the structure and
E.; isthe damping in the ith mode introduced by the active/passive control system; o is
the structural frequency of the controlied structure for the ith normal mode.

Using Duhamel’s integral and assuming zero initial conditions, yields for the

response of the controlled structure in the ith normal mode

y, @)= mL [aT8 % (e v M sino g, (t-1) dy, i=1...N (3.2a)
Dii

op =05 6 = y1-(])’ (3.2v)

The modal amplitude y,(t) is the response of the ith mode in normal coordinates.
Furthermore, the ith mode modal velocity and acceleration for zero initial conditions can
be expressed as

nt= %.""{mw [[# 7k cosm (- v)de
D

-to; [ [W st ﬁnom(t—t)dt} (3:32)
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5.0 =070~ 20 e (o (0] cosw (- 1)

e [%ﬂ' - ]L [ O sno g, -1 (3.3b)

D.i

The displacement, velocity and acceleration in physical coordinates are then obtained from

the following superposition equations
x(t) = Op(t), x(t) = Dp(t) ; £(t) = (1) (3.4)

In what follows, the ground acceleration X ,(t) is assumed to belong to a convex set

bounded by either a global energy or a local energy-bound model.

Global Energy-bound Convex
The convex set of allowed excitations for the global energy-bound convex model

(GEB) is expressed as (Ben-Haim and Elishakoff, 1990)
Fogp = { S): L' FIOWIOLEES Eo’(t)} 3.5)
The instantaneous energy of the input excitation defined by equation (3.5) is bounded at

each instant, t. For the global energy-bound model the energy bound, Eo’(t), varies in a

given time-interval and its value is the integral or the area of the input energy as expressed
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by equation (3.5) up to time t. As time goes to infinity, the bound of the global energy
convex model reaches a finite value, E,’(0) which is larger than any E_’(t)for any

t <o, Time is assumed to reach infinity at the end of the earthquake record.

The maximum modal displacement, velocity, and acceleration for each mode /,
obtained by using the convex model of equation (3.5), can be found using the theory of
convex models (Ben-Haim and Elishakoff, 19909 as follows: From equation (3.2), the

maximum modal displacement obtained using the convex model of equation (3.5) is

Yoras = max —— [ {07 S sina g, - e (.6

I om0
Since y, is a linear function of the excitation f{t) and assuming that the excitation set

Fey is convex, the maximum in equation (3.6) occurs on the set of extreme points of

F,; the maximizing excitation will satisfy
[ £T()f(x) dum Eg(t) G

According to the Cauchy-Schwarz inequality (Hardy et al., 1934) for arbitrary £, and f,

(LAA@ &) sf @& [ s 639
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with equality only if f,(t) and f,(t) are proportional. Using the result of equation (3.8)

in equation (3.6) gives

p i t A’ =287t ¢ . .
Vmai(t) = '2%8 5:0‘):; A =gl —ee (l+gi£, sin20 ,t-E.” cos20 ,,,t) (3.92)

Similarly, results for the maximum modal velocity and acceleration can be obtained as

. _po.i(t) %.
yMI(t) - 200'5 E: '

A =67 - e 1 G & 5in2(0, -0 0,0~ c052(6, - 0.,0)

g = tan'(z—) (3.9b)

s =410 -2 foi2e
iSi
A, =1+ 5:2(3 -4§:’) - e"‘:":'(l +¢,E sin2(8, +wyt) -§," cos2(8, + I,.it))

6, = m'(-zg—‘,] (3.9¢)
1-2;

where pm(t)=(¢,'¢,E°’(t))m, 0p; =¢0;, and g = JI—E,:’ . The maximum modal
responses for displacement, velocity, and acceleration as time goes to infinity can be found
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. _ 3.10
gl o
w=&f_°'i).. (3.100)

280,

pai() [oi(1+48”)

Fomi =5 3 (3.10¢)

n
where p; () = (QT é, Eoz(oo)) .
The maximum displacement in physical coordinates can be approximated by the

square root of the sum of the squares (SRSS) of the modal responses

22503 ms P2 {05 s |2 357 611
The subscript / denotes the response at the jth floor and i denotes the ith normal mode. N
is the number of dynamic modes of the system. However, when the SRSS method is used
only the significant modes need to be considered. When major contributing modes have
frequencies that are close together, the complete quadratic combination (CQC) method
should be used (Der Kiureghian, 1980).

Local Energy-bound Convex Mode! (LEB)
In the local energy-bound convex model (LEB) the instantaneous energy of the

excitation is bounded at each instant. Furthermore, the energy bound, E,’(t), can vary



»

with time. The convex set of allowed excitations is expressed as (Ben-Haim and

Elishakoff, 1990)

Fia = {£) SO F) S £ (1) (3.12)

The maximum modal displacement, velocity, and acceleration for each mode /, obtained by
using the convex model of equation (3.12) can be found using the theory of convex

models as:

e-{:o:l

[|sin ®p; tu: et |cosco . 1:| dt +|cos¢o Di l|j: et |sinm o t| dt]}

(3.13a)

Yomaxii ®=p. (t){

O g,

Youri (V) =Py (t){e";':' [(%Isinm o t| + |cosa) D_itgj:e‘:':' Icosm D_,tl de+
(z—flcosm oi t| + Isinm Di tI)J: et ‘|sinm l,J'|:| dt]} (3.13b)
NOLT WiOET RO [(El-lsinm 0:+2&;|oosa m.q)["eﬁ'f'lcosm Y dt+
i

[.!.|cow out] + 2§ Jsine mt|] J: “*sino 5,1 d‘t]

Si
(ﬂmm oat] + 28] sine .,,itl) [ dt] (3.13¢)

Let yoo; = Jy_,.,Li (t)|, and t — oo; the maximum modal displacement, velocity, and

max
Jr(e

acceleration in the normal coordinates as time goes to infinity can be found as
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0., (@) 14+ e~
Yawi = :).1 []_e-{.'llg) (3143)
i
2p (o) E. + et
e = 2 ( )[E'x-gel*"'* ) (3.145)

o2 . * ol -
1-28; +48g,e "% 1 (1-28] )e M
3 ac.l e_m( £ ) 3.140)

Yowi = pu(oo)(ZQ;z +

where  py(0)=(0T0E()".  pu(®)=(0T0E (®)", @n =c@], and

G = Jl-ﬁ;z . Note that the maximum values in equation (3.14) will occur at some time
(t.) whichis betweent =0 and t = m; at time t___ , the local energy bound reaches a peak

value E, '(x) whichis larger than E (t) for any other timet. Equation (3.14) canbe
combined with the SRSS expression of equation (3.11) to obtain the physical

displacement, velocity, and acceleration response.

S | Optimizati

The structural optimization problem for a building equipped with an active bracing
system is a dynamic one and is formulated as follows. Find the optimal parameters (A, 1),
which are the areas of the structural members and the weighting matrix parameters Q and
R that minimize the structural volume V{A, r) subject to displacement constraints on the
structural response, x(t), stress constraints on the structural members, o(t), and side
constraints on the design variables, A, , A, 7, ,. The subscript L denotes the lower

bound and subscript U is the upper bound of the design variable. Mathematically, this can

be expressed as
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min. (A, r) (3.15)
Subject to

(Ar)sx, J=1..5 t20 (3.168)

o (Art)so,: k=1l..k t20 (3.16b)

AL SA, SA; k=1,..k t20 (3.16¢c)

rsrsry (3.16d)

where x,,; is the allowable displacement at a certain node of the structure, and j is the

number of nodes at which displacement constraints are imposed; o,,, is the allowable

combined stress in a structural member, and k is the number of structural members. Note
that if the peak values of the structural response are used that can be obtained from either
the GEB or LEB convex models, the quantities on the left hand side of equations (3.16a,
b) become time-independent and the optimization problem is reduced to a static one.

The static optimization problem is developed as follows. Minimize the structural

volume given in equation (3.15) subject to the constraints

X; canerrun(A.7) S Xy i=l .. ] (3.172)

O ompertsn (A7) SO s k=1,., k (3.17b)

and also subject to the side constraints of equations (3.16c, d). It is obvious that the
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solution of the static optimization problem of equations (3.15, 3.17a, b, and 3.16c, d) is
much easier than that of the original dynamic problem, because in the latter the constraints
are time-independent. The accuracy of the approximate static optimization problem
depends on the relationship between the actual peak values of the structural response and
those obtained using the GEB or LEB convex models. Note that for the optimization of
conventional structures without ABS, or structures equipped with VE dampers, the same
procedure can be used and the problem is also independent of r.

The structural analysis of frame type buildings considered here is carried out using
the direct stiffness method (Appendix C), with a capability for computing and enforcing a
strength ratio of column to beam greater or equal to unity. The strength ratio of column
to beam is necessary in order to enforce the strong-column weak-beam philosophy of the
design codes (UBC, 1994). The structural analysis also produces the axial, bending and
combined stresses in the structural members.

In what follows the dynamic and approximate static optimization problems are
solved. The optimal designs obtained using the convex models are compared to the
optimal design obtained using an actual ground acceleration record. The correlation
between the static and dynamic active structures that are obtained is observed. Both
traditional (VMA, 1993) and the optimization method developed here known as the
modified iterated simulated annealing method, are used to obtain the optimal structural

designs. Artificial earthquakes, as well as records from past earthquakes are considered.
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Simulated Annealing Methods

Since 1983, when the simulated annealing method was introduced (Kirkpatrick et
al.), two notable developments most related to the present method evolved. These are
Ackley’s iterated simulated annealing (ISA) and stochastic hillclimbing (SHC) methods

(1987), and Balling's simulated annealing method (1991).

Existing Methods

The iterated simulated annealing (ISA) method has developed from the stochastic
hillclimbing (SHC) method. Both the ISA and SHC methods consider a random change to
the current design point, and accept the change with a probability, p, determined by a fixed

formula of the difference in the objective function values (Ackley, 1987)

1

[(AX AT

=— (3.18)

r

where V_ is the current value of the objective function from the pre-selected point, V, is a

candidate value of the objective function which is produced by an adjacent point picked
randomly, and T is an adjustable parameter which is described as “temperature.” Larger
values of T may cause the probabilities of acceptance of the current design to reach closer
to a 50 % reject and 50 % accept.

In the SHC method, the temperature T of the system is a parameter which is held
constant for the duration of the search. In the ISA technique, the temperature is a variable

that starts at a high value and is reduced by a decay rate during the search. The system
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accepts the almost random moves at the high temperature, and the probability of accepting
any move drops at the lower temperature.

A simulated annealing strategy was developed for the discrete optimization of steel
frames by Balling (1991). The probabilistic acceptance criterion for determining whether
the candidate design should replace the current design or be rejected was formed with a

probability

p=el % (3.19)

where D is the difference in the value of the objective function between the candidate
design and the current design, B is a normalization constant which is the running average
of D, and T is the strategy temperature which decreases according to a “cooling factor,” /,

defined as

ac

In equation (3.20), p, and p, are the starting and final acceptance probabilities for

an average D = B, and N is the number of cycles. In Balling’s procedure, the acceptance

criterion allows worse designs to be accepted in the initial stages of the optimization.
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Modified Iterated Simulated Annealing Method (MISA

An annealing strategy is employed for problems with dynamic constraints. The
reason for using an annealing strategy is that the random sequence of designs is suited for
problems with disjoint feasible regions where a local rather than the global minimum might
be reached if classical optimization methods were to be used. The proposed algorithm
contains elements of existing annealing strategies. Ackley’s ISA algorithm (1987)
regarding the probability of acceptance and Balling's search strategy (1991) are included
as elements of the proposed algorithm.

Figure 3.1 shows the flowchart of the optimal design procedure. The design
variables, which are the cross-sectional areas of the members, are determined by a
procedure which is based on a random reference number that is requested by the program
based on the current time of the computer clock. Two iterations loops are performed
which are defined as M and N. M is the maximum value of m which is the counter for the
inner loop. The inner loop determines the search direction and M is usually a small
number less than 10. N is the maximum value of » which is the counter for the outer loop.
The outer loop determines the best design for different arinealing probabilities, based on

different values of T (temperature); », is the minimum number of runs of the outer loop;
k is an integer, and & x n, is the number of times required, in addition to »,, for the outer
loop to converge; n, and a, must be dete.mined by the user for a particular application.
Usually, n, is between 75 and 150 and », is between 10 and 25. The value of k is entirely
problem dependent. After the outer loop runs (m, +n,) times, the designs at », and

(n,+n,) are compared. When these two designs are identical the program stops.
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Otherwise, the outer loop is repeated n, times, and comparison is made between the
designs &t (n, +n,) and (n, +2n,). The algorithm is repeated k times until the two designs
converge.

A comparison of the proposed method and the existing methods is shown in Table
3.1. From Table 3.1, it can be observed that the search strategy of the MISA method is
similar to the search steps of Balling’s method, except that the probability of acceptance is
different. Instead of using Balling’s probability of acceptance, Ackley’s ISA probability is
adopted for its simplicity.

Two new progedures are introduced whose purpose is to: (a) achieve reduction of
the search range, and (b) use sensitivity analysis for the design variables. Reduction of the
search range is achieved in the present method as follows: Assume that a candidate design
is found (point C in Figure 3.2) at which the objective function has a smaller value than
the previous design (point P in Figure 3.2). When this happens, the search range is
reduced to exclude any points outside a region which contains the candidate design (point
C). The new search range is increased by an amount Xr and Yr from point C. The
increase for Xr and ¥r in Figure 3.2 is chosen as 15 % of X and Y, respectively. This
procedure is performed at stage “A” of the flowchart of Figure 3.1. Since the next point is
chosen randomly two situations are possible. First, the new candidate design could end up
in the infeasible region in which case the design is rejected and there is no need for
reduction of the search range. The second possibility is that the new candidate design is
inside the fearible region of the new search range and has a smaller objective function

value than point C. In this case, a new search range will be found as described above.
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Sensitivity analysis (Grierson, 1994) is used in order to improve the efficiency of
the present method as follows: if a given displacement response violates the constraint, the
neighboring structural members are identified by sensitivity analysis and the area of those
members is changed by a proportionate random number (Appendix D). A first-order
sensitivity analysis of displacement responses is carried out. The purpose of the analysis is
to identify the design variables (areas of structural members) that must be modified in the
new design, in order to decrease the magnitude of a certain displacement in the most
economical way. This sensitivity analysis is performed at stage “B” of the flowchart of
Figure 3.1, Thus, even though the determination of the values of the design variable is
random, the identification of which variables must be modified is done using sensitivity
analysis methods (Grierson, 1994). It was found that by using sensitivity analysis, the
expense of multiple trials is avoided and the efficiency of the present method is improved
considerably.

The method presented above contains features common to many simulated
annealing clgorithms. However, it should be pointed out that the design variables are
continuous rather than discrete. In addition, the sensitivity information on the design
variables reduces the randomness of choosing which variables to modify, however, the
numerical values that these variables take are randomly determined. Finally, the automatic
reduction of the search range violates symmetry considerations inherent in simulated
annealing algorithms. However, the automatic reduction of the search range improves the
computational efficiency considerably and is a desirable feature of the preseat method.

Thus, the present method can be characterized as a new method.
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The present method was found to be advantageous in certain cases when the
constraints were dynamic, as compared to standard mathematical programming methods.
Numerical examples are provided to show the performance of the present method as
compared to standard optimization methods fovtimal design with static or dynamic

constraints.



CHAPTER 4

DYNAMIC RESPONSE OF STRUCTURES WITH PASSIVE/ACTIVE

STRUCTURAL CONTROL

In this chapter, a hybrid control system is presented that consists of viscoelastic
(VE) dampers and active bracing systems (ABS). The performance of the system is
predicted adequately through simplified analytical procedures. An eight-story shear
building (Yang et al., 1988) and a ten-story frame (Xia et al., 1990) shown in Figure 4.1
are used to evaluated the performance of the passive and active structural control systems.
In addition, a five-story experimental shear building shown in Figure 4.1(c) (Zhang and
Soong, 1992) is used to study the influence of the location of the viscoelastic (VE)
dampers. The structural frequencies of the five-story shear building are 19.27, 56.41,
88.94, 108.64, 145.59 rad/sec., those of the eight-story building are 5.79, 17.18, 27.98,
37.83, 46.39, 53.37, 58.53, 61.70 rad/sec., and those of the ten-story frame are 2.47, 6.99,
12.36, 18.95, 26.09, 34.78, 44.02, 52.80, 62.70, 74.75 rad/sec. Young's modulus for all

three building materials equals 206.8E+09 N/m2.
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Figure 4.1 Numerical examples: (2) eight-story shear building, (b) ten-story frame, and

(c) five-story shear building
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Properties of Viscoelastic Damper

Viscoelastic dampers have properties that are both frequency and temperature
dependent. It is well known that the location of the VE dampers affects their efficiency in
providing seismic resistance. Parametric studies of structures equipped using a number of
VE dampers on different floors are performed. The effective damping ratio includes the
inherent structural damping ratio and the additional damping introduced by the VE
dampers. In this section, the frequency dependence and the location effect of the VE

dampers are investigated. Temperature effects are not considered in this study.

Frequency Dependence of VE Damper Materials

The eight-story shear building shown in Figure 4.1(a) is used to calculate the
effective damping ratios including the influence of the VE dampers by using three
methods. The cross-sectional area of the VE damper is assumed as A = 0.090 m?, and its
thickness t = 0.0127 m. In the first method, the values of shear storage and loss moduli,
G' and G", are fixed as constants, invariant with the excitation frequency (Zhang and
Soong, 1992). In the second method, instead of using constants to represent these two
parameters, equations (2.4a) and (2.4b) are used (Kasai et al, 1993). A structure-
dependent design is presented here for the third method; in this case, the frequencies at
which G' and G" are evaluated are the natural frequencies of the structure. The idea
behind the third method is that the majority of the response is concentrated at the natural
frequencies of the structure. The three approaches are applied to the eight-story building

with one VE damper on the first floor using equations (2.1 - 2.6). The constants, a, b, «,
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and G are used as 0.0347, 4.16, 0.71, and 4.5176E+05 N/m? respectively. Figure 4.2
shows the first and second mode damping ratio vs. excitation frequency for the three
methods; the proposed method (third) gives a lower damping ratio than the first (Zhang
and Soong, 1992) which uses constant parameters G' and G". On the other hand, the
second method shows the variation of the damping ratio with frequency. The proposed
method is conservative but still within acceptable limits.

The ten-story frame shown in Figure 4.1(b) is also used in this evaluation. All
parameters are the same as mentioned previously except that the area of the VE damper,
A = 0.02 m?, for the lighter frame. Figure 4.3 shows the damping ratio for the first two
modes vs. excitation frequency for the three cases. Similar results are observed as was
shown in Figure 4.2. Note that the damping ratio shown in Figures 4.2 and 4.3 is the
effective damping level which includes the inherent damping of the structure (see Figure
4.1) and the damping due to the presence of the VE dampers.

A single frequency excitation is used to examine the parameters G' and G" of the
VE damper. A sinusoidal base acceleration of magnitude 0.015 g and frequency varying
from 0.1 to 50 rad/sec. is used to study the three methods. Two buildings, th<. =ight-story
shear building and the ten-story frame, are used in this evaluation. The maximum
responses for the first floor interstory drift, and for the displacement, velocity, and
acceleration of the top floor are shown in Figures 4.4 and 4.5. The maximum response
using the proposed method (third) for both structures was very close to the results
obtained by using Kasai's method (second method). The results obtained by using the

constant parameters (first method) were found smaller than those obtained by the second
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method at the excitation frequency close to the fundamental frequency of the structure
(resonance condition). The maximum displacement, velocity, and acceleration of the top
floor and the first floor interstory dnift at the res:mance condition are compared in Table
4.1. It can be observed that the results obtained by the proposed method are more
conservative than those of the constant assumption of the first method. In addition, the
proposed method (third) gives results that are very close to the second method.

A multiple-frequency base acceleration is used to compare the response using the

constant assumption of the first method with the method presented here (third method),

given as

F(t)=00025g [sinw, t + 2sinw,t + 3sinw,t)

where ©,, ©,, and ®, are the first, second, and third natural frequencies. Note that
equation (2.4) for the second method can not be used for this excitation since its

derivation is based on a single forcing excitation frequency.

4

Table 4.1. Maximum response for structures equipped with one VE damper on the first
floor subjected to a sinusoidal base acceleration

Properties of | 1st mode total]  1st floor Top floor Top floor Top floor
VE damper | damping (%) ]| drift (cm) disp. (cm) |[velocity (cmvs)| accel. (g)

Eight-story Building@oJ = 5.79 rad/sec)

1st method 5.06 835 51.62 304.64 1.83

2nd method 4.10 10.52 62.77 370.40 223

3rd method 4.10 10.57 62.96 371.59 2.24
Ten-story Frame (o, = 2.47 rad/sec)

1st method 4.66 17.26 293.02 728.34 1.93

2nd method 2.54 30.53 446 .46 1098.74 2.85

3rd method 2.54 30.61 447.19 1100.59 2.85
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The maximum responses for both structures are shown in Table 4.2. The
responses obtained from the proposed method are larger than those obtained from the
constant assumption for both the eight-story building and the ten-story frame for the
multiple-frequency base acceleration. In the ten-story frame, the difference of the effective
damping level obtained by the two methods is even larger than the eight-story shear
building.

Two earthquake records, the SOOE component of the May 18, 1940 El-Centro
earthquake Imperial Valley record, and the SI6E component of the Feb. 9, 1971 San
Fernando earthquake Pacoima Dam record, shown in Figure 4.6, are used to evaluate the
two methods stated above. The maximum responses of the eight-story shear building and
the ten-story frame are shown in Tables 4.3 and 4.4 for the 1940 El-Centro and the 1971
San Femando earthquakes. Similar results are observed by comparing Tables 4.1
(sinusoidal base acceleration), 4.2 (multiple-frequency base acceleration), and 4.3 and 4.4
(seismic records). It is concluded that in general, the proposed method is conservative for
both typical structures regardless of the type of the excitation.

Table 4.2. Maximum response for structures equipped with one VE damper on the first
floor subjected to a multiple-frequency base acceleration

Properties of | Ist mode total| 1st floor Top floor Top floor Top floor
VE damper | damping (%) | drift (cm) disp. (cm) |velocity (cm/s){ accel. ()

Eight-story Building

1st method 5.06 1.41 8.80 49.18 0.47

3rd method 4.10 1.79 10.83 59.09 0.54
Ten-story Frame

1st method 4.66 0.50 6.60 31.67 0.29

3rd method 2.54 0.61 6.85 32.47 0.29
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Figure 4.6 Seismic excitations: (a) SOOE record of the May 18, 1940 El-Centro

carthquake (Imperial Valley record), and (b) S16E record of the Feb. 2, San
Fernando egnhquake (Pacoima Dam record)



Table 4.3. Maximum response for structures equipped with one VE damper on the first

floor subjected to the 1940 El-Centro earthquake
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Properties of | 1st mode total] * Istfloor | Topfloor | Topfloor | Top floor

VE damper | damping (%) | dnft (cm) disp. (cm) | elocity (cm/s){ accel. (2)

Eight-story Building
1st method 5.06 247 15.97 97.39 0.88
3rd method 4.10 2.72 17.17 100.23 0.92
Ten-story Frame .

1st method 4.66 3.9 40.82 128.94 0.67
3rd methad 2.54 3.67 45.82 145.04 0.65

Table 4.4. Maximum response for structures equipped with one VE damper on the first
floor subjected to the 1971 San Fernando earthquake

Properties of | 1§t mode total| st floor Top floor Top floor Top floor
VE damper | damping (%) | drift (cm) disp. (cm) | elocity (cm/s) accel. (g)
Eight-story Building
1st method 5.06 .11 4418 248.11 1.94
3rd method 410 7.81 46.80 262.63 2.05
Ten-story Frame
Ist method 4.86 492 64.01 285.37 1.32
3rd method 2.54 6.32 66.93 301.00 1.52




Placement of VE Dampers

Two shear buildings (Figures 4.1(a) and 4.1(c)) and one ten-story frame (Figure
4.1(b)) have been used to study the response of the structures with a given number of VE
dampers at different locations. Two cases are described. In the first case one VE damper
is installed at each floor, and in the second case all VE dampers are placed on the first
floor. The parameters G  and G’ of the VE dampers are determined by the third method
presented in the previous section. The constants, a, b, a, and G of equation (2.4) are
assumed as 0.0347, 4.16, 0.71, and 4.5176E+05 N/m?, respectively. The cross-sectional
area of the VE dampers is 0.005 m? for the five-story shear building, 0.09 m? for the
eight-story shear building, and 0.02 m?for the ten-story frame. The thickness of the VE
dampers for the three structures is identical and equals 0.0127 m. The above dimensions
were chosen from relative mass and structural response considerations.

Figure 4.7 shows how the effective damping ratio (which includes the structure’s
damping) varies with the number and the location of the VE dampers. It is obvious that
larger damping ratios can be obtained if the VE dampers are placed on separate floors
rather than if they are all concentrated on the first floor. This is more obvious in the cases
of the lighter structures, such as the five-story building and the ten-story frame. However,
for the eight-story shear building the variation of the effective damping ratios for the two
cases is not very significant. The reason for the small difference in the latter case is due to
the larger mass of the eight-story shear building. This shows that perhaps more than one
damper per floor is needed for the cight-story shear building. |

Four earthquake records, the 1940 El-Centro earthquake, 1971 San Fernando
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earthquake, the N9OW component of the Sep. 19, 1985 Mexico City (Cuerrero-
Michoacan Coast, Mexico) earthquake (Figure 4.8(a)), and the S9ON component of the
Jan. 17, 1994 Northridge (Santa Monica station at City Hall, CA) earthquake (Figure
4.8(b)) are used to examine the performance of the VE dampers for the three test
structures. Figure 4.9 shows the spectral amplitude as a function of the frequency content
of the four earthquakes. Figure 4.10 shows the displacement reduction for the three
structures stated above, equipped with one VE damper on the first floor. It can be
observed that the reduction is largest for the five-story and eight-story shear buildings
during the 1994 Northridge eartliquake as compared to the other three earthquakes.
However, the displacement reduction for the ten-story frame is more efficient during the
1985 Mexico City earthquake. Again, it should be noted that the five-story shear building
and ten-story frame are much lighter than the eight-story shear frame. Hence, for larger
reduction of the response the latter should be equipped with more than one damper.

The displacement, velocity, and acceleration reduction ratio for the top floor of
each of the three structures equipped with a number of VE dampers are shown in Tables
4.5 - 4.7 for the four earthquakes. Greater reductions in the response of the top floor are
achieved when the VE dampers are placed one per floor rather than all on the first floor.
The displacement responses in Table 4.5 are reduced the most for the five-story and eight-
story building subjected to the 1994 Northridge earthquake record. For the ten-story
frame the displacement reductions are largest when it is subjected to the 1985 Mexico City
carthquake record. In general, the response reduction for each structure with the same

number and same location of VE dampers but subjected to different earthquakes is within
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Table 4.5. Top floor displacement as compared to the uncontrolled response with the

addition of VE dampers
One VE damper per floor All VE damper on the first floor
No. of | 1st VNE' El- San | Mexico| North- |1st mod% El- San | Mexico| North-
VE |damping| Centro | Femando| City ridge |damping] Centro | Femandoj City ridge
dampers|ratio (%) (%) | (%) (%) (%) |ratio (%) (%) (%) (%) (%)
Five-story Shear Building
1 4.66 73 84 80 66 4.66 73 84 80 66
2 19.26 34 41 46 38 6.03 65 77 77 60
3 31.85 20 28 30 24 6.76 61 76 74 58
4 37.63 15 22 24 18 7.20 59 75 73 56
5 39.14 13 19 20 15 7.50 57 75 71 55
Eight-story Shear Buildin
| 410 89 90 89 83 4.10 89 90 89 83
2 5.68 80 81 79 76 5.40 81 83 81 77
3 7.04 72 74 73 71 6.47 75 77 75 72
4 8.14 67 69 69 68 7.37 70 72 72 70
5 8.92 63 66 67 66 8.13 66 69 69 67
6 9.40 61 65 66 64 8.78 63 66 67 66
7 9.62 59 64 66 64 9.35 61 65 66 64
8 9.68 59 64 65 63 9.85 58 63 65 63
Ten-story Frame
1 2.54 89 87 74 95 2.54 89 89 74 95
2 529 75 81 55 85 3.68 82 84 64 90
3 8.35 64 78 44 76 457 78 83 58 87
4 11,17 56 76 37 68 5.28 75 81 55 84
5 14.01 49 74 32 6! 5.86 73 80 52 82
6 16.37 44 71 28 56 6.33 71 9 50 82
7 18.13 41 68 26 51 6.75 69 78 49 80
] 19.77 33 63 23 46 7.10 68 78 47 78
9 20.72 35 59 22 42 741 67 77 46 77
10 21.03 34 57 21 41 7.67 66 77 45 76




Table 4.6. Top floor velocity as compared to the uncontrolied response with the addition

of VE dampers
One VE damper per floor All VE damper on the first floor
No.of |ist El- San | Mexico| North- | Ist nﬁ El- San | Mexico| North-
VE |damping] Centro { Fernando! City ridge |damping| Centro | Femando] City ridge
dampers|ratio (%) (%) | (%) (%) (%) |ratio (%) (%) (%) (%)
Five-story Shear Building
1 4,66 81 82 48 62 4.66 82 82 48 62
2 19.26 47 43 23 43 6.03 76 73 41 59
3 3185 32 31 14 29 6.76 73 68 38 57
4 37.63 26 25 11 22 7.20 71 64 37 56
p] 39.14 22 21 10 19 7.50 70 62 37 56
Eight-story Shear Buildin,
1 4.10 94 2 90 84 4.10 94 92 90 84
2 5.68 92 84 9% 78 5.40 92 85 90 78
3 7.04 89 78 90 76 6.47 89 80 90 74
4 8.14 86 74 89 7 1.37 87 76 89 n
5 8.92 83 70 87 69 8.13 85 73 88 70
6 9.40 80 63 86 66 8.78 82 70 87 69
7 9.62 79 66 85 63 9.35 80 63 86 638
8 $.68 78 66 84 63 9.85 79 65 85 67
Ten-story Frame
1 2.54 77 94 76 87 2,54 77 94 76 87
2 529 61 85 57 78 368 68 90 66 83
3 8135 52 80 46 69 457 64 87 60 80
4 1117 47 77 39 62 528 61 8s 57 77
5 14.01 44 75 34 56 5.86 59 84 54 76
6 1637 | 42 73 30 52 6.35 57 83 52 74
? 18.13 38 70 27 438 6.75 56 82 51 73
3 19.77 kx] 65 24 45 7.10 55 81 49 72
9 20721 29 61 23 43 741 54 80 43 n
10 21.03 28 59 22 41 7.67 $3 79 47 70
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Table 4.7. Top floor acceleration as compared to the uncontrolled response with the

addition of VE dampers
One VE damper per floor All VE damper on the first floor
No. of | 1st mﬂ%r El- San [ Mexico| North- |1st md% El- San | Mexico | North-
VE |damping] Centro | Femandol City | ridge |damping] Centro | Femando| City | ridge
dampersjraio (%) (%) [ %) | (%) | () lratio) %) | Co | 0 | e
Five-story Shear Building
1 4.66 82 74 43 76 4.66 82 74 43 76
2 19.26 58 50 20 58 6.03 78 76 39 70
3 31.85 35 40 13 47 6.76 76 76 37 67
4 37.63 30 35 1 37 7.20 76 76 36 66
5 39.14 29 34 9 33 7.50 75 75 35 65
Eight-story Shear Buildin
1 4.10 93 85 9l 92 4.10 93 85 91 92
2 5.68 87 78 87 90 5.40 88 79 88 87
3 7.04 81 7 86 88 6.47 83 74 86 84
4 8.14 76 68 84 83 7.37 80 70 84 81
S 8.92 73 65 82 80 8.13 76 68 83 ”
6 9.40 N 64 81 76 8.78 3 66 82 77
7 9.62 70 64 80 78 9.35 71 64 8t 76
8 9.68 69 63 79 78 9.85 69 63 80 75
Ten-story Frame
| 2.54 78 74 80 91 2.54 78 74 80 91
2 5.29 72 61 64 88 3.68 73 63 71 87
3 835 67 60 54 84 457 71 59 66 85
4 11.17 61 58 46 82 528 69 59 63 84
5 14.01 55 57 40 81 586 68 59 61 82
6 16.37 52 56 35 78 6.35 67 58 59 31
7 18.13 49 55 33 L4 6.75 66 58 51 81
] 1977 48 53 30 84 7.10 65 58 57 8t
9 2072 47 52 28 84 741 64 58 56 80
10 21031 49 51 28 84 7.67 63 58 55 80
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20 %. However, the velocity and acceleration reductions for the five-story shear building

subjected to the 1985 Mexico City earthquake are reduced much more than the other

three earthquakes.
Design of VE Damper

An optimization method is investigated to design the minimum size of VE dampers
for achieving an expected effective damping ratio of the structural system. The modified
method of feasible directions, a subprogram of DOT (Design Optimization Tools)
program developed by VMA Engineering (1993), is used to optimize the required cross-
sectional area of the VE dampers on the different floors of the structure. The parameters
G and G* of the VE dampers are determined by the third method presented in the
previous section. The constants, a, b, a, and G of equation (2.4) are assumed as 0.0347,
4.16,0.71, and 4.5176E+05 N/m?, respectively.

The effective damping ratios were obtained from the previous section by using the
VE dampers with cross-sectional area equal to 0.09 m? for the eight-story shear building,
and 0.02 m? for the ten-story frame. These damping ratios are used to find the optimum
area required for the VE dampers. The inherent structural damping level of the first mode
equals 2.5 % of critical for the eight-story building and 1 % for the ten-story frame. The
thickness of the VE dampers is assumed to be a fixed value and equals 0.0127 m. The
side constraints of the maximum and minimum sizes of the VE damper are 5.0 and 0.0001
m? respectively.

Table 4.8 shows the optimal designs for the minimum cross-sectional area of the
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Table 4.8 Optimal designs for the minimum cross-sectional area of VE dampers for the
eight-story shear building (m?)

Floor First mode effective damping ratio (%)

4.10 5.66 7.02 8.12 8.90 9.37 9.60 9.65

1 0.0849 | 0.0959 | 0.1277 | 0.1499 | 0.1640 | 0.1751 | 0.1775 | 0.1759
2 - 0.0780 | 00976 | 0.1244 | 0.1363 | 0.1588 | 0.1437 | 0.1487
3 - - 0.0337 | 0.0583 | 0.0840 | 0.0864 | 0.1030 | 0.0993
4 - - - 0.0001 | 0.0034 | 0.0027 | 0.0152 | 0.0200
5 - - - - 0.0001 | 0.000t | 0.0001 | 0.0001
6 - - - - - 0.0001 | 0.0001 | 0.0001
7 - - - - - - 0.0001 | 0.0001
8 - - - - - 0.0001

Sum. 0.0849 | 0.1739 | 0.2590 | 0.3327 | 0.3878 | 04232 | 04397 [ 0.4443

Diff. 0.0051 [ 0.0061 | 0.0110 | 0.0273 | 00622 | 0.1168 | 0.1903 | 0.2757

VE damper for an expected effective damping in the first mode of the eight-story building

One to eight dampers are used, one on each floor. The last row in Table 4.8 shows the
difference in the total area of the VE dampers between the optimal designs and the designs
using the same size for each VE damper. The latter are the damper dimensions used in the
previous section, i.e. A = 0.09 m? for the eight-story building. It can be observed that the
total value of the cross-sectional area of the VE dampers obtained from the optimal design
for a certain number of VE dampers is less than the value using the same size for each VE
damper. For example, the required area of VE dampers when the building is equipped
with a VE damper at each floor obtained from the optimal design is about 38 % less
compared to the design using the same size for each damper. It should be noted that some
of the required areas designed by the optimization method reach the side constraints, i.e.,
the minimum area, which suggests that no VE damper is required at that floor. Table 4.9
shows the designs when the side constraint min'mum equals 0.0 m2. It can be seen that the
total areas of the VE dampers are close to the values shown in Table 4.8, but only a few

lower floors are required to be equipped with the VE dampers.
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Table 4.9 Optimal designs for the minimum cross-sectional area of VE dampers for the
eight-story shear building with minimum side constraint equal to zero (m?)

Floor First mode effective damping ratio (%)
410 5.66 7.02 8.12 8.90 9.37 9.60 9.65
1 0.0849 | 0.0959 | 0.1277 | 0.1415 | 0.1636 | 0.1760 | 0.1781 | 0.1729
2 - 0.0780 | 0.0976 | 0.1241 | 0.1375 | 0.1532 | 0.1507 | 0.1562
3 - - 0.0337 | 0.0672 | 0.0728 | 0.0944 | 0.1031 | 0.1176
4 - - - none 0.0144 none 0.0078 none
5 - - - - none none none none
6 - - - - - none none none
7 - - - - - - none none
8 - - - - - - - none
Sum. 0.0849 | 0.1739 | 0.2590 | 0.3328 | 0.3883 | 0.4236 | 04397 [ 04467
Diff. 0.0051 | 0.0061 | 00110 ! 0.0272 { 0.0617 | 0.1164 | 0.1903 [ 0.2733

The optimal designs for the minimum cross-sectional area of the VE damper for an

expected effective damping in the first mode of the ten-story frame are shown in Table

4.10. Similar conclusions about the results can be observed to the conclusions reached

about the designs shown in Table 4.8. However, for this ten-story frame a smaller area of

VE damper is required for the first floor when more than one floor is equipped with VE

dampers. This suggests that the best location of VE dampers might be a floor other than

the first.

Table 4.10 Optimal designs for the minimum cross-sectional area of VE dampers for the
ten-story frame (m?)

Floor

First mode effective damping ratio (%)

2.54

5.29

8.33

11.14

13.97

16.37

18.08

19.72

20.66

20.97

0.0194

0.0001
0.0299

0.0001 | 0.0001
0.0127{0.0182
0.0315 1 0.0216

0.0280

0.0001
0.0150
0.0229
0.0154
0.0340

0.0001
0.0142
0.0328
0.0213
0.0209
0.0182

0.0001
0.0272
0.0276
0.0176
0.0242
0.0173
0.0099

0.0001
0.0274
0.0301
0.0247
0.0217
0.0196
0.0054
0.0105

0.0001
0.0294
0.0307
0.0273
0.0218
0.0229
0.0075
0.0103
0.0008

0.0001
0.0301
0.0298
0.0213
0.0289
0.0211
0.0076
0.0138
0.0007
0.0001

wn
§ SO0 NAUEWN—
[}

0.1075

0.1239

0.1395

0.1508

0.1543

=)
=
:

0.0125

0.0161

0.0205

0.0292

0.0457
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The optimal designs using a constant number of VE dampers but different levels of
the effective damping ratio are also investigated. Table 4.11 shows the designs for the 10,
15, 20, and 25 % of critical effective damping ratio by locating one VE damper on the first
and second floors of the eight-story building or the ten-story frame. The same table shows
the case when one VE damper is located on the first, second, third, and fourth floors of
the two structures. The thickness of the VE dampers is assumed to be a fixed value and
equals 0.01 m in this study. The side constraints of the maximum and minimum sizes of
the VE damper are 5.0 and 0.01 m? respectively. It can be found that by increasing the
size of the VE damper one can increase the effective damping level for the same number
of VE dampers located in the structure. However, for the same level of effective
damping, the structure equipped with VE dampers on the first and second floors only,
needs considerably more material than the structure equipped with VE dampers on the
first, second, third, and fourth floors. For the ten-story frame, if only the first and second
floors are equipped with VE dampers, the structure cannot even reach the effective

damping level of 25 % of critical.

Parametric Study of Active Bracing System
The performance of the active bracing system (ABS) is examined by using the

linear quadratic regulator (LQR) optimal control method and the instantaneous optimal
control (I0C) for the eight-story shear building. Both the identity matrix and the matrix
obtained using the Lyapunov method as the weighting matrix Q are used in the IOC. The

maximum displacement of the eighth floor is set arbitrarily to 70 % of the uncontrolied



Table 4.12. Comparison of the control forces, damping ratios, and weighting matrices for
the 1940 Ei-Centro earthquake record

ABS on the Ist flooronly | ABS on the 1st & 2nd floor

w/o

Location of Controller
Optimal Controt Method | Controlf LQR 10C LQR 10C
© matrix - I I Lyspunov? I I Lyspunov?
Constant of R matrix ( r=I) - 1.164E-13| 7.20E-16| 1.96E-15 |2.272E-13| 2.25E-15] 4.50E-15
1st floor CF (kN) - 3,176 | 4,334 | 3,203 1,642 1,908 1,697
2nd floor CF (kN) - - - - 1,578 1,593 1,504
Structural damping ratio 12.50 %] 2.50% | 2.50% | 2.50% | 2.50% | 2.50% | 2.50 %
ABS damping ratio - 457% | 807% | 4.64% | 4.54% | 4.94% | 4.54%
Total effective damping ratio 12.50 %] 7.07% | 10.57%] 7.14% 1 7.04% | 7.44% | 7.04 %
Max. Disp. (m)- 8thFl. | 0.193 | 0.135 | 0.135 0.134 | 0.135 0.135 0.135
Max. Vel. (m/s)-8thFl. | 1.062 | 0.811 0.885 0.813 0812 0.809 | 0.820
Max. Accel. (g) - 8th Fl. 0.990 | 0.807 | 0.804 0.808 | 0.805 0.796 | 0.809

! Identity matrix .

2Matrix based on Lyapunov method for one controller shown in Table 4.13.
3 Matrix based on L yapunov method for two coatrollers shown in Table 4.14.
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response, i.e., a reduction of 30 % is to be achieved. A total of six cases are studied. In
three of the cases, an ABS is placed on the first floor only, and in the remaining three
cases an ABS is placed on both the first and second floors. Simulation results are
compared in Table 4.12 for the required control force magnitude (CF), effective damping
ratio achieved, and maximum response using the 1940 El-Centro earthquake of Figure
4.6(a).

It should be noted that all damping ratios shown in Table 4.12 are referenced to
the fundamental mode, but in the analysis all the modes have been considered. The results
show that when two controllers are used, the maximum control force per controller is
reduced to approximately one-half of the case with only one controller. This is important
for design purposes because smaller actuators are more readily available and less costly
than larger actuators. Table 4.8 shows that when the Lyapunov-based Q matrix is used in
the IOC (obtained from equation (2.14) and shown in Tables 4.13 and 4.14),
approximately the same maximum control forces are required to obtain results identical to
those using the LQR optimal control; these forces are smaller than those required by using

the identity matrix in the 10C.

Performance of Different Control Algorithms

The instantaneous optimal control (IOC) with the Lyapunov-based Q weighting
matrix, the drift performance index (DPI) control, and the velocity performance index
(VPI) control described in Chapter 2 are compared for the following two cases : (a) for

the same level of maximum control force compare the response, and (b) for the same
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Table 4.15. Comparison of the required maximum control force and number of
controllers for 30 % reduction of the eighth floor displacement of the eight-

story building
Location of ABS|  Without ABS at Ist 1] ABS at 1st & 2nd fl. JABS at Ist, 2nd, 3rd, and 4th fl.
__Algorithm Control 10C 10C VP! 10C DPI VPI
st Fl. CF (kN) - 3,202 1,697 6,668 926 2,187 4,527
20d Fl. CF (kN) - - 1,504 6,410 887 1,627 3,581
3rd F1. CF (KN)} - - - - 818 1,097 3,000
4th F1. CF (kN) - - - - 727 518 2,745
Floor Displacement (m) Percen of uncontrolled displacement (%)
1 0.033 76 74 107 74 73 84
2 0.065 73 e 107 72 77 80
3 0.096 70 70 90 70 1 79
4 0.125 69 70 82 70 71 80
5 0.150 69 70 77 70 1 75
6 0.171 69 70 75 70 70 72
6 0.185 70 70 71 70 70 71
8 0.193 70 70 70 70 70 70
Floor Velocity (m/s) Percentage of uncontrolled velocity (%)
1 0.224 61 74 90 76 59 70
2 0.429 71 68 93 73 61 67
3 0.612 68 69 77 70 62 68
4 0.759 67 68 72 68 65 70
5 0.868 68 69 68 69 70 66
6 0.939 72 72 69 7 75 65
7 1.002 76 76 70 76 78 64
8 1.062 77 77 68 77 77 62
Floor Acceleration (g) Percentage of uncontrolled acceleration (%)
1 0.431 84 9 33 100 4 29
2 0.539 100 96 51 101 66 42
3 0.570 104 103 94 100 85 53
4 0.619 98 97 92 90 90 59
5 0.767 76 7 65 78 76 53
6 0.879 80 80 49 80 75 50
7 0.945 82 82 51 81 76 48
] 0.990 82 82 54 80 77 48
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maximum displacement response compare the maximum control force required. The
eight-story building subjected to the 1940 El-Centro earthquake is used.

In case (a), except for the acceleration on the lower floors (first to third floor) of
the building, the response is reduced better by the IOC algorithm than by the DPI or VPI
algorithm. Results for case (b) are shown in Table 4.15. The eighth floor maximum
displacement is arbitrarily set to 70 % of the uncontrolled response for all three control
algorithms (I0C, DPI, and VPI). Three situations are compared : a single ABS on the
first floor, an ABS on the first and second floors, and an ABS on the first, second, thurd,
and fourth floors. In order to reach the 70 % limit, the velocity control (VPI) required at
least two controllers, and the drift control (DPI) required four controllers.

Note that the instantaneous optimal control (IOC) algorithm maximum control
force when using one controller is 3,202 kN, when using two controllers it is 1,697 kN;
and when using four controllers it is 926 kN. The above forces are almost inversely
proportional to the number of controllers used. A significant reduction of the acceleration
is found when using the velocity control (VPI) algorithm. A similar outcome appears for
the drift control (DPI) algorithm as compared to the IOC control. For drift reduction, the
DPI performs better than the IOC and VPI algorithms. For velocity and acceleration
reduction, the VPI performs better than the IOC and DPI algorithms. However, the
control forces required to reduce the maximum displacement to the same level are much

larger for the DPI and VPI than those using the IOC algorithm.
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To study areas where both moderate and strong earthquakes are expected, the
1940 El-Centro earthquake (Figure 4.6(a)), the 1971 San Fernando earthquake (Figure
4.6(b)), the 1985 Mexico City earthquake (Figure 4.8(a)), and the 1994 Northridge
earthquake (Figure 4.8(b)) were used to examine the performance of the ABS and VE
dampers. The instantaneous optimal control (IOC) with the Lyapunov-based Q weighting
matrix and the VE damper properties used in previous‘ sections are employed for all four
earthquake records.

The performance of the ABS is compared to that of the VE dampers in Figures
4.11 - 4.14. The eight-story shear building®shown in Figure 4.1(a) is used with the four
earthquakes state above. Three cases are examined: (1) one ABS on the first floor, (2)
one VE damper on the first, second, and third floors, and (3) one VE damper on the first,
second, third, and fourth floors. The first mode effective damping ratio of the three cases,
which includes the inherent structural damping and the additional damping due to the
ABS or VE damper, equals 7.14, 7.04, and 8.14 % respectively. The control parameters
for the ABS are the same as shown in Table 4.12. The thickness and the cross-sectional
area of the VE damper equal 0.0127 m and 0.09 m®. The material properties of the VE
damper remain the same as stated in the previous section on the placement of VE
dampers.

It can be observed that the displacement, drift, and velocity responses are
effectively reduced. From Figures 4.11(a), 4.11(c), and 4.14(a), the response of the
structure cquipped with one ABS (§,=7.14 %) is even less than the case with four VE

dampers (§,=8.14 %). In Figures 4.13(a) and 4.13(c), the displacement and velocity
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mbined Perform fVE D rs and AB

The capability of available actuatoys for use in the ABS is significant. Currently,
actuators can provide control forces up to 1,000 kN with a stroke displacement and
velocity well within those expected from structural responses in strong earthquakes.
Specially fabricated actuators can reach forces as high as 20,000 kN; actuators can be
designed to reach strokes up to + 2 m and stroke velocities up to 5 m/sec fo: specific
systems (Clark, 1994). For control forces larger than 1,000 kN the cost of the actuator
increases rather sharply, and more than one actuator could be used as an alternative.
However, the hydraulic systems that include manifolds and oil purfips and the performance
characteristics such as the flow rate are required to be at higher levers and must be
custom manufactured. Reduction of the required control forces is desirable for containing
the ABS cost.

Extensive testing and evaluation of VE dampers at both a reduced and at full scale
have proven the feasibility of their use in seismic structures. However, it is known that
the damping properties of the VE material are frequency dependent. In addition, the VE
material has a finite ability to resist shear strains, and for large deformations beyond the
design level it may fail in shear.

The ABS and VE dampers could complement each other. For moderate
earthquakes the VE dampers may suffice for reducing the structural response, but for
strong earthquakes the ABS may have to be activated. It is apparent that both systems
can benefit from the presence of the other. In addition, redundancy is introduced into the

protective system.
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response for the structure with an ABS on the first floor subjected to the 1985 Mexico
City earthquake are slightly larger than the case with three VE dampers (£,=7.04 %).
This is because the weighting matrices, Q and R, of the ABS were established for the El-
Centro earthquake which has significantly different frequency characteristics than those of
the Mexico City earthquake (see Figures 4.9(a) and 4.9(c)).

The combined performance of the ABS and VE dampers is studied using six
different arrangements (Figure 4.15) for the eight-story building subjected to the four
carthquakes. In case (1) one ABS is placed on the first floor; in case (2) one ABS and
one VE damper are placed on the first floor; in case (3) one ABS and one VE damper are
placed on the first floor and one VE damper is placed on the second floor; in case (4) one
ABS is placed on the first and one on the second floor; in case (5) one ABS and one VE
damper are placed on the first floor and one ABS is placed on the second floor; in case (6)
one ABS and one VE damper are placed on the first and second floors.

The maximum displacement of the eighth floor is set to 70 % of the uncontrolled
response for all six cases in Table 4.16 for the 1940 El-Centro earthquake. For the 1971
San Fernando, 1985 Mexico City, and 1994 Northridge earthquakes the same ABS
weighting matrices and VE damper properties were used. The range of the displacement
response reduction for these three earthquakes is 70 to 80 % for the San Fernando, 75 to
85 % for the Mexico City, and 70 % for the Northridge earthquake compared to the
uncontrolled response. The structural damping energy (SDE), VE damper damping
energy (VDE), ABS damping energy (ADE), and elastic strain energy (ESE) are

determined separately by the absolute energy method (Uang, 1988). In addition, the total
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Table 4.16. Effective damping ratio for the hybrid ABS-VE damper systems

without ABS on the Ist floor only ABS on the st and 2nd floors
Case ABSorVE[ (1) | (@) 3) @) ©) ©)
damper | w/oVE |[VEonIstfl[VEon12f]| wio VE [VEonIstfl|VEon12 1l
Structural damping | 250% | 2.50% | 2.50% | 2.50% | 250% | 2.50% | 2.50%
ABS damping ratio - 464% | 3.09% | 188% | 454% | 3.11% | 181%
VE damping ratio - - 1.60% | 3.10% - 1.60% | 3.10%
Effective dampingratio] 2.50% | 7.14% | 7.19% | 748% | 704% | 7.21% | 741 %

damping energy (TDE), input energy (IE), and kinetic energy (KE) are determined. The
damping ratio corresponds to the fundamental mode, but in the analysis the damping
ratios of all the modes are used. As can be seen from Table 4.16, the total damping ratio
for reducing the maximum displacement to a desired level is increased as additional VE
dampers are added.

Figures 4.16 - 4.19 show the responses for the uncontrolled case and cases (1),
(2), and (3) of Figure 4.15 for the 1940 El-Centro, 1971 San Fernando, 1985 Mexico
City, and 1994 Northridge earthquakes, respectively. The maximum displacement of the
eighth floor decreases considerably in cases (2) and (3) for all four earthquakes.
Comparing Figures 4.16(c) to 4.11(c) and 4.17(c) to 4.12(c) it can be seen that the ABS
helps improve the velocity response of the VE damper.

The maximum control force required by the actuator of the ABS has been reduced
considerably by introducing one VE damper (cases (2) and (5)), and is further reduced by
introducing two VE dampers (cases (3) and (6)) as shown in Figure 4.20. Note that the
maximum control force levels are kept within 30 % of the structure's weight for the El-
Centro ecarthquake. Since the peak ground acceleration of the 1971 San Fernando
carthquake (1.1 g) is almost three times that of the 1940 El-Centro earthquake (0.34 g)

the control force required using the same control parameters is increased by about three
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times. Likewise, the peak acceleration of the 1985 Mexico City earthquake (0.17 g) is
about one half of the 1940 El-Centro earthquake, thereby the required control force is
slightly less than half of that for the El-Centro earthquake (Figure 4.20(c)). However,
even though the peak acceleration of the 1994 Northridge earthquake (0.89 g) is about
two times larger than that of the El-Centro earthquake, the maximum required control
forces are only two-thirds of those required by the El-Centro earthquake. This shows that
the ABS will produce a different performance for earthquakes with different
charactenistics.

From the previous discussion it is obvious that the control forces are rather large.
Cases (2) and (3) in Figure 4.20 show how these forces can be substantially reduced by
introducing one (case (2)) or two (case (3)) VE dampers. Similar results are obtained if
two ABS are used (case (4)), and the required control forces are further reduced if one
VE damper is added to the two ABS (case (5)), or two VE dampers are added (case (6)).
When two ABS are present, the sum of the required maximum control force from each
controlier is approximately the same as the maximum control force required when only
one ABS is present. The addition of the VE dampers not only brings the ABS within the
realm of practically but also reduces their overall cost. It can also be observed that the
additional damping ratio introduced by the ABS is slightly different in cases (1) - (3) and
cases (4) - (6) (see Table 4.16). However, the differences in the damping ratio between
cases (1) and (4), cases (2) and (5), and cases (3) and (6) are due to the fact that the
weighting matrices were modified to obtain the same roof displacement. Similar results
can also be observed for all three earthquakes (Figures 4.20(b), 4.20(c), and 4.20(d)).
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Table 4.17. Maximum absolute energy distribution for the hyb.id ABS-VE damper

systems
without ABS on the st floor only ABS on the 1st and 2nd floors
Case ABS or VE (D 2) (3) 0) (%) (6)
damper w/oVE |VEonistfl[VEon12fl] wWoVE |VEonistfl.IVEon12f.

1940 El-Centro earthquake
SDE (kN-m) 1,718 677 630 586 663 617 590
ADE (kN-m) 0 829 554 340 936 622 356
VDE kN-m) 0 0 369 672 0 367 678
TDE (kN-m) 1,718 1,506 1,553 1,598 1,600 1,606 1,624
KE (kN-m) 1,102 565 619 645 574 617 650
ESE (kN-m) 1,119 750 754 743 712 726 735
IE (kN-m) 2,279 2,165 2,173 2,188 2,179 2,184 2,195

1971 San Femando earthquake
SDE (kN-m) 10,081 3,654 3,421 3,182 3,608 3,355 3,216
ADE (kN-m) 0 4,495 3,083 1,906 5,016 3,398 1,970
¥DE kN-m) 0 0 1,972 3,593 0 1,962 3,637
TDE (kN-m) 10,081 8,149 8,476 8,681 8,624 8,715 8,822
KE (kN-m) 7,760 4,579 4,511 4,302 4,626 4,496 4,336
ESE (kN-m) 7,694 5,299 5,100 4,859 5,228 5,059 4,872
IE (kN-m) 13,899 | 11,428 | 11,465 11,545 | 11,531 11,510 | 11,598

1985 Mexico City earthquake
SDE (kN-m) 446 256 240 222 252 236 243
ADE (kN-m) 0 436 284 171 455 297 267
VDE kN-m) 0 0 152 279 0 152 156
TDE (kN-m) 446 692 676 671 707 685 667
KE (kN-m) 937 872 876 872 874 876 882
ESE (kN-m) 1,347 1,300 1,301 1,315 1,343 1,348 1,347
1E (kN-m) 1,920 2,057 2,044 2,049 2,112 2,094 2,080

1994 Northridge carthquake
SDE (kN-m) 1,153 511 453 417 495 443 421
ADE (kN-m) 0 438 298 188 515 345 200
VDE kN-m) 0 0 216 378 0 215 382
TDE (kN-m) 1,153 948 967 983 1,010 1,004 1,003
KE (kN-m) 565 390 363 339 391 363 340
ESE (kN-m) 1,292 1,069 1,066 1057 1,041 1,049 1,049
IE (kN-m) 2,089 1,853 1,851 1,850 1,867 1,864 1,857
Note : SDE = Inherent structural damping energy; ADE = Damping energy due to ABS ;

VDE = Damping energy due to VE dampers; TDE = Total damping energy (SDE+ADE+VDE),

KE = Kinetic energy,
IE = Input energy;

ESE = Elastic Strain Energy;
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The absolute energy distribution for the eight-story building subjected to the four
earthquakes is shown in Table 4.17. It can be seen that the structural damping energy is
reduced significantly after adding the active bracing system(s) and is reduced even more
with the additional VE damper(s). The VE damper damping energy increases by adding
more VE dampers, and the ABS damping energy is decreased. The total damping energy
increases from case (1) to case (3) when VE dampers are added. The input energy,
elastic strain energy, and kinetic energy are decreased by adding the ABS and VE
dampers as compared to the case without ABS or VE dampers.

The input, damping, and eclastic strain energy for the structure subjected to the
1971 San Fernando earthquake is about five to six times compared to those of the El-
Centro earthquake, and the kinetic energy is even larger. This is true for the structure
wither with or without controls. Similar results can be observed when the structure is
subjected to the 1985 Mexico City and 1994 Northridge earthquakes. In the case of the
Mexico City earthquake, the input energy increases slightly after the addition of the hybrid
system, but the damping energy increases significantly.

The energy time-histories of cases (1), (2), and (3) in Table 4.17 for the structure
subjected to the 1940 El-Centro earthquake are compared to those of the structure
without an ABS system or VE damper, and are shown in Figure 4.21. The ABS and VE
dampers contribute a significant amount to the total damping energy as shown in Figures
4.21(b), 4.21(c), and 4.21(d). From these figures it can also be observed that the
damping energy of the VE dampers reduces the demand on the ABS system for the same

result in response reduction. Figure 4.22 shows the kinetic energy time-histories for the
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1940 El-Centro, the 1971 San Fernando, the 1985 Mexico City, and the 1994 Northridge
earthquakes, for the uncontrolled case and case (2) (one ABS and one VE damper on the
first floor). It can be observed that in the hybrid case a significant reduction of kinetic

energy is obtained for ali four earthquakes.



CHAPTER §

PERFORMANCE OF CONVEX MODELS

In this chapter, the energy-bound convex models are used to estimate the
maximum response of structures for uncertain dynamic loads. The performance of convex
models is investigated for impulses, artificial earthquakes, and several records of past
earthquakes. The response using the time-history of the actual record (AR) is compared
with the values obtained from the global energy-bound (GEB) and local energy-bound

(LEB) convex models of an uncertain excitation.

nergy- vex el ic Magnification F
First, a single degree-of-freedom system (SDOF) subjected to an uncertain
impulsive excitation is used to evaluate the performance of the two convex models. The
excitation At) in equation (3.1a) is a scalar, it has an uncertain profile, and is assumed to
belong to a convex set of dynamic functions. Several excitations were used to evaluate the
solution obtained by the convex model.

The dynamic magnification factor, D, is defined as (Clough and Penzien, 1975)
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Figure 5.1 shows the displacement response spectra of a rectangular impulse for a
damping level of 5 % of critical. The displacement response using the time-history of the
actual record (AR), the global (GEB) convex model (equation (3.10)), and local (LEB)
convex model (equation (3.14)) is shown. In Figure 5.1, n is the duration of the impulse
and T is the structural period. The maximum displacement occurs during the impulse
(phase I) when the impulse length ratio, #/T , is larger than 0.49; the maximum
displacement occurs after the impulse (phase IT) if n/7 < 0.49. The other seven impulses
shown in Figure 5.2 are also used in this study. Results for a sine-wave impulse are shown
in Figure 5.3; results for a two-peak arbitrary impulse (impulse No. ® in Figure 5.2) are
displayed in Figure 5.4. It can be observed that the maxima obtained by the global energy-
bound (GEB) and local energy-bound (LEB) convex models are much larger than the
spectra for the actual record (AR).

The displacement response to the impulses shown in Figure 5.2 was evaluated
using the GEB convex model of equation (3.9a), the LEB convex model of equation
(3.13a), and a solution as if A) were known with certainty using the time-history analysis
of the actual record (AR). Table 5.1 shows the results at the transition point (#/7),, at
which the maximum switches from phase II to phase I for the SDOF structure; 1% and
5 % of critical damping is considered. In Table 5.1, the non-dimensional global energy

factor (E, ? (n)/Po* 1) can be obtained by any of three different conditions: First, the
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Table 5.1. Comparison of energy-bound convex models with actual record at the
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transition point
Po Po Po Po Po Po Po Po

mse | L] N W O I M | A
n n n n n n n n
EGi(nyPo'n 1.00 0.33 0.33 0.50 0.49 0.55 0.42 0.35
E, N1)/Po? 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Damping ratio = | %
(), 0.50 0.37 0.49 0.49 0.46 0.51 0.47 0.56
AR 1.97 1.00 1.24 1.53 1.45 1.45 1.28 1.14
GEB 5.52 2.50 3.18 3.89 3.5 4.16 342 3.57
GEB/AR 2.80 2.50 2.56 2.54 2.54 2.87 2.66 3.13
LEB 19.49 14.93 19.50 19.50 18.39 19.50 18.30 21.68
LEB/AR 9.89 14.93 17.73 12.75 12.68 13.45 12.30 19.02
Damping ratio = 5%

(v/T), 0.50 0.37 0.48 0.49 0.45 0.5 0.46 0.56
AR 1.86 0.92 1.16 145 1.35 1.37 1.20 1.08
GEB 3.7 1.81 .14 2.66 2.48 2.84 2.3} 2.36
GEB/AR 2.03 1.96 1.86 1.84 1.83 207 1.95 .18
LEB 12.74 10.77 12.74 12.74 12.74 12.74 12.31 13.51
LEB/AR 6.85 11.71 10.98 8.79 9.44 9.30 10.26 12.51

Note : AR - Actual record
GEB - Global energy-bound convex model
LEB-uww-bwndeonvexmodel
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duration and the maximum force of all impulses is kept the same, while the energy of the
impulses is different; Second, the energy and the duration of the impulses are kept the
same, while the maximum force is different; Third, the energy and the maximum force of
the impulses are kept the same, but the duration of the impulses is different. All three
combinations have the same dynamic magnification factors for the actual response and the
global energy bound convex model. The GEB convex model gives higher values than the
response evaluated using the time-history of the actual record (AR) by an average ratio for

the eight impulses, (GEB/AR), = 1.97 for the damping level of 5 % of critical.

For the LEB convex model, the nondimensional local energy factor, E,*(1,)/ P*,
which is only related to the maximum value of the ;xcitatiom is always equal to 1. The
LEB convex model gives much higher values than the response using the actual record, by
an average ratio for the eight impulses, (LEB/AR), = 9.98 for the damping level of 5 % of
critical.

Similar results can be observed when the structure is subjected to past earthquake
records. Consider a SDOF structural system subjected to the SOOE record of the May 18,
1940 El-Centro carthquake which is shown in Figure 4.6(a). The displacement responses
obtained by using the time-history of the actual record (AR), the GEB convex model, and
the LEB convex model are shown in Figure 5.5. The fundamental period of the structure
is 1.0 sec. and the damping level is § % of critical. The maximum responses obtained by
the AR, the GEB and LEB convex models analysis equal 0.13, 0.48, and 1.57 meters
respectively. The time-history cisplacement for the structure with a damping level of

10 % of critical is shown in Figure 5.6. The maximum responses obtained by the AR, and
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the GEB and LEB convex model analysis equal 0.09, 0.34, and 0.79 meters. Similar
results can be observed for the time-history of the velocity and acceleration responses.
These results show that the convex models give bounds that are relatively closer to the
actual maxima for higher levels of damping. This property is desirable in the design of
activ;: structures, which inherently have higher levels of damping.

For the case with a damping level of 5 % of critical, the response obtained by the
GEB convex model gives a higher value than the maximum response obtained using the
time-history of the actual record (AR) by a ratio, (GEB/AR), = 3.71 for the maximum
displacement, (GEB/AR), = 3.30 for the maximum velocity, and (GEB/AR), = 2.80 for
the maximum acceleration. For the same damping level, the LEB convex model gives a
much higher value than the response using the actual record by a ratio, (LEB/AR), = 8.76
for the maximum displacement, (LEB/AR), = 8.11 for the maximum velocity, and
(LEB/AR), = 7.50 for the maximum acceleration. This suggests that a reduction factor
could be used to reduce the conservatism of the results obtained by the convex models for

the maximum displacement, velocity, and acceleration response.

E - n els Adj i ion r
In general, the reduction factor for a given excitation is a function of the period
and the damping ratio or the SDOF structure. Consider a given excitation of a certain

energy E, (GEB)or E, (LEB), for a given structure with mode shapes ¢,,....¢,,. The

results obtained using the global and local energy-bound convex models depend on the

natural frequency (period) and the damping of the structure in each mode, as can be
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observed from equation (3.10) for the GEB model, and equation (3.14) for the LEB
model. The reduction factors are defined at the modal level as the ratios of the response
quantity obtained by the convex model divided by the response to the actual excitation
record. The reduction factors for the displacement, velocity, and acceleration response
obtained by the GEB convex model of equation (3.10) for the rectangular impulse, and
impulse No. ® in Figure 5.2 are shown in Figures 5.7 and 5.8, respectively. A similar
procedure can be developed for earthquake records. Figures 5.9 and 5.10 show the
reduction factors for displacement, velocity, and acceleration response obtained by the
GEB convex model for the 1940 El-Centro (Figure 4.6(a)) and 1971 San Fermando
(Figure 4.6(b)) earthquakes. The @tribution of the reduction factor is significantly

different for the two impulses and is unique for each impulse shape, and this is also true

N
B

for each earthquake record.

The reduction factors for'the response to the rectangular impulse for the LEB
convex model of equation (3.14) are shown in Figure 5.11. The reduction factor for
displacement is different from those for velocity and acceleration. It can be observed that
for higher levels of damping the reduction factor is reduced. These figures can be used to
estimate the expected response to an excitation for MDOF structural systems.

For a certain excitation, the reduction factors, which are a function of the
excitation shape, thie natural period, and ihe damping ratio of the structure, can be

defined for the GEB convex model as !

Aoa=hos(U.T.8); Aoy =hg,(T.T.8); Ao, =ho, (T,T.8) (-2)
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and for the LEB convex model as

AL.‘ = L.d (rn T' g) ' AL.v = hL.v (r» Tvé) ’ AL,a = hL.a(r- Tr&) (53)

where I” denotes the excitation shape; the subscripts, G and L denote the GEB and LEB
convex models; d, v and a, denote the displacement, velocity, and acceleration,
respectively.

The models described above are defined as the RGEB convex model (global
energy-bound convex model adjusted with an excitation-specific reduction factor) and the
RLEB convex model (local energy-bound convex model adjusted with an excitation-
specific reduction factor). For each excitation the reduction factor can be obtained from
the period and damping ratio for each mode of the structure, and will be different for
other excitations. A simple method for obtaining the reduction factor is to create a data-
base as a function of period and damping ratio. An interpolation technique can be used
to find the value of the reduction factor for a certain period and damping. Another
method is to fit a curve to the data-base as a function of the period (frequency) and
damping ratio for each mode of the structure. For example, in the case of the rectangular
impulse, the reduction factor for the global energy-bound convex model, equation (5.2),

can be written as

Ay =a,(1+a,e™™* Y1 +a,e™*) (5.4)
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where the constants,a,,...,a,, are equal to: 1.1589, 2.9376, 2.0696, 2.4299, and 19.4258
for the displacement; 1.4910, 4.6422, 1.5463, 1.8052, and 20.9529 for the velocity; and
1.3570, 8.3356, 1,9881, 1.8098, and 27.2092 for the acceleration. The coefficients
a,,...,a; were obtained using an optimization routine for the best fit between the data-
base and the expression in equation (5.4). Figure 5.12 shows the displacement reduction
factor of the RGEB convex model using both methods, i.e. the data-base (Figure
5.12(a)), and equation (5.4) (Figure 5.12(b)); the agreement is considered satisfactory.
The reduction factor for the local energy-bound convex model, equation (5.3), in

the case of the rectangular impulse can be written as

A, = b[sin(b,0) +be " )(1 + be %) (5.5)

The constants, 3,,...,5,, are equal to: 3.8190, 0.1747, 0.5346, 0.6912, 14.3225, and
29.9341 for the displacement; 6.7967, 0.1531, 0.8156, 0.7359, 9.4113, and 31.2581 for
the velocity; and 6.4697, -0.3526, 0.9212, -0.1389, 7.9988, and 28.3647 for the
acceleration. Coefficients b,,...,5, were obtained using an optimization routine for the
best fit between the data-base and the expression in equation (5.5). Figure 5.13 shows
the displacement reduction factor of the RLEB convex model using both methods, i.e.,
the data-base (Figure 5.13(a)), and equation (5.5) (Figure 5.13(b)); the agreement is seen
to be satisfactory. Similar equations to (5.4) and (5.5) can be derived for the other
excitations. The reduction factor for each excitation can be used for the records with the

same duration and shape, but different levels of the energy-bound E;, or E,. In the
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RGEB or RLEB convex model, once the excitation-specific reduction factors are
obtained for each mode, the physical response can be found by combining the adjusted
modal responses by the square root of the sum of the squares (SRSS) of the adjusted
modal responses (equation (3.11)). 'i‘his is necessary since the different modes do not
achieve their maxima at the same instat’tt in time.

The ten-story frame of Figx\xre 5.14 is used to test the validity of the RGEB convex
model. The cross-sectional area and moment of inertia of the beams and columns of the
frame are shown in Table 5.2. The damping level is assumed to be 5 % of critical for all
modes and only one horizontal degree-of-freedom is considered per floor. Table 5.3
shows the maximum response obtained by: (1) using equation (3.4) for the time-history of
the actual record (AR), (2) the GEB convex model; and (3) the RGEB convex model.
The 1940 El-Centro earthquake of Figure 4.6(a) is used. The response ratios for the GEB
and RGEB models with respect to the actual record (AR) are also shown in Table 5.3. It
can be observed that the displacement, velocity, and acceleration response obtained by the
original GEB convex model is on average 8.2, 6.5, and 3.7 times larger respectively than
that obtained using the actual record from equation (3.4). On the other hand, the
differences in the displacement, velocity, and acceleration response obtained by the
adjusted RGEB convex model and the actual record (AR) are within 27, 39, and 42 %
respectively. On average, the results obtained by the RGEB convex model are 11.3, 15.4,
and 25.3 % times larger than the response using a time-history of the actual record for the
displacement, velocity, and acceleration respectively. The improvement in the prediction

of the maximum response using the RGEB convex model is obvious compared to the GEB
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Table 5.2. Member sizes fos ten-story frame |

Beam Column
Floor Arca Moment of inentia Area Moment of inertia
(x 103, m?) (x10°m*) | (x10? m? (x104m%
1 4.02 18.65 4,66 25.03
2-4 3.69 15.69 441 2251
5-7 363 15.25 415 19.90
8-10 3.17 11.59 3.48 13.96
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Table 5.3. Maximum response of the ten-st&y frame for the 1940 El-Centro earthquake

A record
Floor | AR | GEB " | GEB/AR | RGEB | RGEB/AR
Displacement (cm)
1 1.37 114 8.13 1.74 1.27
2 3.18 26.25 825 398 1.25
3 5.09 42719 8.41 6.23 1.22
4 6.89 59.05 8.57 8.23 1.19
5 8.78 74.60 8.50 9.95 113
6 1071 88.77 8.29 11.45 1.07
7 12.57 101.31 8.00 12.84 1.02
8 1434 112.81 7.87 14.30 1.00
9 15.79 122.15 7.74 15.68 0.99
10 16.84 128.66 7.64 16.75 0.99
Velocity (cnvs)
1 10.70 63.25 5.91 14.83 139
2 22.49 129.61 5.76 30.14 1.34
3 32.96 193.89 5.83 42.85 1.30
4 4]1.58 253.29 6.09 $0.75 1.22
5 49.73 308.43 6.20 54.21 1.09
6 55.68 358.59 T 644 55.31 099
K 59.19 404 31 6.83 57.10 096
8 58.61 448.69 7.66 63.03 1.08
9 67.49 48895 7.24 73.34 1.09
10 77.19 52241 6.77 83.69 1.08
Acceleration (cm/s?)
1 348 .59 158431 454 495.11 1.42
2 541.52 1722.54 327 624.28 1.15
3 636.71 1886.39 2.96 734.39 115
4 568.89 1973.75 447 791.51 1.39
5 576.92 2062 58 3.58 762.08 1.2
6 516.60 2128.05 412 733.23 1.42
7 540.96 2236.70 4.13 662.69 1.23
8 576.64 2349.90 4,08 704.30 1.22
9 709.31 2495.88 3.52 827.42 1.17
10 923.82 2876.45 3.11 978.98 1.06
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convex model.

The usefulness of the RGEB and RLEB convex models is limited to evaluating the
maximum structural response for a given excitation, but for structures with different
properties of natural periods and dunpizg. In addition, the RGEB and RLEB convex
models are useful in the definition of more general convex models which can predict the
maximum structural response for uncertain earthquakes with certain common

characteristics, as will be shown in the next section.

Energy-bound Convex Models Using Average Reduction Factor

The results obtained by the RGEB convex model are less conservative than those
obtained by the GEB convex model, and the maximum response is within reasonable
agreement compared to the actual results from a time-history of the earthquake record.
Similar results also can be observed by comparing the RLEB convex model to the LEB
convex mouel. However, the reduction factor obtained by the RGEB or RLEB convex
models can be used only for a given earthquake excitation that is not known before it
occurs. It should be noted that the reduction factors are independent of the absolute value
of the energy bound.

In order to extend the results obtained by the RGEB and RLEB convex models to
other unknown earthquakes, it is necessary to have additional information besides the
value of the global energy bound. This is necessary because of the variations in frequency
content of earthquakes originating at different locations, variations due to soil conditions,
topography and others. For an uncertain excitation, an average reduction factor of the
global energy-bound convex model (ARGEB) or the local energy-bound convex model
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(ARLEB) is defined by using one of three nfethods: (1) select a set of excitations with a
common characteristic such as the eight impulses shown in Figure 5.2 and average the
RGEB or RLEB reduction factors of the set; (2) collect a set of actual past earthquake
records in the vicinity of the site and average.the RGEB or RLEB reduction factors of the
set; or (3) construct a set of ar}iﬁcia} earthquake records from a known spectrum in the
proximity of the site and average the RGEB or RLEB reduction factors of the set. For the
RGEB and the RLEB convex models, the reduction factor was obtained as described in
the previous section. For the ARGEB and' AilLEB convex models, the average reduction
factor for each subset is obtained by averaging the earthquake-specific reduction factors
for all the earthquake records in the subset. Subsequently, the response obtained from
equation (3.10) for the GEB convex model or equation (3.14) for the LEB convex model
must be divided by the average reduction factor for each mode (ARGEB or ARLEB), and
the final response is obtained using equation (3.11).

The average reduction factors for each set of excitations can be expressed for the

ARGEB convex model as
By, =hs J(T.8); By, =hy (T.8); By, =hy,(T,E) (5.6)
and for the ARLEB convex model as

B!..l = hl'..d(Tva)’ Bl..v =h;.v(T»§)a Bl.,a = h;..(T,ﬁ) (57)
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Comparing equations (5.2) and (5.3) with equations (5.6) and (5.7), it can be observed
that in the latter equations only two variables need to be considered: the period
(frequency) and damping leve! for each mode of the structure.

The global energy-bound average reduction factor for the set of the impulsive

excitations can be expressed using a calibration curve as

By =c,(1+c,e™ Xl +c,e™**) (5.8)

where the constants, c,,...,c,, are equal to: 1.2865, 3.5759, 4.0733, 2.6014, and 28.1952

for the displacement response; 1.7104, 15.7871, 4.4048, 1.9268, and 18.0370 for the
velocity response; and 1.7062, 23.6133, 3.6927, 1.5213, and 36.4565 for the acceleration
response. Similar expressions can be defined for the seismic records. The average
reduction factor for the ARLEB ccnvex model can be obtained by the same way as the
ARGEB convex model for each group of excitations.

The average reduction factor of the ARGEB convex model for the impulse set of
Figure 5.2 for a structural damping level of 2, 6, and 10 % of critical is shown in Figure
5.15 for the displacement, velocity, and acceleration responses. Comparing the results
shown in Figure 5.15 with Figures 5.7 and 5.8, it is clear that the distnbution of the values
is not exactly the same. However, when the shape and duration of the excitation are
unknown, the average reduction factors can be useful for finding an approximation of the
maximum actual response using convex models. In the ARGEB or ARLEB model, once

the average reduction factors are obtained for each mode, the physical response can be
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found by combining the adjusted modal responses by the SRSS method of equation (3.11).

EB ARLEB Convex Models for Impulse Excitatio

The eight-story building shown in Figure 4.1(a) is used to evaluate the excitation-
speciﬁc; reduction factor of equations (5.2) and (5.3) (RGEB and RLEB convex models)
and the average reduction factor of equations (5.6) and (5.7) (ARGEB and ARLEB
convex models). A rectangular, a sine wave, and a two peak impulse corresponding to
Cases @, @, and ®, of Figure 5.2 are used to evaluate the maximum response using the
actual record (AR), and the response using the convex models.

For the global energy-bound convex model the energy and duration of these
impulses are the same, given as 24.01 m*/sec® and | sec, respectively. This is an unusually
long impulse duration and it was chosen for illustrative purposes only. However, it should
be noted that the reduction factors are the same for impulses of any magnitude of the
energy bound. The peak magnitude of the impulse, Po, is given as 0.5 g, 0.707 g, and
0.677 g for the impulsive forces @, @, and ® respectively, where g is the acceleration of
gravity.

Table 5.4 shows the maximum displacement at each floor using the time-history of
the actual record (AR), the global energy-bound (GEB) convex model, the GEB convex
model employing the excitation-specific reduction factor (RGEB) described in equation
(5.2), and the GEB convex model using the average reduction factor (ARGEB) described
in equation (5.6). Since the global energy bound of the three impulsive forces is the same,
it can be observed that the maximum displacements obtained by the GEB convex model

are identical for all three impulses. Naturally, this is not true for the response using the
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Table 5.4. Displacement response of the eight-story building for impulses with the same
global energy-bound

Floor | AR (cm) | GEB (cm) | GEB/AR JRGEB (cm)] RGEB/AR JARGEB(cm) ARGEB/AR

Case O - Rectangular impulse

1 7.32 26.10 1.57 6.47 0.88 7.31 1.00
2 13.97 51.22 3.67 12.69 0.91 14.35 1.03
3 19.81 7449 3.76 18.46 093 20.88 1.06
4 24.73 95.19 3.85 23.59 0.95 26.69 1.08
5 28.69 112.66 3.93 27.93 0.97 31.60 1.10
6 31.67 126.36 3199 3132 0.99 35.44 1.12
7 33.65 135.81 4.04 33.66 1.00 38.09 1.13
3 34.65 140.64 4.06 34.68 1.01 39.44 1.14
Casc @ - Sinc wave impulsc
1 8.87 26.10 294 7.94 0.90 7.31 0.82
2 17.00 51.22 301 15.60 0.92 14.35 0.84
k] 24.26 74.49 3.07 2.1 0.94 20.88 0.86
4 30.49 95.19 12 29.06 0.95 26.69 0.88
5 35.61 112.66 316 34.41 0.97 31.60 0.89
6 39.53 126.36 3.20 38.60 0.98 35.44 0.90
7 42.17 135.81 322 41.48 0.98 38.09 0.90
8 43.50 140.64 3.23 42.94 0.99 39.44 0.91
Case ® - Two-peak impulse
1 7.44 26.10 3.51 7.04 0.95 731 0.98
2 14.48 51.22 3154 13.81 0.95 14.35 0.99
3 20.93 74.49 3.56 20.09 0.96 20.88 1.00
4 26.58 95.19 3.38 25.67 .97 26.69 1.00
5 31.28 112.66 3.60 30.39 0.97 31.60 1.01
6 34,93 126.36 362 34.08 0.98 35.44 1.01
7 37.46 135.81 163 36.63 0.98 38.09 1.02
8 38.74 140.64 3.63 37.93 0.98 39.44 1.02

Table 5.5. Displacement reduction factor for the RGEB and ARGEB convex models for

each mode for the eight-story shear building

Impulse Mode | | Mode 2 | Mode 3 | Mode 4 | Mode S | Mode 6 | Mode 7 | Mode 8
Rectangular] 4.03 | 4.12 | 408 | 430 | 425 | 420 | 417 | 4.15

RGEB |Sinewave| 327 | 540 | 466 | 520 | 497 | 477 | 462 | 455
Twopeak | 371 | 378 | 409 | 493 | 481 | 468 | 457 | 4.52

ARGEB 3.57 | 393 | 403 | 425 | 409 | 3.98 | 389 | 3.84
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actual record. The displacements obtained by the GEB convex model are on average
3.86, 3.12, and 3.58 times larger than the response to the time-history of the actual record
(AR) for the rectangular, sine wave, and two-peak impulses, respectively.

For the GEB convex model adjusted by the reduction factor of each specific
impulse shape (RGEB model), the displacements in Table 5.4 were found as follows: The
GEB convex modal displacements given by equation (3.10a) were divided by the

displacement reduction factor 4, ,(I',T.E) as defined in equation (5.2) for each of the

eight modes. Table 5.5 shows the reduction factors of each mode for the three impulses.
Subsequently, the physical response for the RGEB convex model was obtained by
combining the adjusted modal responses using the SRSS method of equation (3.11). The
difference in the displacement response obtained by the RGEB convex model and the
actual record (AR) was within 12 % for the rectangular impulse, 10 % for the sine wave
impulse, and 5 % for the two-peak impulse as shown in Table 5.4.

The responses obtained by the GEB convex model adjusted by the average

reduction factor (ARGEB convex model), using the average reduction factor B, ,(T,&)

of equation (5.6) in Table 5.4, are all the same,; this is because the average reduction factor
for any impulse of unknown shape has by definition the same value (see Table 5.5 for the
reduction factor of each mode). The physical response for the ARGEB model was
cbtained by combining the adjusted modal responses using the SRSS method of equation
(3.i1). The difference between the actual displacement response (AR) and the
displacement using the ARGEB model was within 14 % for the rectangular impulse, 18 %
for the sine wave impulse, and 2 % for the two-peak impulse as shown in Table 5.4.

Figure 5.16 shows the maximum velocity and acceleration response at each floor
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of the eight-story building for the rectangular impulse. It can be observed that the velocity
and acceleration obtained by the GEB convex model are much larger than the response to
the actual record (AR). However, the difference between the actual record (AR) and the
RGEB convex model is reduced appreciably for both the velocity and the acceleration
response as shown in Figure 5.16. Similar results are obtained for the sine wave and two-
peak impulses.

The difference between the AR and ARGEB (GEB convex model adjusted by the
average reduction factor) model is slightly larger than that between the AR and the RGEB
model and depends on the actual shape and duration of the impulse. For the rectangular
impulse (case @ of Figure 5.2), the displacement, velocity, and acceleration response
obtained from the actual response (AR), the RGEB, and ARGEB models are shown in
Figure 5.17. Similar results are obtained for the sine wave and two peak impulses. The
results obtained by the ARGEB model are still acceptable for an impulse with unknown
shape and duration,

The displacement response maxima, using either the RGEB or ARGEB convex
model, are seen to be predicted more accurately than the velocity or acceleration maxima
for this structure. This behavior can be expected since the reduction factors for velocity
and acceleration for the dominant periods of this structure are much larger than those of
displacement, as shown in Figure 5.15. For structures with longer dominant periods the
results for velocity and acceleration using the RGEB or the ARGEB convex models are
expected to be predicted with an accuracy comparable to that for the maximum

displacement.
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The comparison of the three impulsive responses using the local energy-bound
(LEB) convex model and the results adjusted by the reduction factor and the average
reduction factor are shown in Table 5.6. The local energy and duration for impulse case
@, @, and ® are the same, given as 4.9 m¥sec? and 1 sec, respectively. The difference in
the displacement response obtained by the RLEB model and the actual record (AR) was
within 17, 14, and 10 % for the rectangular impulse, sine wave impulse, and two-peak
impulse, respectively. The difference between the actual displacement response (AR) and
the displacement using the ARLEB model was within 36, 26, and 26 % for the three
impulses, respectively. The reduction factors for these three impulses and the average
reduction factor of each mode are shown in Table 5.7. Comparing Table 5.4 for the
ARGEB convex model and Table 5.6 for the ARLEB convex model it can be observed

that the former method is more accurate for this building.

ARGEB Convex Model for Past Earthquake Records

Thirty-two past earthquake records described in Table 5.8 are used to evaluate the
performance of the ARGEB convex model. Table 5.9 shows the eight subsets of the
above records defined for the purpose of this study. The ten-story frame shown in Figure
5.14 is used for: (1) the time-history of four actual earthquakes, (2) the RGEB convex
model, and (3) the ARGEB convex model with several subset excitation records. A
response ratio is defined by dividing the response obtained by the convex model to the
response obtained using the time-history of the actual record. This ratio is averaged over

all floors and is shown in Table 5.10 for both the RGEB and ARGEB convex models.
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Table £.6. Displacement response of the eight-story building for impulses with the same
local energy-bound
Floor | AR (cm) | LEB (cm) | LEB/AR |RLEB (cm)| RLEB/AR [ARLEB(cm)] ARLEB/AR
Case @ - Rectangular impulse

1 7.32 8686 | 11.87 6.06 0.83 4.67 0.64
2 1397 170.74 12.22 11.89 0.85 9.16 0.66
3 19.81 248.76 12.56 17.31 0.87 13.32 0.67
4 2473 31829 12.87 22.14 0.90 17.03 0.69
b 28.69 3176.99 13.14 26.21 091 20.16 0.70
6 31.67 42288 13.35 29.40 0.93 2261 0.71
7 33.65 454.39 13.50 3159 0.94 24.30 0.712
8 34.65 470.42 13.56 32.71 0.94 2561 0.73
Case @ - Sinc wave impulse
1 6.27 86.86 13.85 ‘5.41 0.86 467 0.74
2 12.02 170.74 14.20 10.54 0.88 9.16 0.76
3 17.15 248.76 14.50 15.27 0.89 13.32 0.78
4 21.56 31829 14.76 19.50 0.90 17.03 0.79
5 25.18 376.99 14.97 23.09 0.92 20.16 0.830
6 2195 42288 15.13 2589 093 22.61 0.81
7 29.82 454.39 15.24 27.82 0.93 24.30 0.81
8 30.76 470.42 15.29 28.82 0.94 25.61 0.82
Case ® - Two- impulsc
| 5.50 86.86 15.79 4.90 0.98 4.67 0.74
2 10.69 170.74 15.97 9.61 0.90 9.16 0.76
3 15.46 248,76 16.09 13.97 0.90 1132 0.78
4 19.63 318.29 16.21 17.83 091 17.03 0.79
5 23.09 376.99 16.33 21.09 0.91 20.16 0.80
6 25.79 42288 16.40 23.66 0.92 2261 0.81
7 27.66 45439 16.43 2543 0.92 2430 0.81
8 28.61 47042 16.44 26.34 0.92 25.61 0.82

Table 5.7. Displacement reduction factor for the RLEB and ARLEB convex models for
ecach mode for the eight-story shear buildin

Impulse ! Mode 1 | Made 2 | Mode 3 | Mode 4 | Mode S | Mode 6 | Mode 7 | Mode 8

Rectangular| 14.38 7.03 2.89 232 1.96 1.77 1.63 1.59
RLEB | Sincwave | 1%.34 5.02 0.77 3.95 3.25 2.85 2.59 2.47

| Two-peak | 17.88 4.73 4.10 3.61 3.06 2.72 2.51 2.40
ARLEB 18.70 6.70 4.37 3.34 2.77 2.45 2.25 2.15
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Table 5.8. Past earthquake records used to investigate the ARGEB convex model

No.| Earthquake | Date | Location

| Component |Accel. ()

Earthquakes in California (US)

1 El-Centro May 18, 1940 | Imperial Valley SO00E 0.348
2 S9owW 0214
3 Taft July 21, 1952 | Kem county (Taft Lincoln school) S69E 0.179
4 N21E 0.156
5 | SanFemando Feb. 9, 1971 Pacoima Dam S16E L1712
6 1.076 1.076
7 Loma Pricta Oct. 17, 1989 | Oakland-outer harbor wharf <channei 1 270° 0.276
8 channel 3 0° 0.220
9 channel 4 270° 0276
10 channel § 270° 0.298
it channel 6 270° 0.305
12 channel 7 0° 0.277
13 channcl 8 0° 0.436
14 channel 9 270° 0.296
15 channel 10 270° 0.269
16 channel 12 0° 0.287
17 Northridge Jan. 17, 1994 | Santa Monica - City Hall 90° 0.885
18 0° 0.370
19 Sylmar - County hospital 0° 0.844
20 90° 0.605
21 Newhall - LA County fire station 0° 0.590
22 90° 0.583
23 Pacoima Dam - Downstream 0° 0.434
24 175¢ 0415
25 Arleta - NordofT Ave. fire station 90° 0.344
26 Q° 0.308
Earthquakes in Mexico
27| Mexico City Sep. 19, 1985 | Coast of Buerrcro-Michoacan NIOW 0.171
28 SO00E 0.100
Earthquakes in Japan
29 Hachinohe May, 1968 - S-N 0.228
30 o) E-W 0.180
3 Miyagi June 12,1978 | - S-N 0.263
32 E-W 0.205
Table 5.9. Subsets of earthquakes used in the ARGEB convex model
Subset Description Record (see Table III)
S1 El-Centro, May 18, 1940 1,2
S2 San Femando, Feb. 9, 1971 56
S3 Loma Prieta, Oct. 17, 1989 7-16
$4 Northridge, Jan. 17, 1994 17-26
S5 El-Centro, May 18, 1940 and Taft, July 21, 1952 1-4
S6 San Fernando, Feb. 9, 1971 and Northridge, Jan. 17, 1994 5,6,17-26
S7 California records 1-26
S8 California, Mexico City, Sep. 19, ‘85, Hachinohe, May, 1-32
‘68, and MiE}i, June 12, ‘78
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Table 5.10. Response ratio for maximum response using the RGEB and the ARGEB
convex models for past earthquake records

| Max. Displacement | Max. Velocity | Max. Acceleration

1940 El-Centro earthquake (SOOE) - AR1

RGER/ARI i1 1.15 1.25
ARGEB(S1YAR1 1.07 1.21 1.00
ARGEB(S5)/AR1 1.14 1.10 0.94
ARGEB(S7VARI 1.61 1.48 1.14
ARGEB(S8VARI 1.56 1.33 0.81

1971 San Fernando earthquake (S16E) - AR2

RGEB/AR2 1.03 0.94 1.30
ARGEB(S2YAR2 0.74 0.79 1.26
ARGEB(S4YAR2 0.79 0.82 1.22
ARGEB(S6YAR2 0.78 0.81 1.21
ARGEB(S7VAR2 087 0.86 1.08
ARGEB(S8VAR2 0.835 0.77 0.74

1989 Loma Prieta earthquake - Oakland-outer harbor wharf (channel 8) - ARJ

RGEB/AR] 0.96 0.90 1.20
ARGEB(S3VAR3 127 1.07 0.95
ARGEB(S7VAR3 0.87 0.80 0.96
ARGEB(S38VAR3 0.85 0.72 0.67

1994 Northridge earthquake - Santa Monica City Hall (S%0N) - AR4

RGEB/AR4 1.04 1.24 1.96
ARGEB(S2VAR¢ 1.00 1.22 1.16
ARGEB(S4)YAR4 1.07 1.27 1.12
ARGEB(S6YAR4 1.06 1.25 1.12
ARGEB(S7TYAR4 .18 1.33 0.97
ARGEB(S8VAR4 1.15 1.19 0.71
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It can be observed that the response ratio for the results obtained by the RGEB
convex model is within 30 % for all four records, except for the acceleration in the
Northridge earthquake (96 %). The response ratio for the results obtained by the ARGEB
convex model for the eight subsets defined in Table 5.9, indicates acceptable predictions
of the maximum response. As expected, the RGEB convex model yields in general better
results than the ARGEB model. For all four actual records in Table 5.10, the accuracy of
the prediction of the response progressively worsens as more earthquakes are added from
different locations i.e. compare (S7) to (S8). Hence, the reduction factors are sensitive
with respect to the location of the subset of earthquakes used to determine the average
reduction factor for each mode. However, the results obtained for the San Fernando
actual earthquake (S16E) using subsets (S2), (S4), and (S6) are close. Similarly, the
results obtained for the 1994 Northridge actual earthquake (Figure 4.8(b)) using subsets
(S2), (S4), and (S6) are also close. This shows that the average reduction factors at

approximately the same general location are not very sensitive to time.

ARGLEB Convex Model for Artificial Earthquakes e

The ten-story frame described in the previous section is used to investigate the
performance of the RGEB and ARGEB convex models subjected to several artificial
earthquakes. Three groups of artificial earthquakes are generated by the SIMQKE
program (MIT, 1976). The spectrum of the first group is chosen from the example
spectrum of the SIMQKE program to create six artificial earthquakes (G1) shown in

Figure 5.18. All records have a peak acceleration of 0.5 g and a duration of 50 secs.
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However, the global energy bound is not the same; as noted earlier, this fact does not
change the values of the reduction factors. Note also that even though the global energy
bound is different for the artificial earthquakes, this does not affect the results which are
expressed in dimensionless form. The six artificial earthquakes shown in Figure 5.19 are
included in the second group (G2) created by the spectrum developed by Housner (1959).
The spectrum of Figure 5.20(a) was constructed from the average response of fifteen
earthquakes (Vanmarcke et al., 1976). This spectrum was used to create the third group
of six artificial earthquakes (G3) as shown in Figures 5.20(b) - (g). The fourth group
(G4), considers the set defined by G1, G2, and G3 combined together (see Table 5.11).
The average reduction factors are then determined independently for each group of
antificial earthquakes stated above.

Table 5.12 shows the response ratio of the RGEB and ARGEB convex models to
the time-history analysis of the actual record (AR) for the following artificial earthquakes:
18(c), 18(f), 19(b), 19(d), 20(b), and 20(g). A conclusion can be drawn similar to that for
the results shown in Table 5.10. The response ratio for the results obtained by the RGEB
convex model is within 10 and 13 % for the displacement and velocity, and 93 % for the
acceleration. In general, the response ratios of the ARGEB convex model of Groups 1, 2,
and 3 compared with the actual record (AR) are larger than the ratios of the RGEB
convex model. However, the response ratio for the results obtained by the ARGEB
convex model still yields acceptable predictions of the response for the artificial
earthquakes.

The ARGEB convex model of Group 2 (see Table 5.11) is used to predict the
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Table 5.11. Artificial earthquakes used in the ARGEB convex model

Group Description Earthquake records
Gl Created by spectrum shown in Figure 18(a) Figures 18(b) - (g)
G2 | Created by spectrum shown in Figure 19(a) Figuics 19(b) - (g)
G3 | Created by spectrum shown in Figure 20(a) Figures 20(b) - ()
G4 Includes Groups 1, 2, and 3 Figs. I8(b)—@._l9@-ﬁ(&).‘and 20(b)—(£)_

Table 5.12. Response ratio for maximum response using the RGEB and the ARGEB
convex models for artificial earthquakes

Response | Max. Displacement |  Max. Velocity | Max. Accecleration
Antificial earthquake in Group 1 (Fig. 5.18(c)) - ARS

RGEB/ARS 1.06 1.09 1.86
ARGEB(GIYARS .21 1.00 1.11
ARGEB(G4YVARS 1.53 1.24 1.20

Antificial canthquake in Group | (Fig. 5.18(f)) - AR6

RGEB/ARS 1.02 1.04 1.29
ARGEB(GI1)YARG 0.61 0.74 1.80
ARGEB(G4Y ARG 0.78 0.91 1.93

Antificial carthquake in Group 2 (Fig. S.19()) - AR7

RGEB/AR7 1.07 0.99 141
ARGEB(G1YAR? 1.12 1.29 1.76
ARGEB(G4YAR7 0.95 1.08 1.75

Antificial earthquake in Group 2 (Fig. 5.19(d)) - AR8

RGEB/ARS 0.90 1.07 1.32
ARGEB(G2YVARS 1.44 1.11 1.28
ARGEB(G4)/ARS 1.22 0.93 1.23

Arntificial earthquake in Group 3 (Fig. 5.20()) - AR9

RGEB/AR9 1.00 .13 145
ARGEB(G3VAR9 0.97 1.10 1.74
ARGEB(G4)/AR9 0.85 1.74 1.60

Artificial earthquake in Group 3 (Fig. 5.20(g)) - AR10

RGEB/AR10 0.99 0.94 1.21
ARGEB(G3)VAR10 112 0.98 1.14
ARGEQ(M)IAR!O 0.99 0.90 1.04
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response for an unknown future excitation which has 2 known site spectrum and energy-
bound. An artificial earthquake which is shown in Figure 5.2]1 was created by using the
spectrum of Figure 5.19(a) and is used to examine the validity of the results. The
estimated displacement and velocity obtained by the ARGEB model for Group 2 and the
time-history of the actual record are shown in Figure 5.22. It can be observed that the
predicted results are slightly underestimated, but the difference between the ARGEB
model and the actual record is still within 10 % for both the displacement and velocity

response.

Global Energy-bound Convex Model for Active Structural Control

For the global energy-bound (GEB) convex model, the quantities required to
obtain the response estimate in the case of an actively controlled structure are: the
effective damping ratios (&), the frequencies, and mode-shapes of the controlled
structure, and the global energy bound, Eggp(®), of the earthquake. The effective
damping can be obtained from equation (3.1b). The modal displacement, velocity, and
acceleration can be determined by using the effective damping in equation (3.10); the
maximum response in physical coordinates can be approximated by the square root of the
sum of the squares (SRSS) of the modal responses (equation (3.11)). Once the maximum

velocity, %, is obtained the estimate of the control force using the GEB convex model

can be expressed from equation (2.11) as
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where M is the mass matrix of the structure; r is a constant which is a scalar multiplier in
the diagonal weighting matrix R (see Chapter 2); weighting matrix Q is assigned to be an
identity matrix; b was defined in equation (2.8).

The ten-story frame described in Table 5.2 is used to examine the RGEB and
ARGEB convex models for the active bracing systems (ABS). One ABS is assumed to be
installed on the first floor and one on the second floor of the building. Note that in this
application the ABS is used in the form of a retrofit. The maximum responses obtained
from the time-history of the actual record (AR), and the RGEB and ARGEB convex
models are shown in Table 5.13. The reduction factor used in the RGEB convex model is
excitation-specific for the 1940 El-Centro earthquake. The average reduction factor used
in the ARGEB convex model is obtained from 26 California records (subset S7 of Table
5.9). The same control parameters are used in the three methods. Note that the control
force is affected only by the velocity of the floors as shown in equation (5.9). It can be
observed that the ratio of the estimated control forces obtained from the RGEB and
ARGEB convex models to the maximum control forces obtained from the actual time
history (AR), is approximately equal to the ratio of the velocity of the same floors at the
two levels where the ABS are installed. Satisfactory results are obtained using the

ARGEB convex model.
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Table 5.13. Maximum response of the ten-story frame with two ABS for the 1940 El-

Centro earthquake record
Floor | AR { RGEB | RGEB/AR | ARGEB | ARGEB/AR
Displacement (cm)
1 1.17 1.46 1.25 1.96 1.68
2 2.78 3.37 1.21 461 1.66
3 4.59 535 1.17 747 1.63
4 6.42 1.17 1.12 10.25 1.60
5 821 8.80 1.07 12.88 1.57
6 9385 10.24 1.04 15.28 1.55
7 11.28 11.56 1.02 17.40 1.54
. 12.59 12.88 1.02 19.38 1.54
9 13.64 14.06 1.03 21.01 1.54
10 14.36 14.93 1.04 22.16 1.54
Velocity (cm/s)
1 7.09 10.50 1.48 11.93 1.68
2 15.66 21.83 1.37 25.84 1.65
3 22.83 31.44 1.33 39.39 1.713
4 3086 3888 1.26 51.22 1.66
5 38.90 44,07 1.13 61.55 1.58
6 4589 48.03 1.05 70.74 1.54
7 51.84 52.10 1.01 79.23 1.53
] 5$6.10 57.718 1.03 88.02 1.57
9 61.54 64.80 1.05 96.52 1.57
10 68.29 71.24 1.04 103.43 1.51
Acceleration (cnv/s?)
1 296.35 274.22 0.93 238.18 0.80
2 449.10 406.01 0.90 336.62 0.7%
3 542.59 506.83 0.93 42186 0.79
4 501.20 $55.66 1.11 496.43 0.99
5 42317 554.20 1.31 53534 1.26
6 407.42 547.83 1.34 573.28 1.41
7 424 .85 $30.55 1.25 602.33 1.42
8 536.72 $65.65 1.08 661.22 1.23
9 631.80 664.82 1.05 737.32 1.17
10 697.33 791.09 1.13 816.16 1.17
Maximum Control Force (kN)
1 138 204 1.48 232 1.68
2 171 218 1.28 275 1.61




CHAPTER 6

OPTIMAL DESIGN OF CONVENTIONAL AND ACTIVE STRUCTURES

In this chapter, the modified iterated simulated annealing (MISA) method for
optimization of structural systems is discussed and compared with three classical
optimization methods. The optimal design of the active structure, which includes the
conventional structure and the passive and/or active control systems stated in Chapter 2, is
performed by using either the time-history analysis of the actual seismic record or the
glabal energy-bound convex model. Both the global energy-bound convex mode! adjusted
with the excitation-specific reduction factor (RGEB) and the convex model using the

average reduction factor (ARGEB) are utilized.

s | Ontimizati

The optimal design of a ten-bar truss system with static constraints is examined
using the modified iterated simulated annealing (MISA) method described in Chapter 3,
and is compared with the state space optimization method. This example is carried out in
order to evaluate the advantages or disadvantages of the present algorithm, compared to

standard methods. For the structures with dynamic constraints, a two-story and a ten-
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story frame are designed for dynamic excitations. The results obtained by the MISA
method and three classical optimization methods are compared. The design variables are
defined as the cross-sectional areas of the structural members. The moment of inertia, [/,

of the frame members can be obtained using well-known relations as follows (Haug and

Arora, 1979):
}.‘ = Zl XS,
% . %
A)? A7
zi =ﬁl(—) y % =Z.(’_') 6.1)
al a:

where Z,, s, , and A, are the section modulus, the least radius of gyration, and the cross-

sectional area of the ith element; o, , B, , and ¥, are constants.

/

’
Ten-bar Truss with Static Constraints

The optimal design of the ten-bar truss shown in Figure 6.1 is used to evaluate the
performance of the MISA method. Two degrees-of-freedom (DOF), the x and y direction
displacement, are considered at each jdint. The vertical load is applied at joints c and d
and equals 445 kN, respectively. The allowable stress is given as + 172 MPa, and the
displacement constraint is 5.08 cm at all joints in both the x and y directions. The Young’s
modulus of the material is 68.9 GPa.

First: five design variables are used for the ten-bar truss by linking the cross-

sectional area of the truss members in groups of two which have the same areas as
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Figure 6.1 Ten-bar truss: (a) dimensions and degrees-of-freedom, (b) loading and design
variables
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follows: @ and @, @ and®, ® and ®, @ and ®, and ® and @ (see Figure 6.1(b)). The
iteration histories for the iterated simulated annealing (ISA) metﬁod {Ackley, 1987) and
the MISA method are shown in Figufe 6.2, both stress and displacemt;m constraints are
considered. It can be observed that the MISA method converges to the minimum volume

in less iterations then the ISA method. The design parameters used in the MISA method u

are as | llows :M =8, n =75 n,*=25, and k = 1. The optimization results are listed in

Table 6.1. The number of ‘ﬁmction calls listed in Table 6.1 for the MISA method is
defined as the number of iteration loopshrequired to find the minimum volume. The y
direction dispiacement at joint 4 is the active constraint for the optimal designs obtained
by the two methods. The optimal v:'lume usirg the MISA method is 7.7 % less than that
of the ISA method.

Table 6.2 shows the results for the same problem with ten design variables as
shown in Figure 6.1(b). The y direction displacements for nodes b and d are the active
constraints found by the MISA method. The y direction displacement for node d is active
for the ISA method. In this case, the desjén parameters, M, n,, n,, and &, used in the
MISA method equal 8, 75, 25, agd 1, respectively. The result obtained by the state space
optimal (SSO) design method is also shown in Table 6.2 (Haug and Arora, 1979). They
direction displacements at nodes b and d and the axial stress of member § are the active
constraints in the SSO design method. The‘minimum volume of the ten-bar truss obtained
by the MISA method is only 0.4 % more than the volume obtained from the SSO design

method. However, the number of function calls required by the MISA method is larger

than the SSO design method as shown in Table 6.2. The optimal results obtained by the



157

2.40E+8

2.00E+6

1.60E+6

VOLUME (cm 3)

1.20E+6

et aaa sl e a2 saaa e esaiatasdaatstaan

-
8.005*‘5 llTllIITl[TTfl'T’ll[III_IITUl'[TlTTIl"'llllTlllfT[llIl’lhTf

0 100 200 300 400 500 600
ITERATION HISTORY

Fi 6.2 Iteration history for five-variable optimal design of ten-bar truss using the
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Table 6.1. Five-variable optimal design of ten-bar truss with static constraints

Cross-sectional area (cm?) Axial stress Displacement
_(kPa) (cm)
No. of bar ISA MISA ISA MISA | DOF ISA MISA
o) 179.94 221.75 41.92 41.82 1 0.56 0.56
Q 54.52 598 | 3447 747 2 -2.16 -1.96
@ 179.94 221.75 4799 3842 3 1.02 0.66
@ 54.52 5986 |« 4109 66.84 4 -4.70 “4.47
® 72.13 10.08 17.79 81.68 5 -1.27 -140
® 72.13 10.08 26.06 4435 3 -5.06 -5.06
e/ 107.29 60741 66.53 95,33 7 0.64 051
® 89.74 129.21 60.67 52.81 8 <2.41 2305
@ 89.74 129.21 . 4047 43.79
D 107.29 60.41 ' 24.82 10.47
Volume (cm®) | 1,103,175 | 1,023.870
Function calls 4960 392

-

Table 6.2. Ten-variable optimal design of ten-bar truss with static coustraints

Cross-sectional area (cm?) |  #  Axial stress Displacement
. . MPa (em)
No.ofbar | SSO | ISA | MISA ' SSO | ISA | MISA |DOF| SSO | iSA |MISA
[) 193.75 | 269.48 | 201.35 | 46.42 | 20.55| 4465] | | 062 | 0.28 | 0.58
@ 065| 7981] 065 904§ 1098 530} 2 |-1.87]-3.05]|-1.88
Q 150.15 | 278.45 | 161.55| 5835| 44.06| 5428 3 | 0.50 | 0.41 | 0.53
@ 9862 15290 | 95.68| 45.07 23.37| 4644} 4 |-5.08 |-3.94 | -5.08
® 065| 7039| 045[171.44( 3544 161.13] 5 |-137]-089|-1.35
® 323 1026 4.19| 163 8467 1121 6 |-5.06 {-5.06 |-5.08
@ 48.18 | 147.87 | 49.16(126.86 [104.18 {12460 | 7 [-0.78 |-0.58 [-0.7]
® 136.64 | 14.71] 131.55%] 47.10] 74.74 | 4885| 8 |-4.15|-2.57 | 4.04
@ 139.47 | 156.06 | 134.32) 45.07 ] 14.07] 46.78
® 065| 87741 0.654F12.79] 3241] 7.50

Volume (cm’){829,448]1.313,103/832.§

Function calls] 13 2,504

392

Note : SSO - State space optima! method
ISA - Ackley's iterated simulated annealing method
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ISA method did not reach the global minimum. As a result, the volume obtained in the
ISA method is about 58 % larger than the other two methods.

It can be seen that the MISA method performs better than the ISA method and
requires less function calls. However, the MISA method requires more function calls than

the state space optimal design method for the present problem with static constraints.

Two-story Frame with Dynamic Constraints

Figure 6.3(a) shows a one-bay two-story frame with a 6.1 m width and a 4.6 m
height for each floor, which is used to evaluate the performance of the MISA method for
optimization problems with dynamic constraints. The structural analysis of the frame is
based on the direct stiffness method, with a capability for computing the strength ratio of
column to beam, and the combined axial and bending stress in the members. Elastic
response of the frame is assumed throughout the iteration history. The total dynamic
. degrees-of-freedom are reduced from 12 to 2 (Figure 6.3(a)) by the Guyan reduction
method (1965), and the lumped mass procedure is used for the solution of the dynamic
problem. The lumped mass for each floor is given as 27,234 kg and § % critical damping
is assumed in each of the two vibrational modes.

Two artificial excitations (Figure 6.4) are created by using a sinusoidal function
multiplied by an amplitude function. These excitations are applied as an earthquake

ground motion. The artificial ground acceleration is expressed as

%,.1(0) = eF(1)[sin(5¢) + sin(10¢) + 5in(20/)] (6.22)
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Figure 6.3 Two-story frame: (a) dimensions and degrees-of-freedom, (b) loading and
design variables
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For the first excitation (artificial earthquake I) shown in Figure 6.4(2), the amplitude

function is chosen as

2
F(0)= (:L) exp[Z(l - :LJ] (6.2b)

where e is a constant which is chosen to achieve a peak ground acceleration equal to
0.5 g, g = 9.81 m/sec?, and 1, is proportional to the duration of the excitation which is
defined as 60 sec. in this case. The amplitude function chosen for the second excitation

(artificial earthquake II) shown in Figure 6.4(b) is (Jennings et al., 1969)

E=t/4 0<1<2
=1 2<1<175
- J[oomsg-rs). (6.2¢)
=e ; 17551540

= 005+0000375(60-1)°;  40<¢<60

The function F,(t) in equation (6.2c) has been modified from that of the original result of
Jennings et al. (1969) , so that the earthquake duration is comparable with the other
excitation. Figure 6.5 shows the amplitude function of equation (6.2c).

A two-parameter design is used by assigning the columns of the two floors of the
two-story frame to be identical (41) and the beams on each floor to have the same size
(42) (Figure 6.3(b)). The allowable stress (combined axial and bending stress) for each

frame member is assumed as 150 Mpa (60 % of the yielding stress of 250 MPa), and the
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interstory drift constraints for each floor are set equal to 4/180 or 2.54 cm. The constants,
a,,B,,and x,, in equation (6.1) equal 0.58, 0.58, and 0.67, respectively (Haug &
Arora, 1979). For this optimization problem, a disjoint feasible region is found for the
structure subjected to artificial earthquake I as shown in Figure 6.6. The two portions of
the feasible region for this two-story frame are constrained by the second floor drift and
the stress in the two columns of the first floor.

The resulting optimal design for the present optimization problem is shown in
Table 6.3. The constants M, n,, and n, used in the present algorithm were chosen as 8,
75, and 25, respectively; & is equal to 1 for this design. The same structural optimization
problem was solved using classical optimization techniques. The results from program
DOT (Design Optimization Tools) developed by VMA Engineering (1993) are also shown
in Table 6.3. Three classical algorithms are presented in Table 6.3 using the DOT
program; the first is the modified feasible directions (MFD) method, the second is the
sequential linear programming (SLP) method, and the third is the sequential quadratic
programming (SQP) method (Appendix E). Table 6.3 shows that in essence all four
algorithms yield the same answer. However, for different initial values of the design
variables, the results obtained from the classical optimization methods are different, as
shown in Table 6.4.

As can be seen from Table 6.4, the classical methods sometimes converge to local
minima. For certain initial values, the design converges to point (2), located in the upper
part of the feasible region (see Figure 6.6), which is the stress constraint for the first floor

columns; for some other initial values, the design converges to point (1), located in the
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Table 6.4. Results for two-story frame subjected to artificial earthquake I for different
initial designs

Initial Optimal Design Method
Design MFD SLP SQP MISA
Column Area (cm?)| $00 386.69 . 386.97 245.28
Beam Area (cm 500 365.08 - 365.45 236.33
Volume (cm?) 1,524,000 | 1,152,289 - 1,151,557 | 736,715
Function calls 66 151 16 320
Active Constraint Point (2 - Point (2) | Point (1)
Column Area (cm?) 400 386.68 245.22 3%6.74 247.75
Beam Area (cm 400 365.11 236.23 365.03 234.97
Volume (cm?) 1,219,200 | 1,152,291 | 736,464 | 1,152,176 | 739,567
Function calls 33 34 28 1056
Active Constraint Point (2) | Point (1) Point (2) | Point (1)
Column Area (cm?) 300 245.20 - 245.24 247.78
Beam Area (cm 300 236.25 - 236.22 234.74
Volume (cm?) 914,400 736,456 - 736,498 739,338
Function calls 33 151 20 530
Active Constraint Point (1 - Point (1) Point (1)

Note: Point (1) is when the second floor dnift is active

Point (2) is when the stress in the columns of the first floor is active

167
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Table 6.4. Results for two-story frame subjected to artificial earthquake I for different
initial designs

-~

Initial Optimal Dcesign Method
Design MFD SLP SQp MISA
Column Area (cm?) 500 386.69 - 386.97 245.28
Beam Arca (cm?) 500 365.08 - 365.45 236.33
Volume (cm?*) | 1,524,000 | 1,152,289 - 1,151,557 { 736,715
Function calls 66 151 16 320
Active Constraint Point (2) - Point (2) | Point (1)
Column Area (cm?®) 400 386.68 245.22 386.74 242.75
Beam Area (cm?) 400 365.11 236.23 365.03 23497
Volume (cm?) | 1,219,200 | 1,152,291 736,464 1,152,176 | 739,567
Function calls 33 34 28 1056
Active Constraint Point (2) | Point (1) Point (2) | Point (1)
Column Area (cm?) 300 245.20 - 245.24 24778
Beam Area (cm?) 300 236.25 - 236.22 234.74
Volume (cm?) 914,400 736,456 - 736,498 739,338
Function calls 33 151 20 530
Active Constraint Point (1) - Point (1) Point (1)

Note: Point (1) is when the second floor drift is active

Point (2) is when the stress in the columns of the first floor is active
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lower portion of the feasible region (see Figure 6.6), which is the second floor drift
constraint; point (1) is the global minimum. The SLP method even failed to find a local
minimum for certain initial values of the design variables as shown in Table 6.4. However,
the MISA method always came very close to the global minimum regardless of the initial
values of the design variables. This is because of the random nature of the selection of the
new design at each iteration. Because of this randomness, the MISA method requires, on
average, more function calls than classical optimization methods. However, with the
increasing computational speed found in present day computers this becomes less of a
disadvantage. The main program for the MISA algorithm and the function of each
program component are shown in Appendix F.

Similar results are obtained for this two-story frame when it is subjected to the
artificial earthquake II excitation (Figure 6.4(b)). Figure 6.7 shows the disjoint feasible
region which is also constrained by the second floor drift and the stress in the two columns
of the first floor. The resulting optimal designs obtained by the MISA method and three
classical optimization techniques (MFD, SLP, and SQP methods) are shown in Table 6.5.
The constants M, n,, and a, used in the present algorithm were chosen as 8, 75, and 25,
respectively; k is equal to 1 for this design. The results obtained by using the different
initial values of the design variables are shown in Table 6.6. Similar to the previous case
of the two-story frame subjected to the artificial earthquake I, a local minimum is found in
point (2) of Figure 6.7. The local minimum is obtained for some initial designs by the
classical optimal design methods in the upper portion of the feasible region.

A four-parameter design is formulated by assigning the two columns of the first
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Table 6.5. Optimal design of the two-story frame subjected to artificial earthquake I1
Optimal Design Method
MFD SLP SQp MISA
Column Arca (cm?) 246.06 246.09 246.09 246.78
Beam Area (cm?) 237.00 236.99 236.98 236.56
Volume (cm?*) 738,938 738,991 736,214 739,726
Function calls 39 19 15 744
Active Constraint 2nd fl. drift 2nd fl. drift 2nd fl. drift 2nd fl. drift

Table 6.6. Results for two-story frame subjected to artificial earthquake II for different

initial designs
Initial Optimal Design Mcthod
Design MFD SLP sQpP MISA
Column Area (cm?) 750 3%0.63 - 246.08 248.54
Beam Area (cm?) 750 368.53 - 239.98 236.78
Volume (cm’) 1,163,702 - 738,963 743,213
Function calls 63 151 33 2064
Active Constraint Point (2) - Point (1) | Point (1)
Column Area (cm?) 500 390.52 - 390.90 247.84
Beam Area (cm?) 500 368.37 - 368.08 236.45
Volume (cm?) 1,524,000 | 1,163,296 - 1,163,250 | 741,530
Function calls 60 159 16 5312
Active Constraint Point (2) - Point (2) | Point (1)
Column Area (cm?) 400 390.51 391.76 390.48 246.78
Beam Area (cm?) 400 368.37 366.60 368.39 236.56
Volume (cm?) 1,219,200 | 1,163,293 | 1,163,412 | 1,163,289 739,726
Function calls 33 67 47 744
Active Constraint Point (2) Point (2) Point (2) | Point (1)
Column Areca (cm?) 300 246.07 - 246.09 248.87
Beam Area (cm?) 300 236.99 - 236.98 235.28
Volume (cm?) 914,400 738,948 - 738,633 741,990
Function calls 39 151 18 720
Active Constraint Point (1) - Point (1) Point (1)
Note: Point (1) is when the second floor drift is active

Point (2) is when the stress in the columns of the first floor is active
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floor to be identical, (41), and the two columns of the second floor as having the same
size, (43). The beams on each floor have a different size, (42, A+), as shown in Figure
6.3(b). The strong column-weak beam philosophy is implemented in the program by
computing the strength ratio of column to beam, which reflects current design code
requirements for earthquake design. The 1940 El-Centro earthquake shown in Figure
4.6(a) is used.

The present structural optimization problem was solved using the MISA method
and other classical optimization techniques. Table 6.7 shows the optimization results by
using the MISA, MFD, and SQP methods for the problem with dynamic constraints. For
all methods, the drift of the second floor is the active constraint. The volume of the two-
story frame obtained by the MISA method is 0.7 % more than the volume obtained by the
MFD and SQP methods. However, some local minima were found for certain initial
design variables when the MFD and SQP method were used. The minimum values of the
volume at the local minima were found to be 17 to 35 % higher than the global minimum.
It should be noted that the SLP method failed to find the optimal structure regardless of

the initial values of the design variables.

Table 6.7. Optimal design of two-story frame for the 1940 El-Centro earthquake
Group of| Cross-section area (cm )] Member| Combined stress (MPa) Drift (cm
Frame | MFD | SQP | MISA MFD | SQP {MISA | Fl. | MFD] SQP | MISA
A1 270.9 | 267.6| 268.8 108.971112.86(111.33] Ist | 1.70 | 1.77 | L.75
Az 263.1 | 259.7| 257.6 109.47|113.39(111.86] 2nd | 2.54 | 2.54 | 2.54
A3 193.1 | 196.3| 211.6 103.291106.59106.71
Ad 1908 | 193.6] 180.2 78.971 79.01] 67.92
Volume 79.06] 79.09]| 68.00
(cm?) [100,896| 00,6831706,083] ® | s1.80| 81.8] 87.55
Note :MISA - Modified iterated simulated annealing
MFD - Modified feasible directions
SQP - § il quadrati .

e ® 00 0|7
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Figure 6.8 shows the iteration history using the MISA method for the two-story
frame optimal design subjected to the 1940 El-Centro earthquake. Because of the random
search of the design variables, there exist intermediate iterations for which the volume
increases. Note that the constants, m, n,, and », in the MISA program were kept as 8,
75, and 25 which are identical to the parameter values used in the other case.

Ten- Frame with mic Constraint

A ten-story frame (Figure 6.9(a)) with a2 9.1 m width and a 4.6 m height for the
first floor, and a 3.66 m height for floors above the first is used to test the MISA method
for dynamic constraints. The allowable stress for each frame member is assumed as 150
MPa, and the allowable interstory dnft for each floor is given as #/180 which is 2.5 cm for
the first floor, aad 2.0 cm for the second up to the tenth floors. The inherent structural
damping level is assumed to 5 % of critical at all modes. The strong column-weak beam
philosophy is implemented in the program, which reflects current building code
requirements for earthquake design.

In the first case, a design with only two variables is used by defining the cross-
sectional areas of the columns in every floor to be the same, and the cross-sectional areas
of the beams in each floor as identical. The lumped mass for each floor is given as 34,034
kg and 5 % critical damping is assumed in each of the ten vibration modes. The excitation
is chosen as the 1940 El-Centro earthquake which is shown in Figure 4.6(a).

There are 30 combined stress constraints, and 10 interstory drift constraints in this

case. Figure 6.10 shows the feasible region which is constrained by the drift limits for the
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Figure 6.8 Iteration history for four-variable optimal design of two-story frame using
the MISA method
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first, third, fourth, and fifth floors. The feasible region is also constrained by the combined
stresses of the columns on the first floor as shown in Figure 6.11. The disjoint feasible
region is found when all the drift and stress constraints are considered together for the
optimization problem stated above. This results in a feasible region with three disjoint
portions as shown in Figure 6.12, which is formed by the drift constraint on the third,
fourth, and fifth floors, and the stress constraint in the columns of the first floor.

Table 6.8 shows the optimization results by using the MISA method and three
classical optimal design methods (MFD, SLP, and SQP). The minimum volume of the
ten-story frame found by the MISA method is slightly larger than that obtained by the SLP
and SQP methods. In the present a!gorithm the following parameters were used: M = 8,
m =75, n, =25, and k = 1. In this case, the number of function calls required by the
MISA method is less than that for the classical optimal design methods and is due to the
randomness inherent in the method. However, in general the MISA method requires a
larger number of iteratiors as compared to classical methods. The design found by the
MFD method, after at least six optimization runs with different initial values for the design
variables, failed to produce an active constraint. It should be noted that some local
minima are found by the MFD method at points (3), (4), (5), (7), and (8) in the three
portions of the feasible region showi in Figure 6.12. Similarly, local minima located at
points (2) and (6) were found by the SQP method for certain initial values of the design
variables. Similar to the case of the two-variable two-story frame, the SLP method failed
to find even a local minimum for certain initial values of the design variables. However,

the MISA method came very close to the global minimum (point (1) in Figure 6.12).
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Table 6.8. Two-variable optimal design of ten-story frame subjected to the 1940
El-Centro earthquake

179

Optimal Design Method
MFD SLP SQP MISA
Column Area (cm?) 449 432 431 438
Beam Area (cm?) 382 n 377 378
Volume (cm?) 6,852,646 6,684,985 6,685,878 6,736,125
Function calls 21 42 26 24
Active Constraint none 4, 5 fl. dnft 4, 51 drift 3.4, 1l dnft

A second case for the ten-story frame with eight different groups for the cross-

The results of the optimal design are listed in Table 6.9.

Table 6.9. Eight-variable optimal design of ten-story frame subjected to the 1940
El-Centro earthquake

Optimal Design Method
| MFD SLP SQP MISA
Area (cm?) - As 533 464 426 445
A 376 383 373 381
Al 493 418 413 421
A 365 373 N2 375
Al 394 398 410
A 365 367 n 364
Al 403 389 322 407
Al w7 288 314 284
Volume (cm’) | 6,445,092 | 6228547 | 6,129459 | 6,291,178
Function calls 216 95 7 904
Active Constraint| 5.6, 8l drift | 5. 6.8l drift | 4 5.8 Al dnis | 5 6,8 Al drift

sectional areas is also presented in this example. The eight groups are shown in Figure
6.9(b). The allowable stresses and allowable interstory drifts are the same as stated above.
The 1940 El-Centro earthquake record is also used as the excitation for the present case.
In this design, the design
parameters using in the MISA method are: M/ =8, n, =75, n, =25, and k= 3. Similar to
the previous studies, the results obtained by the classical optimal design methods depend
on the initial values of the design variables. Different initial values of the design variables

produce different results or even fail to obtain a local minimum as shown in Table 6.10.
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Table 6.10. Results for eight-variable ten-story frame for different initial designs

Initial Final Design
Design MFD SLP SQP MISA
Area (cm?) - A 1600 1330 - 870 540
A 1500 1229 . 738 425
A 1500 851 . 804 430
A 1400 619 - 680 375
As 1400 o 750 - 746 413
As 1300 590 - 667 365
A 1300 653 - 517 378
A 1200 430 - 490 338
Volume (cm?®) | 22,751,000 11,782,700 - 11,046,000 6,518,109
Function calls 282 459 148 808
Active constraint s-8 1. arift . ~ 8 . dnfl S 1. drif
col. stress (1st)
Area (cm?) - Ai 1200 987 984 919 651
A 720 620 622 616 392
A3 960 929 902 916 424
A 600 619 619 616 374
As 720 674 697 649 378
A¢ 480 612 619 563 352
A1 480 609 643 649 349
As 480 457 448 419 327
Volume (cm?) 10,776,000 10,955,470 11,017,670 10,645,570 6.369.010
Function calls 176 149 41 776
Active constraint 3,58N.driRk | 36, 8N.dnN | 2-5.8N.dnft | 58 drift
col. stress (1st)| col. stress {1st) } col. stress (ist
Area (cm?) - A1 600 616 - - 465
A 550 469 - - 402
A 550 500 - - 441
As 500 353 - - 369
As $00 420 - - 415
As 450 353 . - 363
A1 450 mn - . 348
As 400 302 - - 317
Volume (cm?) 8,047,100 6,592,121 - - 6,311,531
Function calls 147 465 100 1016
Active constraint S, 8 1l. drift - - S, 8 L. drift
Area (cm?) - Ay 600 533 . - 864
A 360 37 - - 409
A 480 493 - - 21
A 300 368 - - 378
As 360 392 - - 404
As 240 368 - . 349
A1 240 403 - - 347
As 240 287 - - 335
Volyme (cm?) | 5,387,900 6,445 092 - - 6,645,938
Function calls 216 460 56 816
Active constraint ~5,6,811 drift - - $ fl. drift

Note:col.m‘lnz-mﬁnedminﬂncolumofdleﬁmnoor
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The latter was observed for the SLP and SQP classical methods. However, the results

obtained by the MISA method always came very close to the global minimum design.

Optimal Structures Using Convex Models

The ten-story frame shown in Figure 6.9 is used to evaluate the performance of the
global energy-bound convex model adjusted with the excitation-specific reduction factor
(RGEB) and the global energy-bound convex model adjusted with the average reduction
factor (ARGEB). These designs also compared with the results obtained using the time-
history of the actual seismic records. The structural analysis of the frame is based on the
direct stiffness method, with a capability for computing the strength ratio of column to
beam which reflects current design code requirements for earthquake design, and the axial
and bending stresses in the members. Three degrees-of freedom (DOF), the rotation, and
the x and y direction displacements are considered at each joint, but only the horizontal
displacement is used for determining the dynamic constraints. The allowable stress for
each member is assumed as 60 % of the yielding stress of 250 Mpa, and the interstory drift
constraints for each floor are equal to A/180 or 2.54 cm. The lumped mass for each floor
is given as 27,234 kg and 5 % critical damping is assumed in each of the two vibrational
modes. The constantsa,, B,, andx; in equation (6.1) equal 0.58, 0.58, and 0.67,
respectively. Three excitations, the SOOE component of the May 18, 1940 El-Centro
earthquake, the S16E component of the Feb. 17, 1971 San Fernando earthquake, and an

artificial earthquake (III) shown in Figure 5.19(d) are considered.
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Optimal Design of Conventional Structure for El-Centro Earthquake

The optimal design using the time-history response for the 1940 El-Centro
earthquake (AR) and the optimal designs for the global energy-bound convex model
adjusted with the excitation-specific reduction factor (RGEB), and the average reduction
factor (ARGEB) are shown in Table 6.11. The values shown for stress and drift are the
maxima obtained at the final design. The active constraints for each optimal design are
shaded in Table 6.11. The reduction factor for the RGEB convex model is discussed in
Chapter 5 which is excitation-specific and can be used only for the 1940 El-Centro
earthquake (SOOE component). The average reduction factor for the ARGEB convex
model is the average value of the reduction factors from 26 California records (subset S7
of Table 5.9).

The minimum volume obtained by the RGEB convex model is 3.3 % less than that
obtained by using the time-history analysis of the actual record (AR). The resuit obtained
by using the ARGEB convex model is 49 % more than that obtained by the AR procedure.
From the definition of the global energy-bound convex model adjusted with the average
reduction factor (ARGEB) in Chapter 5, the result obtained in Table 6.11 for the ARGEB
convex model could be used for any other excitation in California which has the same
global energy bound as the 1940 El-Centro earthquake.

The time-history analysis of three earthquake records and that for the 1940 El-
Centro earthquake are used to verify the designs using the AR procedure and the ARGEB
convex model (see Table 6.11). A scaled record of the S16E component of the 1971 San

Femmando earthquake, the SOON component of the 1994 Northridge earthquake (Santa
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Monica City Hall), and an artificial earthquake (IV) (Figure 6.13), all having the same
global energy bound as the 1940 El-Centro earthquake, are considered. The peak
acceleration, duration, and global energy bound of the four excitations are shown in Table
6.12. Note that the artificial earthquake is created using a sinusoidal function multiplied
by the amplitude envelope function as shown in Figure 6.5. The artificial ground

acceleration is expressed as

£ ()= bf(t)iﬁt sin(@, t) (6.3)

k=l

where @, and @, are the values of the 25 highest peak amplitudes and frequencies chosen
from the 1940 El-Centro earthquake record; b is a constant chosen to give the same global
energy bound as the 1940 El-Centro earthquake. It should be noted that the artificial
excitation of Figure 6.13 was not used in the evaluation of the reduction factors of the
ARGEB convex model.

Figure 6.14(a) shows the interstory drift response for the structure designed using
the time-history of the actual 1940 El-Centro earthquake record (Building I); Figure

6.14(b) shows the interstory drift response for *he structure designed by the ARGEB

Table 6.12. Peak acceleration and global energy-bound of the excitations for verifying the

structure designed by the ARGEB convex model of subset S7 of Table 5.9
Excitations Peak accel. Duration  [Global energy-bound
®) (sec) (m?¥sec’)
1940 El-Centro 0.348 530 11.38
Scaled San Fernando 0.545 41.0 11.38
Scaled Northridge 0.706 60.0 11.38
Artificial earthquake IV 0.252 60.0 11.38
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Figure 6.13 Artificial earthquake IV using the amplitude envelope function of equation
(6.2c)
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Figure 6.14 Interstory drift of the ten-story frame: (a) AR design for 1940 El-Centro of
Table 6.11 (Building I) and (b) ARGEB convex model design of Table 6.11
(Building II); § = artificial earthquake shown in Figure 6.13,3 = scaled
record of 1994 Northridge earthquake, @ = scaled record of 1971 San
Femnando earthquake, O = 1940 El-Centro earthquake record



187

convex model (Building II). It can be observed that Building I exceeds the allowable drift
at all floors for the scaled record of the 1971 San Fernando earthquake, and at seven
floors for the scaled record of the 1994 Northridge earthquake. The maximum drift of
Building I is 84 and 36 % more than the allowable drift when the structure is subjected to
the scaled records of the San Fernando and Northridge earthquakes. Building I which
was designed by the ARGEB convex model has a better response than Building I for both
scaled records. The maximum drift is only 32 and 11 % larger than that of the allowable
drift in the scaled record of the San Fermando earthquake and the actual record of the
1940 El-Centro earthquake. It should be noted that the drift response to the artificial
earthquake (IV) of Figure 6.13 for both Buildings I and II remains within the allowable

limits.

Optimal Design of Conventional Structure for San Fernando Earthquake

The optimal design for the actual record of the 1971 San Fernando earthquake and
the optimal designs using the RGEB and ARGEB convex models are listed in Table 6.13.
The reduction factor used in the RGEB convex model is excitation-specific, valid only for
the 1971 San Fernando earthquake (S16E component). The average reduction factor
used in the ARGEB convex model was obtained from the 12 records of the 1971 San
Femando and 1994 Northridge earthquakes (subset S6 of Table 5.9). The active
constraints for each optimal design are shown shaded in Table 6.13.
The minimum volume obtained by the RGEB convex model is 2.0 % more than that

obtained from the time-history of the actual record (AR). The minimum volume obtained
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by the ARGEB convex model is 54 % more than that obtained by the AR procedure. It
can also be observed that the minimum volume of the structure designed for the 1971 San
Fernando is 2.2 times larger than that for the 1940 El-Centro earthquake shown in Table
6.11, which is approximately equal to the square root of the ratio of the global energy
bound for these two earthquakes.

The structure designed by the AR procedure (referred to as Building III) and the
ARGEB convex model (referred to as Building 1V) are also verified by a dynamic analysis
for the 1971 San Fernando and scaled 1994 Northridge earthquakes shown in Table 6.14.
Figure 6.15 shows the interstory drift of the structures subjected to the actual record of
the 1971 San Femando earthquake, and the scaled record of the 1994 Northridge
earthquake with the same global energy bound. It can be observed that Building III has
much larger drifts than Building IV when the structures are subjected to the scaled record
of'the 1994 Northridge earthquake. The maximum drifts are 76 and 12 % larger than the
allowable drift for Buildings IIl and IV. Figures 6.14 and 6.15 show that in general, the
structures designed by the ARGEB convex model respond well for other excitations which
have the same global energy-bound. However, this is not true for structures designed for

a single earthquake.

Table 6.14. Peak acceleration and global energy-bound of the excitations for verifying the
structure designed by the ARGEB convex model of subset S6 of Table 5.9

Excitations Peak accel. Duration lobal energy-bound
8 (sec) (m?/sec’)
1971 San Femando 1.172 41.0 52.61
Scaled Northridge 1.517 60.0 52.61
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Figure 6.15 Interstory drift of the ten-story frame: (a) AR design for 1971 San Fernando
of Table 6.13 (Building III) and (b) ARGEB convex model design of Table
6.13) (Building IV), DO = scaled record of 1994 Northridge earthquake,
= 1971 San Fernando earthquake record
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Optimal Design of Conventional Structure for Astificial Earthquake

The optimal designs for the actual record of an artificial earthquake (Artificial
earthquake III, see Figure 5.19(d)), are shown in Table 6.15. The reduction factors used
in the RGEB convex model were the excitation-specific values valid only for this
excitation. The average reduction factors used in the ARGEB convex model were
determined from 6 excitation records with the same spec rum (subset G2 of Table 5.11).
It can be observed from Table 6.15 that the minimum volume obtained by the RGEB
convex model is 24 % less than that obtained by the time-history of the actual record
‘AR). The reason for the larger difference between the RGEB convex model and the AR
analysis in this case is that the interstory drift used for the design was not directly obtained
from the RGEB convex model. From the definition of the global energy-bound convex
model, the maximum displacement, velocity, and acceleration were formulated, and the
interstory drift was obtained by subtracting the maximum displacement at each floor. The
minimum volume obtained from ARGEB convex model is 9 % more than the AR optimal

design which is acceptable.

Optimal Design of Active Structure for El-Centro Earthquake

In this section the optimal design of an active structure with one active bracing
system (ABS) on the first floor and one ABS on the second floor of the ten-story frame is
presented. The control force is consuaiiied to a maximum of 20 % of the excitation's
effective lateral force. The effective lateral force is determined by multiplying the total

mass of the structure by the peak acceleration of the excitation.
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Table 6.16 shows the optimal design using the time-history analysis of the 1940 El-
Centro earthquake record, the RGEB convex model with the excitation-specific reduction
factor, and the ARGEB convex model with the average reduction factor from 26
California records (subset S7 of Table 5.9). It can be observed that the minimum volume
obtained by the RGEB convex model is 0.7 % more than that obtained by using the time-
history of the actual record (AR) for the 1940 El-Centro earthquake. The minimum
volume obtained by the ARGEB convex model is 64 % more than that of the AR design.
However, note that compared to the design of the structure without structural control the
present designs requir2d on the average 15 % less volume.

The performance of the structure designed by the time-history of the actual El-
Centro earthquake record (Building V) and the structure designed by the ARGEB convex
model (Building VT) are examined using a time-history analysis of the four excitations
shown in Table 6.12 with the same global energy-bound. The same control parameters are
used in the design of Buildings V and VI. The interstory drifts for these two buildings are
shown in Figure 6.16. Similar results are obtained as observed in Figures 6.14 and 6.15.
Building VI responds much better than Building V for all excitations, especially for the
scaled record of the San Fenando earthquake. The maximum control forces of both ABS
in Buildings V and VI (Figure 6.17) are on average 19 and 11 % of the excitation effective

lateral force, respectively.
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Figure 6.16 Interstory drift of the ten-story frame with two ABS: (a) AR design for 1940
El-Centro of Table 6.16 (Building V) and (b) ARGEB convex model design
of Table 6.16 (Building VI); 8 = artificial earthquake shown in Figure 6.13,
O = scaled record of 1994 Northridge earthquake, l = scaled record of
1971 San Fernando earthquake, 0 = 1940 El-Centro earthquake record
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Optimal Design of Active Structure for San Fernando and
Antificial Earthquakes

Two ABS were assumed to be installed in the ten-story frame as descried in the
last section. The optimal designs for the 1971 San Fernando earthquake are shown in
Table 6.17. The minimum volume obtained by the RGEB convex model is 3.3 % less than
the minimum volume for the actual record (AR) for the 1971 San Fernando earthquake.
For the results obtained by the ARGEB convex model, the subset S6 of Table 5.9 is used
in Table 6.17. The minimum volume results obtained by the ARGEB convex model is 59
% more than the minimum volume obtained using the actual record (AR) for the San
Fernando earthquake. Table 6.18 shows the optimal designs for the time-history analysis
of the artificial earthquake III shown in Figure 5.19(d), and the RGEB and ARGEB
convex models. The minimum volumes obtained by the RGEB convex model is 7.2 % less
than the actual record (AR) of the artificial earthquake III. The results obtained by the
ARGEB convex model (subset G2 of Table 5.11) is 25 % more than those obtained by the
AR

These values, as well as that obtained for the conventional structures, indicate that
in general the results obtained by the RGEB convex model are closer to those of the time-
history of the actual record (AR). The results obtained by the ARGEB convex model are
further away as compared to the RGEB convex model from those of the AR procedure.
However, the ARGEB convex model results are most of the time on the conservative side
and within reasonable margins. In general, the structures designed by the ARGEB convex
model respond better to other excitations than the structures designed by the time-history

analysis for a specific excitation. The computational advantage of using convex models is
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obvious in the case of buildings with a large number of design variables, such as tall
buildings. In that case, the calculations involved in obtaining the active structure using the
time-history analysis of the actual record are quite expensive. However, the convex model

solutions could be obtained with less effort because of the static nature of the constraints.

Optimal Designs of Active Structures

In this section, the ten-story frame shown in Figure 6.9 with different levels of
inherent structural damping is used. Three cases are discussed: (1) one active bracing
system (ABS) installed on the first floor and one ABS on the second floor, (2) one
viscoelastic (VE) damper on the first floor and one VE damper on the second floor, and
(3) one ABS on the first floor and one VE damper on the second floor. The allowable
stress for each frame member is assumed as 150 MPa, and the allowable interstory drift
for each floor is given as 4/180 which is 2.5 cm for the first floor, and 2.0 cm for the
second up to the tenth floors. The strong column-weak beam philosophy is also

implemented. The constantsa;, B., and y; in equation (6.1) equal 0.58, 0.58, and 0.67,

respectively. Note that for Cases (1) and (3) the maximum control forces of ABS are
limited to be equal or less than 20 % of the excitation lateral force. The thickness of the
VE dampers equals 0.0127 m, and the cross-sectional area of the VE dampers equals
0.032 m? which is chosen to achieve the similar performance as the ABS structural
control. The material properties of the VE dampers are described in Chapter 4.

The optimal designs of the conventional structure with inherent structural damping
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levels of 1, 2, 3, and 4 % of critical are shown in Table 6.19. The time-history analysis
method is used with the 1940 El-Centro earthquake as the excitation. The active
constraints for each optimization design are shaded in Table 6.19. It can be observed that
the minimum volume of the optimal structure is decreased as the inherent structural
damping is increased. Note that the optimal design of the structure with inherent
structural damping of 5 % of critical was shown in the previous section (Building I in
Table 6.11).

The optimal designs for the three active structures stated above are shown in
Tables 6.20, 6.21, and 6.22. The inherent structural damping levels are assumed to 1, 2,
3, 4, and 5 % of critical at all modes for each of the three cases. The 1940 El-Centro
carthquake is used. The effective damping level, includes the inherent structural damping
and the damping introduced by the structural control. The minimum volume of the active
structures are compared with the conventional structures of Table 6.19 and Building I of
Table 6.11, and are shown in Figures 6.18, 6.19, and 6.20. It can be observed that the
volume of the optimal structures are decreased as the effective damping level is increased
for active structures as well as conventional structures.

The relationship between the effective damping ratios and the optimal volume of
the active structures can be depicted more clearly by comparing Cases 1 - 3 of Figures
6.18 - 6.20 as shown in Figure 6.21. It can be observed that in general the minimum
volume of the active structure is inversely proportional to the effective damping ratio for
all three structural control cases. A comparison of the additional damping introduced by
the control systems in the three cases with respect to the inherent structural damping is



202

"S300(] J910 941 30) U (7' J000 151 94 30] U § ¢ = YUP AIOKIII JQEAOI[Y SAW 051 = 55305 J[QEAMO]LY : 30N

VTT | LET | €01 | 6v1 | V89T | 6681 |vo8I |9eCC |ZLiE |TL8C [612C [eLsk | O W)
st | zr | svt | 881 |86ty [ozez |soze [soze |[iows |swwy |ooee |vov9 | 6 |sec'osr'9|008°168'9 | 6L 1¥TL [00STULT' PEMOA
861 | 61 | w1 | 861 |86€y 980 |ziLe |zvor |evi |wss |sTvs (owsL | 8 | soize | vo€lc | cosse | tveze | W
881 | 91 | 91 | vt | wey [scev |over | et [ewer |evio |ires [eso8 | o | coose | sseor | scezy | ielzs | ¥
o6t | vl | s81 | se1 |zoes |suss [evor [viee |sves |szeL |zies [sses | 9 |orie | vivee | s096e | sws9e | W
s61 | 6.1 | 00T | ve1 [eess [ 96w | 1€ty 658z 9616 [ecs8 [6298 |evie | s | veor | 6oLz | Loty | sezm | ¥
w1 | wr | w1 | 861 |eoTs |oves |9ew sz [vav |ese |68 [tivor | v | ieoe | vso1r | sc0Iy | 9Bem | 'V
s91 |61 [ L6t | 6t [y | 1619 |z |95ty [cvzs [ocTs [ccoor [soout | € | zwoTy | crzov | sTwy | 91T | ¥
st | se1 [ e81 | g1 oo |czwe |eszor |ives |oves 9818 |zozit |zoetl | T | sezee | goevr | 196y | czsse | ¥
w60 | 060 | ezt | ov1 [eves [ee9s [ewour [s9coi o1z {ev9 {916 (8901 | 1 | evzes | otoz9 | wzze | 0% | W
%y | %E | %T | %1 | %P | WE | WT | W1 | we | %e | %Z | %1 | | |_%r | %t | Wt | %I

W) Yuq Kowisg TRIANITINIOD J0 S$355 POUIQUI) | (R WIW5q JO SSORS POANqUIo) {c U5) Wau¥ [w00Raoe-5801) —

surdwep [eanIdTUlS JUIIIYUL L) JO S[SA3] JUSISPIP YIM dWeL A1015-Ud) 3y} JO m_.&_mou rumdo 6179 dqeL



203

- - - - - eVl | PEL | IV | TPL | STT | Ot 1€ 8S1T 60'87 9¢°6C oLl ol
- - - - - 961 | 181 | 00T | €61 | 8L1 6 LToy 906§ LTSE [4Y114 X414 6
. - - - - 861 | 961 | 661 | 00T | €61 8 T$°6¢€ 99'¥¢ yT'SE 86'ZC 61'€7 8
- - - - - oL | 18T | S | L1 | oLt L 2067 06'1€ 9Ll v6'L1 6061 L
- - - - - 1L | 81 | sct | sl | o8l 9 09°§T £Uve Lr9l 69°€l oLel 9
- - - - - SLL | 81 | 681 | 661 | 861 S r4 K3 90'81 Levl £l £8°01 S
- - - - - L8 | 88t | vl | €61 | 861 4 6007 161 Lest £sel 91l 14
- - - - - 961 | S61 ) L6l | p61 | 661 £ 0£'€2 £L07 £0'81 06¢l 80°€l £
89T | 19T | 19T | 95T | s9r | 881 | 881 | 781 | LL'1 | 81 [4 891 ££°91 otEl So'tl sLol z
SIZ | stz | v61 | 681 | 90T | i | vl ] 1€l | 9TI | o¥'] 1 0901 96 19L 9% 16’y 1
%S | %P | % [ %T [ %l | %S | %y [ %t | %T | %I d %S % ¥ %t %l %l o
(ND) 3940] [ORU0D "X (o) yup Kioisiu] (%) onwi Fudwivp o
7897 { 9691 [ T9°0T {9061 [ $9°0T [ 6Lty [ 08LZ [ 1062 [ S69Z [ 819 | o1 (s uo)
90LT | SE9T | IvSE | ¥86T | €6 1E | ISHS | EOEY | 6L IV [ SVEP | 00EY | 6 866°190°C | 9TL'6¥1°C | SLE'19¥'S | €SETIR'S | 18£°9L6°C | IumioA
69°9¢ [ OL1E | 9¢vr | Op'¥E [ O1'6E | S6'8S | S6°LS | 6965 [OL'6S | L909 | 8 £2°261 16'+0Z €T 98°6+7 16°UT U 4
1ree | 8€se jorve | vevy | v6or | 1£8S | 1€59 | €969 |zs89fzoaL | ¢ 1795 09°£8¢C 148134 881t LOSIE Lty
Trov | 6€°Ey | (LEh | 6295 | 0S°0S | BI'S9 | €L€L | LLse | TTOB | EvEg | 9 8TTlE TwLL6T 80'91¢ £L9EE 06'8E€ i 4
676y | TZ6r | 68 [ 60€9 | S1'9S | T9SL | TL'T8 | 8098 | 6716 J OL¥6 | S 19'85¢ $S9'ISE O1'06€ SPESE i1 sy
60'vS | T6'95 | IS8y j 2LvS | 91'8S | €6'S8 | SLL8 | 95v6 | 6TL6 | 966 | ¢ [AYA LS 8¢ bee sT6T¢ 05'19¢ 86'S9¢E 'y
TOSS | 1669 | vLes | 9819 | vT'L9 | 95°06 | 1€°€6 | O1°001] 98°001] 09°¢01| ¢ $SELE 0£'99¢ 6Ty (38144 £6°6E¥ B 4
8569 | v9'SL | 1089 | 89'¢L | 0SvL | SE'v6 | 88'¢6 | ¥0001| SS°66 | LS101] 2 10°€T¢ 17°s¢¢ LE'THE 07'99¢ 61'99¢ Yy
sLvlt| LTvtl] 19¢01) 6150t vegitf z628 [ 6198 | 1768 | 90'v8 | €968 | 1 91'6LE LS'18¢ 8¢ 19 v1'98¢ 978 3 4
%S | %y | %E | %T | %1 | %S | %y | %E | %T | %I E] %S % b %€ %1 %1 dnoip
(3JADUUM[OS JO $53M$ paUIqUIc) (34D Ureaq Jo ssans paulquio) (¢ L) BRIV [BUOTIOE-$50.7) suriyj

SHY OM] Ylim aurey AJois-uaj Jo susisap reundQ 079 dqelL



204

- - - - - il b A sl (A3 | (43} 01 SLL 899 £6'y e gt'¢c ol
- - - . - | ssr{vet | gL | e gl| 6 208 6L'S 08'S 90" %z 6
- - - - - | se1 | st |66t |s61 |66t | 8 078 ve'9 89°S 6Ly ore 8
- - - - - 18°1 181 €Ll €81 06'1 L 9L 9t'9 Lo's ka4 or'e L
- - - - - 161 | 681 | IST | 681 | 161 | 9 8L 669 sr's Ly L6T 9
- - - - - |ost |86t | vet | 861|961 ¢ o' 89 8's €Sy 9t'c s
- - - . - eet |66t | 00T | set |9t ¥ 086 58 sEL L0'9 314 v
- - - . - lser | st | eet |18t |69t | ¢ 81l 6£°0I 0T6 06'L 69 £
0z | oze | oze | oze | Oz | w91 | 191 | 091 | svl | sEU | T g §5°01 76 WL 699 (4
oze | oze | oze | oze | oze | ezt [ evni | evi oot | 160 | 1 096 61’8 L §9' 9y 1
%S | %b | %t | % | %1 | %S | %Y | %t | %L | %1 | W %S % %t %1 %1 PN
w3) J2dWwp FA Jo eIV () yup Doy (%) onws Suidumep mo]
$90E | 9€El [ LL'8L | S6TT { TTST I SI'EL | pTIT | EL'61 | ¥BTE | PLLE ol 95&
8v'81 | 1667 | 81'0c | 89€E | 1vse | vese [ €sse | Leve [ 201 | 8865 | 6 | 6£9°90's | 691°08€°s | Z90°Lss's| 6Lz°266's | Ly€'ciT'g | awmion
scov |98z | oree | 99'se |oese [ 88er |6€1s |evis [€19o |161e | 8 | vezez | esotz | sisor | soosz | sriet oy
gree {1eee | 1ose | szve |ecer | ezss Vseio [ evo l1ese |ovee | ¢ | crect | ovwte | wrzez | esiise | o6sie Ly
68ty | 8905 | 1Tey | 09es |99 [¢869 [ Lzwe fevee |e1es [Tess | 9 | 9esoe | orele | 106z | susve | z8se ] 4
wvs | 698 | o1es | Lo6s | 2059 | 9818 | Lees | 1068 | L606 | 9016 | s | sssee | 6sive | vevBE | LT9BE | 16'8E sy
wes | otes | ssus | 6965 | s8us | 8668 | sTse [ 8856 | 1816 |tews | v | vzoze | 1zoze | ooovs | esuse | crioc {4
0669 | €0¥9 | LE69 | LvoL | LL'99 | 19%6 | Tve6 | 9086 | 6806 | sTs8 | € | oLwse | ezsse | 1596 | grzor | 9cory 3 4
vZ89 | 179 | 8819 | sLse | Leze [ 1988 | Lz06 [ vv06 [coe8 [ vs8L | T | souze | €9uze | oive | iv9se | ovoor zy
sL101f (vee | 89°001| £8'€6 | 5088 [orve | 98w [esve [ 6729|8819 1 Lesee | esviv | soety | srzr | zoeos [ 4
%S | %? | %E | %L | %l | %S | %F | %t | % | %t | W %S % % %3 %0 dnoip
(BJA)UUM[03 JO 553115 PoUIqLI0) (o) Wvaq Jo s5a0s pAuIquIo) z Ui) valw [WUORIes-5801) s

s1adurep gA OMm) Ylim aurelj AJojs-us) Jo

155p pPwndo 129 91qeL



208

- - - - - 9t'l 9Tl (TR ori | oT'l ol 066 1ol YL (4] (189 ot
- - - - - 88°( 8Ll £8°'1 061 | 0L 6 (331 £sel LTt 00'6 $0'8 6
- - - - - 007 861 0¢'l ¥6'l | 981 8 LSt 8§91 861 16°11 96 8
- - - - - 08’1 08’1 { /Al L1 | 691 L 65°LY 00'¢1 18 41 or'rl 91l L
- - - - - 881 6871 181 8l 8’1 9 L6'07 9761 orsl 8991 rivl 9
- - - - - 61 6’1 ¥6'l } 661 | 861 S sUIT £sé6l $¢'8l oriLl £9'rtl Y
- - - - - 66°1 00T 661 | 66’1 | 00T 14 (4% 44 Lrot 8161 1741 65°¢1 1 4
. - - - - 66'1 861 S6'l £6'1 £6'1 £ SL'1T el s8Ll 6¥'9l orel £
(oz®) | (0z9) | (0z) | (0z©) | (0T | 121 | 691 L9l £9'1 £9°1 4 sL¢t 17r et 101 6601 T
LST 65T 19T | §9T £9C oSl | vt'l el el L'l 1 $$°01 06 86'L 99 L9S |
%S %P %t _$~ % | %S % v % %I %1 gL %< %y %t %l % 1 IPON
;W “sadurep JA Jo wry
(N 0] [anuoo Xepy (wo) yup Kioissapw] (%) onw Buidwep (w0,
T09T [ 0T8T | LULL | ¥OLL | €OOT | ST6E [ TTIT | 191T | 1TST | 194T ol (s uw)
PTVE | OT'6T | LY 6T | $6LT | 091€ | L8'LS J 0S99 | #8°LE | €EL°OF | 1TLY 6 EOV'8I6'Y | GLI'YPII'S | TISTHP'S| L¥S'9TS'S | 06T'1#8°S | aumjop
PE6T | 1O°LE | L1I'9E | ITEEC | S98E | LT0O | 8EES | 6S°CS | 1€°LS | TH'SS 8 PLEOT 0562 6STET R A8 74 719'6L7 sy
LBIE | L9SE | OV EC [ OITY [ 99TY { ILLS { €T | 9L'99 | OT' L9 | ££°69 L oLv9T £S5 S9'897 18°€0€ S1'91¢ Ly
LOvY | ILSP 1 SITP | 0STS | SLIS | OELS | TEEL | #L°LL [ OL'8L | 1108 9 69°'10¢ §$°00¢ 9%'90¢ L8'ETE €1'lye 'y
89°¢C | 6€TC | €E°LY | OF'6S | 198C | SL'BL | £0S8 | LLBB | ¥6'68 | €L°16 < [44 /313 98'6%t €r'86¢ i 413 01'L8¢€ Sy
OL'8S | LTES | BOGY | OP'8BS | TTI9 | 6768 | 6916 | TE96 | LS 96 | BRLE v 08°L0t $8Tit el t9'trt 6¥'SSt 4 4
6899 | 08°€9 | pS6S | COOL | I8¥PL | £5E6 | T6L6 | 0S66 | TS86 | 000QI] € pI8HE LL'€8E 81'¥ZF LS'66€ 9 LOY &y
LY6S [ STI9 | 9¥'8S | T9CY | §S°99 | 88'L8 | £0'T6 | 6¥°L6 | LO'16 | 96°16 4 01'80¢ 6L'TTE oT'LLs 0£'99¢ 17°89¢ y
LT611] 19801 10°L01] 66G11| 97811 0908 | 85°6L | I+'0B | 69'8L | £9'8L 1 £8°LS¢E £8°00Y £L'OEY 89Ty 14144 N4
%S | %V | %t | Wl | %l | %S | %Y | %t | %t | %1 | %S % ¥ %E % T % | dnaip
(8JADBUM|00 jJO $5aNSs PAUIqQWIOD (R IA) ureaq jo ssans pauiqio)) (¢ UK) vaJv [FUOI}OAE-5501)) L it

Jodwep gA U0 pu SHY U0 YIm dwel Al0)S-ud) Jo m_.m_mov rewndQ ‘7z 9 dqel



1.0E+7
9.0E+6 1
8.0E+6 +
7.0E+6 L
8.0E+8 |
5.0E+6 + \
4.0E+8 + + + L +
0.00 2.00 4.00 6.00 8.00 10.00 12.00

EFFECTIVE DAMPING RATIO (%)

MINIMUM VOLUME (cm*3)
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shown in Figure 6.22. It can be observed that for the same level of inherent structural
damping, the additional damping introduced by the VE dampers (Case 2) on average is 0.6
and 0.9 % less than that of the active bracing systems (Case 1) and that of the combined
system (Case 3), respectively.

However, the structural control systems reduce the optimal volume of the active
structures on average by 23 % as compared to the reduction of the optimal conventional
structures for the different levels of inherent structural damping. Figure 6.23 shows the
ratios of the optimal volume of the active structures to that of the conventional structures.
For the structure with the inherent structural damping level of 1 % of critical, the
reduction of the structural volume can be achieved more efficiently (35 % on average) by
the active structure. Note that the reduction of the three active structures, structures
equipped with two ABS, two VE dampers, or one ABS and one VE damper, on average
for all inherent damping ratios is 23, 21, and 25 % less than the conventional structure’s
optimal volume. However, a specific cross-sectional area of VE dampers and the
maximum control force of the ABS are chosen for the active structures to achieve a
comparable level. The intention of those comparisons is not to run a competition among
the three cases of active structures, but to demonstrate that the reduction of the structural

volume can be achieved in more than one way.
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CHAPTER 7

INELASTIC ANALYSIS OF CONVENTIONAL

AND ACTIVE STRUCTURES

An inelastic analysis is carried out in this Chapter using the finite element software
DRAIN2DX (Prakash et al., 1993) for both conventional and active structures. A bilinear
elastic-plastic model is used for the inelastic analysis. The response of the elastic and
inelastic models is compared in terms of the displacement, velocity, acceleration,
permanent deformation, control force requirements, and energy of the structural systems.
The advantage of using active structures is shown by comparing the structural response

and number of yield events.

Inclastic Analysis of F IS

A simple inelastic element for modelling the frame elements of the structure
(Powell, 1993), which includes beam and beam-column components, is used in this
research. An elastic beam with two rigid-plastic hinges at its ends is considered. Yielding
takes place only in the plastic hinges. The yield moment capacity is specified for positive
and negative bending at the two ends of the element (Figure 7.1). The value of this yield
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Figure 7.1 Yield surface and sign convention for moment
moment can be calculated in terms of the yield stress, o ,a8
M, = [ [0, dzdy a1

where d and b are the width and the depth of the beam or column element, and z is the
coordinate in the in-plane direction.

The effects of the inelastic axial and shear deformations are ignored. The strain
hardening in bending is modelled by assuming that the element consists of elastic and
plastic components in parallel as shown in Figure 7.2. It is assumed that if the bending
moment on the element is constant, the moment-rotation relationship has the same shape
as the moment-curvature relationship. Thus, the strain hardening ratio is defined as a
proportion of Young'’s modulus.

The input energy imparted to an inelastic system by a dynamic excitation is
dissipated by viscous damping and by the yielding behavior of the structure. The energy
terms can be defined by integrating the equation of motion of an inelastic system as
(Chopra, 1995)
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Figure 7.2 Bilinear model for the inelastic structure; (a) parallel components, (b)
moment-curvature relationship

[ mi(t)ax + [ cide+ [ fo(x, £)dx = = [ mi, (t)dx (7.2)

where fo(x,x) is the resisting force for an inelastic (in this case elastoplastic) system.
Equation (7.2) can be described in terms of the energy dissipated by viscous damping,

yielding, and the recoverable strain energy of the system as

Ex(+E () +E,(t)+E (1) = £,(1) (1.3)

where E,(t), E.(1), E,(t), E4(t), and E,(t) are the kinetic energy associated with the
motion of the structure relative to the ground, the damping energy, the yield strain energy,
the elastic strain (the recoverable strain) energy, and the input energy. These energies are
defined as

E, (1) = - [mt, (1)dx = [, ()31t (7:49)
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E, (1) = [mi(t)dx = j: mityde = MO° (7.4b)

2
E ()= [ci(t)x = L En)dt (1.4¢)
E, () = [ /s (e.0)de - Eg (1) = [5(0)f; (x. 2)dt - E5(1) (7.4d)
Ey(t) =&2‘l:21-=""72 (7.4¢)

Conventional Structures

Building V where properties are shown in Table 6.16 is used to investigate the
inelastic behavior of the elastic-plastic structure. The strain hardening ratio is assumed as
0.0588, and the structural damping level equals 5 % of critical for all the modes. The
beam and beam-column components of the structure are assumed to be structural steel W-
shapes. The yield moments and moments of inertia of the structural element are shown in
Table 7.1. The yield moments for positive and negative bending are assumed to be the
same. The actual record of the SI6E component of the 1971 San Femando

carthquake is used. Sceled records of the SOOE component of the 1940 El-Centro

Table 7.1 Moments of inertia and yield moments of the structural elements of Building

Vin Table 6.15
Structural element Cross-sectional Moment of Yield Moment
Area (m ?) inertia (m 4) (N-m)
1st floor columns .050902 2.9931E-3 1.7619E+6
1st floor beam .040640 1.9079E-3 1.4111E+6
2nd-4th floors columns .042036 2.0412E-3 1.4589E+6
2nd-4th floors beams .036727 1.5582E-3 1.2771E+6
5th-7th floors columns 038591 1.7204E-3 1.3410E+6
Sth-7th floors beams .035582 1.4625E-3 1.2378E+6
8th-10th floors columns 037396 1.6155E-3 1.3000E+6
8th-10th floors beams 028248 93819E4 1.0203E+6
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earthquake and the S90N component of the 1994 Northridge earthquake (Santa Monica
City Hall), both having the same global energy bound as the 1971 San Femando
carthquake, are also considered. The peak acceleration, duration, and global energy
bound of the three excitations are shown in Table 7.2.

The maximum response in terms of displacement, drift, velocity, and acceleration
at each floor is shown in Figures 7.3 - 7.14 for the three excitations. It can be observed
that the displacement, drift, velocity, and acceleration response obtained by the elastic
analysis are on average 27, 31, 33, and 20 % larger than those obtained by the inelastic
analysis for the 1971 San Fernando earthquake, and 13, 9, 5, and 1 % for the scaled
record of the El-Centro earthquake. For the scaled record of the Northridge earthquake,
the displacement, drift, and velocity response obtained by the elastic analysis are on
average 2, 1, and 11 % larger than those obtained by the inelastic analysis. The
acceleration response obtained from the elastic and inelastic analyses are almost the same
for the scaled record of the Northridge earthquake. In general, it can be found that the
maximum responses obtained from the elastic analysis were more conservative than those
obtained from the inelastic analysis if significant yield events had occurred. However, the
permanent deformations can only be determined from the inelastic analysis.

Table 7.2. Peak acceleration and global energy-bound of the excitations for investigating
the inelastic behavior of Building V in Table 6.15

Excitations Peak accel. Duration iGlobal energy-bound
® (sex) (m/sec’)
1971 San Femando 1.172 410 52.61
Scaled El-Centro 0.748 53.0 52.61
Scaled Northridge 1.518 60.0 52.61
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Figure 7.5 Maximum velocity of the ten-story frame for the 1971 San Femando
carthquake; (a) elastic analysis, (b) inelastic analysis
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Figure 7.9 Maximum velocity of the ten-story frame for the scaled record of El-Centro
earthquake; (a) elastic analysis, (b) inelastic analysis
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Figure 7.10 Maximum acceleration of the ten-story frame for the scaled record of El-
Centro earthquake; (a) elastic analysis, (b) inelastic analysis
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Figure 7.12 Maximum drift of the ten-story frame for the scaled record of Northridge
carthquake; (a) elastic analysis, (b) inelastic analysis
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Figure 7.13 Maximum velocity of the ten-story frame for the scaled record of Northridge
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Figure 7.15 shows the time-history record of the 10th floor displacement obtained
from the three excitations shown in Table 7.2 for both elastic and inelastic analyses. It can
be observed that after the peak ground acceleration occurs the structure maintains some
permanent deformation for the inelastic case. The permanent deformation for each floor
of the structure is shown in Figure 7.16. It can be found that the permanent deformation
for the structure subjected to the scaled record of the 1994 Northridge earthquake is
larger compared to the other two earthquake records.

The energy time-histories of the elastic and inelastic analyses for the structure
subjected to the 1971 San Fernando earthquake and the scaled records of the 1940 El-
Centro and 1994 Northridge carthquakes are compared as shown in Figures 7.17 - 7.19.
It can be observed that the damping energy is reduced when yielding occurs. In the
inelastic analysis, the input energy is dissipated by structural damping as well as yielding.
In general, the input energy in the elastic analysis is greater than that of the inelastic
analysis. This fact can also be observed from the velocity response of the structure shown

in Figures 7.5, 7.9, and 7.13.

Active Structures
Two active structures with elastic-plastic behavior are studied in this section. In
the first case, the ten-story frame in Table 7.1 equipped with an active bracing system
(ABS) on the first and second floors is used. The contrcl force is constrained to a
maximum of 20 % of the excitation’s effective lateral force. The effective lateral forcc is

determined by multiplying the total mass of the structure by the peak acceleration of the
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excitation. The effective damping level for the first two modes of this active structure
equals 10.6 and 16.8 % of critical, respectively. In the second case, the ten-story frame in
Table 7.1 is equipped with an ABS on the first, second, third, and fourth floors. The
control! force is also constrained to a maximum of 20 % of the excitation’s effective lateral
force. The effective damping level for this active structure equals 20.6 and 27.6 % of
critical for the first and second modes, respectively.

The structural response for the cases stated above is compared to the structure
without the ABS structural control. The displacement, dnift, velocity, and acceleration
rasponse reduction obtained for the earthquake records of Table 7.2 is shown in Table 7.3.
In general, the structure with four ABS structural controls can reduce the response even
more compared to the structure with only two ABS. It can be observed that the
displacement response of the structure with two ABS structural controls was on average 9
- 16 % less than that of the structure without control. The displacement response of the
structure with four ABS structural controls was reduced about 29 - 35 % on average.

More importantly, the additional structural control system not only reduces the
dynamic response of the structure, it also reduces the yield events of the structure. Figure
7.20 shows the number of yield events as a function of time for the three structures stated

above inthe 1971 San Fernando earthquake. It can be observed that the total yielding

Table 7.3 Average response ratios as compared to the uncontrolled structure with the
addition of active bracing systems
Excitation ABS on the 1st and 2nd floors ABS on the 1st, 2nd, 3rd, and 4th floors
Disp. | Drift Vel. | Accel. | Disp. | Drift Vel. | Accel.

San Fernando | 0.84 0.88 0.91 0.98 071 0.73 0.83 1.00
Scaled El-Centro| 0.87 0.79 0.87 0.90 0.72 0.66 0.77 0.84
Scaled Northridgd  0.91 0.83 0.85 0.95 0.65 0.62 0.73 0.96
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events are only two-thirds of those of the no control system for the structure equipped
with two ABS, and only one-third for the structure with four ABS. Figures 7.21 and 7.22
show a breakdown of the yield events with respect to the beam and column members of
the structure. It should be noted that yielding in the columns occurred only in the columns
of the first floor. Similar results can also be observed from the scaled records of the 1940
El-Centro earthquake and the 1994 Northridge earthquake that are shown in Figures 7.23
- 7.28. The total yielding events for the three cases are shown in Table 7.4. It can be seen
that total yield events for the active structure with two ABS are reduced to one half
compared to the conventional structure. The yield events for the active structure with

four ABS are much less than those of the conventional structure.
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Table 7.4 Yielding events of the inclastic structure equipped with a certain number of
active bracing systems

Excitation w/o control 2 ABS 4 ABS
Total | Beam | Column] Total | Beam | Column] Total | Beam | Column
San Femando | 451 341 110 324 230 94 159 117 42
Scaled El-Centro| 259 167 92 117 73 44 16 6 10
Scaled Northri 2 330 241 89 176 126 50 21 21 0




CHAPTER 8

CONCLUSIONS

The performance of viscoclastic (VE) dampers and active bracing systems (ABS)
when they are used for structural control was studied. A structural frequency dependent
property of the VE damper is employed to obtain the effective damping ratio introduced in
a structure equipped with VE dampers. An optimization method is developed to design
the minimum size of VE dampers for achieving an expected effective damping ratio of the
structure. A performance index using drift as the criterion, and another using velocity and
acceleration feedback are proposed for the ABS structural control. These algorithms were
found to reduce floor accelerations better than the instantaneous optimal control
algorithm, but require higher levels of control fcrce. A method based on the Lyapunov
function for obtaining the weighting matrix of an ABS structural control is introduced that
reduces the required control force for certain control algorithms.

Structural displacements can be reduced to a desired level by using different
arrangements of VE dampers and ABS structural controls having the same effective
damping ratio. For the same response reduction, the addition of a VE damper to a
structure equipped with an ABS structural control reduces the required control force and



240

damper is improved in the presence of the ABS structural control. The elastic strain and
kinetic energy of a seismic structure is decreased by using the ABS-VE hybrid structural
control system.

An energy-bound convex model is used for estimating the maximum response of a
structural system subjected to dynamic loads. The estimated structural response using the
energy-bound convex models is rather conservative when compared to the time-history of
the response using the actual earthquake record. The energy-bound convex model results
are slightly improved as the damping level of the structure is increased. A reduction factor
is defined for a structure subjected to a specific earthquake record and is a function of the
structure’s natural periods and modal damping ratios (global energy-bound convex model
adjusted with an excitation-specific reduction factor, RGEB convex model).

The results are extended for finding the maximum response of a structure to an
unknown excitation but known energy-bound. An average reduction factor is defined by
taking the average of the reduction factors at the modal level from a set of carthquake
records. Numerical simulations show that the response obtained by the global energy-
bound convex model adjusted by the average reduction factor (ARGEB convex model) is
not as close to the actual response as that obtained by the excitation-specific RGEB
convex model. However, the ARGEB convex model still yields an acceptable prediction
of the maximum response for unknown earthquakes of a given global energy-bound. The
reduction factor remains constant for different levels of the energy-bound.

It has been found that the average reduction factor is sensitive to the location of
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the records that defines the subset from which the factor was determined. In addition, it
was found that the average reduction factor for records in the same general location is not
sensitive to time. Thus, for a certain location if sufficient records of previous earthquakes
are available, regardless of the chronology of the event, the average reduction factor can
be determined with some confidence. An alternative procedure is to determine the
average reduction factor from site-specific spectra whenever they are available.

A modified iterated simulated annealing (MISA) method with sensitivity analysis
and automatic reduction of the search range is presented for the structural optimization
process. The method is based on simulated annealing which is an algorithm that has the
ability to find the global optimum. First-order sensitivity analysis is used to identify which
design variables need to be modified in order to decrease a certain constraint in the most
economical way. Even though the actual values of the new design variables are
determined randomly, the knowledge of which design variables to modify avoids the
expense of multiple trials and improves the efficiency of the present method considerably.
The automatic reduction of the search range helps reduce the extent of the search for the
new design variables. As a result, the computational effort for successive iterations is
greatly reduced.

The MISA method was found to be advantageous for optimization of structural
systems with dynamic constraints, as compared to classical optimal design methods. For
dynamically constrained problems, where the feasible region is usually disjoint, the MISA
method has the advantage of converging in the proximity of the global minimum even

when infeasible initial designs are used, and for practically any choice of the initial values
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of the design vanables. In addition, the method proceeds to the global minimum even
when intermediate design iterations are worse than previous iterations, since design
iterations use random sequences of candidate designs. By contrast, some of the classical
optimization methods may converge to local optimal points or not even reach these local
optimal points because of the disjoint nature of the feasible region.

The optimal design of conventional as well as active structures using the energy-
bound convex models yields static member sizes that are different from those obtained
using a historic actual earthquake record. The minimum volume required for conventional
or active structures designed by the average reduction factor convex model (ARGEB) is
approximately 50 % larger than the volume required by the optimal structure designed for
a single historic earthquake record. One advantage of using convex models to perform the
structural optimization is that they represent a more general excitation than a single
historic earthquake. Thus, the structures designed using the ARGEB convex model
respond well for other excitations, which might occur in the future, and having the same
global energy-bound; by contrast, structures designed for a specific historic earthquake
record do not respond as well for other possible future earthquakes. This is true for either
conventional or active structures. Another advantage of using convex models is that the
computational effort required for the optimization, when using the energy-bound convex
models, is much less than that required when using actual historic earthquake records.
That is the case since the constraints are transformed from dynamic to static ones.

For a certain number of VE dampers or a limited control force of the ABS

structural control, the optimal design of the active structure yields a minimum volume on
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average twenty percent less than the optimal volume of the conventional structure for
different levels of inherent structural damping. The constraints for joint displacements and
member stresses are kept the same ior either the optimal conventional or active structures.
In this respect, active structures are seen to be more efficient by combing the conventional
static members with the active members.

Finally, inelastic analysis based on a bilinear elastic-plastic model is used to
investigate the behavior of conventional as well as active structures. Jn general, the
maximum responses obtained from the elastic analysis were more conseivative than those
obtained from the inelastic analysi; if significant yielding events had occurred. However,
the permanent deformations can only be determined from the inelastic analysis. The
inelastic behavior of the structure can also be observed from the reduced structural
damping and input energy requirements which are offset by external damping as well as
yielding in the inelastic analysis. The active structure with the additional structural control
system can reduce the response compared to the conventional structure. More

importantly, it also reduces the yield events experienced by the structure.
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Research in the area of active control of civil structures subjected to dynamic loads
has been focused on the development of a number of certain control algorithms based on
different performance indexes. Discussion in this appendix is focused on some basic

results of modern control theory as they relate to the results presented in Chapter 2.

Linear Quadratic Regulator (LOR) Method

In classical linear optirnal coiitrol the control vector, u(t), is chosen by defining the

performance index, J, as (Soong, 1990)
J = 4, [2te). 2t ) bt ] + I:J,(z,z,u,u,z)dt (A1)

The first term, J,, is the initial stage which is used to evaluate the index at the initial and
final times of the control interval {t,,t,]. The second term, J,, is an integral evaluation
over the control period. z(t) and u(t) are the state vector and the control force vector as
shown in equation (2.8).

The performance index chosen for the study of the structural control problem is
quadratic in vectors, z(t) and #(t). Setting the initial time equal to zero, the performance
index can be represented as in equation (2.7). To find the optimal results one minimizes
the index of equation (2.7) subject to the constraint of equation (2.8a). The Lagrangian L
is formed by adjoining these two equations with a time-varying Lagrange multiplier, A(t).

This can be expressed as (Soong, 1990)



246

L= ["{z7()0z(t) + u™ (YRu(®) + AT () A2() + Bu(t) + HF () - (0)]}dt  (A2)
Let
Hzudt) = 27 ()Qe(t) + T (Ru(t) + AT ([ A2(0) + Bu(t)+ HF()]  (A3)
Therefore, the Lagrangian can be simplified as
L= [W(z,u, .0+ AT (02(0)]dt - AT ()2(0)]; (A4)

The necessary condition for the optimal control can be obtained by finding the first
variation of the Lagrangian with respect to the control variables and setting it to zero.

The first variation of equation (A.4) can be obtained as

| o# ox .
SL=["|== (— ’) 3
[au&w &-0-). &]Ot (A.5)

By requiring 8L = 0, one obtains
%:-=o, when 0stst, (A.69)

s T 6?
=z = A.6b
A +az 0 (A.6b)
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and the boundary condition
AT(t)=0 (A.6c)

Substituting equation (A.3) into equations (A.6a) and (A.6b), one can obtain

u(t) = - % RB™A (A.Ta)

A = ~ATAQ) - 20z(1) (A.Tb)

Considering a closed-loop control, the control vector is regulated by the state

vector which is expressed as (Sage and White, 1977)
A(t) = A(t)z(t) (A8)

Sﬁbstituting equation (A.8) into equation (A.7), one can obtain

()= -3 RO BTA()2) = Gloe(t) | (AS9)

P()2(t) = -P(t)z(t) - ATP(t)z(t) - 2Qz(1) (A.9b)

The control vector u(t) is linear in 2{t), and the matrix G(t)=-—;-R"B’P(t) is the

control gain. Recalling equation (2.8) and pre-multiplying it by matrix P(t)



P(0)4(t) = P(t)Az(t) + P(t) Bu(t) + P(t)HF(t) (A.10)

Therefore, the unknown matrix P(t) can be determined by substituting equation (A.9) into
(A.10). In addition, the boundary condition of equation (A.6c) can be obtained from

equation (A.8). The expression for finding A(t) is obtained as

[P(t) +P(t)A+ ATP(t) +2Q - %P(t)BR - BTP(t):Iz(l) + P()HF(t)=0

Pt,)=0 (A.11)

When F(t) = 0, equation (A.11) reduces to
P(t)+ P()A + ATP(t) +20 - -;-p(t)BR"BTP(t) =0, P1)=0 (Al2)

Equation (A.12) is called the matrix Riccati equation in optimal control theory, and A(t) is
the Riccati matrix. Usually, the Riccati matrix, Pt), does not yield an optimal solution
unless the excitation force Ft) is zero within the control period [0,1,](Sage and White,
1977). In the applications of structural control to civil structures, numerical computations
have shown that the Riccati matrix remains constant over the control period and drops to
zero rapidly at the end of the interval. Therefore, in most of the cases F(t) can be

approximated by a constant matrix P. Equation (A.12) can be simplified as
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PA+ATP+2Q-%PBR"B’P= 0 (A13)
and the control gain G(t) is also a constant matrix expressed from equation (A.9a) as

G(t) = -%R“B’P (A14)

nstantaneou i nt

Since the classical optimal control, the linear quadratic regulator method, is not
truly optimum by ignoring the seismic excitation term in the Riccati equation, other
rlgorithms have been proposed. A time-dependent performance index J(t) was defined by
Yang et al. (1987) as shown in equation (2.10). The optimal solution can be obtained by
minimizing J(t) at every time instant t for the total control period (0 St St,).

The instantaneous optimal control algorithm is used to successively evolve the
state vector z(t) through a smal! time interval At. Assuming that matrix A shown in
equation (2.8) possesses distinct eigenvalues, the state vector can be expressed through

the iransformation

z(t) = Tw(t) (A-15)

where T is a 271x2n modal matrix whose columns are the eigenvectors of matrix A; w(t) is
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the “modal” state vector (Soong, 1990). Substituting equation (A.15) into equation (2.8)

and pre-multiplying by the inverse of the modal matrix T~ both sides of the equation, one

can obtain
W(t) = Aw(t) + Q(t) (A.16a)
A=T"AT, Q(t) = T"'[Bu(t) + HF (1)) (A.16b)

where A is a diagonal matrix whose diagonal elements are the complex eigenvalues of

matrix A. Solving equation (A.16a) over a small time interval At, the “modal” state vector

w(t) can be expressed as
W) =" 0cede (A7)
According to the trapezoidal rule
[f (e = g (k- At)-At+ i%ﬁ (A.18)

Therefore, equation (A.17) can be reduced

w(t) = ie“"“’“ﬂ(k - At)At + n(t)i‘i (A.19)

&=l 2
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D(t- At) = ie“‘""“ﬂ(k - At)At (A.20)

Equation (A.20) can be rewritten as

a-2
D(t- Ay = )" e**D4Q(k - At)At + e Q(t - AAL
ke]

= e[ D(t - 241) + Q(t - At)AY] (A21)

Substituting equation (A.20) into equation (A.19), one can obtain
At At
D(t - At) = w{t) - Q(t);; and D(* - 2At) = w(t - At) - Q(t - At)? (A.22)
Equation (A.21) can be written as

D(t- At)= e“‘[w(t- At)+%ﬂ(t-At)] | (A.23)

w(t)=¢“‘[w(t- At)+%t-ﬂ(t-At)]+%(Xt) (A.24)
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For the state vector z(t), equations (A.15) and (A.24) lead to

209 = T{er st - 80+ et ate- 40+ 0]}

= T8(: - A1)+ 52 [Bu(t) + HF(®)] (A250)

O(t- At)= e*¥T"! {z(t - 4t) +%[Ba(t - At)+ HF(t - At)]} (A.25b)

A similar procedure as given in the last section is used, for the minimization of the

performance index J(t) given in equation (2.10). The Hamiltionian is

= 27 (1)Qz(t) +u () Ru(t) + l’(t){z(t) - TO(t - At) - %[Bu(t) + HF(t)]}

(A.26)
The necessary conditions for the minimization are
o o o
—=0, —=0, —=0
oz ou oA
which yield
20z(t)+A(t)=0 (A.27a)

2Ru(t) - %Bfl(t) =0 (A-27b)
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z(t) = TO(t - At)+%[8u(t)+HF(t)] (A.27¢)

Using the closed-loop control, A(t) = P(t)z(t) (equation (A.8)), equation (A.27a)

gives
P(t)=-20 (A.282)

and equation (A.27b) can be expressed as

u(t) = —%R"BTQz(t) (A.28b)

The response state vector z(t) is
Z(t)=TO(t~ At) + %[-%BR"B’Q:(!) + HF(t)]

=1
=[1+-A-;isn-'B*Q] [TB(t-At)+%HF(t)] (A.29)

The above expressions of equation (A.28b) and (A.29) are used to calculate the control

force and the response of structures with active controls using the IOC algorithm.



APPENDIX B

RUNGE-KUTTA METHOD



255

A high-order local truncation error of the Taylor methods is used for evaluation of
the derivatives of function £/z) which is called the Runge-Kutta method (Burden and
Faires, 1985). The order of ali of the partial derivatives of function f{1,2) is assuming to be
less than or equal to »+1 and be continuous on the domain

D= {(l,z)]a St<becszs d} . Let (t,2,) = D. Therefore, for every (1,2) €D there

exists a { between ¢ and , and an n between z and z, with (Burden and Faires, 1987)

S.z)=F(1,2)+ R (1,2) (B.1a)

Ptz = F(to20) +[(: -0 L0 (ro.zo)]

[(’ 2’ ) aa’{ (L, 2) + (1 - 1, Xz - zo) f(’m Z,) + ;")1 ;, (lc.zo)]
e 4|1 - af
+ +["',z-;( )(: L)z )lar"a.-'("' o)] (B.1b)
- l ml +1 nel- _ ] f
Rln = (n+l)!§( J )(’ B)" (e =) ot g & (8.1c)

where P_is called the Taylor polynomial of degree 1 in two variables for the function R,
is the remainder term associated with P, (1.,2).
The first step of the Runge-Kutta method is to determine the parameters,

a,, a,, and B, of a,f(t +a,,z +p,), which approximates

T(,5)= f(t2)+ 57 02) ®2)
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with error no greater than O(A3), the local truncation error for the Taylor method of order

two. Note that f(¢,z) in equation (B.2) is the derivative of the function A¢.2) and
J(t,2)= ?L(: z)+1(: 2)-:(t); and (2) = f(1,2) (B.3)
Therefore, equation (B.2) can be expressed as
1960 = 103 L 0.0+ 2L 1) 1. (B.4)
Expanding f (s +a,,z+p,) into the first degree, the Taylor polynomial is

af(t+a,z+B)=a,/f{t,2)+a, %(l,z) +ap, %(l,z) +a -R(t+a,z+p)
(B.5a)

B en  @sh)

R+ar By =S L mvap I g+ B2

for a certain { between fand ¢ + ., and 1 between z + f3,.

From equations (B.4) and (B.5), the parameters a,, a,, and B, are obtained as

=k a=% B=2/0) ®.5)



and

T(1,2) = f(l +-l21,z +-’2!j(l,z)) —R,(I +-}21.z +§f(l,z)) (B.7a)

\ &
R(1+2.042700) = 22 s L ranZLem+ Liraay ZLen
(B.7b)

A similar procedure can be used to obtain the higher order Runge-Kutta method.

The most common Runge-Kutta method in use is of order four and is given as

z, =0, (B.8a)
2, =2,+= (k +2k, + 2k, +k,) (B.8b)
where
k, = h(1,,2,), (B.8c)
k, = hf(t, +-;i,z, + %k,), (B.8d)
k, = hf (l, +%,z, + -%I:,), (B.8e)
k, = hf(’msz: + k)) (B.8f)

The o in equation (B.84) is the initial value of the function z(a) at time equal a (a S 1 < b).
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Generally, two methodé, the force method and the displacement method, are used
for the structural analysis. In the force method, the redundant forces are primary
unknowns that can be solved from the compatibility conditions only for the statically
indeterminate structures (Wang, 1986). In the displacement method, the displacement of
all the joints in the structure are the primary unknowns that can be solved from the
equilibrium conditions for both statically determinate and indeterminate structures.
Usually, the force method is used to analyze the statically indeterminate trusses. For
building frames, the displacement method is often implemented because of two reasons.
First, the degree of indeterminacy for the frames is often equal to or sometimes much
larger than the number of joint displacements. Second, the compatibility equation
involving the redundant forces is more difficult to formulate than the equilibrium equations
involving the joint displacements.

In this study, the displacement method is used to analyze both the truss and frame
structures. The direct stiffness method uses the direct contribution of each element. The
global stiffness matrix is obtained from the local stiffness matrix of each element in the
structure (Wang, 1986). The local stiffness matrix has four degrees-of-freedom for each
truss element and six degrees-of-freedom for each frame element (see Figure C.1).

The local stiffness includes two translations at each end of the truss element and

can be expressed as



NP n : Global freedom number

(PNPg{ ) 0 P : Translation force
v ' X , : Translation displacement
(®

NP6

Pe, X0
NP5
(P $ X’)

NPI
™, ., X) EI,A,L

NP n : Global freedom number

P, . Translation force

M _ : Moment

X, : Translation displacement, rotation

)

Figure C.1 Local freedom numbers for: (a) truss and (b) frame elements
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cos’ a, symmetric
(K] _ E4,| cosq,sina, sina, €.
' L | -cos’a; -cosa,sina; cos’a,
-cosa;sina;  -sina,  cosa,sina; sin’a,

where £ is the Young’s modulus of the material, 4,, L,, and a, are the cross-sectional
area, length, and declining angle of the ith element. The local stiffness of the frame

element includes two translations and a rotation at each end and can be expressed as

4T symmeltric 1
1
T, T+T,
=T, -L+T, -T,+7,
S PY I SR «2
T, -T,-1, T,-T, -T, T.+],
T 5o, LT, T, -L+T, T,+7,
7;:%; Tz"—TiSian T=%wsBl’
r=2intp;,  n=2ng s T=2iestp,;
r=Shanps  f=Zlhanpeep;  f=Steads;
i (]

where /, and B, are the moment of inertia and the declining angle of the ith frame
element. The global stiffness matrix can be obtained by using the superposition method
from the known global freedom number, NPn (shown in Figure C), of each element
corresponding to the local matrix. A <imple procedure can be used for the computer
program to assemble the global stiffness matrix
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doloopl=1,n
doloop2=1i,n
GlobalStfI]VP(loop1),NP(loop2)] = GlobalStiffVP(loop1),NP(loop2))] + k{loopl, loop2]
end loop2
end loopl
where n = 4 for the truss structure; and 7 = 6 for the frame structure. One must repeat
this procedure for every element of the structure.
Once the global stiffness matrix has been estavlished by using the direct stiffness
method, the displacement method of truss/frame analysis can be solved through the force-

displacement relationships as

[X)=[K1"[P) (C3)

where [K]" is the inverse form of the global stiffness matrix; vectors [X] and [P] are the

global displacement and applied force to the structural system.

Guyan Reduction
For the dynamic analysis, Guyan’s condensation method (1965) is used to reduce
the degrees-of-freedom of the structural system to only translations in the horizontal

direction. A state reduction is used. The equations of equilibrium for free displacement,

equation (C.3) can be expressed as

K. | KoTX] (A
['K:T Ky :[:Y'.' ] ) [7';] (C4)
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The subscript 4 in equation (C.4) denotes the displacements that are to be eliminated, and
subscript B refers to those that will be retained which are the translations in the horizontal

direction in this case. Equation (C.4) can be written as two sets of equations as follows:

K, X, +KyX, =P, (C.52)
K, X, +KyX, =P, (C.5b)

The dependent displacements (Weaver and Johnston, 1987), X,, can be solved from

equation (C.5a) as

X, =K, (P.-K,pX;) (C.6)

Substituting equation (C.6) into equation (C.5b), one can obtain

Koy X, =P} (C.73)
Ky =Ky - Ko K, 'K p (C.7b)
B =P -K,K,"P, (C.7%c)

The independent displacements, X, can be solved by pre-multiplying the inverse matrix
of the reduced stiffness matrix, K,, , on both sides of equation (C.72). Once the

independent displacements are obtained, the dependent displacements can be solved by the

back-substitution formula in equation (C.6).
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The first-order sensitivity analysis is used to modify the structural design in an
optimal way (Grierson, 1994). The equations of equilibriuns in matrix form can be

expressed as

A

©.1)

where K is the stiffness matrix of the structure, and vectors, X and P, are the nodal
displacements and the applied forces at the nodal degrees-of-freedom. Consider a

particular displacement, e, which is related to the vector of nodal displacements as

)

e, =b7X (D.2)

where b, is a vector with the values of ones or zeros which depend on the nature of the
displacement e;. For example, ¢; could be the horizontal drift between two floors. The
first-order sensitivity of displacement e, is calculated by taking the first-derivative of

equation (D.2) with respect to the design variables (the cross-sectional area of the

structural members, A

;» in this problem), which can be expressed as

de, . X
=5t X L x
24, o4, " o4,

)

Ta;r_bTax

i ®3)

i
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Similarly by taking the first-derivative of equation (D.1) with respect to A4, one can obtain

oX + al(x= oP
04. 04, o4

] ot

(D.4)

i

The right-hand side of equation (D.4) equals zero by assuming that the applied loads P are

invariant with the cross-sectional area of the structural members. Equation (D.4) can be

rewritten as
aX ok
—_K .S
7 o, ®.5)

Therefore, equation (D.3) becomes

Oe; oK
—_—l =T X D.6
04, ) OA. )

i 4

Equation (D.6) defines the first-order sensitivity of displacernent with respect to
the changing variables. The sign of the sensitivity indica.es the relationship of the
displacement and the variables. For the structural design problem, the negative sign of the
sensitivity (de; /04; in equation (D.6)) means that the displacement e; will decrease as
A, increases. This is useful for the design procedure since one needs to change only the
size of the members that will decrease a given displacement and not the size of all the
members.
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In this section, the three classical optimization methods used in Chapter 6, i.¢., the
modified feasible directions method (MFD), the sequential linear programming method
(SLP), and sequential quadratic programming method (SQP) are described. An
optimization program, Design Optimization Tools (DOT), was developed by VMA
Engineering (1993) which includes three numerical optimization search methods for

constrained problems and is used here to compare with MISA.

Modified Feasible Directions Method (MFD)

In general, the optimization problem is stated as follows (Vanderplaats, 1984 b):

Minimize or maximize

0(4) Objec:ive function (E.1)
Subject to:

g(4)so; i=1, ., N, Inequality constraints (E.2a)

ArsA,s4’, «=1,.., Ny, Side constraints (E.2b)

where A4, AF, and A" are the ith design variable, and the lower and upper bound of the
ith design variable; N is the number of constraints; Ndv is the number of design variables.
In the method of feasible directions, one will first find a search direction S and then

move in this direction to update the design variables (4). This procedure can be
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expressed as
At =AY +a'S? (E.3)
where o’ is a scalar and the search direction S® is defined as

§* = -V0(4"') +e8° (E.42)

_ oy
€= {:7.(4‘—2”, (E.4b)

The basic concept of the feasible directions method is to obtain an o that will
minimize O{4*' +a’S*) subject to the constraints. The MFD method of the DOT

program (VMA, 1993) creates a first order Maclaurin series approximation to the

objective function in terms of a°. Substituting equation (E.3) into equation (E.1), one

can obtain
0(4*) = 0(4" +a's") (E.S)

Thus, an approximation to O(A_‘) is

ofar)- o)+ 2347) (24 &9
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€&

is the ith entry of gradient of the objective function, VO{4*') which can

or
ofa) o)+ A& ).
where 204%)
04,
be derived by finite differences as
(O(4+84,)-0(4)) [20(4)]
84, 04,
o4+84,)-0(4)| |20(4)
o 4 fok
o(4+54,)-0(4)| |20(4)
L 84y )] | 94x |
and
4, _
3?-3'
Therefore
do(4a* _ 0\t
47 < volary's

. (E8)

(E9)

(E.10)
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Since the gradient and the search direction are available, the slope of the function can be

obtained from equation (E.10). The objective function 0(4‘) is expected to reduce by

some fraction, say 10 %, and is expressed by using a linear approximation

o) ~o(av) + A&
- o(a+)-0rjo(av) €

Thus, an estimate of o* which will reduce the objective function by 10 % can be obtained

(E.12)

However, since the gradients of some constraints are also available, the approach by

driving g,(g!_‘) to zero can be used instead of reducing by 10 % the value of the objective

function (equation (E.11)). Thus, a linear approximation to find gj(g‘) =00is

g(d) = g(4v)+ dgﬁf o« =00 (E13)

and an estimate for o is
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. &l4v)

do” ]

(E.14)

Therefore, even at the beginning of the search, a considerable amount of information is
available to direct the process. Using similar approximations, an upper bound of a’ can
be derived by driving the design variables to their lower or upper bounds, and this would

provide a maximum value for o’ to be allowed.

i th P
The sequential linear programming method (SLP) instead of using the original
nonlinear functions, uses a Taylor Series approximation for the optimization. The DOT

program (VMA, 1993) creates the Taylor Series expansion in the form of

O(4) = 0(4*') + vO(4*') 54 (E.152)

Z(4)=g(4)+Vg(4)84; jel, (E.15b)
where

5A4=4"-4" (E.16)

and J, is the set of retained constraints.



Equation (E.15) can be rewritten as

6(4) = 60 +qu‘.|)rd‘

Z(4) =8 +Vg(4%) 4" jel.

where

0° = O(4)- vO{4"') &+

§j° = E;(-A.) - vgj(é"')rd"'; jel,

3

(E.16a)
(E.16b)

(E.172)
(E.17b)

Thus, the linear approximation optimization problem can be solved by minimizing 5(4‘)

subject to

g(aY)s0;

A s4,s4; i=1, ... M,

where

(E.18)
(E.19)

(E.20n)
(E.20b)
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The multiplier 8 in equation (E.20) is a variable number which is dependent on the

progress of the optimization.

tial ic Pr min th P
The basic concept of the sequential quadratic programming method is very similar
to the sequential linear programming method. A Taylor Series approximation is also
created for the objective and constraint functions. However, instead of minimizing the

linearized objective, a quadratic approximate objective function is created by the form

Minimize:  V(S)=0° +vo’s+-;-sfos E21)

Subject to: (Vg,)' S+g° <0, j=1,... ¥ (E.22)

where matrix D is a positive definite matrix, vector S is the search direction as described in
the modified feasible directions method (MFD). This subprogram is solved using the
MFD program. Usually, matrix D is initially defined as an identity matrix, and is updaied
to approach the Hessian of the Lagrangian function. The updated D matrix can be

expressed as

. . p_DAYSA)'D '
2 =Pl o6 T Ea) ®2)
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S4=4"-4" (E.242)
n=6r+(1-0)DS4 (E.24b)
[=V,¥ -V, (E.24c)
Y =0(4) + i v! max[O, gj(A)] (E.244d)
j=
V= mu[lljl,%-(v;" +p ,|)] (E.24¢)
10 if (5A)'T 20.2(5A)" D(5A)
_ T
6=1__08(64) D3a) if (5A)'T <02(5A)" D(5A) €240

(6A)' D(5A)- (8A)'T

In the search process of the SQP method in DOT program, the approximations are made
by using the components of ¥. This function has discontinuous derivatives at the
constraints boundaries which has smooth components.

The convergence criteria for the MFD, SLP, and SQP methods should satisfy
either the maximum iterations allowed or the Kuhn-Tucker conditions (Zangwill, 1969).
The Kuhn-Tucker conditions dictate that the Lagrangian function must have a vanishing
gradient at the optimum design denoted by 4°. The Kuhn-Tucker necessary conditions

for optimality are:

1. A’ isfeasible (all g,(4°)<0) (E.252)
2. The product of Lagrange multipliers, A, and g;(4°) equals zero

rg(d)=0  j=1,..N (E.26)
3. The gradient of the Lagrangian vanithes



VO(4) + Y.1,78,(4) =0

A 20 j=1,

wa N
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(E.27)

(E.27b)
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The MISA program includes several subroutines required to implement the
developed algorithm. Figure F.1 shows the order of execution of the MISA program. In
Figure F.1, the boxes with solid lines indicate the name of the subroutine and the function
of the subroutine is described near the box. The boxes with dashed lines are the j.idgment
procedures in the MISA program. Finally, the required input data of the MISA is listed in
Tables F.1 and F.2. The name of the input file can be any string with a maximum of
twelve characters. The input data must follow the line set order shown in Table F.1. One
set of data may include as many lines as needed to specify the required data. A free
formatted data is used. A comma (,) or a blank space is used to separate the input data at
the same line. The data type and data description are shown in Table F.2. Data type is
declared as type I or R. Type I is integer, and type R is real. It should be noted that the

analysis method and the dynamic excitation are input from the keyboard.

Table F.1 Input order for required data in the MISA program

Line set Description Note
1 Program initiation.
2 Material properties.
3 External static loads.
4 Frame clement definition. Omiit if there are no frame elements.
5 Truss element definition. Omit if there are no truss clements.
6 Lumped mass and response constraints.
7 Damping matrix/Damping ratio.
8 Control parameter for ABS. Omit if there are no ABS structural controls.
9 Location of ABS. Omit if there are no ABS structural controls.
10 Side constraints.
11 Size and location of VE dampers. Omit if there are no VE dampers.
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MAIN

DATAIN

Read the connectivity, material properties, constraints, computing method and the
controller requirements (ABS and VE damper)

: Start the outer iteration lonp with counter n < N

¢ Start the inner iteration loop with counter m <M

Determine the design variables randomly

Determine the glotal stiffness matrix

Determir.c the eigenvector and eigenvalue of the uncontrolled system

: with ABS ? —Z—' AC_PARM | Calculate the weighting matrices, @, R, according to the

' VE damper ? '\—5' VE PARM | Caiculate the effective damping level and the additional
eereerenegrereneennate : - stiffness duc to the VE damper

| DISP Call the subroutine according to the requested method
1. Static Analysis

2. Instantancous Optimal Control

3. Step-by-step method - Duhamel's integral

4. Energy-bound convex models

L STATIC |
|

2 [ INSTANTANE }— GAIN | Calculate the matrix of control gain
1

2 STEP |

1
4—0{ CONVEX H{FACTOR| Use the interpolation technique to determine the
reduction factors or the average reduction factors
depending upon the request

Use the sensitivity analysis to investigate the
required change of the variables

Figure F.1 Execution order of the MISA program
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Calculate the axial and bending stresses in the members and the strength ratio of
column to beam

Check the stress Not satisfy .

constraints

............ DN ®
CB_RATIO| Calculate the strength ratio

of column to beam [_VALUE_ }J-{RANDOM]|
:[.... Changc the values for the mu"cd
{ Implement the strong variables randomly, also check the
i column-weak beam 5 Not satisfy . maximum and minimum limit of
philosophy the variables
ISausfy ...............
 Evaluate the optimal | o,y gesign > Candidate design
é design :
"""""" Current design < Candidate design 1
TR SO sevens Not
:Save the current design! : Comput:‘:::b:;::e ptance ; Notacozpl,
| s the optimal design | AR

iReplace the candidate;
 design by the current
: design

T-yT he er, T, for the annealing probability

END PROGRAM

Figure F.1 (Continued)
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Table F.2 Description for input data in the MISA program

Vanable { Data | Line Description Note
type #
NS I 1 | Number of stories for the structure.
NB I 1 | Number of bays for the structure.
NM I 1 | Number of frame elements. Includes beams, column,
NP I 1 | Degree-of-freedom of the structure.
ITURSS I 1 | Number of truss elements.
IC 1 1 | (@) 1 : Input the damping matrix.
(b) 2 : Input the inherent damping ratio.
IUNIT | 1 | (a)l:Slunits.
(b) 2 : US units.
IMAT I 1 | Number of design variables.
MAC | 1 | Number of ABS. 0 :no ABS.
ICF 1 1 | (a) 0: no ABS or using the initial
control parameter.
(b) 1 : changing the control parameter to
achieve the required control force.
IVE 1 1 | Number of VE dampers. 0 : no VE dampers.
E R 2 | Elastic modulus.
P R 3 | Extemal static load at each DOF. P(i), 1 = 1, NP.
NO I 4a | Element number. a - first line of this set.
MATERIAL | 4a | Vanable number.
XL R 4a | Length of current element.
ANG R 4a | Angle of current element with horizontal. | Degrees.
SLIMIT R 4a | Yield stress for current element.
NPE (1) | 4b | DOF’s number of horizontal translation |b - second line of this set.
direction @ end /.
NPE (2) I 4b | DOF’s number of vertical translation
direction @ end /.
NPE (3) I 4b | DOF’s number of rotation direction @
end /.
NPE (4) 1 4b | DOF’s number of horizontal translation
direction @ end J.
NPE (5) I 4b | DOF’s number of vertical translation
direction @ end J.
NPE (€) I 4b | DOF’s number of rotation direction @
end J.
FNP (1) R 4b | Node/Span loads in horizontal direction
@end/.
FNP (2) R 4b | Node/Span loads in vertical direction @
end /.
FNP (3) R 4b | Node/Span moment @ end /.
FNP (4) R 4b | Node/Span loads in horizontal direction
@endJ.
FNP (5) R 4b | Node/Span loads in vertical direction @
endJ.
FNP (6) R 4b | Node/Span moment @ end J.
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Variable | Data | Line Description Note
type #
NO 1 5 | Element number.
MATERIAL I 5 | Variable number.
NPE (1) | 5 | DOF’s number of horizontal translation
direction @ end /.
NPE (2) I 5 | DOF’s number of vertical translation
direction @ end /.
NPE (3) I 5 | DOF’s number of horizontal translation
direction @ end J.
NPE (4) 1 5 | DOF’s number of vertical translation
direction @ end J.
XL R 5 | Length of current clement.
ANG R 5 | Angle of current clement with horizontal. | Degrees.
SLIMIT R 5 | Yield stress for current element.
LUMPM (x)] R 6 | Lumped mass @ floor . NS lines are needed in
XLIMIT (k)] R 6 | Displacement constraint @ floor £. this set.
VLIMIT (k)] R 6 | Velocity constraint @ floor £. (K=1,NS)
ALIMIT (0| R 6 | Acceleration constraint @ floor k.
Z0 (k) R 6 | Initial displacement.
ZO(k+NS) R 6 | Initial velocity.

DAMP R 7 | (a) Damping matrix. Damp(i,j), j = 1, NS.
NS lines are needed for
this input data.

(b) Damping ratio. Damp(i i), i = 1, NS.
R R 8 | Scale factor for identity weighting matrix.
FLOOR | 9 | Location of ABS. Floor(i), i =1, NS.
0 : no ABS at this floor.
1 : an ABS at this floor.
MAXRANGE| R 10 | Upper bound of design variable. IMAT lines are needed
MINRANGE| R 10 | Lower bound of design variable. in this set.
RANGE R 10 | Initial value of design variable.
VE_T R 11 | Thickness of VE damper. IVE lines are needed in
VE_AREA| R 11 | Area of VE damper. this set.
VE_A R 11 | Angle of VE bracing system with Radian.
horizontal.
N_VE(l) I 11 | DOF’s number of horizontal translation
direction @ end J.
N_VE (2) 1 11 | DOF’s number of vertical translation
direction @ end /.
N_VE (3) I 11 | DOF’s number of horizontal translation
direction @ end J.
N_VE (4) | 11 | DOF’s number of vertical translation
direction @ end J.
L VE | 11_| Location of VE damper (Floor number).
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