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ABSTRACT 

'The seismic resistance achieved by optimizing the design of the conventional 

members of a structure equipped with structural control is evaluated. Viscoelastic (VE) 

dampers and active bracing system (ABS) are studied individually. as well as combined as 

a hybrid system for their effectiveness in reducing the response of seismic structures. Two 

convex models are used to estimate the maximum response of structural systems subjected 

to uncertain seismic excitations. A reduction factor is used to calibrate the convex models 

for a specific excitation. An average reduction factor is also defined by ,~veraging a set of 

excitation-specific reduction factors. The average reduction factor can be used for 

unknown excitations with an assumed energy bound and certain common earthquake 

characteristics. 

A procedure for achieving the structural design of actively controUed structures 

has been developed. A modified iterated simulated annealing (MISA) method has been 

established for optimal design of structural systems under dynamic constraints. In 

performing the optimization, the MISA method employs two desirable features~ the first is 

to achieve an automatic reduction of the search range, and the second is to perform 

sensitivity analysis for the design variables. The optimal designs using classical 

optimization methods for problems with dynamic constraints are compared with those of 

the MISA method. 



The optimal design of the mt.mbe;"~ ~f both conventional structures and structures 

equipped with active bracing systems, known as active structures, is presented for 

uncertain excitations. Three approaches are used for obtaining the optimal structural 

design: (1) analysis using the time-history of an actual ground motion (AR), (2) analysis 

using the global energy-bound convex model adjusted with an excitation-specific 

reduction factor (RGEB), and (3) analysis using the global energy-bound convex model 

adjusted with an average reduction factor (ARGEB) for a set' of excitations with common 

characteristics. The optimal structures obtained using the RGEB and ARGEB convex 

models have different sizes for their conventional members from the optimal design based 

on a time-history analysis of the actual earthquake (AR). 

Structures with different levels of inherent structural damping are used to 

investigate the merits of simultaneous structure-control optimization in the case where the 

viscoelastic dampers and active control systems are present. A comparison between 

optimal designs of structures with conventional members only, and active structures 

indicates that the latter are more efficient by combining the conventional and active 

members. Indastic material behavior is modeled for both conventional and active 

structures. The effects of inelastic material behavior are investigated in terms of the 

structural response, control force requirements, energy balance of the structural systems 

and number of yield events. 
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CHAPTER I 

INTRODUCTION 

The criteria for designing buildings and other structures are based on the 

requirements of safety, serviceability, and resistance to self-straining forces. Safety of 

structures is ensurt."'i by supporting att loads, including gravity and lateral loads, to avoid 

exceeding the attowable str~s for the materials of construction in the structural 

members and connections. Serviceability of structural systems and their components is 

achieved by providing adc:quate stiffness, to limit transverse deflections, lateral drift and 

vibration. Provision always needs to be made for self-straining forces arising from 

assumed differential settlements of foundations. and dimensional changes such u 

temperature differentials, moisture expansion, shrinkage, and creep. In addition, 

structures capable of supporting safely all conventional loads may still suffa" local damage. 

that is, the loss of load resistance in an element or small portion of the structure. 

The most common method of achieving structural integrity is through an 

arrangement of the structural elements that provides stability to the entire structural 

system. Basically, such an arrangement consists of the provision of sufficient continuity 

and energy-absorbins capability in the componenu and connections of the stnJCture. This 

scheme provides a means to transfer loads from any locally cSunaaed reaion to adjacent 



2 

regions capable of resisting these loads without collapse. The designing concepts and 

guidelines for the provision of general structural integrity are outlined in the commentary 

of the ASCE 7-95 Standard (1996). 

Until recently, the structural integrity of buildings, bridges, and other constructed 

facilities has been achieved by building structures that rely on their mass and solidity to 

resist outside forces. The drawback of this kind of design is that these structures do not 

have the ability to adapt to extraordinary dynamic loads. With the need for strlJctural 

integrity other factors are currently gaining prominence, such as increased flexibility, 

increased safety levels and performance requirements, and demands for br.tter utilization 

of material and lower cost. As a result, new ideas for structural integrity and structural 

motion control have been developed. These new inventions can be divided into two main 

categories: the passive control devices. such as friction dampers, viscoelutic (VE) 

dampers and passive tuned mass dampers, and active control (AC) devices such as active 

mass dampers, pulse generators, variable stiffness devices, and active bracing systems. 

VE dampers dissipate energy in the fonn of heat or friction. They are usually used 

in large numbers for more effectiveness. Initially, VE dampers were mainly introduced in 

the design of buildings to reduce floor accelerations due to windstorms within acceptable 

levels of human comfort The twin towers of the World Trade Center in New York have 

10,000 VE dampers instailed throughout the height of each of the towers which were 

installed in 1969 (Wiesner, 1986). In 1982. I passive damping system was designed for 

the Columbia Center in Seattle, Washington with 260 VE dampers. The VE dampers 

were located alonpide the main diagonal bracing members in the core of the buildin& and 

were larger than those uted at the World Trade Center. hence a smaller munber were 
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required. VE dampers have been considered lately for seismic structures. 

An AC system uses a microcomputer that executes the control algorithm and 

controls the motion of the hydraulic system to supply reasonable control forces for the 

structure. In a narrow eleven-story building. which is 13x43 ft in plan and 108 ft high, 

two active mass drivers were installed on the top floor by Kajima Corporation in Japan in 

1990 to control lateral and torsional vibrations (ENR, 1990). Kajima's system has worked 

successfully several times already during recent eanhquakes that occurred in Japan. 

Viscoelastic dampers and the active bracing system (ASS) have been shown to be 

effective in reducing the seismic response of both reinforced concrete and structural steel 

frames. The performance of the systems can be predicted adequately through simplified 
• 

analytical procedures. The addition of VE dampers could assist the AC system in 

improving the damping ability of the structure, which should reduce the required control 

forces and the cost of the AC system. On the other hand, the addition of the AC system 

could improve the velocity performance of the VE dampers and reduce the possibility of 

shear failure of the viscoelastic material in case of large deformations. In the present 

work, VE dampers and the ABS are studied together as a hybrid system for their 

combined effectiveness in reducing the response of seismic structures. 

Integration of passive and active devices with conventional structural systems at 

the design stage has not gained much attention. Soong and Manolis (1987) have 

envisaged a future type of structure, an active structure, having two types of load resisting 

members: the traditional passive members that are designed to support static design loads, 

and active members that will assist the structure in resisting dynamic loads. 
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The U. S. National Workshop on Structural Control Research (1990) has 

acknowledged the need for the study of active structures by encouraging that more 

attention should be given to "smart structures" research, including active elements 

embedded within truss elements. In addition, it was recognized that hybrid control 

approaches which combine passive and active members seem to offer opportunities for 

improving performance over either active or passive approaches taken individually. 

At the latest Applied Technology Council Conference (ATe 17-1, 1993) on 

seismic isolation, passive energy dissipation. and active control, the issue of hybrid control 

systems has been addressed. A system proposed by Riley el al. (1993) used a sliding base 

isolated structure which combines sliding bearings with active servo-hydraulic actuators 

operating in parallel with the sliding bearings, Experimental shake table tests have verified 

the concept. Another concept uses a hybrid control system which connects the rubber­

bearing isolators ofa base-isolated building to an actuator (Yang et aI., 1993). Simulation 

results indicate that a nonlinear control method is effective for hybrid control of seismic 

structures equipped with such a system. 

Literature Survey 

Analysis of structural response to dynamic excitations such as shock, blast, wind, 

and earthquake is important in the desisn of structural systems. Examples include 

buildings under loads generated due to blast or explosion (Norris et aI., 1959), dynamic 

loads in automobiles, traveling cranes, and other mobile machinery (Humar, 1990). 

Impulsive loads are also important in the field of earthquake engineering. where it is 
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assumed that the earthquake acceleration consists of a series of impulses distributed 

randomly in time (Housner and Jennings, 1964). (n the following section, several fields of 

research are reviewed: (1) structural control systems inciudiflS passive and active controls. 

(2) convex modeling for estimating the structural response, (3) optimization methods. and 

(4) active structures. 

Structural Control Systems 

The first study of the active control system for civil engineering structures was 

proposed by Yao (1972). Martin and Soong (1976) used a combination of structural 

flexibility concepts and classical optimal control theory to investigate real-time 

controllability, control implementation. and the economics of an active control system. 

The idea of combining structural optimization and structural control was conceived by 

Kirsch and Moses (1977). Their effort was directed towards either reduction of internal 

forces or minimization of the cross-sectional area of an actively controlled continuous 

beam, under a given loading condition. 

In the area of active control systems for civil engineering structures. Yang (1982) 

has presented a transfer matrix approach for the application of the active mass damper and 

active tendon systems to seismic buildings. A random vibration analysis was formulated to 

obtain the frequency response of the structure. The transfer matrix approach has been 

applied to tall buildings in along-wind motion by Yang and Sarnali (1983). The 

performance of the active tendon and active mass damper systems was investigated. A 

methodology to analyze the problem by using a large number of modes has been 

presented. The transfer approach was used to determine the power spectral density of the 
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building response directly without computing the natural frequency. 

Cheng and Pantelides (1986) have used the transfer matrix approach for 

simultaneous optimization and active control of tall buildings subjected to stochastic 

eanhquake excitations. The control forces were generated by active tendons and active 

mass dampers. They attempted to optimize a performance index based on the weight and 

stiffness of the structure subject to structural response performance and control force 

constraints. Recently. several optimal control algorithms and control parameters for stable 

controllers were proposed (Yang et aI., 1987, 1991, 1992a, 1992b. and Soong. 1990). In 

those studies, the instantaneous optimal open-loop, closed-loop, and open-closed-loop 

controls were presented for simplifying the traditional control algorithm of the linear 

quadratic regulator method. An energy consideration method and Lyapunov's criteria 

were used to define the control parameters for dynamic stability. 

A full-scale test with an active bracing system on a fiv~story building was 

conducted by Soong et aI. and Reinhom et aI. in 1991 and 1992 respectively. A 

procedure of designing a full-scale ABS for an earthquake resistant building was 

presented. The classic optimal control algorithm of linear quadratic regulator and two 

modified control algorithms were implemented. 

The tirst building equipped with viscoelastic (VE) dampers was the twin towers of 

the World Trade Center, New York in 1969 for reduction of wind-load eft"ects (Wiesner, 

1986). The total damping of the building was determined from experimental work and 

found to be in the range of 2.S to 3.0 % of critical damping. The properties of VB 

dampers and the evaluation of the VE damping effect for seismic structures were 

investigated by Zhang et aI. in 1989. The stiftbess and damping ratio of the VB dampers 



7 

were estimated using an energy-based theory. The advantage of the YE dampers in 

reducing the structural response was proven by numerical ex:amples. In the meantime, 

structural response control by adding YE dampers was also presented by Zhang in 1990. 

The number, size, and optimal location of VE dampers for supporting the structure, and 

their effects on stiffitess and damping ratio were studied by Zhang and Soons in 1992. 

The effect of temperature on YE dampers and the frequency dependent properties of YE 

dampers were investigated by Chang et aI. (1992, 1994, and 1995) and by Kasai et aI. 

(1993). A full-scale vibrational test ofYE dampers was investigated by Lai et aI. (1995). 

The idea of combining YE dampers and active tendons in a structure for reduction 

of seismic response was presented by Pantelides in 1991. It was shown that the reduction 

of the structure's response can be achieved more efficiently with the above combination. 

The two systems could be used to resist various levels of intensity of externa1 loads. The 

YE dampers could be used to resist windstorms or moderate earthquakes, while in a 

strong earthquake YE dlUtlpers and AC systems would be operating together. 

Convex Models 

The maximum response of structures to uncertain dynamic forces has been 

examined using probabilistic methods and Fourier amplitude spectrum envelope methods 

(Shinozuka, 1970). Another method uses limited detenninistic information which 

characterizes the dynamic force (Drenick, 1970, 1973); a "critical excitation" is sought 

within the set of allowable dynamic forces such that it maximizes the structural response. 

Ben·Haim and Elishakoff(l990) have used convex models to represent uncertain dynamic 

forces in applications ranging from vehicle vibration to impact loadins of shells. A c:onvex 
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model of uncertainty is a set of functions specified by global characteristics such as input 

load functions, spectral properties, or functions of bounded energy. In effect, the convex 

model constrains uncertainty within a known bound. 

A study of the dynamics and failure of a thin circular cylindrical shell with 

axisymmetric initial imperfections was performed by Elishakoff and Ben-Haim (199<). 

The most significant N Fourier coefficients of the initial imperfection profile were assumed 

to fall in an ellipsoidal set in N-dimensional Euclidean space. Convex methods have been 

compared to probabilistic methods in structural dynamics (Elishakoff, 1990). Convex 

models have also been used to model uncertain imperfections in multimode dynamic 

buckling of cylindrical shells under symmetric radial impulsive loads (Lindberg. 1992 a. b). 

The maximum possible buckling deformations for any imperfection within uniform bounds 

could be made comparable to the deformations from the probabilistic models at a 

reliability of 99.S %. The convex model has the advantage that its numerical evaluation 

and interpretation is much simpler than the probabilistic model. In addition, the convex 

model solution provides a means for quality control of each and every shell by simply 

recording the uniform bounds from imperfection measurements. More recently, convex 

models have been used to model material uncertainty in the vibrations of viscoelastic 

structure (Elishakoff et aI. 1994). A safety factor based on convex modelling has been 

proposed (ElishaicofF, 1994). The probabilistic and convex modelling of acoustically 

excited structures have been studied by Elishakoff and Zhu (1994). 

Convex models of uncertainty have been compared to stochutic models (Ben­

Haim. 1994 a). It was found that analogous stochastic and convex models or uncertainty 

may lead to very different predictions in the range or the response of Iincar dynamic 
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systems with uncertain or time-varying disturbances. In a related development, convex 

models were used to evaluate the least time to failure of linear elastic systems with 

uncertain time-varying input (Ben-Haim, 1994 b). The uncertainty of the load history was 

represented by an ellipsoidal Fourier-bound convex model. Recently, Ben-Haim et a1. 

(1994) have used several convex models to describe earthquake excitation uncertainties 

and to predict maximum structural responses to earthquake loads. The concept of convex 

modeling and its relationship with the theory of probability and fuzzy sets was described 

by Elishakoff (1995). A convex model of the base acceleration in terms of an upper bound 

was used along with linear programming to obtain the least favorable structural response. 

Convex models specify uncertainties in the absence of detailed probabilistic 

information about the possible values of the variables of interest. The concept of convex 

modeling provides an alternative way of analysis of uncertainty when a limited amount of 

information is available. In addition, the subjective design decisions that result when using 

convex models to include uncertainty do not involve the element of chance. 

Optimization 

Modem literature on the topic of design optimization has seen an increase since 

the advent of the computer in the last haIf-century. Accurate and automated optimization 

methods originated from many fields as discussed by Haug and Arora (1979), and Schmit 

(1981). Optimization algorithms include: (1) mathematical programming methods. (2) 

optimality criteria methods, (3) approximation methods, and methods involving random 

sequences of designs. 

Mathematical programmins methods were described by Zoutendijk (1960). Finite 
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element analysis methods have been combined with mathematical programming algorithms 

for structural optimization (Gellatly and Gallagher, 1966). Optimization research in 

aerospace vehicle design. based on the combined technique of fully stressed design with 

mathematical programming. was used to design the size and materials of the structure in 

the 19708 (Heldenfels, 1973). Mathematical programming methods are currently used as 

tools for design synthesis (Vanderplaats, 19841. 1984b). 

Prager and Marcal (1971), Taylor (1969), Khot et al. (1979), and Kiusalaas (1972) 

have studied the optimal design of structures using the optimality criteria method. 

Procedures for finding the minimum weight design using the optimality criteria method 

were developed by Venkayya (1971), Gellatly and Berke (1971), Dobbs and Nelson 

(1 CI76), and Fleury (1980). 

Approximation methods are based on Taylor series truncation techniques of the 

objective and constraints, and include sequential linear programming (Kelley, 1960) and 

sequential quadratic programming (Vanderplaats, 1984b). Finally, methods involving 

random sequences of designs include genetic algorithms that emulate the natural selection 

process of nature and operate on a principle of survival of the fittest (Goldberg, 1989), 

and simulated annealing algorithms that emulate the reduction of the temperature in a bar 

that goes from a high to a low temperature (Kirkpatrick et al., 1983). 

Optimization techniques have for the most part focused on structural optimization 

of systems with static constraints. When dynamic or time-varying constraints are imposed, 

the feasible region usually becomes di~oint. It is well known that when the feasible region 

is not convex, as in the cue of ~oint spaces, some local minima may appear. This 

situation arises in structures undersoing dynamic loading. Cassis (1974) dac:ribed this 
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phenomenon in detail for planar frames subjected to horizontal vibrations at their 

foundation. Estimates for the maximum number of disjoint feasible regions in the 

optimization of structural systems subjected to harmonic loads have also been developed 

(Johnson, 1976; Johnson et al., 1976; Mills-Curran and Schmit, 1985). 

In the area of minimum weight design of damped structures subjected to dynamic 

loads, Cassis and Schmit (1976) discussed the disjoint nature of the feasible region for 

some combinations of constraints and loadings. The optimum structural design for 

dynamic response constraints with deterministic and nondeterministic loadings was 

presented by Yamakawa in 1984. The objective function was replaced by the dynamic 

response peaks using the root-mean-square values of selected displacements. A solution 

of the dynamic constraints problem based on upper bound approximations for the behavior 

constraints was developed by Mills-Curran and Schmit (1985). Dynamic stability 

constraints were included in a structure-controller synthesis by solving an approximate 

problem at each design iteration by Thomas and Schmit (1991 ). 

The simulated annealing method involves random sequences of candidate designs 

with a probabilistic acceptance criterion of a better design at each subsequent iteration. 

Ackley (1987) developed the iterated simulated annealing method (lSA) and the stochastic 

hillclimbing method (SHC). In the SHC method the probability evaluation of a new design 

is held constant for the duration of the search. In the ISA method the probability 

evaluation of a new design starts at a high value of any adjustable parameter determining 

the acceptability of the design (temperature) and is reduced by a decay rate during the 

search. 

The simulated annealing method was used by Salama et aI. (1988) to determine the 
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optimal placement of discrete actuators and sensors for truss structures. The simulated 

annealing technique has been used for the optimal placement design of active/passive 

members of a truss structure by Chen et aI. in 1991. The optimal design of steel frames 

with discrete member sizes using the simulated ameaiing method was developed by 

Balling in 1991. Simulated annealing is useful in combinatorial problems like the "traveling 

salesman" and circuit design problems (Nemhauser and Wolsey. 1988). 

The simultaneous control and optimization problem has been studied by KomJcov 

(1983) and Haftka et al. (1985 and J986). It was shown that changes that are small in the 

configuration of the structure result in large changes in the control force requirements. In 

addition, they showed that the magnitude of the control forces in a system that has been 

optimized can be reduced by minor changes in stifthess or mass. Hale et aI. (1985), 

suggest that the objective function to be optimized should contain a cost term that 

depends on the structural configuration. Their work produced plots of contours of 

different costs versus deSIgn parameters. 

Active Structures 

Active structures are structural systems which are composed of two types of load 

resisting members: <a> conventional static members such as beams and columns that are 

designed to support static design loads; (b) active members such as active mass dampers, 

active braces, or active variable stiffness members that are designed to resist dynamic 

loads such IS those that a structure may experience in a strong earthquake. The concept 

of the active structure has important implications for the design of new structures in 

seismic regions that are to be equipped with active systems. The new ItIUcture must be 
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designed to utilize efficiently both the properties of the conventional static members and 

the dynamic properties of the active members. Recent progress in the area of active 

structural control has brought the application of active systems from theory and 

experiment to actual implementation (Kobori, 1994, and Housner et aI., 1994). 

The concept of the active structure was introduced by Soong and Manolis (1987). 

A structure was optimally designed in terms of minimizing structural cost while 

simultaneously the optimal control force for the active control system was obtained. The 

structural cost was expressed as the structural volume, the structural design variables were 

defined as the member areas, and the control variables were the optimal control forces. 

The general theory of optimal control of parametric systems was used to formulate the 

active structure optimization solution. The formulation resulted in a system of nonlinear 

coupled equations whose solution was accomplished iteratively using nonlinear 

programming and steepest descent methods. 

Chi. Pitarresi, and Soong (1988) presented a numerical design procedure that 

optimizes the structural and controller parameters simultaneously. The problem was 

treated as one of the general theory of optimal control of parametric systems. The 

procedure searches and updates both the structural parameters and control parameters 

using a conjugate gradient technique, thus resulting in only one global optimization. 

Furthermore, the procedure is not limited to linear structural behavior or linear control 

laws. Numerical examples of active structures including a simple steel frame subjected to 

a sinusoidal base excitation, and a king-post bridge beam subjected to a moving load of 

constant magnitude and a given velocity have been carried out. It was demonstrated that 

the numerical procedure is effective in the design of the structural cross-section. the 
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required control force, as well as the placement of the active members. 

The design of active structures was also addressed by Cheng and Pantelides 

(1988), and Pantelides (1990), who formulated the solution in two stages: (a) the optimal 

control forces were expressed in closed-form as implicit functions of the design variables 

(equivalent to the moments of inertia of the structural members); (b) the design variables 

were modified iteratively in order to minimize the structural volume with constraints 

imposed on the structural displacements, frequencies, and maximum level of control 

forces. The definition of the active structure can be extended to include in addition to the 

active control systems not only purely static members (Soong and Manolis, 1987), but 

also passive control members such as viscoelastic dampers (Tzan and Pantelides, 1994). 

The design methods for active structures developed by Soong and Manolis (1987) 

and Pantelides (1990), use a time-dependent record of a past earthquake or an artificial 

earthquake acceleration as the excitation which is known in advance; the resulting 

computational effort required for the optimization process is rather costly. This situation 

is common in the structural optimization not only of active structures but also of 

traditional deterministic structures which are designed for earthquakes (Bhatti and Pister, 

1981, Balling et aI., 1983, and Truman and Petruska, 1992). The method proposed in this 

report seeks to replace the dynamic optimization of either traditional deterministic 

structures or active structures by a simpler static optimization. This can be achieved if the 

time-dependent displacements, member stresses, and control forces could be replaced by a 

maximum value representin8 an upper bound of the structural response to the earthquake. 



Objectives 

The seismic resistance achieved using structural control when the conventional 

structural members are optimized i~ evaluated in this research. The concept of an energy­

bound convex model is utilized to obtain the maximum dynamic response and simplify the 

design for earthquake excitations. The convex model of the earthquake excitation is more 

general than a single earthquake record and that is the primary reason for utilizing it. A 

procedure for achieving the structural design of actively controlled structures is 

developed. The optimal design of a structure equipped with either an active bracing 

system or a set of viscoelastic dampers, known as an active structure, is investigated. 

The following objectives are discussed in the indicated chapters of the report. 

(1) Theory development: The frequency dependent properties of stiffness and damping 

of the viscoelastic (VE) dampers, and control algorithms for the active bracing 

system (ABS) arc studied in Chapter 2. The convex model, which is based on the 

assumption that the energy of the excitathn is boundecl, is derived in Chapter 3. The 

structural optimization procedure for the optimal design of conventional :.>r active 

structures is described in Chapter 3. 

(2) Theory verification: The optimal material properties of VE dampen and control 

parameters of the active bracing system are investigated in Chapter 4. The 

effectiveness of reducing the response of seismic structures by combining the VE 

dampers and the ASS as a hybrid system is also studied. In Chapter 5, two convex 

models, the global energy-bound and the local energy-bound convex models, are 

used to estimate the maximum response of single-degree-of-freedom (SOOF) and 

multiple-degrees-of-freedom (MDOF) structural systems subjected to uncertain 
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dynamic excitations. A reduction factor is defined for a specific excitation by 

dividing the results obtained from the convex modtl by the maximum response 

obtained from the time-history analysis of the actual record. An average reduction 

factor, defined by averaging the reduction factors from a set of excitations with 

common characteristic, is developed for the uncertain excitations. 

(3) Optimal structural design: A modified annealing strategy is developed for structural 

optimization problems with dynamic constraints in Chapter 6. The optimal structural 

designs obtained using the method developed here are compared with classical 

optimization methods such as the state space method, the method of modified 

feasible directions, the sequential linear programming method, and the sequential 

quadratic programming method. The constraints obtained from both the time­

history analysis of the actual record and the convex models are studied. The optimal 

design of a structure equipped with either a number of active bracing systems or a 

number of VE dampers, known as an active structure, is also investigated in Chapter 

6. The structure is designed using past earthquake records as well as artificial 

earthquake excitations. 

(4) Inelastic behavior of structures: An inelastic analysis based on a bilinear elastic­

plutic model is carried out for both conventional and active structures in Chapter 7. 

The behavior of the inelastic models is investigated in terms of the response, control 

force requirements, energy of the structural systems and number of yield events. 

(5) Conclusions: FmalIy, a brief summary and the conclusions learned from this study 

are presented in Chapter 8. 



CHAPTER 2 

ALGORITHMS FOR PASSIVE/ACTIVE STRUCTURAL CONTROL 

A type of passive structural control system, the viscoelastic (VE) damper, is 

discussed in this chapter. The active bracing system (ADS) is considered as the active 

control system. The existing and proposed algorithms for both control systems are 

introduced in this chapter. 

Passive Stru~tural Control System 

Passive structural control is defined as the result of using energy absorbing devices 

to reduce the structural response due to either wind or seismic loads. The passive control 

devices do not require external power. A viscoelastic (VE) damper for use in seismic 

structures is studied as a passive control system and is shown in Figure 2.1. A hysteretic 

damping model was used to describe the behavior of the VE damper in terms of constant 

damping (Zhang and Soong, 1992). The response of the VE damper is controlled by two 

variables - the excitation. frequency and the ambient temperature. In the following section, 

the influence of the excitation frequency is considered while the temperature is assumed 

constant. 
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VISCOELASTIC LA YEllS 

Fisure 2. t Typical visc:oeIlsaic damper constNetion 
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Existing Models 

The viscoelastic (VE) damper can be considered as a kind of energy absorber 

which can be described as a combined device of a viscous damper and a spring unit. 

Therefore, the additional damping and stiffness due to the VE damper become an 

important topic in studying the material properties of the VE damper. 

In previous research, the additional stiffness, kd , due to the VE damper has been 

presented by Zhang (1990) as 

(2.1) 

where G' and G' are the shear storage and shear loss moduli respectively;.A and I are the 

cross-section area and the thickness of the VE damper; P = cos 9, and 9 is the damper 

inclination with respect to the horizontal direction. 

The added modal damping ratio due to the VE damper was proposed by Chang et 

al. (1992) and is defined as 

(2.2) 

where. is the mode shape vector; K ... K •• and K. are the stiffness matrices due to the 

damper-brace elastic stiffitess, the stiffness matrix of the structure without VE dampers 
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and the stiffness of the structure with VE dampers. respectively; 0)0 and 0), are the natural 

frequency of the structure without and with VE dampers; '1 == 0" f G' is the damping loss 

factor. 

Equation (2.2) provides the calculation of the modal damping ratio for the 

structure whose inherent structural damping ratio is zero. A modified formula of the 

effective damping for the structure with nonzero inherent structural damping level was 

proposed by Chang et a!. in ) 994 as 

(2.3) 

where ~o is the damping ratio of the structure without any VE dampers. and the other 

quantities were defined in equation (2.2). 

The parameters G' Uld G' are both frequency dependent. and a model which 

expresses these two parameters in tenns of the exCitation fr~uency was proposed by 

Kasai et al. (1993) as 

'( ) _ (1 +bol- cos(CIJt 12)11 +am - cos(<llt I 2)] + [abco z. sin l(<lX 12)] 
G 0) -G 2 2 

[I +am- cos{<ln I 2)] + [am- sin(an I 2)] 
(2.4&) 

. ( ) _ [beD· sin(<l1t 12)11 +am CL cos(<ln 12)]-[00) CL sin(ax 12)11 +bol- cos(an 12)] 
G \(0 -G 2 1 

[1+amCLcos(ta/2)] +[am-sin(an/2)] . 
(2.4b) 
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where CJ) is the excitation frequency, and a, b, G, and a are constants. It should be noted 

that in real earthquakes more than one excitation frequency is present; therefore 

G' and GO can not be determined uniquely for design purposes by using equation (2.4). 

Proposed Model 

The well known situation of reSOllance, during which the excitation frequency 

equals the natural vibration frequency of the structure, should be prevented in structural 

design. In this section. multiple-degree-of-freedom (MDOF) structures are considered 

under seismic excitations and equations (2.1), (2.3), and (2.4) are modified for narrow-

band frequency excitations. The VE damper contributions to the damping and stiffness 

are derived based on the values of parameters G' and 0° at the values of the natural 

frequencies of the structure. 

A frequency-dependent calculation for the damping loss factor and the damping 

ratio is proposed as 

(2. Sa) 

(2.Sb) 

where G' and GO can be found by substituting Ill .. j • the jth mode natural frequency of the 

structure, into equations (2.48) and (2.4b) r~pectively. Thus, the damping contribution of 

the first n modes is uniquely determined throul!h the damping ratio of equation (2.5) and is 
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considered invariant with respect to the remaining excitation frequencies. The stiffness of 

the VE damper can also be expressed as a function of structural frequencies as 

kd = ~G·(Q)o .• r + G' (Q)o .• r A ~ 
I 

(2.6) 

It should be noted that only the fundamental mode parameters, G'(o> 0 •• ) and G'(Olo .• ) are 

used to detennine the VE damper stiffness. 

Active Structural Control System 

Significant progress has been made in recent years in the application of control 

theory to civil structures (Wiesner, 1986). The active structural control system considered 

herein is the active bracing system (ABS) as shown in Figure 2.2. The ABS has been 

studied both theoretically and experimentally and has been tested successfully on a fUlI-

scale structure (Soong and ReinhorD, 1993 and Reinhom et aI., 1992). The optimal 

control forces from the ABS can be obtained using various techniques which have been 

established specifically for civil structures (pante1ides, 1991 ). The linear quadratic 

.-->egulator (Soons. 1990) and instantaneous optimal control (Yang et aI., 1987) algorithms 

have been used for seismic structures with an ASS. 
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24 

Existing Models 

The standard quadratic performance index for the linear quadratic regulator (LQR) 

is given as (Soong, 1990) 

J = -i I;' [t -r (t)0(t) + u T (t)Ru(t)] dt (2.7) 

in which t I .. earthquake duration, :; T (t) is the transpose of the state vector 

:; T (t) = {x(t),x(t)V and x(t) and x (t) arc the relative displacement and velocity 

response of the structure; Q and R are the weighting matrices chosen by the designer. The 

optimal control force, u- (t). can be obtained by minimizing J subject to the constraint of 

the equation of motion which in stale fonn can be expressed as 

t(t) = A:;(t) +s..(t) +HF(t) (2.8a) 

B = [ __ l!._.]. 
M-1b' (2.8b) 

where M, C and K are the NxN mass. damping. and Sliffi1ess matrices, N being the number 

of degrees of ft-eedom; 0 and I are the null and identity matrices; 6 is an Nxm matrix 

which defines the ABS locations with respect to the structure's topology, m being the 

number of controllers; 6 is the efFective loading vector which for earthquake excitations is 



acceleration. The result of the minimization is given by 

,,- (t) = -.!. R-1 BT P(t):;(t) 
2 

PA +ATP-!PBR-1BTP-2Q= 0 
2 
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(2.9a) 

(2.9b) 

The unknown matrix p(t) can be found by assuming that it is constant with respect to time 

from equation (2.9b). Matrix Q could be assigned to be any positive semidefinite matrix. 

One way of simplifying the control procedure is to define Q - I, the identity matrix. 

Weighting matrix R is assigned to be an identity matrix multiplied by a constant r, as 

shown in the numerical examples . 
• 

The time-dependent performance index, J(t), for instantaneous optimal control 

(IOC) was defined as (Yang et aI., 1987) 

J(t) = r.T (t)Qz(t) +" T (t)&.(t) (2.10) 

The optimal control forces, ,,"(t). are obtained by minimizing J(t) subject to the constraint 

of the equation of motion of the dynamic system represented by equation (2.8). The result 

of the minimization is 

(2.11) 
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The time-step at which the control force is evaluated is denoted by t\t. The details of the 

LQR and IOC control algorithms are discussed in Appendix A. 

Matrix Q in equation (2. 11) is usually assigned to be an identity matrix and R is a 

diagonal matrix multiplied by a constant, r, at the nonzero elements of the diagonal. 

Therefore, the equation of motion can be expressed as 

M.i(t) + C·x(t) + KX(t) :. &F(t) 

C· =C+CABS 

CABS = ~t bb T M-' 2r 

(2. 12a) 

(2.12b) 

(2. 12c) 

where CABS is the equivalent damping matrix due to the presence of the active structural 

control. Equation ('2. 12) can be usee! to obtain the response of a structure equipped with 

nn ABS control system during a horizontal earthquake. 

LyapuDov Method for Evaluating the Weighting Matrices 

A new method for obtaining the Q weighting matrix is presented here by using 

Lyapunov's criteria for dynamic stability of a dynamic system. Substitution of equation 

(2.11) into equation (2.10) gives 

J(t) - % T (t~a + QT Sa]:(t) (2. 13a) 

8=( ~tr BR-1BT (2.13b) 
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A necessary and sufficient condition for obtaining a dynamically stable structure-control 

system is that the term in brackets in equation (2.l3a) satisfies Lyapunov's criteria for 

dynamic stability. The use of the lyapunov-base Q matrix is necessary when the IOC is 

employed in a hysteretic inelastic structural system (Yang et aI., 1992 a). This 

requirement can be expressed as 

(2.14) 

The weighting matrix Q can be found from equation (2.14) which is then substituted in 

equation (2.11) to obtain the optimal control force. Note that equation (2.14) differs from 

the result of Yang et al. (1992 a) in that both terms of equation (2.10) are considered in 

the present derivation of weighting matrix Q. The weighting matrix R is still assumed to 

be a diagonal matrix multiplied by a constant at the nonzero elements of the diagonal. The 

elements of R are defined for a specific structure in the numerical examples. 

Drift Perfonnance Index CDPI) 

A performance inde" for optimal control is proposed in terms of the magnitude of 

drift displacements as 

J(t) = & T (t)Q~(t) + II T (t)RII(t) (2.~a) 



ru;(t) = D%(t), 

1 0 

-1 1 

o -1 

o 
o 
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(2.lSb) 

where matrix D defines the relationship between displacement and interstory drift. The 

optimal control force can be obtained as 

• -At -I BTQ. Q. DTQ 
U (t) = ""2 R %(t); = D (2.16) 

The identity matrix is used for weighting matrix Q, and a diagonal matrix is used for 

weighting matrix R. The elements of R are defined for the specific structure in the 

numerical examplrs. 

Velocity Performance index (VPI) 

A control performance index is proposed for reduction of the velocity and 

acceleration response of the structure. The feedback measurements required are those of 

velocity and acceleration (t feedback) which are easier to obtain than displacement and 

velocity (% feedback). The performance index is defined as 

(2.17) 
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in which t I - eanhquake duration, iT is the transpose of the velocity state vector, 

e (t) = (x(t), x(t) r, and x (t) is the acceleration vector. The optimal control force can 

be obtained as 

(2.18) 

where matrix P is the Riccati matrix using the assumption that it is a constant. The Riccati 

matrix can be found from the following: 

PA-' +PA-'CP +(ATr l P -(ATrIQ = 0 

C=BR-1BT 

(2.19a) 

(2.19b) 

The wei~htir.g matrix. Q. is defined as the identity matrix. and matrix R is assumed as a 

diagonal matrix. Equation (2.19) can be solved by the Runge-Kutta four-order method 

which is discussed in Appendix B. 



CHAPTER 3 

CONVEX MODELS AND OPTIMAL STRUCTURAL DESIGN 

The energy-bound convex models for estimating the maximum dynamic response 

of the structure for an uncertain eanhquake excitation are discussed in this chapter. The 

structural optimization using the modified annealing strategy is also presented for the 

optimal design of conventional or active structures. 

Energy-bound Convex Models 

A convex model is a method of quantifYing uncertainty, in this case the uncertain 

nature of eanhquakes or impulses, without resorting to the traditional concepts of 

probability, but rather by defining a set of functions which have certain convex global 

characteristics or bounds (Ben-Haim and ElishakofF, 1990; Ben-Maim, 1994 b). The 

application of convex models to quantifJ uncertainty is well suited in situations in which 

only a limited amount of information is available for the variables of interest, which is 

exactly the case for structural systems subjected to uncertain excitations such u 

earthquakes. In effect. the convex model constrains the uncertainty, inherent in 

earthquake excitations, within a bound that is defined in terms of either a function of 
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bounded energy, or an envelope function with upper and lower limits. 

It was shown in the previous section that the structural response of an actively 

controlled structure can be obtained from either equation (2.8) or equation (2.12). 

Numerical simulations have shown that the results obtained by either method are 

practically identical. The natural frequencies of the physical structure are basically the 

same and the mode shapes are not changed significantly for the levels of damping 

considered herein (Pantelides. 1987). Equation (2.12) is used in its normalized fonn with 

respect to the mass matrhc to represent the structural response of the controlled structure. 

Let the natural frequencies of the N degree-of-freedom controlled structure be co I , ••• , co N • 

the corresponding mode shapes be + •..... +,.,. and the corresponding modal matrix be 

cJ) = [ ...... , +i , .... +1'1]. The normalized equation of motion is expressed as 

.. 2 OJ: o. 01 ... I( ) Y. + co i ~ Yi + (J) i Y = '1', I (lla) 

where the normalized propenies with respect to the mass matrix are 

o 

o 
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r2olt~; 0 

~TC·~= 2coi~~ (3.lb) 

0 2coN~~ 

~: = ~i + ~C.I ; i-I, .'" N (3. Ie) 

where I is an NxN identity matrix, ~ is the ith mode damping ratio of the structure and 

~ is the damping in the ith mode introduced by the active/passive control system~ CD: is 

the structural frequency of the controlled structure for the ith normal mode. 

Using Duhamel's integral and assuming zero initial conditions. yields for the 

response of the controlled structure in the ith normal mode 

(3.2b) 

The modal amplitude Yi (t) is the response of the tth mode in normal coordinates. 

Furthermore, the ith mode modal velocity and acceleration for zero initial CODditioDI CID 

beexpresseclu 

(3.3a) 
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(3.3b) 

The displacement, velocity and acceleration in physical coordinates are then obtained from 

the following superposition equations 

x(t) = cz,y(t); x(t) = cz,;(t) ; x(t) = cz,ji(t) (3.4) 

[n what follows, the ground acceleration .i.(t) is assumed to belong to a convex set 

bounded by either a global energy or a local energy-bound model. 

~! Energy-bound Convex Model (GEB) 

The convex set of allowed excitations for the global energy-bound convex model 

(GEB) is expressed as (Ben-Haim and Elishakoff, 1990) 

(3.S) 

The instantaneous energy of the input excitation defined by equation (3.5) is bounded at 

each instant. t. For the global energy-bound model the energy bound. E0
2(t>. varies in a 

Biven time-interval and its value is the integral or the area of the input energy IS expressed 
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by equation (3.S) up to time t. As time goes to infinity, the bound of the global energy 

convex model reaches a finite value, E02(CD) which is larger than any Eo2(t)for any 

t < CD. Time is assumed to reach infinity at the end of the earthquake record. 

The maximum modal displacement, veloc::ity, and acceleration for each mode /, 

obtained by using the convex model of equation (3.S), can be found using the theory of 

convex models (Ben-Haim and Elishakoff, 19~as follows: From equation (3.2), the 

maximum modal displacement obtained using the convex model of equation (3.S) is 

Y ,= max -1-11 {[+ T!(t)L-'.:('-~) sinO) ,(I - t)Lt 
OEB.. ,-" o. r D.. j 

-0)0.; 

(3.6) 

Since Yi is a linear function of the excitation f{t) and assuming that the excitation set 

FO£B is convex, the maximum in equation (3.6) occurs on the set of extreme points of 

F O£B; the maximizing excitation will satisfy 

(3.7) 

According to the Cauchy-Schwarz inequality (Hardy et aI., 1934) for arbitrary fa and!, 

(3.8) 
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with equality only if J;('t) and/2(t) are proportional. Using the result of equation (3.8) 

in equation (3.6) gives 

Similarly, results for the maximum modal velocity and acceleration can be obtained as 

Y· .(t) = P ... (t) im:A •. 
-., leo. ~~' 

D.. '"', 

A" = ~i2 - e-2~·:'(1- ~i~: sin2(9i -co D.i t) _~:2 cos2(B, -co D.il») 

Bi = tan-'(~;) (3.9b) 

responses for displacement, velocity, and acceleration as time goes to infinity can be found 

as 
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(3.IOa) 

(3.IOb) 

(3.IOc) 

The maximum displacement in physical coordinates can be approximated by the 

square root of the sum of the squares (SRSS) of the modal ruponses 

N N N 

Ix-.;I= ~:+~y2-'i; Ix ... ;I= L+!y2 ... i ; li ... ;I= L+~;2-'i (3.11) 
~ ~ ~ 

The subscript} denotes the response at the jth floor and ; denotes the ith nonnal mode. N 

is the number of dynamic modes of the system. However, when the SRSS method is used 

only the significant modes need to be considered. When major contributins modes have 

frequencies that are close together, the complete quadratic combination (CQC) method 

should be used (Der Kiureghian. 1980). 

Local Energy-bound Convex Model CLEBl 

In the local energy-bound convex model (LED) the inscantancous energy of the 

excitation is bounded at each instant. Furthermore, the eneray bound, ~ 2(t). can vary 
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with time. The canvelC set of allowed elCcitations is expressed as (Ben-Haim and 

Elishakoff, 1990) 

(3.12) 

The maximum modal displacement, velocity, and acceleration for each mode i, obtained by 

using the convex model of equation (3.12) can be found using the theory of convex 

models as: 

y ...... (I) = Pu (I~ '::" [~in .. DAr • .:.;, fos" ~, ~ dt -+jCOS6l DAI: • .:·;'jsin ..... ~ dt]} 
(3.13a) 

i'_ (I) = PL' (+.,.:,[ (~: lsin" ~,~ + fos" ... ~.c "·;'fos" ... tl dt + 

(~: fos" 0; ~ + lsin .. ~, ~J; .'·;'Iun to~, ~ dt] (3.13b) 

, .... (I) S .. t /(1) ± Pu (1)111,"'';,[( :, Joi ... OJ ~ + ~:fos" OJ ~I: '':·;'ICOIIII '" ~ dt + 

(:, Jcooto DA + ~ :Joi. to D.I~.c .... ;, loin to '" ~ dt 1 
(:, fos"~' II + 2~:jsin .. Q'~.c ... .;, Join .. OJ ~ dt 1 (3.130) 

Let 1 ... 1 = max IV"'I (t". and t -+ co; the maximum modal displacement. velocity. and "")fT('Y II 

acceleration in the normal coordinates u time goes to infinity can be found u 
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(3. 14a} 

(3. 14b) 

(3.14c) 

where PI.,i(t) = (.,T.,E .. 2 (t») 112 I PL.I(OO) = (.,T.,EL 1 (ao»)112 , 0) 0; = ';jO):, and 

<;j = ~1-f.~2 . Note that the maximum values in equation (3.14) will occur at some time 

(W which is between t - 0 and t - ao; at time t.. ' the local energy bound reaches a peak 

value EL 2 (00) which is larger than EL 2(t) for any other time t. Equation (3.14) can be 

combined with the sass expression of equation (3.11) to obtain the physical 

displacement, velocity, and acceleration response. 

Structural Optimization 

The structural optimization problem for a building equipped with an active bracing 

system is a dynamic one and is fonnulated u follows. Find the optimal parameters (A. f), 

which ue the areas of the structural members and the weightins matrix parameters Q and 

R that minimize the structural volume ~ ,) subject to displacement constraints on the 

structural response, x(t), stress constraints on the structural members, o(t). and side 

constraints on the design variables. ALI Au. 'I.' 'u' The subscript L denotes the lower 

bound and subscript U is the upper bound of the design variable. Mathematically. this can 

be expressed u 
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min. V(A, r) (3.t S) 

Subject to 

rj(A.r. t) S rall.j~ j - I •...• ]; t~O (3.16a) 

Ok (A.r. t) S a all,t; k - I •... .k; t~O (3.16b) 

AL SAt SAu; k .. I •...• k; t~O (3.16c) 

'L S r S'u (3.I6d) 

where r"~j is the a1lowab!e displacement at a certain node of the structure. and ) is the 

number of nodes at which displacement constraints are imposed; a aU is the allowable 

combined stress in a structural member. and k is the number of structural membeA. Note 

that if the peak values of the structural response are used that can be obtained from either 

the GEB or LEB convex models. the quantities on the left hand side of equations (l.t6&, 

b) become time-independent and the optimization problem is reduced to • static one. 

The static optimization problem is developed as follows. Minimize the structural 

volume given in equation (3.1S) subject to the constraints 

rj.OIB.,ua(A,r) S r ... j ; 

ok. oa.,ua(A. r) So ... .. 

j - I, ...• J 
k-I •...• k 

(3.17.) 

(3.17b) 

and also IUbject to the side constraints of equations (3.16c. d). It is obvious that the 
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solution of the static optimization problem of equations (3.15, 3.17a, b, and 3.16c, d) is 

much easier than that of the original dynamic problem, because in the latter the constraints 

are time-independent. The accuracy of the approximate static optimization problem 

depends on the relationship between the actual peak values of the structural response and 

those obtained using the GEB or LEB convex models. Note that for the optimization of 

conventional structures without ADS, or structures equipped with VE dampers, the same 

procedure can be used and the problem is also independent of r. 

The structural analysis of frame type buildings considered here is carried out using 

the direct stiffness method (Appendix C), with a capability for computing and enforcing a 

strength ratio of column to beam greater or equal to unity. The strength ratio of column 

to beam is necessary in order to enforce the strong-column weak-beam philosophy of the 

design codes (UBe. 1994). The structural analysis also produces the axial, bending and 

combined stresses in the structural members. 

In what follows the dynamic and approximate static optimization problems are 

solved. The optimal designs obtained using the convex models are compared to the 

optimal design obtained using an actual ground acceleration record. The correlation 

between the static and dynamic active structures that are obtained is observed. Both 

traditional (VMA. 1993) and the optimization method developed here known u the 

modified iterated simulated annealing method, are used to obtain the optimal structural 

designs. Artificial earthquakes, as well as records from past eanhquakes are considered. 
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Simulated Annealing Methods 

Since 1983, when the simulated annealing method was introduced (Kirkpatrick et 

a1.), two notable developments most related to the present method evolved. These are 

Ackley's iterated simulated annealing (ISA) and stochastic hillclimbing (SHC) methods 

(1987), and Balling's simulated annealing method (1991). 

Existing Methods 

The iterated simulated annealing (ISA) method has developed from the stochastic 

hillclimbing (SHC) method. Both the ISA and SHe methods consider a random change to 

the current design point, and accept the change with a probability. p, determined by a fixed 

formula of the difference in the objective function values (Ackley, 1987) 

(3.18) 

where Vc is the current value of the objective function from the pre-selected point, V. is a 

candidate value of the objective function which is produced by an adjacent point picked 

randomly, and T is an adjustable parameter which is described as "temperature." Larger 

values of T may cause the probabilities of acceptance of the current design to reach closer 

to a SO % reject and SO % accept. 

In the SHe method, the temperature T of the system is a parameter which is held 

constant for the duration of the search. In the ISA technique, the temperature is a variable 

that starts at a high value and is reduced by a decay rate during the search. The system 
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accepts the almost random moves at the high temperature, and the probability of accepting 

any move drops at the lower temperature. 

A simulated annealing strategy was developed for the discrete optimization of steel 

frames by Balling (1991). The probabilistic acceptance criterion for determining whether 

the candidate design should replace the current design or be rejected was formed with a 

probability 

(3.19) 

where D is the difference in the value of the objective function between the candidate 

design and the current design. B is a normalization constant which is the running average 

ofD, and Tis the strategy temperature which decreases according to a "cooling factor,"/. 

defined as 

(3.20) 

In equation ('3.20), p. andp/ are the starting and final acceptance probabilities for 

an average D - B, and N is the number of cycles. ]n Ballil1(l's procedure, the acceptance 

criterion allows worse designs to be accepted in the initial stages of the optimization. 
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Modified Iterated Simulated Annealing Method (MISAl 

An annealing strategy is employed for problems with dynamic constraints. The 

reason for using an annealing strategy is that the random sequence of designs is suited for 

problems with disjoint feasible regions where a loeal rather than the global minimum might 

be reached if classical optimization methods were to be used. The proposed algorithm 

contains elements of existing annealing strategies. Ackley's ISA algorithm (1987) 

regarding the probability of acceptance and Balling's search strategy (1991) are included 

as elements of the proposed algorithm. 

Figure 3.1 shows the flowchart of the optimal design procedure. The design 

variables, which are the cross-sectional areas of the members, are determined by a 

procedure which is based on a random reference number that is requested by the program 

based on the current time of the computer clock. Two iterations loops are performed 

which are defined as M and N. M is the maximum value of m which is the counter for the 

inner loop. The inner loop determines the search direction and M is usually a small 

number less than 10. N is the maximum value of" which is the counter for the outer loop. 

The outer loop determines the best design for different annealing probabilities. based on 

different values of T (temperature); nl is the minimum number of runs of the outer loop; 

k is an integer, and k )( "2 is the number of times required, in addition to II" for the outer 

loop to converge; II, and liZ must be dele, mined by the user for a particular application. 

Usually. ", is between 7S and 1 SO and liZ is between 10 and 25. The value of k is entirely 

problem dependent. After the outer loop runs (III + "2) times, the designs at II, and 

(III + "2) are compared. When these two designs are identical the prosram stops. 
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Sensitivity analysis . 
Search for new design ~ 

"> ........ _-----' ..................... . 

No 

No 

Compute the 
acceptance probability 

Figure 3.1 Annealing procedure for optimization of structural design 
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Otherwise, the outer loop is repeated nl times, and comparison is made between the 

designs at (n. + n] ) and (n. + 2n2)' The algorithm is repeated k times until the two designs 

converge. 

A comparison of the proposed method and the existing methods is shown in Table 

3.1. From Table 3. I, it can be observed that the search strategy of the MISA method is 

similar to the search steps of Balling's method, except that the probability of acceptance is 

different. Instead of using Balling's probability ofacceptance, Ackley's ISA probability is 

adopted for its simplicity. 

Two new procedures are introduced whose purpose is to: (a) achieve reduction of 

the search rlnge, and (b) use sensitivity analysis for the design variables. Reduction of the 

search range is achieved in the present method as follows: Assume that a candidate design 

is found (point C in Figure 3.2) at which the objective function has a smaller value than 

the previous design (point P in Figure 3.2). When this happens, the search range is 

reduced to exclude any points outside a region which contains the candidate design (point 

C). The new search range is increased by an amount X, and r, from point C. The 

increase for Xr and Y, in Figure 3.2 is chosen as IS % of X and Y. respectively. This 

procedure is perfonned at stage II A" of the flowchart of Figure 3.1. Since the next point is 

chosen randomly two situations are possible. First. the new candidate design could end up 

in the infeasible region in which case the design is rejected and there is no need for 

reduction of the search range. The second possibility is that the new candidate design is 

inside the fearible region of the new search range and has a smaller objective function 

value than point C. In this cue. a new search range will be found u described above. 
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Sensitivity analysis (Grierson, 1994) is used in order to improve the efficiency of 

the present method as follows: if a given displacement response violates the constraint, the 

neighboring structural members are identified by sensitivity analysis and the area of those 

members is changed by a proportionate random number (Appendix D). A first-order 

sensitivity analysis of displacement responses is carried out. The purpose of the analysis is 

to identify the design variables (areas of structural members) that must be modified in the 

new design, in order to decrease the magnitude of a cenain displacement in the most 

economical way. This sensitivity analysis is performed at stage "8" of the flowchart of 

Figure 3.1. Thus, even though thl! determination of the values of the design variable is 

random, the identification of which variables must be modified is done using sensitivity 

analysis methods (Grierson, 1994). It was found that by using sensitivity analysis, the 

expense of multiple trials is avoided and the efficiency of the present method is improved 

considerably. 

The method presented above contains features common to many simulated 

annealing clgoritluns. However, it should be pointed out that the design variables are 

continuous rather than discrete. In addition. the sensitivity information on the design 

variables reduces the randomness of choosing which variables to modify; however, the 

numerical values that these variables take are randomly determined. Finally, the automatic 

reduction of the search range violates symmetry considerations inherent in simulated 

annealing algorit1uns. However, the automatic reduction of the search ranse improves the 

computational efficiency considerably and is • desirable feature of the present method. 

Thus, the present method can be characterized as a new method. 
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The present method was found to be advantageous in certain cases when the 

constraints were dynamic, as compared to standard mathematical programming methods. 

Numerical examples are provided to show the performance of the present method as 

compared to standard optimization methods fovtimal design with static or dynamic 

constraints. 



CHAPTER 4 

DYNAMIC RESPONSE OF STRUCTURES WITH PASSIVFJACTIVE 

STRUCTURAL CONTROL 

In this chapter, a hybrid control system is presented that consists of viscoelastic 

(VE) dampers and active bracing systems (ABS). The performance of the system is 

predicted adequately through simplified analytical procedures. An eight-story shear 

building (Yang et at, 1988) and a ten-story frame (Xia et aI., 1990) shown in Figure 4.1 

are used to evaluated the performance of the passive and active structural control systems. 

In addition, a five-story experimental shear building shown in Figure 4. I (c) (Zhang and 

Soong, 1992) is used to study the influence of the location of the viscoelastic (VE) 

dampers. The structural frequencies of the five-story shear building are 19.27. S6.41, 

88.94. 108.64, 14S.S9 radlsec .• those of the eight-story building are 5.19, 11.18. 27.98. 

37.83.46.39,53.37,58.53.61.70 radlsec., and those ofthe ten-story fi'ame are 2.47.6.99. 

12.36. 18.95,26.09.34.18,44.02. 52.80.62.70. 74.75 radlsec. Young's modulus for all 

three building materials equals 206.8E+09 Nlm2• 



8 

7 

6 

5 

4 

3 mi "" 3.456E+05 kg 

lei - 3.404E+08 N/m 

2 ci - 2.937E+06 N seclm 
1-------1 

1 (i "" 1.2 ..... 8) 

(a> 

10 

(c) 

mj - 593 kg 

5 
~-I % 
(i -1,2 ..... 5) 

4 Floor "j(kN/cm) 

3 5 22.45 
4 19.12 

2 3 19.91 
2 19.88 
1 56.41 

9 

8 

7 Floor 
Lelel 

Moment inertia (m4) Floor 
Mus(kS) 

r---~ 
9@3.6m 6 
- 32.4 m I----~ 

4.Sm 

5 

4 

3 
t------i 

2 

I 

9.1 m 

(b) 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

Column 
3.3165E-04 
3.3165E-04 
3.3165E-04 
S.2716E-04 
5.2716E-04 
5.2716E-04 
1.4321E-04 
7.4327E-04 
7.4327E-04 
8.9473E-04 

Girder 
2. 1457E-04 
3.3323E-04 
3.3323E-04 
5 . .5226E-04 
5. 5226E..()4 
5.S226E..()4 
6.1519£-04 
6.1519E..()4 
6. 1519E-04 
7.5S24E-04 

~i = 1 %, i-I, ... , 10 

35.017 
35,017 
35,017 
35.017 
35,017 
35,017 
35.017 
35,017 
35,017 
35.017 

YllUre 4.1 NumericII examples: (a) eight-story IheIr building, (b) ten-story fi'ame. and 
(c) fivwtory shear building 
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Properties of Viscoelastic Damper 

Viscoelastic dampers have properties that are both frequency and temperature 

dependent. It is well known that the location of the VE dampers affects their efficiency in 

providing seismic resistance. Parametric studies of structures equipped using a number of 

VE dampers on different floors are performed. The effective damping ratio includes the 

inherent structural damping ratio and the additional damping introduced by the VE 

dampers. In this section, the frequency dependence and the location effect of the VE 

dampers are investigated. Temperature effects are not considered in this study. 

Frcauency Dependence of VE Damper Materials 

The eight-story shear building shown in Figure 4.I(a) is used to calculate the 

effective damping ratios including the influence of the VE dampers by using three 

methods. The cross-sectional area of the VE damper is assumed as A - 0.090 m2, and its 

thickness t ., 0.0127 m. In the first method, the values of shear storage and loss moduli, 

G' and G", are fixed as constants, invariant with the excitation frequency (Zhang and 

Soong, 1992). In the second method, instead of using constants to represent these two 

panmeters, equations (2.4a) and (2.4b) are used (Kasai et aI., 1993). A structure­

dependent design is presented here for the third method~ in this case, the frequen<:ies at 

which G' and G" are evaluated are the natural frequencies of the structure. The idea 

behind the third method is that the majority of the response is concentrated at the natural 

frequencies of the structure. The three approaches are applied to the eight-story building 

with one VE damper on the fint floor using equations (2.1 - 2.6). The constants, .. b, C1, 
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and 0 are used as 0.0347, 4.16, 0.71, and 4.S176E+OS N/m2 respectively. Figure 4.2 

shows the first and second mode damping ratio vs. elCcitation frequency for the three 

methods; the proposed method (third) gives a lower damping ratio than the first (Zhang 

and Soong, 1992) which uses constant parameters 0' and Gil. On the other hand, the 

second method shows the variation of the damping ratio with frequency. The proposed 

method is conservative but still within acceptable limits. 

The ten-story frame shown in Figure 4.1(b) is also used in this evaluation. All 

parameters are the same as mentioned previously elCcept that the area of the VE damper, 

A" 0.02 m2, for the lighter frame. Figure 4.3 shows the damping ratio for the first two 

modes vs. elCcitation frequency for the three cases. Similar results are observed as was 

shown in Figure 4.2. Note that the damping ratio shown in Figures 4.2 and 4.3 is the 

effective damping level which includes the inherent damping of the structure (see Figure 

4.1) and the damping due to the presence of the VE dampers. 

A single frequency excitation is used to examine the parameters 0' and Gil of the 

VE damper. A sinusoidal base acceleration of magnitude 0.0 IS g and frequency varying 

from 0.1 to 50 rad/sec. is used to study the three methods. Two building.4j. th~. ~:oh:-story 

shear building and the ten-story frame, are used in this evaluation. The maximum 

responses for the fint floor interstory drift, and for the displacement, velocity, and 

acceleration of the top floor are shown in Figures 4.4 and 4.5. The maximum response 

using the proposed method (third) for both structures was very close to the results 

obtained by using Kasai's method (second method). The results obtained by using the 

constant parameters (first method) were found smaller than those obtained by the second 



1.00 -r----------------------., 

:!:s.OO - - - - - - - - - - -~-..---=-=--:-;-:-~-=-=--:-:-:-:--:-::--:-:-:-=-=--:-:-:-:--=-=-1 

~ 
~ •• oo 
(,!) 
z 
a: 
~ l.OO 
o 
w g 2.00 

::I 

-;; _ 1.00 

0.00 +T,.,...rrl-rr~rT'T"'T"T"rT"I"T"I"TT"rT'T_rT~i""TTTT"rT'T..,..,..~I"'T"'r..,..,..'f"'T"'T'"I 

(a) 

O. 10.00 20.00 30.00 40.00 :50.00 
EXCITATION FREQUENCY (rod/sec) 

10.00 ':f.-;:;."':~~~-~;:;-:-~-:-~--"':;::-:-~---;:--:-~--~-;:-=====;::;;::=====~ 
I 
I 
I 
I 
I 

-~ 
o 8.00 

~ 
~ 1.00 
a: 
~ 8 4.00 

::I 

l 2.00 
C'II 

• I • • , , , 
I 
I , , 
~ , 

I 
I , 
I , 
I 
I 
I 
I 

10.00 20.00 30.00 40.00 
EXCITATION FREQUENCY (rod/sec) 

(b) 

:50.00 

Figure 4.2 EfFective dampina ratio or the eight-Itory shear building equipped with one 
VB damper on the first tloor for clift'erent excitation frequencies: <a) lit mode 
and (b) 2nd mode; - - - - - constant values or shear It~ and loss moduli. 
---varyiaa values UIias equation <2.4), •• > •••• - proposod method 
usina ~ (2.S) 



~.OO ...... ------------------------. 

,.... 
.!. 
0 .... 00 

~ 
~3.oo 
0: 

~ 
W 2.oo 
o 
~ 
ii 1.00 

0.00 ~ ................ 'r"r" ........ ......_r_r_rT"r_ .................. ....,....... .......... .,........ ....... _..._._.,........ ............................ .......,,....., 

(a) 

O. 10.00 20.00 30.00 40.00 eo.OO 
EXCITATION FREQUENCY (rad/sec) 

8.00 -.------------------------

'"" '!'S.oo --------------------------------o 
I=! 

~4.oo 
(!) 
Z 

-~-------. 
0:: 
~ 3.00 

w 
82.00 
2 

~ 
C"I1.oo 

• • • • i 00 
I 
I 

-+-I 
I 
I 
I 
I 
I 
I 
I 

• I • I • • I • • ~oo~~TTrrMn~~~~~~~~ ........ ~~~ ........ ~~~~~ 
0.00 , ~oo 20.00 30.00 40.00 50.00 

EXCITATION FREQUENCY (rad/sec) 

Figure 4.3 Effective damping ratio of me ten-story hme equipped with one VB damper 
on the tint floor for different excitation frequencies: (a) 1st mode and (b) 2nd 
~ " - - - - - constant values of shear storap anclloss moduli, -
vuyiDa values UIins equation (2.4), •• > •••. - proposed method usina 
equation (~.S) 



~.oo~--------------------------------------~ 

<a> 

0.00 L,"'T'"I'"'I~~I""Y-.""'I""I""r",..,..,..~:::::::::::::::~:;:::;:;==d 
o. 5. 10. 15.00 20.00 25.00 

EXCITATION FREQUENCY (rod/sec) - SINE-WAVE 

12.00 ..,....--------------------------~ 

....... 
E 
u 

- 8.00 
t': 
! 
~ 

~ 4.00 

(b) 

5. to.oo 15.00 20.00 25.00 
EXCITATION FREQUENCY (rod/sec) - SINE-WAVE 

rasure 4.4 Maximum responses of the eight-story shear building equipped with one VB 
damper on the first floor for a sine wave excitation with varyina frequency: (a) 
displIcement and (b) drift; - - - - - constant values of shear stonse and 
loss modul~ - - varying values usina equation (2.4). • • • •• • proposed 
method usina equation (2.S) . 



~m,-----------------------------------------~ 

-~ 
E u 300.00 ...... 
~ 
§ 
~ 200.00 

a:: 

~ 
~ 100.00 

i) 

(c) 

:I. 10.00 1:1.00 20.00 25.00 
EXCITATION FREQUENCY (rad/sec) - SINE-WAVE 

~.~~----------------------------------------~ -N 

~ 
~ 2000.00 -
~ 
~ 15CX1.00 

~ 
L&.I 
U 
~ 1000.00 

a:: 

~ 500.00 

O~~~~~~~~~TT~~TT~~~~~~~~~~ 

(d) 

D.oo 5.00 10.00 1:1.00 20.00 25.00 
EXCITATION FREQUENCY (rod/sec) - SINE-WAVE 

'7 

Figure 4.4 (Caniinued) (c) velocity and (d) lCCcIeration; - - - - - constant values of 
shear storage and loss moduli, - varyins v.tues usins equation (2.4), 

- proposed method usina equation (2.S) 



sa 

~.oo~-----------------------------------------, 

E 
u 

"-' !Z 400.00 

W 

~ o :s lOG.OO 
Q.. 
(I) 

5 
0:: 200.00 

~ = 100.00 o .-

Ca> 

5. 10.00 15.00 20.00 25.00 
EXCITATIm; FREQUENCY (rod/sec) SINE-WAVE 

~.oo~----------------------------------------~ 

-E 30.00 
u -t: a: 

Q 
a:: 20.00 

~ .. _ 10.00 

Figure4.S 

(b) 

5. 10.00 15.00 20.00 25.00 
EXCITATION FREQUENCY (rod/sec) - SINE-WAVE 

Maximum responses of tile ten-story frame equipped with one VB damper on 
the fint floor for a sine wave excitation with varying frequency: Ca> 
displacement and (b) drift; - - - - - constant values of shear storage and 
loss modal~ - - varying values using equation (2.4),· . • •• - proposed 
method usi .. equation (2.S) , 



1200.00 

....... 
-e. 
E u 
'-' 

~ 100.00 

<.J 

9 
~ (e) 
a: 
0 

~ 400.00 

Z! .... 
0 ... 

5. 10.00 15.00 20.00 25.00 
EXCITATION FREQUENCY (rad/sec) - SINE-WAVE 

....... ~.oo~------------------------------------------N 

-e. 
E u -

(d) 

5.00 10.00 15.00 20.00 25.00 
EXCITATION FREQUENCY (rad/sec) - SINE-WAVE 

Figure 4.S (Continued) (c) velocity and (d) ac:eeleration; - - - - - constant values of 
shear ItOraae and loss moduli, - varying values usina equation {2.4}, 

- proposed method usins equation (2.S) 



60 

method at the excitation frequency close to the fundamental frequency of the structure 

(resonance condition). The maximum displacement, velocity, and acceleration of the top , 
floor and the first floor interstory drift at the resonance condition are compared in Table 

4.1. It can be observed that the results obtained by the proposed method are more 

conservative than those of the constant assumption of the first method. In addition, the 

proposed method (third) gives results that are very close to the second method. 

A multiple-frequency base acceleration is used to compare the response using the 

constant assumption of the first method with the method presented here (third method), 

given as 

F(t) = 0.OO2Sg [ sin Q) I t + 2 sin Q) J t + 3 sin Q) J t] 

where 0>" Q) J. and 0> J are the first, second, and third natural frequencies. Note that 

equation (2.4) for the second method can not be used for this e)tcitation since its 

derivation is based on a single forcing excitation frequency. 

Table 4.1. Maximum response for structures equipped with one VE damper on the first 
fl b' cd ' 'dal b I' oorSU~ed to a SlnUSOI ase aeee entaon 

Properties of 1st mode total lst floor Top floor Top floor Top floor 
VEdamper damping(%) drift (em) disp. (em) elocity (emls accel. (g) 

Eight-story Buildinl (CD. - 5.79 rad/sec) 
1st method 5.06 8.35 51.62 304.64 1.83 
2nd method 4.10 10.52 62.77 370.40 2.23 
3rd method 4.10 10.57 62.96 371.59 2.24 

Ten-story Frame ~Q). - 2.47 rad/sec) 
1st method 4.66 17.26 293.02 728.34 1.93 
2nd method 2.54 30.53 446.46 1098.74 2.85 
3rd method 2.54 30.61 447.19 1100.59 2.85 
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The maximum responses for both structures are shown in Table 4.2. The 

responses obtained from the proposed method are larger than those obtained from the 

constant assumption for both the eight-story building and the ten-story frame for the 

multiple-frequency base acceleration. In the ten-story frame, the difference of the effective 

damping level obtained by the two methods is even larger than the eight-story shear 

building. 

Two earthquake records, the SOOE component of the May 18, 1940 EI-Centro 

earthquake Imperial VaUey record, and the S 16E component of the Feb. 9, 1971 San 

Fernando earthquake Pacoima Dam record, shown in Figure 4.6, are used to evaluate the 

two methods stated above. The maximum responses of the eight-story shear building and 

the ten-story frame are shown in Tables 4.3 and 4.4 for the 1940 EI-Centro and the 1971 

San Fernando earthquakes. Similar results are observed by comparing Tables 4.1 

(sinusoidal base acceleration), 4.2 (multiple-frequency base acceleration). and 4.3 and 4.4 

(seismic records). It is concluded that in general, the proposed method is conservative for 

both typical structures regardless of the type of the excitation. 

1st method 
lrd method 

lst method 
lrd method 

5.06 
4.10 

4.66 
2.54 

49.18 
59.09 

31.67 
32.47 

0.47 
0.54 

0.29 
0.29 
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Figure 4.6 Seismic excitations: (a) SOOE record of the May 18. 1940 El-Cemro 
earthquake (Imperial Valley record). and (b) S16E record of tile Feb. 2. San 
Fernando earthquake (pacoima Dam record) 
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Table 4.3. Maximum response for structures equi"pcd with one VE damper on the first 

1st method 
3rd method 

floor sub' ected to the 1940 EI··Centro earth uake 

5.06 
4.10 

4.66 
2.54 

97.39 
100.23 

128.94 
145.04 

285.37 
301.00 

0.88 
0.92 

0.67 
0.65 

1.94 
2.05 

1.32 
1.52 
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Placement of VE Dampers 

Two shear buildings (Figures 4.1(a) and 4.1(c» and one ten-story frame (Figure 

4.1(b» have been used to study the response of the structures with a given number of VE 

dampers at different locations. Two cases are described. In the first case one VE damper 

is installed at each floor, and in the second case all VE dampers are placed on the first 

floor. The parameters 0' and 0' of the VE dampers are determined by the third method 

presented in the previous section. The constants, a, b, (1, and G of equation (2.4) are 

assumed as 0.0347, 4. ]6,0.7], and 4.5176E+05 N/mz, respectively. The cross-sectional 

area of the VE dampers is 0.005 m2 for the five-story shear building, 0.09 m2 for the 

eight-story shear buildins. and 0.02 mz~or the ten-story frame. The thickness of the VE 

dampers for the three structures is identical and equals 0.0127 m. The above dimensions 

were chosen from relative mass and structural response considerations. 

Figure 4.7 shows how the effective damping ratio (which includes the structure's 

damping) varies with the number and the location of the VE dampers. It is obvious that 

larger damping ratios can be obtained if the VE dampers are placed on separate floors 

rather than if they are all concentrated on the first floor. This is more obvious in the cases 

of the lighter structures, such as the five-story building and the ten-story frame. However, 

for the eight-story shear building the variation of the effective damping ratios for the two 

cases is not very significant. The reason for the small difference in the latter case is due to 

the larger mass of the eight-story shear building. This shows that perhaps more than one 

damper per floor is needed for the eight-story shear building. 

Four earthquake records, the 1940 EI-Centro earthquake, 1971 San Fernando 



l4
0·

oo
 

0 
'#

 1
0.

00
 

o 
8 

l 
25

.0
0 

--
2 

35
.0

0 
0 

9.
00

 
o 

0 
0 

i 
i=

 
0 

~ 
0 

8.
00

 
o 

c 
~ 

20
.0

0 
t 

0 
i 

30
.0

0 
C

) 
c 

0 
z 

7.
00

 
0 

125
.00

 
a: 

0 
0 

~ 
6.

00
 

~
 

15
.0

0 
8 

o 
I 

~
 

! 
20

.0
0 

0 
~ 

5.
00

 
~
 

I 
0 

t-
4.

00
 

D
 

t 
10

.0
0 

fd 
15

.0
0 

u w
 

w
 

~ 
u.

 
u.

 

t 
0 

u.
 

3.
00

 
u.

 
D

O
l
 

W
 

w
 

C
 

C
 

~ 
10

.0
0 

w
 

w
 

5.
00

 
a 

~ 
c
e

o
 

0 
0 

§ 
2.

00
 

0 
0 

0 
5.

00
 

a 
1.

00
 

~
 

t;
 

t; 
t; 

-0
.0

0 
-

0.
00

 
0.

00
 

0 
1 

2 
3 

.. 
5 

0 
1 

2 
3 

4 
5

8
7

 
8 

o 
1 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

N
O

. 
O

F
 V

E
 D

A
M

P
E

R
S

 
N

O
. O

F
 V

E
 D

A
M

P
E

R
S

 
N

O
. 

O
F

 V
E

 D
A

M
P

E
R

S
 

(a
) 

(b
) 

(e
) 

Fi
gu

re
 4

.7
 

Ef
Fe

ct
iv

e 
da

m
pi

ng
 r

at
io

 u
. f

un
ct

io
n 

oC
th

e 
lo

ca
tio

n 
an

d 
nu

m
be

r o
fV

E
 d

am
pe

rs
 f

or
: 

(a
) 

fiv
e-

st
or

y 
sh

ea
r b

ui
ld

in
g.

 (
b)

 e
ig

ht
­

st
or

y 
sh

ea
r b

ui
ld

in
g.

 a
nd

 (e
) 

te
n-

st
or

y 
fr

am
e;

 
<> 

,.. 
on

e 
V

E 
da

m
pe

r o
n 

ea
ch

 fl
oo

r. 
0

':
 al

l V
E

 d
am

pe
n 

on
 f

in
t f

lo
or

 

0
\ 

U
I 



66 

earthquake, the N90W component of the Sep. 19, 1985 Mexico City (Cuerrero­

Michoacan Coast, Mexico) earthquake (Figure 4.8(a», and the S90N component of the 

Jan. 17, 1994 Northridge (Santa Monica station at City Hall, CA) earthquake (Figure 

4.8(b» are used to examine the performance of the VE dampers for the three test 

structures. Figure 4.9 shows the spectral amplitude as a function of the frequency content 

of the four earthquakes. Figure 4.10 shows the displacement reduction for the three 

structures stated above, equipped with one VE damper on the first floor. It can be 

observed that the reduction is largest for the five-story and eight-story shear buildings 

during the 1994 Northridge cartl'lquake as compared to the other three earthquakes. 

However, the displacement reduction for the ten-story frame is more efficient during the 

1985 Mexico City earthquake. Again, it should be noted that the five-story shear building 

and ten-story frame are much lighter than the eight-story shear frame. Hence, for larger 

reduction of the response the laner should be equipped with more than one damper. 

The displacement, velocity. and acceleration reduction ratio for the top floor of 

each of the three structures equipped with a number of VE dampers are shown in Tables 

4.5 - 4.7 for the four earthquakes. Greater reductions in the response of the top floor are 

achieved when the VE dampers are placed one per floor rather than all on the first Roor. 

The displacement responses in Table 4.5 are reduced the most for the five-story and eight­

story building subjected to the 1994 Northridge earthquake record. For the ten-story 

frame the displacement reductions are largest when it is subjected to the 1985 Mexico City 

eanhqualce record. In general, the response reduction for each structure with the same 

number and same location of VE dampen but subjected to different earthquakes is within 
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Figure 4.8 Seismic excitations: <I) N90W record of the Sep. 19, 1985 Mexico City 
earthquake (Cuerrero-Michoacan Coast record) and (b) S90N record of tt.e 
Jan. 17. N~rthrid8e earthquake (Santa Monica station, City Hall record) 
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(e) 

(d) 

Figure 4.9 (Continued) (e) 1985 Mexico City earthquake shown in Figure 4.8(a), and (d) 
1994 Northridse earthquake shown in Figure 4.8(b) 
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Figure 4.10 Displacement reduction for the structure with one VE damper on the first 
floor: (a) five-story shear building, (b) eight-story shear building. and (c) ten­
story frame; 0 = Northridge earthquake. • = Mexico City earthquake. 
o = San Fernando earthquake. • = EI-Centro earthquake 
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Table 4.5. Top floor displacement as compared to the uncontrolled response with the 
addition of VE dam ers 

San Mexico 
Fernando Cily 

(%) 

IVc-story r UI 'ng 
I 4.66 73 84 80 66 4.66 73 84 80 66 
2 19.26 34 41 46 38 6.03 65 77 77 60 
3 31.85 20 28 30 24 6.76 61 76 74 58 
4 37.63 15 22 24 18 7.20 59 75 73 56 
5 39.14 13 19 20 15 7.50 57 75 71 55 

EiJdtt-story Shear Buildin.!l 
I 4.10 89 90 89 83 4.10 89 90 89 83 
2 5.68 80 81 79 76 5.40 81 83 81 77 
3 7.04 72 74 73 71 6.47 75 77 75 72 
4 8.14 67 69 69 68 7.37 70 72 72 70 
5 8.92 63 66 67 66 8.13 66 69 69 67 
6 9.40 61 65 66 64 8.78 63 66 67 66 
7 9.62 59 64 66 64 9.35 61 65 66 64 
8 9.68 59 64 65 63 9.85 58 63 65 63 

cn-story ramc 
1 2.S4 89 87 74 95 2.54 89 89 74 I 95 
2 5.29 75 81 55 85 3.68 82 84 64 90 

~ F 

3 8.35 64 78 44 76 4.57 78 83 58 87 
4 11.17 56 76 37 68 5.28 75 81 5S 84 
5 14.01 49 74 32 61 5.86 73 80 52 82 
6 16.37 44 71 28 56 6.35 71 79 50 82 
7 18.13 41 68 26 51 6.75 69 78 49 80 
8 19.77 38 63 23 46 7.10 68 78 47 78 
9 20.72 3S 59 22 42 7.41 67 77 46 77 
10 21.03 34 57 21 41 7.67 66 77 4S 76 
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Table 4.6. Top floor velocity as compared to the unCllntrolied response with the addition 
ofVEdam 

on the first floor 
Mexico North· 

City ridge 

IVC-Story r UI ilia 
1 4.66 81 82 48 62 4.66 82 82 48 62 
2 19.26 41 43 23 43 6.03 16 13 41 59 
3 31.85 32 31 14 29 6.76 13 68 38 S7 
4 31.63 26 25 II 22 1.20 11 64 37 56 
5 39.14 22 21 10 19 7.50 70 62 31 56 

Eight-story Shear Buildina 
1 4.10 94 92 90 84 4.10 94 92 90 84 
2 5.68 92 84 90 78 5.40 92 85 90 78 
3 7.04 89 78 90 76 6.47 89 80 90 74 
4 8.l4 86 74 89 72 1.31 81 16 89 72 
5 8.92 83 70 81 69 8.13 85 13 88 70 
6 9.40 80 68 86 66 8.78 82 70 87 69 
7 9.62 79 66 85 63 9.35 80 68 86 68 
3 ~.68 78 66 84 63 9.85 79 65 8S 67 

T F en-story nunc 
1 2 . .54 77 94 76 87 2.54 77 94 76 87 
2 5.29 61 8S 57 71 3.68 68 90 66 83 
3 8.35 .52 80 46 69 4.S7 64 S7 60 80 
4 11.11 41 77 39 62 5.28 61 85 57 77 
5 14.01 44 75 34 S6 5.86 S9 84 54 76 
6 16.37 42 73 30 52 6.35 57 83 52 74 
7 11.13 38 70 27 48 6.75 56 S2 51 73 
8 19.77 . 33 6.5 24 45 7.10 55 81 49 12 
9 20.72 29 61 23 43 7.41 54 80 48 11 
10 21.03 28 59 22 41 7.67 53 79 47 10 
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Table 4.7. Top floor acceleration as compared to the uncontrolled response with the 
addition of VE dam 

IVC-Story r UI ng 
I 4.66 82 74 43 76 4.66 82 74 43 76 
2 19.26 58 50 20 58 6.03 78 76 39 70 
3 31.85 35 40 13 47 6.76 76 76 37 67 
4 37.63 30 35 11 37 7.20 76 76 36 66 
5 39.14 29 34 9 33 7.50 75 75 35 65 

Eight.story Shear Buildinl! 
I 4.10 93 8S 91 92 4.10 93 8S 91 92 
2 5.68 87 78 87 90 5.40 88 79 88 87 
3 7.04 81 72 86 88 6.47 83 74 86 84 
4 8.14 76 68 84 83 7.37 80 70 84 81 
S 8.92 73 65 82 80 8.13 76 68 83 79 
6 9.40 71 64 81 76 8.78 73 66 82 77 
7 9.62 70 64 80 71 9.35 71 64 81 76 
8 9.68 69 63 79 71 9.85 69 63 80 75 

en )ry 1': -$tO F ramc 
1 2.54 78 74 80 91 2.54 78 74 80 91 
2 5.29 72 61 64 88 3.68 73 63 71 87 
3 8.35 67 60 54 84 4.57 71 59 66 85 
4 11.17 61 58 46 82 5.28 69 59 63 84 
5 14.01 55 S7 40 81 '.86 68 S9 61 12 
6 16.37 52 S6 35 78 6.35 67 51 59 11 
7 18.13 49 S5 33 79 6.15 66 51 51 11 
8 19.77 48 53 30 84 7.10 65 sa 57 II 
9 20.72 47 S2 21 84 7.41 64 sa 56 10 
10 21.03 49 51 28 84 7.67 63 58 55 10 
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20 0/0. However, the velocity and acceleration reductions for the five-story shear buildin8 

subjected to the 1985 Mexico City earthquake are reduced much more than the other 

three earthquakes. 

Design of VE Damper 

An optimization method is investigated to design the minimum size of VE dampers 

for achievin8 an expected effective dampin8 ratio of the structural system. The modified 

method of feasible directions, a subprogram of DOT (Design Optimization Tools) 

program developed by VMA Engineerin8 (1993), is used to optimize the required cross­

sectional area of the VE dampers on the different floors of the structure. The parameters 

G' and G' of the VE dampers are determined by the third method presented in the 

previous section. The constants, a. b. a. and G of equation (2.4) are assumed u 0.0347, 

4.16,0.71, and 4.5 1 76E+05 N/m2, respectively. 

The effective damping ratios were obtained from the previous section by using the 

VE dampers with cross-sectional area equal to 0.09 m2 for the eight-story shear building. 

and 0.02 m2 for the ten-story trame, These damping ratios are used to find the optimum 

area required for the VE dampers. The inherent structural damping level of the first mode 

equals 2.5 % ofcritica1 for the eight-story building and 1 % for the ten-story hme. The 

thickness of the VE dampen is usumed to be a fixed value and equals 0.0127 m. The 

side constmnts oCthe maximum and minimum sizes of the VE damper are 5.0 and 0.0001 

rnZ respectively. 

Table 4.8 shows the optimal designs for the minimum cross-sectional area of the 
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Table 4.8 Optimal designs for the minimum cross-sectional area of VE dampen; for the 
eight-story shear building (m~) 

Floor First mode effective damping ratio (%) 
4.10 5.66 7.02 8.12 8.90 9.37 9.60 9.65 

1 0.0849 0.0959 0.1277 0.1499 0.1640 0.1751 0.1775 0.1759 
2 - 0.0780 0.0976 0.1244 0.1363 0.1588 0.1437 0.1487 
3 - - 0.0337 0.0583 0.0840 0.0864 0.1030 0.0993 
4 - - - 0.0001 0.0034 0.0027 0.0152 0.0200 
5 - - - - 0.0001 0.0001 0.0001 0.0001 
6 - - - - - 0.0001 0.0001 0.0001 
7 - - - - - - 0.0001 0.0001 
8 - - - - - - - 0.0001 

Sum. 0.0849 0.1739 0.2590 0.3327 0.3878 0.4232 0.4397 0.4443 

Oift'. 0.0051 0.0061 0.0110 0.0273 0.0622 0.1168 0.1903 0.2757 

VE damper for an expected effective damping in the first mode of the eight-story building 

One to eight dampers are used, one on each floor. The last row in Table 4.8 shows the 

difference in the total area of the VE dampers between the optimal designs and the designs 

using the same size for each VE damper. The latter are the damper dimensions used in the 

previous section, i.e. A = 0.09 m2 for the eight-story building. It can be observed that the 

total value of the cross-sectional area of the VE dampers obtained from the optimal design 

for a certain number of VE dampers is less than the value using the same size for each VE 

damper. For example, the required area of VE dampers when the building is equipped 

with a VE damper at each floor obtained from the optimal design is about 38 % less 

compared to the design using the same size for each damper. It should be noted that some 

of the required areas designed by the optimization method reach the side constraints, i.e., 

the minimum area, which suggests that no VE damper is required at that floor. Table 4.9 

shows the designs when the side constraint minimum equals 0.0 m2• It can be seen that the 

total areas of the VE dampers are close to the values shown in Table 4.8, but only a few 

lower floors are required to be equipped with the VE dampers. 



76 

Table 4.9 Optimal designs for the minimum cross-sectional area ofVE dampers for the 
eight-story shear building with minimum side constraint equal to zero (m~) 

Floor First mode effective damping ratio (%) 
4.10 5.66 7.02 8.12 8.90 9.37 9.60 9.65 

1 0.0849 0.0959 0.1277 0.1415 0.1636 0.1760 0.1781 0.1729 
2 - 0.0780 0.0976 0.1241 0.1375 0.1532 0.1507 0.1562 
3 - - 0.0337 0.0672 0.0728 0.0944 0.1031 0.1176 
4 - - - none 0.0144 none 0.0078 none 
5 - - - - none none none none 
6 - - - - - none none none 
7 - - - - - - none none 
8 - - - - - - - none 

Sum. 0.0849 0.1739 0.2590 0.3328 0.3883 0.4236 0.4397 0.4467 
Oiff. 0.0051 0.0061 0.0110 0.0272 0.0617 0.1164 0.1903 0.2733 

The optimal designs for the minimum cross-sectional area of the VE damper for an 

expected effective damping in the first mode of the ten-story frame are shown in Table 

4.10. Similar conclusions about the results can be observed to the conclusions reached 

about the designs shown in Table 4.8. However, for this ten-story frame a smaller area of 

VE damper is required for the first floor when more than one floor is equipped with VE 

dampers. This suggests that the best location of VE dampers might be a floor other than 

the first. 

Table 4.10 Optimal designs for the minimum cross-sectional area ofVE dampers for the 
ten-story frame (ml) 

Floor First mode effective damPinl ratio (%) 
2.54 5.29 8.33 11.14 13.97 '6.37 18.08 19.72 20.66 20.97 

I 0.0194 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
2 - 0.0299 0.0127 0.0182 0.0150 0.0142 0.0272 0.0274 0.0294 0.0301 
3 - - 0.0315 0.0216 0.0229 0.0328 0.0276 0.0301 0.0307 0.0298 
4 - - - 0.0280 0.0154 0.0213 0.0176 0.0247 0.0273 0.0213 
5 - - - - 0.0340 0.0209 0.0242 0.0217 0.0218 0.0289 
6 - - - - - 0.0182 0.0173 0.0196 0.0229 0.0211 
7 - - - - . - 0.0099 0.0054 0.0075 0.0076 
8 - - - - - - - 0.0105 0.0103 0.0138 
9 - - . - - - - - 0.0008 0.0007 
10 - - - - - - - - - 0.0001 

Sum. 0.0194 0.0300 0.0479 0.0679 0.0874 0.1075 0.1239 0.1395 0.1508 0.1543 
Oiff. 0.0006 0.0100 0.0121 0.0121 0.0126 0.0125 0.0161 0.0205 0.0292 0.0457 
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The optimal designs using a constant number of VE dampers but different levels of 

the effective damping ratio are also investigated. Table 4.11 shows the designs for the 10, 

1 S, 20. and 2S % of critical effective damping ratio by locating one VE damper on the first 

and second floors of the eight-story building or the ten-story frame. The same table shows 

the case when one VE damper is located on the first, second, third, and founh floors of 

the two structures. The thickness of the VE dampers is assumed to be a fixed value and 

equals 0.01 m in this study. The side constraints of the maximum and minimum sizes of 

the VE damper are S.O and 0.01 m~ respectively. It can be found that by increasing the 

size of the VE damper one can increase the effective damping level for the same number 

of VE dampers located in the structure. However, for the same level of effective 

damping, the structure equipped with VE dampers on the first and second Doors only, 

needs considerably more material than the structure equipped with VE dampers on the 

first, second. third, and founh floors. For the ten-story frame, if only the first and second 

floors are equipped with VE dampers, the structure cannot even reach the effective 

dunping level of25 % of critical. 

Parametric Study of Active Bracing System 

The performance of the active bracing system (ASS) is examined by using the 

linear quadratic regul!tor (LQR) optimal control method and the instantaneous optimal 

control (IOC) for the eight-story shear building. Both the identity matrix and the matrix 

obtained using the Lyapunov method as the weighting matrix Q are used in the IOC. The 

maximum displacement of the eighth floor is set arbitrarily to 70 % of the unoontrollcd 
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Table 4.12. Comparison of the control forces, damping ratios, and weighting matrices for 
h 1940EI C h uak d t e - mtro eart lQ e recor 

Location of Controller w/o ADS on the 1 st floor only ADS on the 1st & 2ad floor 
Optimal Control Method Control LOR IOC LQR 

Qmatrix - II I Lyapunovl I 
Constant of R matrix ( rxl ) - I.l64E-13 7.20E·16 I.96E·IS 2.272E-13 

lit floor CF (kN) - 3,176 4,334 3,203 1,642 
2nd floor CF (kN) - - - - 1.578 

SbucturaJ damping ratio 2.50% 2.50% 2.50% 2.50% 2.50% 
ADS dampinl mio - 4.57% 8.07% 4.64% 4.54% 

Total dI'ective damping ratio 2.50% 7.07% 10.57% 7.14 % 7.04% 
MIx. Disp. (m) - 8th Fl. 0.193 0.135 0.135 0.134 0.135 
Max. Vel. (m/s) - 8th Fl. 1.062 0.811 0.885 0.813 0.812 

Max. Accci. (g) - 8th Fl. 0.990 0.807 0.804 0.808 0.805 
I Identity matrix . 
1 Matrix based on Lyapunov method for one COIdrOlIer shown in Table 4.13. 
J Matrix based on l.rapunov method for two coatrolIcrs shown in Table 4.14. 

IOC 
I Lyapunov3 

2.2SE-1S 4.SOE-1S 

1,908 1,697 
hS93 1,504 

2.50% 2.50% 
4.94% 4.S4~. 

7.44% 7.04% 
0.135 0.135 
0.809 0.820 
0.796 0.809 
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response, i.e., a reduction of 30 % is to be achieved. A total of six cases are studied. In 

three of the cases, an ADS is placed on the first floor only, and in the remaining three 

cases an ABS is placed on both the first and second floors. Simulation results are 

compared in Table 4.12 for the required control force magnitude (CF), effective damping 

ratio achieved, and maximum response using the 1940 EI-Centro earthquake of Figure 

4.6(a). 

It should be noted that all damping ratios shown in Table 4.12 are referenced to 

the fundamental mode, but in the analysis all the modes have been considered. The results 

show that when two controllers are used, the maximum control force per controller is 

reduced to approximately one-half of the case with only one controller. This is important 

for design purposes because smaller actuators are more readily available and less costly 

than larger actuators. Table 4.8 shows that when the Lyapunov-based Q matrix is used in 

the IOC (obtained from equation (2.14) and shown in Tables 4.13 and 4.14), 

approximately the same maximum control forces are required to obtain results identical to 

those using the LQR optimal control; these forces are smaller than those required by using 

the identity matrix in the IOC. 

Performance of Different Control Algoritluns 

The instantaneous optimal control (lOC) with the Lyapunov-based Q weighting 

matrix, the drift performance index (DPI) control. and the velocity performance index 

(VPI) control described in Chapter 2 are compared for the following two cases : (a) for 

the same level of maximum control force compare the response, and (b) for the same 
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Table4.1S. Comparison of the required maximum control force and number of 
controllers for 30 % reduction of the eighth floor displacement of the eight­

b 'ld' story Ul 109 

Location of ASS Without ASS at 1st n ADS at 1st &. 2nd fl. ABS at 1st 2nd, 3rd, and 4th fl. 
Algorithm Control IOC IOC VPI IOC DPI VPI 

I st Fl. CF (kN) · 3,202 1,697 6,668 926 2,187 4,527 
2ad Fl. CF (kN · . 1,'04 6,410 887 1,627 3,581 
3rd Fl. CF (kN\ · - - - 818 1,097 3,000 
4th Fl. CF (kN) · - - - 727 518 2745 

Floor Disp1accment (m) Pcrccntaac of uncontrolled displaccmcnt {%l 
I 0.033 76 74 107 74 73 84 
2 0.065 73 73 107 72 77 80 

3 0.096 70 70 90 70 71 79 
4 0.125 69 70 82 70 71 80 

5 0.1'0 69 70 77 70 71 " 6 0.171 69 70 7S 70 70 72 
6 0.185 70 70 71 70 70 71 
8 0.193 70 70 70 70 70 70 

Floor Velocity (mls) P ... , of uncontrolled velocity (%) 
1 0.224 61 74 90 76 59 70 
2 0.429 71 68 93 73 61 67 
3 0.612 68 69 77 70 62 68 
4 0.7S9 67 68 72 68 6S 70 
S 0.868 68 69 68 69 70 66 
6 0.939 72 72 69 71 7S 65 
7 1.002 76 76 70 76 78 64 
8 1.062 77 77 68 77 77 62 

Floor Acceleration (g) Perc:eaIqe or uncontrolled ICCderation (%) 

1 0.431 84 99 33 100 44 29 
2 0.539 100 96 51 101 66 42 
3 0.570 104 103 94 100 15 53 
4 0.619 98 97 92 90 90 59 
S 0.767 76 77 6' 71 76 53 
6 0.879 80 80 49 80 7S 50 
7 O.94S 82 82 'I 81 76 48 
8 0.990 82 82 54 80 77 48 
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maximum displacement response compare the maximum control force required. The 

eight-story building subjected to the 1940 EI~Centro earthquake is used. 

In case (a), except for the acceleration on the lower floors (first to third floor) of 

the building. the response is reduced better by the IOC algorithm than by the DPI or VPI 

algorithm. Results for case (b) are shown in Table 4.15. The eighth floor maximum 

displacement is arbitrarily set to 70 % of the uncontrolled response for all three control 

algorithms (IOC, OPI, and VPI). Three situations are compared : a single ABS on the 

first floor, an ABS on the first and second floors, and an ABS on the first, second, thud, 

and fourth floors. In order to reach the 70 % limit, the velocity control (VPI) required at 

least two controllers, and the drift control (DPI) required four controllers. 

Note that the instantaneous optimal control (IOC) algorithm maximum control 

force when using one controller is 3,202 leN, when using two controllers it is 1,697 leN; 

and when using four controllers it is 926 leN. The above forces are almost inversely 

proportional to the number of controllers used. A significant reduction of the acceleration 

is found when using the velocity control (VPI) algorithm. A similar outcome appears for 

the drift control (DPI) algorithm as compared to the IOC control. For drift reduction, the 

OPI performs better than the IOC and VPI algorithms. For velocity and acc:eIeration 

reduction, the VPI performs better than the IOC and OPI algorithms. However, the 

control forces required to reduce the maximum displacement to the same level are much 

larger for the DPI and VPI than those using the IOC algorithm. 
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To study areas where both moderate and strong earthquakes are expected, the 

1940 EI-Centro earthquake (Figure 4.6(a», the 1971 San Fernando earthquake (Figure 

4.6(b», the 1985 Mexico City earthquake (Figure 4.8(a», and the 1994 Northridge 

earthquake (Figure 4.8(b» were used to examine the performance of the ABS and VE 

dampers. The instantaneous optimal control (IOC) with'the Lyapunov-based Q weighting 

matrix and the VE damper properties used in previous sections are employed for all four 

earthquake records. 

The ~rformance of the ABS is compared to that of the VE dampers in Figures 

4.11 - 4.14. The eight-story shear building-shown in Figure 4. 1 (a) is used with the four 

earthquakes state above. Three cases are examined: (1) one ABS on the first floor, (2) 

one VE damper on the first, second, and third floors, and (3) one VE damper on the first, 

second, third, and fourth floors. The first mode effective damping ratio of the three cases, 

which includes the inherent structural damping and the additional damping due to the 

ABS or VE damper, equals 7.14, 7.04, and 8.14 % respectively. The control parameters 

for the ABS are the same as shown in Table 4.12. The thickness and the cross-sectional 

area of the VE damper equal 0.0127 m and 0.09 ml. The material properties of the VE 

damper remain the same as stated in the previous section on the placement of VE 

dampers. 

It can be observed that the displacement, drift, and velocity responses are 

effectively reduced. From Figures 4.11(1), 4.11(c), and 4.14(1), the response of the 

structure ..:quipped with one ADS (~,=7.14 %) is even less than the case with four VE 

dampers (~,""8.14 %). In Figures 4.13(1) and 4.13(c), the displacement and velocity 
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Combined Performance ofVE Dampers and ABS 

The capability of available actuators for use in the ABS is significant. Currently, 

actuators can provide control forces up to 1,000 leN with a stroke displacement and 

velocity well within those expected from structural responses in strong earthquakes. 

Specially fabricated actuators can reach forces as high as 20,000 leN; actuators can be 

designed to reach strokes up to ± 2 m and stroke velocities up to 5 mlsec fc. specific 

systems (Clark, 1994). For control forces larger than 1,000 leN the cost of the actuator 

increases rather sharply, and more than one actuator could be used as an alternative. 

However, the hydraulic systems that include manifolds and oil purtlps and the performance 

characteristics such as the flow rate are required to be at higher levers and must be 

custom manufactured. Reduction of the required control forces is desirable for containing 

the ABS cost. 

Extensive testing and evaluation of VE dampers at both a reduced and at full scale 

have proven the feasibility of their use in seismic structures. However. it is known that 

the damping properties of the VE material are frequency dependent. In addition, the VE 

material has a finite ability to resist shear strains, and for large deformations beyond the 

design level it may fail in shear. 

The ABS and VE dampers could complement each other. For moderate 

earthquakes the VE dampers may suffice for reducing the structural response, but for 

strong earthquakes the ABS may have to be activated. It is apparent that both systems 

can benefit from the presence of tile other. In addition, redundancy is introduced into the 

protective system. 
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response for the structure with an ASS on the first floor subjected to the 1985 Mexico 

City earthquake are slightly larger than the case with three VE dampers (~1=7.04 0/0). 

This is because the weighting matrices, Q and R, of the ASS were established for the El­

Centro earthquake which has significantly different frequency characteristics than those of 

the Mexico City earthquake (see Figures 4.9(a) and 4.9(c». 

The combined performance of the ADS and VE dampers is studied using six 

different arrangements (Figure 4.15) for the eight-story building subjected to the four 

earthquakes. In case (1) one ADS is placed on the first floor~ in case (2) one ADS and 

one VE damper are placed on the first floor~ in case (3) one ASS and one VE damper are 

placed on the first floor and one VE damper is placed on the second floor; in case (4) one 

ABS is placed on the first and onc on the second floor~ in case (5) one ABS and one VE 

damper are placed on the first floor and one ADS is placed on the second floor~ in case (6) 

one ADS and one VE damper are placed on the first and second floors. 

The maximum displacement of the eighth floor is set to 70 % of the uncontrolled 

response for all sile cases in Table 4.16 for the 1940 EI-Centro earthquake. For the 1971 

San Fernando, 1985 Mexico City, and 1994 Northridge earthquakes the same ADS 

weighting matrices and VE damper properties were used. The range of the displacement 

response reduction for these three earthquakes is 70 to 80 % for the San Fernando, 75 to 

85 % for the Mexico City, and 70 % for the Northridge earthquake compared to the 

uncontrolled response. The structural damping energy (SDE), VE damper damping 

energy (VDE). ADS damping energy (ADE), and elastic strain energy (ESE) are 

determined separately by the absolute energy method (Uans. 1988). In addition, the total 
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Table 4.16. Effective damping ratio for the hybrid ABS-VE damper systems 

without ABS on the 1st floor only ABS on the 1st and 2nd floors 
Case ABSorVE (I) (2) (3) (4) (5) (6) 

damper w/oVE VEonlstl1 VEon 1,2 n. w/oVE \IE on 1st n. VE on 1.211. 
Structural damping 2.50% 2.50% 2.50% 2.50% 2.50% 2.50% 2.50% 
ABS damping ratio - 4.64% 3.09% 1.88 % 4.54% 3.11 % 1.81 % 
VE damping ratio - - 1.60% 3.10% - 1.60% 3.10% 

Effective damping ratio 2.50% 7.14 % 7.19% 7.48% 7.04% 7.21 % 7.41 % 

damping energy (IDE), input energy (IE), and kinetic energy (KE) are determined. The 

damping ratio corresponds to the fundamental mode, but in the analysis the damping 

ratios of all the modes are used. As can be seen from Table 4.16, the total damping ratio 

for reducing the maximum displacement to a desired level is increased as additional VE 

dampers are added. 

Figures 4. 16 - 4. 19 show the responses for the uncontrolled case an~ cases (1), 

(2), and (3) of Figure 4.15 for the 1940 El-Cenlro, 1971 San Fernando, 1985 Mexico 

City, and 1994 Northridge earthquakes, respectively. The maximum displacement of the 

eighth floor decreases considerably in cases (2) and (3) for all four earthquakes. 

Comparing Figures 4. 16(c) to 4.11(c) and 4. 17(c) to 4.12(c) it can be seen that the ABS 

helps improve the velocity response of the VE damper. 

The maximum control force required by the actuator of the ABS has been reduced 

considerably by introducing one VE damper (cases (2) and (5», and is further reduced by 

introducing two VE dampers (cases (3) and (6» as shown in Figure 4.20. Note that the 

maximum control force levels are kept within 30 % of the structure's weight for the EI-

Centro earthquake. Since the peak ground acceleration of the 1971 San Fernando 

earthquake (1.1 g) is almost three times that of the 1940 EI-Centro earthquake (0.34 g) 

the control force required using the same control parameters is increased by about three 
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times. Likewise, the peak acceleration of the 1985 Mexico City earthquake (0.17 g) is 

about one half of the 1940 EI-Centro earthquake, thereby the required control force is 

slightly less than half of that for the EI-Centro earthquake (Figure 4.20(c». However, 

even though the peak acceleration of the 1994 Northridge earthquake (0.89 g) is about 

two times larger than that of the EI-Centro earthquake, the maximum required control 

forces are only two-thirds of those required by the EI-Centro earthquake. This shows that 

the ABS will produce a different perfonnance for earthquakes with different 

characteristics. 

From the previous discussion it is obvious that the control forces are rather large. 

Cases (2) and (3) in Figure 4.20 show how these forces can be substantially reduced by 

introducing one (case (2» or two (case (3» VE dampers. Similar results are obtained if 

two ABS are used (case (4», and the required control forces are further reduced if one 

VE damper is added to the two ABS (case (S», or two VE dampers are added (case (6». 

When two ABS are present, the sum of the required maximum control force from each 

controller is approximately the same as the maximum control force required when only 

one ABS is present. The addition of the VE dampers not only brings the ABS within the 

realm of practically but also reduces their overall cost. It can also be observed that the 

additional damping ratio introduced by the ADS is slightly different in cases (I) - (3) and 

cases (4) - (6) (see Table 4.16). However, the differences in the damping ratio between 

cases (1) and (4), cases (2) and (5), and cases (3) and (6) are due to the fact that the 

weighting matrices were modified to obtain the same roof displacement. Similar results 

can also be observed for all three earthquakes (Figures 4.2O(b), 4.20(c), and 4.20(d». 
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Table 4.17. Maximum absolute energy distribution for the hyb. td ABS-VE damper 
systems 

without ABS on the 1st floor only ABS on the 1 st and 2nd floors 
Case ABS orVE (1) l (2) 1 (3) (4) 1 (5) .1 (6) 

damper w/o VE VE on 1st 11. VE on 1.2 fl. w/o VE VE on 1st fl. VE on 1.2 fl, 

- entro ean lQU 1940EI C h ale e 
SDE (kN-m) 1,718 617 630 586 663 617 590 
ADE(kN-m) 0 829 554 340 936 622 356 
VDEkN-m) 0 0 369 672 0 367 678 
TDE(kN-m) 1,718 1,506 1,553 1,598 1,600 1,606 1,624 
K£(kN-m) 1,102 565 619 645 574 617 650 
ESE (kN-m) 1,119 750 754 743 712 726 735 
IE (kN-m) 2,279 2 165 2,173 2,188 2,179 2 184 2,195 

1971 San F emando _Cllrthquakc 
SDE (kN-m) 10,081 3,654 3,421 3,182 3,608 3,355 3,216 
ADE(kN-m) 0 4,495 3,083 1,906 5,016 3,398 1,970 
VDEkN-m) 0 0 1,972 3,593 0 1,962 3,637 
TDE(kN-m) 10,081 8,149 8,476 8,681 8,624 8,715 8,822 
KE (kN-m) 7,760 4,579 4,511 4,302 4,626 4,496 4,336 
ESE (kN-m) 7,694 5,299 5,100 4,859 5,228 5,059 4,872 
IE(kN-m) 13899 11,428 11,465 11,545 ll,531 11 510 11598 

1985 Mexico City earthquake 
SDE(kN-m) 446 256 240 222 252 236 243 
A:>E (kN-m) 0 436 284 171 455 297 267 
VDEkN-m) 0 0 152 279 0 152 156 
TDE(kN-m) 446 692 676 671 707 685 667 
KE(kN-m) 937 872 876 872 874 876 882 
ESE (kN-m) 1,347 1,300 1,301 1,315 1,343 1,348 1,347 
IE (kN-m) 1920 2,057 2044 2049 2,112 2,094 2080 

1994 No. uu~..; earthquake 
SDE (kN-m) 1,153 511 453 417 495 443 421 
ADE(kN-m) 0 438 298 188 S15 345 200 
VDEkN-m) 0 0 216 378 0 215 382 
TDE(kN-m) 1,153 948 967 983 1,010 1,004 1,003 
KE(kN-m) S65 390 363 339 391 363 340 
ESE (kN-m) 1,292 1,069 1,066 1057 1,041 1,049 1,049 
IE(kN-m) 2,089 1853 1,851 1,850 1,867 1,864 1,8S7 

Note : SDE - Inherent stIUc:turaI dampmg energy; 
VDE - Damping energy due to VE dampers; 
KE - Kinetic energy; 

ADE • Dampmg c:nc:rgy due to ABS ; 

IE - Input energy; 

TOE • TOlai damping energy (SDE+ADE+VDE); 
ESE· Elastic StJain Energy; 
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The absolute energy distribution for the eight-story building subjected to the four 

earthquakes is shown in Table 4.17. It can be seen that the structural damping energy is 

reduced significantly after adding the active bracing system(s) and is reduced even more 

with the additional VE damper(s). The VE damper damping energy increases by adding 

more VE dampers, and the ADS damping energy is decreased. The total damping energy 

increases from case (1) to case (3) when VE dampers are added. The input energy, 

elastic strain energy, and kinetic energy are decreased by adding the ADS and VE 

dampers as compared to the case without ADS or VE dampers. 

The input, damping, and elastic strain energy for the structure subjected to the 

1971 San Fernando earthquake is about five to six times compared to those of the El­

Centro earthquake, and the kinetic energy is even larger. This is true for the structure 

wither with or without controls. Similar results can be observed when the structure is 

subjected to the 1985 Mexico City and 1994 Northridge earthquakes. In the case of the 

Mexico City earthquake, the input energy increases slightly after the addition of the hybrid 

system, but the damping energy increases significantly. 

The energy time-histories of cases (I), (2), and (3) in Table 4.17 for the structure 

subjected to the 1940 EI-Centro earthquake are compared to those of the structure 

without an ADS system or VE damper. and are shown in Figure 4.21. The ADS and VE 

dunpers contribute a significant amount to the total damping energy as shown in Figures 

4.21(b), 4.21(c), and 4.21(d). From these figures it can also be observed that the 

damping energy of the VE dampers reduces the demand on the ADS system for the same 

result in response reduction. Figure 4.22 shows the kinetic energy time-histories for the 
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(b) 

F'1IUfe 4.22 Comparison of kinetic enqy for: (a) 1940 El-Centro earthquake, IftCl (b) 
1971 San Fernando earthquake; ••••••• - without control. - one 
ADS and one VE damper on the first floor 
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(a) 

(b) 

Figure 4.21 Energy time-history for 1940 El-Centro earthquake: (a) without an ABS or 
VE damper; (b) one ADS on the first floor 
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1940 EI-Centro, the 1971 San Fernando, the 1985 Mexico City. and the 1994 Nonhridge 

eanhquakes, for the uncontrolled case and case (2) (one ADS and one VE damper on the 

first floor). It can be observed that in the hybrid case a significant reduction of kinetic 

energy is obtained for ali four eanbquakes. 



CHAPTERS 

PERFORMANCE OF CONVEX MODELS 

In this chapter, the energy-bound convex models arc used to estimate the 

maximum response of structures for uncenain dynamic loads. The performance of convex 

models is investi8ated for impulses, artificial eanhquakes, and several records of past 

earthquakes. The response using the time-history of the actual record (AR) is compared 

with the values obtained trom the 810bal energy-bound (GEB) and local energy-bound 

(LEB) convex models of an uncenain excitation. 

Ener8.Y-bound Convex Models IOd Dynamic Magnification Factor 

First. a single degree-of-treedom system (SooF) subjected to an unccnain 

impulsive excitation is used to evaluate the performance of the two convex models. The 

excitationj{t) in equation (3.1a) is a scalar, it has an uncertain profile. and is usumed to 

belong to a convex set of dynamic functions. Several excitations were used to evaluate the 

solution obtained by the convex model. 

The dynamic magnification factor, D, is defined u (Clough and Penzien, 1975) 
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Figure S.1 shows the displacement response spectra of a rectangular impulse for a 

damping level of S % of critical. The displacement response using the time-history of the 

actual record (AR), the global (GEB) convex model (equation (3.10», and local (LEB) 

convex model (equation (3.14» is shown. In Figure S.I, II is the duration of the impulse 

and T is the structural period. The maximum displacement occurs during the impulse 

(phase I) when the impulse length ratio, lilT , is larger than 0.49~ the maximum 

displacement occurs after the impulse (phase II) if lilT < 0.49. The other seven impulses 

shown in Figure 5.2 are also used in this study. Results for a sine-wave impulse are shown 

in Figure 5.3~ results for a two-peak arbitrary impulse (unpulse No .• in Figure S.2) are 

displayed in Figure 5.4. It can be observed that the maxima obtained by the global energy­

bound (GEB) and local energy-bound (LEB) convex models are much larger than the 

spectra for the actual record (AR). 

The displacement response to the impulses shown in Figure S.2 was eYIluated 

using the GEB convex model of equation (3.9&), the LED c:onveK model of equation 

(3. 13a), and a solution u if.Jti) were known with certainty UIina the time-hiltory InIlysis 

of the actual record (AR). Table 5.1 shows the results at the transition point (1117)". at 

which the llllXimum switches from phase n to phase I for the SDOF structure; 1 % and 

S % of critical dunping is considered. In Table 5.1, the non-dimensional alobaI energy 

factor (Eo 2 (tl)/P. 2 tl) can be obtained by any of three different conditions: F'1f'It, the 
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Table 5.1. Comparison of ener8y-bound convex models with actual record at the 
transItion pomt 

Impulse 
Pob. Po~ Poh- Pob-

II II II 11 

£a'(tt)lpo'll 1.00 0.33 0.33 O.SO 

EL'(I\)lPo' 1.00 1.00 1.00 1.00 

o amplng ratIo = 
(lIlT). 0 . .50 0.37 0.49 0.49 

AR 1.91 1.00 1.24 1.53 
GEB 5.52 2 . .50 3.18 3.89 

OEBIAR 2.80 2.SO 2.56 2.54 
LED 19.49 14.93 19.5O 19 . .50 

LEBIAR 9.89 14.93 17.13 12.75 
o am ~ang ratIo -

(It/!). 0 . .50 0.37 0.48 0.49 
AR 1.86 0.92 1.16 US 

OED 3.76 1.81 2.14 2.66 
GEBIAR 2.03 1.96 1.86 1.84 

LED 12.74 10.77 12.74 12.74 
LEBlAR 6.85 11.71 10.98 8.79 

Note : AR • Actual record 
OED - Global encrgy-bound conve:< model 
LEB - Local Cfte!IY-bound convex model 

Pob- Pobi Po~ 
II II tl 

0.49 O.SS 0.42 

1.00 1.00 1.00 

I~ 0 

0.46 0.51 0.47 
1.45 1.4S 1.28 
3.59 4.16 3.42 
2.~ 2.87 1.66 
18.39 19 . .50 18.30 
12.68 I3.4S 12.30 

S% 
OAS 0.5 0.46 
US 1.37 1.20 
2.48 2.M 2.33 
1.83 2.07 1.95 

12.74 12.74 12.31 
9.44 9.30 10.26 

112 

Poh1. 
tl 

O.H 

1.00 

0.56 
1.14 
3.S7 
3.13 
21.68 
19.02 

0.56 
1.08 
2.36 
U8 
13.51 
12.51 
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duration and the maximum force of all impulses is kept the same, while the energy of the 

impulses is different; Second, the energy and the duration of the impulses are kept the 

same, while the maximum force is different; Third, the energy and the maximum force of 

the impulses are kept the same, but the duration of the impulses is different. All three 

combinations have the same dynamic magnification factors for the actual response and the 

global energy bound convex model. The GED convex model gives higher values than the 

response evaluated using the time-history of the actual record (AR) by an average ratio for 

the eight iJnpulses, (GEB/AR)d = 1.97 for the damping level of S % of critical. 

For the LEB convex model, the nondimensionailocal energy factor, ELl (I, ) I p"l , 

which is only related to the maximum value of the excitation, is always equal to 1. The 

LEB convex model gives much higher values than the response using the actual record, by 

an average ratio for the eight impulses, (LEB/A.yt)d = 9.98 for the damping level of5 % of 

critical. 

Similar results can be observed when the structure is subjected to past earthquake 

records. Consider a SooF structural system subjected to the SOOE record of the May 18, 

1940 EI-Centro earthquake which is shown in Figure 4.6(a). The displacement responses 

obtained by using the time-history of the actual record (AR), the GEB convex model, and 

the LEB convex model are shown in Figure 5.5. The fundamental period of the structure 

is 1.0 sec. and the damping level is 5 % of critical. The maximum responses obtained by 

the AR. the GEB and LEB convl!X models analysis equal 0.13, 0.48,' and 1.57 meters . 
respectively. The time-history cisplacement for the structure with a damping level of 

10 % of critical is shown in Figure 5.6. The maximum responses obtained by the AR, and 
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the GEB and LEB convex model analysis equal 0.09, 0.34, and 0.79 meters. Similar 

results can be observed for the time-history of the velocity and acceleration responses. 

These results show that the convex models give bounds that are relatively closer to the 

actual maxima for higher levels of damping. This property is desirable in the design of 

active structures, which inherently have higher levels of damping. 

For the case with a damping level of S % of critical, the response obtained by the 

GEB convex model gives a higher value than the maximum response obtained using the 

time-history of the actual record (AR) by a ratio, (GEB/AR) .. = 3.71 for the maximum 

displacement, (GEB/AR)v = 3.30 for the maximum velocity, and (GEB/AR). = 2.80 for 

the maximum acceleration. For the same damping level, the LEB convex model gives a 

much higher value than the response using the actual record by a ratio, (LEBI AR) .. = 8.76 

for the maximum displacement, (LEB/AR)v = 8.11 for the maximum velocity, and 

(LEB/AR). = 7.50 for the maximum acceleration. This suggests that a reduction factor 

could be used to reduce the conservatism of the results obtained by the convex models for 

the maximum displacement, velocity, and acceleration response. 

Energy-bound Convex Models Adiusted with a Reduction Factor 

In general, the reduction factor for a given excitation is a function of the period 

and the damping ratio or the SooF structure. Consider a given excitation of a certain 

energy Eo (GEB) or EL (LEB). for a given structure with mode shapes ...... '.N. The 

results obtained using the global and local energy-bound convex models depend on the 

D&turaI frequency (period) and the dampins of the structure in each mode, u can be 
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observed from equation (3.10) for the GEB model. and equation (3.14) for the LEB 

model. The reduction factors are defined at the modal level as the ratios of the response 

quantity obtained by the convex model divided by the response to the actual excitation 

record. The reduction factors for the displacement, velocity. and acceleration response 

obtained by the GEB convex model of equation (3.10) for the rectangular impulse, and 

impulse No. (j) in Figure 5.2 are shown in FiSUres 5.7 and 5.8. respectively. A similar 

procedure can be developed for earthquake records. Figures 5.9 and 5.10 show the 

reduction factors for displacement. velocity. and acceleration response obtained by the 

GEB convex model for the 1940 EI-Centro (Fisure 4.6(a» and 1971 San Fernando 

(Figure 4.6(b» earthquakes. The ~.stri~ution of the reduction factor is significantly 

different for the two impulses and is unique for each impulse shape. and this is also true 

. ..,. 
for each earthquake record. 

The reduction factors for'the response to the rectangular impulse for the LEB 

convex model of equation (3.14) are shown in Figure 5.11. The rtduction factor for 

displacement is different from those for velocity and acceleration. It can be observed that 

for higher levels of damping the reduction factor is reduced. These figures can be used to 

estimate the expected response to an excitation for MDOF structural systems. 

For a certain excitation, the redueUon factors, which are a function of the 

excitation sha~. the natural period, and the damping ratio of the structure. can be 

A 
defined for the GEB convex model as ' 

. " 

.40", =ho",{r.T.~)~ Ao ... ::=ho.,,(r.T.~) ~ Ao .. = ho .. {r.T,~) (S.2) . 
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and for the LEB convex model as 

where r denotes the excitation shape; the subscripts, G and L denote the GEB and LEB 

convex models; d, v and a, denote the displacement, velocity, and acceleration, 

respectively. 

The models described above are defined as the RGEB convex model (global 

energy-bound convex: model adjusted with an excitation-specific reduction factor) and the 

RLEB convex model (local energy-bound convex model adjusted with an excitation­

specific reduction factor). For each excitation the reduction factor can be obtained from 

the period and damping ratio for each mode of the structure, and will be different for 

other excitations. A simple method for obtaining the reduction factor is to create a data­

base as a function of period and damping ratio. An interpolation technique can be used 

to find the value of the reduction factor for a certain period and damping. Another 

method is to tit a curve to the data-base as a function of the period (frequency) and 

damping ratio for each mode of the structure. For example, in the case of the rectangular 

impulse, the reduction factor for the global energy-bound convex model, equation (S.2), 

can be written as 

(S.4) 
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where the constants,a ..... ,as , are equal to: 1.1589,2.9376,2.0696,2.4299, and 19.4258 

for the displacement; 1.4910,4.6422, 1.5463, 1.8052, and 20.9529 for the velocity; and 

1.3570, 8.3356. 1.9881, 1.8098, and 27.2092 for the acceleration. The coefficients 

a., .... as were obtained using an optimization routine for the best fit between the data­

base and the expression in equation (S.4). Figure 5.12 shows the displacement reduction 

factor of the RGEB convex model using both methods, i.e. the data-base (Figure 

S.12(a», and equation (5.4) (Figure 5.12(b»; the agreement is considered satisfactory. 

The reduction factor for the local energy-bound convex model, equation (5.3), in 

the case of the rectangular impulse can be written as 

(5.5) 

The constants. b ..... ,b6 , are equal to: 3.8190. 0.1747, 0.5346. 0.6912, 14.3225. and 

29.9341 for the displacement; 6.7967,0.1531,0.8156,0.7359,9.4113, and 31.2581 for 

the velocity; and 6.4697. -0.3526, 0.9212, -0.1389, 7.9988, and 28.3647 for the 

acceleration. Coefficients bl , ... ,b6 were obtained using an optimization routine for the 

best fit between the data-base and the expression in equation (5.5). Figure 5.13 shows 

the displacement reduction factor of the RLEB convex model using both methods, i.e., 

the data-base (Figure S.13(a», and equation (5.5) (Figure 5. 13(b»; the agreement is seen 

to be satisfactory. Similar equations to (5.4) and (5.5) can be derived for the other 

excitations. The reduction factor for each excitation can be used for the records with the 

same duration and shape, but different levels of the energy-bound Eo, or EL • In the 
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Figure S.12 Comparison of the a1oba1 energy-bound reduction factor for the rectlnJUlar 
impulse: (a) data~. and (b) calibration curve 
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RGEB or RLEB convex model, once the excitation-specific reduction factors are 

obtained for each mode, the physical response can be found by combining the adjusted 

modal responses by the square root of the sum of the squares (SRSS) of the adjusted 

'. modal responses (equation (3.11». This is necessary since the different modes do not 

achieve their maxima at the same instant in time. 

The ten-story frame of. Figure 5.14 is used to test the validity of the RGEB convex 

model. The cross-sectional area and moment of inertia of the beams and columns of the 

frame are shown in Table 5.2. The damping level is assumed to be 5 % of critical for all 

modes and only one horizontal degree-of-freedom is considered per floor. Table 5.3 

shows the maximum response obtained by: (1) using equation (3.4) for the time-history of 

the actual record (AR); (2) the GEB convex model; and (3) the ROEB convex model. 

The 1940 EI-Centro earthquake of Figure 4.6(a) is used. The response ratios for the GEB 

and RGEB models with respect to the actual record (AR) are also shown in Table 5.3. It 

can be observed that the displacement, velocity. and acceleration response obtained by the 

original GEB convex model is on averase 8.2, 6.5, and 3.7 times larger respectively than 

that obtained using the actual record from equation (3.4). On the other hand, the 

differences in the displacement, velocity, and acceleration response obtained by the 

adjusted ROEB convex model and the actual record (AR) are within 27, 39, and 42 % 

respectively. On average, the results obtained by the RGEB convex model are 11.3, 15.4, 

and 25.3 % times larger than the response using a time-history of the actual record for the 

displacement, velocity, and acceleration respectively. The improvement in the prediction 

of the maximum response using the ROEB convex model is obvious compared to the GEB 
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a e .. em er sIzes 0' ten-stol}' T hI 52 M b fr arne 
Beam Column 

Floor Area Moment of inenia Area Moment of inertia 
~x 10.1, m 1) (x 10 4 , m·) (x 10 '1, m 1) (x 10", m~ 

1 4.02 18.65 4.66 25.03 
2-4 3.69 15.69 4.41 22.51 
5-7 3.63 15.25 4.IS 19.90 

8-10 3.17 11.59 3.48 13.96 

:'.", .', 

Table 5.3. Maximum response of the ten-story frame for the 1940 EI-Centro earthquake 
record 

Floor AR GEB' I GEBI AR RGEB I RGEBI AR 
Displacemenl (em) 

1 1.37 11.14 8.13 1.74 1.27 
2 3.18 26.25 8.25 3.98 1.25 
3 5.09 42.79 8.·U 6.23 1.22 .. 6.89 59.05 8.57 8.23 1.19 
S 8.78 74.60 8.50 9.95 1.13 
6 10.71 88.77 8.29 11.45 1.07 
7 12.057 101.3 I 8.06 12.84 1.02 
8 14.34 112.8\ 7.87 l·DO 1.00 
9 15.79 122.l.S 7.74 15.68 0.99 
10 16.84 128.66 7.64 16.75 0.99 

Velocit . (cmls) 
I 10.70 63.25 5.91 14.83 139 
2 21.49 129.61 5.76 30.14 1.34 
3 32.96 193.89 5.88 42.8~ 1.30 
4 41.58 253.29 6.09 50.75 1.22 
5 49.73 308.43 6.20 54.21 1.09 
6 55.68 358.59 

. 
6.44 55.31 .099 

7 59.l9 404.31 6.83 57.l0 .096 
8 58.61 448.69 7.66 63.03 1.08 
9 67.49 488.9S 7.24 73.34 1.09 
10 77.19 522.41 6.77 83.69 1.08 

Acceleration (cmls1) 
1 348.59 1584.31 4.54 495.11 1.42 
2 54U2 1722.54 3.27 624.28 1.15 
3 636.71 1886.39 2.96 734.39 1.15 .. 568.89 1973.75 4.47 791.51 1.l9 
5 576.92 2062.58 3.58 762.08 1.32 
6 516.60 2128.05 4.12 733.23 1.42 
7 540.96 2236.70 4.13 662.69 1.23 
8 576.64 2349.90 4.08 704.30 1.22 
9 709.31 249.5.88 3.52 827.42 1.17 
10 923,82 2876.45 3.11 978.98 1.06 



129 

convex model. 

The usefulness of the RGEB and RLEB convex models is limited to evaluating the 

maximum structural response for a given excitation, but for structures with different 

properties of natural periods and damping. In addition, the RGEB and RLEB convex 
;1;0; 

models are useful in the definition of more general convex models which can predict the 

maximum structural response for uncertain earthquakes with certain common 

characteristics, as will be shown in the next section. 

Energy-bound Convex Models Using Average Reduction Fact..Q[ 

The results obtained by the RGES convex model are less conservative than those 

obtained by the GES convex model, and the maximum response is within reasonable 

agreement compared to the actual results from a time-history of the earthquake record. 

Similar results also can be observed by comparing the RLEB convex model to the LEB 

convex moJel. However, the reduction factor obtained by the ROES or RLES convex 

models can be used only for a given earthquake excitation that is not known before it 

occurs. It should be noted that the reduction factors are independent of the absolute value 

of the energy bound. 

In order to extend the results obtained by the ROEB and RLEB convex models to 

other unknown earthquakes, it is necessary to have additional information besides the 

value of the global energy bound. This is necessary because of the variations in frequency 

content of earthquakes originating at different locations, variations due to soil conditions, 

topography and others. For an uncertain excitation, an average reduction factor of the 

global energy-bound convex model (ARGEB) or the local energy-bound convex model 
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(ARLEB) is defined by using one of three nfethods: (l) select a set of excitations with a 

common characteristic such as the eight impulses shown in Figure 5.2 and average the 

RGEB or RLEB reduction factors of the ~~ (2) collect a set of actual past earthquake 

records in the vicinity of the site and avera8e·.~he ROEB or RLEB reduction factors of the 

set; or (3) construct a set of artificial earthquake records from a known spectrum in the . . 
proximity of the site and average the RGEB or RLEB reduction factors of the set. For the 

RGEB and the RLEB convex models, the reduction factor was obtained as described in 

the previous section. For the ARGEB and' AlU.EB convex models, the average reduction 

factor for each subset is obtained by averaging the earthquake-specific reduction factors 

for all the earthquake records in the subset. Subsequently, the response obtained from 

equation (3.10) for the GEB convex model or equation (3.14) for the LEB convex IT.odel 

must be divided by the average reduction factor for each mode (AROEB or ARLEB), and 

the final response is obtained using equation (3.11). 

The average reduction factors for each set of excitations can be expressed for the 

ARGEB convex model as 

(5.6) 

and for the ARLEB convex model as 

(5.7) 
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Comparing equations (5.2) and (5.3) with equations (5.6) and (5.7), it can be observed 

that in the latter equations only two variables need to be considered: the period 

(frequency) and damping level for each mode of the structure. 

The global energy-bound average reduction factor for the set of the impulsive 

excitations can be expressed using a calibration curve as 

(5.8) 

where the constants, cl .... ,c,. are equal to: 1.2865, 3.5759,4.0733.2.6014. and 28.1952 

for the displacement response; 1.7104, 15.7871. 4.4048, 1.9268, and 18.0370 for the 

velocity response; and 1.7062,23.6133,3.6927, 1.5213, and 36.4565 for the acceleration 

response. Similar expressions can be defined for the seismic records. The average 

reduction factor for the ARLEB cc,nvex model can be obtained by the same way as the 

ARGEB convex model for each group of excitations. 

The average reduction factor of the ARGEB convex model for the impulse set of 

Figure 5.2 for a structural damping level of 2, 6, and 10 % of critical is shown in Figure 

S.IS for the displacement, velocity. and acceleration responses. Comparing the results 

shown in Figure S.IS with Figures 5.7 and 5.8. it is clear that the distribution of the values 

is not exactly the same. However, when the shape and duration of the excitation are 

unknown, the average reduction factors can be useful for finding an approximation of the 

maximum actual response using convex models. In the ARGEB or ARLEB model, once 

the average reduction factors are obtained for each mode, the physical response can be 
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found by combining the adjusted modal responses by the SRSS method of equation (3.11). 

ARGEB and ARLEB Convex Models for Impulse Excitations 

The eight-story building shown in Figure 4. 1 (a) is used to evaluate the excitation­

specific reduction factor of equations (5.2) and (5.3) (ROEB and RLEB convex models) 

and the average reduction factor of equations (5.6) and (5.7) (ARGEB and ARLEB 

convex models). A rectangular, a sine wave, and a two peak impulse corresponding to 

Cases <D, ®, and <ii, of Figure 5.2 are used to evaluate the maximum response using the 

actual record (AR), and the response using the convex models. 

For the global energy-bound convex model the energy and duration of these 

impulses are the same, given as 24.01 m2/sec' and 1 sec, respectively. This is an unusually 

long impulse duration and it was chosen for illustrative purposes only. However, it should 

be noted that the reduction factors are the same for impulses of any magnitude of the 

energy bound. The peak magnitude of the impulse, Po • is given as 0.5 g, 0.707 g. and 

0.677 g for the impulsive forces <D, ®, and ~ respectively, where g is the acceleration of 

gravity. 

Table 5.4 shows the maximum displacement at each floor using the time-history of 

the actual record (AR), the global energy-bound (GEB) convex model, the GEB convex 

model employing the excitation-specific reduction factor (RGEB) described in equation 

(5.2), and the GEB convex model using the average reduction factor (AROEB) described 

in equation (5.6). Since the global energy bound of the three impulsive forces is the same, 

it can be observed that the maximum displacements obtained by the GEB convex model 

are identical for all three impulses. Natunlly, this is not true for the response using the 
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Table 5.4. 

Floor 
asc - cctangu ar Impu se 

1 7.32 26.10 3.57 6.47 0.88 7.31 1.00 
2 13.97 51.22 3.67 12.69 0.91 14.35 1.03 
3 19.31 74.49 3.76 13.46 0.93 20.38 1.06 
4 24.73 95.19 3.85 23.59 0.95 26.69 1.08 
5 28.69 112.66 3.93 27.93 0.97 31.60 1.10 
6 31.67 126.36 3.99 31.32 0.99 35.44 1.12 
7 33.65 135.81 4.04 33.66 1.00 38.09 1.13 
8 3US 140.64 4.06 34.68 1.01 39.44 1.1.$ 

ase . C (j) S inC wave Impu se 
1 8.87 26.10 2.94 7.94 0.90 7.31 0.82 
2 17.00 51.22 3.01 15.60 0.92 14.35 0.8.$ 
3 24.26 74.49 3.07 22.72 0.94 20.88 0.86 
4 30.49 95.19 3.12 29.06 0.95 26.69 0.88 
5 35.61 112.66 3.16 34.41 0.97 31.60 0.39 
6 39.53 126.36 3.20 38.60 0.98 35.44 0.90 
7 42.17 135.81 3.22 41.48 0.98 3S.09 0.90 
8 43.50 140.64 3.23 42.94 0.99 39.4-1 0.91 

Case $ - Two-peak impulse 
1 7.44 26.10 3.S1 7.04 0.9S 7.31 0.98 
2 14.48 51.l2 3.54 13.81 0.95 14.35 0.99 
3 20.93 74,49 3.56 20.09 0.96 20.88 1.00 
4 26.58 95.19 3.3S 25.67 <..97 26.69 1.00 
5 31.28 112.66 3.60 30.39 0.97 31.60 1.01 
6 34.93 126.36 3.62 34.08 0.98 jH4 1.01 
7 37.46 135.81 3.63 36.63 0.98 38.09 L02 
8 38.74 140.64 3.63 37.93 0.98 39.44 1.02 

Table 5.5. Displacement reduction factor for the RGEB and ARGEB conv~ models for 
h od ti h . h h b 'Id' eac m e or t e elgl t-story s ear Ul ang 

Impulse Model Mode 2 Mode 3 Mode .. ModeS Mode 6 Mode 7 ModeS 
RccIanplar 4.03 4.12 4.08 4.30 4.15 4.20 4.17 4.15 

ROEB Sine wave 3.27 5040 4.66 5.20 4.97 4.77 4.62 4.55 
Two-peak 3.71 3.78 4.09 4.93 4.81 4.68 4.51 4.52 

AROEB 3.57 3.93 4.03 4.25 4.09 3.98 3.89 3.84 
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actual record. The displacements obtained by the GEB convex model are on average 

3.86,3.12, and 3.S8 times larger than the response to the time-history of the actual record 

(AR) for the rectangular, sine wave, and two-peak impulses, respectively. 

For the GEB convex model adjusted by the reduction factor of each specific 

impulse shape (RGEB model), the displacements in Table 5.4 were found as follows: The 

GEB convex modal displacements given by equation (3.1 Oa) were divided by the 

displacement reduction factor Ao . .,(r, T,~) as defined in equation (5.2) for each of the 

eight modes. Table 5.5 shows the reduction factors of each mode for the three impulses. 

Subsequently, the physical response for the RGEB convex model was obtained by 

combining the adjusted modal responses using the SRSS method of equation (3.11). The 

difference in the displacement response obtained by the RGEB convex model and the 

actual record (AR) was within 12 % for the rectangular impulse, 10 % for the sine wave 

impulse, and 5 % for the two-peak impulse as shown in Table 5.4. 

The responses obtained by the GEB convex model adjusted by the average 

reduction factor (ARGEB convex model), using the average reduction factor Bo.I(T,~) 

of equation (5.6) in Table 5.4, are all the same; this is because the average reduction factor 

for any impulse of unknown shape has by definition the same value (see Table S.S for the 

redu,.:tion factor of each mode). The physical response for the ARGEB model was 

cbtained by combining the adjusted modal responses using the SRSS method of equation 

(" .. ) .). i. . The difference between the actual displacement response (AR) and the 

displacement using the ARGEB model was within 14 % for the rectangular impulse, 18 % 

for the sine wave impulse, and 2 % for the two-peak impulse as shown in Table S.4. 

Figure S.16 shows the maximum velocity and acceleration response at each floor 
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of the eight-story building for the rectangular impulse. It can be observed that the velocity 

and acceleration obtained by the GEB convex model are much larger than the response to 

the actual record (AR). However, the difference between the actual record (AR) and the 

RGEB convex model is reduced appreciably for both the velocity and the acceleration 

response as shown in Figure 5. 16. Similar results are obtained for the sine wave and two­

peak impulses. 

The difference between the AR and ARGES (GEB convex model adjusted by the 

average reduction factor) model is slightly larger than that between the AR and the RGEB 

model and depends on the actual shape and duration of the impulse. For the rectangular 

impulse (case <D of Figure 5.2), the displacement, velocity, and acceleration response 

obtained from the actual response (AR), the RGEB, and ARGEB models are shown in 

Figure 5.17. Similar results are obtained for the sine wave and two peak impulses. The 

results obtained by the ARGEB model are still acceptable for an impulse with unknown 

shape and duration. 

The displacement response maxima, using either the RGES or ARGEB convex 

model, are seen to be predicted more accurately than the velocity or acceleration maxima 

for this structure. This behavior can be expected since the reduction factors for velocity 

and acceleration for the dominant periods of this structure are much laraer than those of 

displacement, as shown in Figure 5.1 S. For structures with longer dominant periods the 

results for velocity and acceleration using the RGEB or the ARGEB convex models are 

expected to be predicted with an accuracy comparable to that for the maximum 

displacement. 
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The comparison of the three impulsive responses using the local energy-bound 

(LEB) convex model and the results adjusted by the reduction factor and the average 

reduction factor are shown in Table S.6. The local energy and duration for impulse case 

<D, ®, and @ are the same, given as 4.9 m2/sec2 and 1 sec, respectively. The difference in 

the displacement response obtained by the RLEB model and the actual record (AR) was 

within 17, 14, and 10 % for the rectangular impulse, sine wave impulse, and two-peak 

impulse, respectively. The difference between the actual displacement response (AR) and 

the displacement using the ARLEB model was within 36, 26, and 26 % for the three 

impulses, respectively. The reduction factors for these three impulses and the average 

reduction factor of each mode are shown in Table 5.7. Comparing Table S.4 for the 

ARGEB convex model and Table S.6 for the ARLEB convex model it can be observed 

that the former method is more accurate for this building. 

ARGEB Convex Model for Past Earthquake Records 

Thirty-two past earthquake records described in Table 5.8 are used to evaluate the 

performance of the ARGEB convex model. Table 5.9 shows the eight subsets of the 

above records defined for the purpose of this study. The ten-story frame shown in Figure 

5.14 is used for: (1) the time-history of four actual earthquakes, (2) the RGEB convex 

model, and (3) the ARGEB convex model with several subset excitation records. A 

response ratio is defined by dividing the response obtained by the convex model to the 

response obtained using the time-history of the actual record. This ratio is averaged over 

all floors and is shown in Table S.10 for both the RGEB and ARGEB convex models. 
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Table ~.6. Displacement response of the eight-story building for impulses with the same 
local ener -bound 

Floor 
ase - ectangu ar Impu se , 7.32 86.86 ! II.S7 6.06 0.S3 4.67 0.64 

2 D.97 170.74 12.22 I1.S9 0.85 9.16 0.66 
3 19.81 24S.76 12.56 17.31 0.S7 13.32 0.67 
4 24.73 318.29 12.87 22.14 0.90 17.03 0.69 
5 28.69 376.99 13.14 26.21 0.91 20.16 0.70 
6 31.67 422.88 1J.35 29.40 0.93 22.61 0.71 
7 33.65 454.39 13.50 31.S9 0.94 24.30 0.72 
S 34.6.5 470.42 13..56 32.71 0.94 2.5.61 0.73 

asc -C ® s me wave Impu se 
I 6.27 86.86 13.85 '5041 0.86 4.67 0.74 
2 12.02 170.74 14.20 10.54 0.88 9.16 0.76 
3 17.IS 248.76 '4.50 15.27 0.S9 13.32 0.78 
4 21.56 318.29 14.76 19 . .50 0.90 17.03 0.79 
.5 2.5. IS 376.99 14.97 23.09 0.92 20.16 0.80 
6 27.95 422.88 15.13 25.89 0.93 22.61 0.81 
7 29.82 454.39 15.24 27.S2 0.93 24.30 0.81 
8 30.16 470.42 15.29 28.82 0.94 25.61 0.82 

Case (J) - T wo-jl(:llk im~ulsc 
I 5.50 86.86 15.79 4.90 0.98 4.67 0.74 
2 10.69 170.74 15.97 9.61 O.W 9.16 0.76 
3 15.46 248.76 16.09 13.97 0.90 13.32 0.78 
4 19.63 318.29 16.21 17.83 0.91 17.03 0.79 
.5 23.09 376.99 16.33 21.09 0.91 20.16 0.80 
6 25.79 422.88 16.40 23.66 0.92 22.61 O.SI 
7 27.66 454.39 16.43 25.43 0.92 24.30 0.81 
8 28.61 470.42 16.44 26.3" 0.92 25.61 0.82 

Table 5.7. Displacement reduction factor for the RLEB and ARLEB convex models for 
each mod t1 h . h hear bu'ld' e or t e etgl t-story s t 109 

Impulse , Mode 1 ~t."Ck 2 Mode 3 Mode" ModeS Mode 6 Mode 7 Model 
RcctancuJar ;438 7.03 2.89 2.32 1.96 1.11 1.65 l.59 

RLEB Sine wave .-;.34 5.02 0.77 3.95 3.25 2.85 2.59 2.47 
Two-peak 17.88 4.73 4.10 3.61 3.06 2.72 2.51 2.40 

ARLEB 18.70 6.70 ".31 3.34 2.11 2.45 2.25 2.1.5 
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T bl 58 P a e .. h k d sedt . h ARGEB ast eart !qua e recor s u o mvestlgate t e d I convex rno e 
No. Eanhauake Dale Location I Component Accel. (R) 

Ear1hQuakes in California (US) 
I EI-Centro May 18,1940 Imperial Valley SOOE 0.348 
2 S90W 0.214 
3 Taft July 21, 1932 Kern county (Taft Lincoln school) S69E 0.179 
4 N21E 0.156 
S San Femando Feb. 9, 1971 Pacoima Dam SI6E U7l 
6 1.016 1.016 
7 Lorna Prieta Ocl. 17, 1989 Oakland~ter harbor wharf -channel I 210· 0.276 
8 channel 3 (\0 0.220 
9 channel 4 270· 0.276 
10 channel S 270· 0.298 
II channel 6 270· 0.30S 
12 channel 7 0· 0.277 
13 channel 8 0° 0.436 
14 channel 9 270· 0.296 
IS channel 10 270· 0.269 
16 channel 12 O· 0.281 
17 Nonhridge Jan. 17, 1994 Santa Monica - City Hall 90· 0.885 
18 0· 0.370 
19 Sylmar - County hospital 00 0.844 
20 90° 0.605 
21 Newhall - LA County fire station o· 0.590 
22 90· 0.383 
23 Pacoima Dam - Downstream o· 0,434 
24 175- O.·US 
25 Arleta - Nordoff Ave. lire station 90· 0.344 
26 o· 0.308 -Ean l1guakc:s in Mexico 
27 Mexico City Scp. 19, 1985 Coast of Bucrrcro-Michoacan N90W 0.171 
28 SOOE 0.100 
Earthquakes in lapan 
29 H.ac:hinohe May. I96~ J- SoN 0.228 
30 E-W 0.180 
II Miyagi June 12, 1918 J - $oN 0.263 
32 E-W 0.205 

Table 5.9. Subsets ofeart~uakes used in the ARGEB convex. model 
Subset Description ~rd (sec Table III) 

81 
82 
S3 
54 
SS 
56 
S7 
58 

EI-Centro, May 18, 1940 1,2 
San Fernando, Feb. 9, 1971 S,6 
Lorna Prieta, Oct. 17, 1989 7 - 16 
Northridge, Jan. 17. 1994 17 - 26 
EI-Centro, May 18, 1940 and Taft, July 21, 1952 1 - 4 
San Fernando. Feb. 9, 1971 and Northridge, laD. 17, 1994 S, 6, 17 -26 
California records 1 - 26 
California. Mexico City, Sep. 19. '85, Hachinohc. May, 1 ·32 
'61. and MiNi. June 12 '78 
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Table S.lO. Response ratio for maximum response using the RGES and the ARGEB 
convex m odlf1 h k d e s or past can lQua e recoJ1 5 

Ma". Disp1acemenl Ma". Velocity Ma:'t. Accclenlion 
1940 EI-cenuo carthc uakc (SOOE)· ARI 

RGEBlARI 1.11 I.IS 1.2S 
ARGEB(S IYARI 1.07 1.21 1.00 
ARGEB(SSYARI 1.14 1.10 0.94 
ARGE8(S7)1AR I 1.61 1.48 1.14 
ARGE8(SI)lAR I 1.56 1.33 0.81 

1971 San Fernando earthquake (516E) • AR2 
RGEBlARl 1.03 0.94 1.30 

ARGEB(S2)1ARl 0.74 0.79 1.26 
ARGEB(S4)1ARl 0.79 0.82 1.22 
ARGE8(S6)1ARl 0.78 0.81 1.21 
ARGEB(S7)1ARl 0.87 0.86 1.0S 
ARGE8(SI)lARl 0.85 0.77 0.74 

1989 Lorna Prieta earthquake· Oakland~lcr harbor wharf (cbanncl8) • ARl 
RGEBlARl 0.96 0.90 1.20 

ARGE8(S3)1ARJ 1.27 1.07 0.9S 
ARGE8(S7)I ARJ 0.17 0.80 0.96 
ARGEB(SS)l ARJ O.IS 0.72 0.67 

1994 Northridge earthquake· Sanla Monica Cil)' Hall (S9ON) • AR4 
RGEBlAR4 I.o. 1.24 1.96 

ARGEB(S2)1 AR4 1.00 1.22 1.16 
ARGEB(S4)1 AR4 1.07 i.Li 1.12 
ARGEB(S6)1AR4 1.06 US 1.12 
ARGEB(S7)I AR4 UI 1.11 0.97 
ARGEB(SI)I AR4 US 1.19 0.71 
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It can be observed that the response ratio for the results obtained by the RGEB 

convex model is within 30 % for all four records, except for the acceleration in the 

Nonhridge earthquake (96 %). The response ratio for the results obtained by the ARGEB 

convex model for the eight subsets defined in Table 5.9, indicates acceptable predictions 

of the maximum response. As expected, the RGEB convex model yields in general better 

results than the ARGEB model. For all four actual records in Table 5.10, the accuracy of 

the prediction of the response progressively worsens as more eanhquakes are added from 

different locations i.e. compare (S7) to (S8). Hence, the reduction factors are sensitive 

with respect to the location of the subset of eanhquakes used to determine the average 

reduction factor for each mode. However, the results obtained for the San Fernando 

actual earthquake (S 16E) using subsets (52), (S4), and (S6) are close. Similarly, the 

results obtained for the 1994 Northridge actual eanhquake (Figure 4.8(b» using subsets 

(S2). (S4). and (S6) are also close. This shows that the average reduction factors at 

approximately the same general location are n\lt very sensitive to time. 

ARGEB Convex Model for Artificial Earthquakes 

The ten-story frame described in the previous section is used to investigate the 

performance of the ROEB and ARGEB convex models subjected to several artificial 

earthquakes. Three groups of artificial earthquakes are generated by the SIMQKE 

program (MIT, 1976). The spectrum of the first group is chosen from the example 

spectrum of the SIMQKE program to create six artificial earthquakes (GI) shown in 

Figure 5.18. All records have a peak acceleration of 0.5 g and a duration of SO sees. 
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Figure 5.18 Artificial earthquakes of Group 1: Ca) spectrum. (b)-(g) artificial eanhquakes 



145 

However, the global energy bound is not the same; as noted earlier, this fact does not 

change the values of the reduction factors. Note also that even though the global energy 

bound is different for the artificial earthquakes, this does not affect the results which are 

expressed in dimensionless form. The six anificial eanhquakes shown in Figure 5.19 are 

included in the second group (G2) created by the spectrum developed by Housner (1959). 

The spectrum of Figure S.20(a) was constructed from the average response of fifteen 

eanhquakes (Vanmarcke et al., 1976). This spectrum was used to create the third group 

of six anificial earthquakes (G3) as shown in Figures S.20(b) - (g). The fourth group 

(G4), considers the set defined by GI, G2, and G3 combined together (see Table 5.11). 

The average reduction factors are then determined independently for each group of 

artificial eanhquakes stated above. 

Table 5.12 shows the response ratio of the RGES and ARGES convex models to 

the time-history analysis of the actual record (AR) for the following artificial eannquakes: 

18(c), 18(t), 19(b), 19(d), 20(b), and 20(g). A conclusion can be drawn similar to that for 

the results shown in Table 5.10. The response ratio for the results obtained by the RGES 

convex model is within 10 and 13 % for the displacement and velocity, and 93 % for the 

acceleration. In general, the response ratios of the ARGES convex model of Groups I, 2, 

and 3 compared with the actual record (AR) are larger than the ratios of the RGEB 

convex model. However, the response ratio for the results obtained by the ARGEB 

convex model still yields acceptable predictions of the response for the artificial 

earthquakes. 

The ARGEB convex model of Group 2 (see Table S.II) is used to predict the 
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Fisure 5.19 Artificial earthquakes of Group 2: (I) spectrum, (b)-(a) artificial earthquakes 
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Table 5.11. Artificial eanhguakes used in the ARGEB convex model 
Description Earthquake records 

Created by speclrum shown in Figure 18{a) Figures 18(b) • (g) 
Created by spectrum shown in Figure 19{a) Figulcs 19(b) - (a) 
Created by spectrum shown in Figure 20(a) Figures 20(b) • (g) 
Includes Groups 1,2, and 3 Figs. ISib):{&), 191~-{g), and 20(bHg) 

Table S.12. Response ratio for maximum response using the RGEB and the ARGEB 
convex m od I fl 'fi . I h k e s or artl lela eart 'qua es 

Response Ma.". Disolacement Max. VelocilY Max. Acceleration 
Artificial earthquake in Group I (Fig. S.18(c»· AR5 

RGEBIARS 1.06 1.09 1.86 
ARGEB(G I)J AR5 1.21 1.00 1.11 
ARGEB(G-I)J AR5 l.S3 1.2" 1.20 

Artificial earthquake in Group I (Fig. 5.18(0) • AR6 
RGEBlAR6 1.02 1.04 1.29 

ARGEB(OI)J AR6 0.61 0.7" 1.80 
ARGEB(G4)JAR6 0.78 0.91 1.9) 

Artificial earthquake in Group 2 (Fig. S.I9(b» - AR7 
RGEBlAR7 1.07 0.99 1-11 

ARGEB(Gl)JAR7 1.12 1.29 1.76 
ARGE8(G4)1AR7 0.9S 1.08 1.75 

Artificial earthquake in Group 2 (Fil. S.l9(d» • ARB 
RGEBIARB 0.90 1.07 1.32 

ARGEB(G2)JAR8 1.44 1.11 1.25 
ARGE~04)1AR8 1.22 0.93 1.23 

Artificial earthauake in Group 3 ffig. 5.2O(b»· AR9 
RGEBlAR9 l.00 1.13 US 

AIlG£B(G3)1AR9 0.97 1.10 l.74 
ARGEB(G4)1AR9 0.85 1.74 1.60 

Artificial earthquake in GroultJ CEil. 5.20(2))· ARlO 
RGEBIARIO 0.99 0.94 1.21 

ARGEB{G3)1ARIO 1.12 0.98 1.14 
AllQElK(4)f ARlO 0.99 0.90 1.04 
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response for an unknown future excitation which has a known site spectrum and energy­

bound. An artificial earthquake which is shown in Figure 5.21 was created by using the 

spectrum of Figure 5.19(a) and is used to examine the validity of the results. The 

estimated displacement and velocity obtained by the ARGEB model for Group 2 and the 

time-history of the actual record are shown in Figure 5.22. It can be observed that the 

predicted results are slightly underestimated, but the difference between the ARGEB 

model and the actual record is still within 10 % for both the displacement and velocity 

response. 

Global Energy-bound Convex Model for Active Structural Control 

For the global energy-bound (GEB) convex model, the quantities required to 

obtain the response estimate in the case of an actively controlled structure are: the 

effective damping ratios (~~), the frequencies, and mode-shapes of the controlled 

structure. and the global energy bound. Eou(oo). of the earthquake. The effective 

damping can be obtained from equation (3.lb). The modal displacement, velocity. and 

acceleration can be detennined by using the effective damping in equation (3.10); the 

maximum response in physical coordinates can be approximated by the square root of the 

sum of the squares (SRSS) of the modal responses (equation (3.11». Once the maximum 

velocity, x_, is obtained the estimate of the control force using the GEB convex model 

can be expressed from equation (2.11) u 
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(S.9) 

where M is the mass matrix of the structure; r is a constant which is a scalar multiplier in 

the diagonal weighting matrix R (see Chapter 2); weighting matrix Q is assigned to be an 

identity matrix; b was defined in equation (2.8). 

The ten-story frame described in Table S.2 is used to examine the RGEB and 

ARGEB convex models for the active bracing systems (ABS). One ASS is assumed to be 

installed on the first floor and one on the second floor of the building. Note that in this 

application the ASS is used in the form of a retrofit. The maximum responses obtained 

from the time-history of the actual record (AR), and the RGEB and AROEB convex 

models are shown in Table 5.13. The reduction factor used in the RGEB convex model is 

excitatior.-specific for the 1940 EI-Centro earthquake. The average reduc:tion factor used 

in the ARGEB convex model is obtained from 26 California records (subset S7 of Table 

5.9). The same control parameters are used in the three methods. Note that the control 

force is affected only by the velocity of the floors as shown in equation (5.9). It can be 

observed that the ratio of the estimated control forces obtained from the R.GED and 

ARGEB convex models to the maximum control forces obtained from the actual time 

history (AR). is approximately equal to the ratio of the veloc:ity of the same floors at the 

two levels where the ABS are installed. Satisfactory results are obtained using the 

ARGEB c:onvex model. 
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Table S.13. Maximum response ofthe ten-story frame with two ASS for the 1940 El­
Centro earth~uake record 

Floor AR I ROEB ROEBI AR I AROEB I AROEBI AR 
Displacement (em) 

1 1.17 1.46 1.25 1.96 1.68 
2 2.78 3.37 1.21 4.61 1.66 
3 4.59 5.35 1.17 7.47 1.63 
4 6.42 7.17 1.12 10.25 1.60 
5 8.21 8.80 1.07 12.88 1.57 
6 9.85 10.24 1.04 IS. 28 1.55 
7 11.28 11.56 1.02 17.40 1.5.-
8 12.59 12.88 1.02 19.38 1.5.-
9 13.64 14.06 1.03 21.01 1.5-' 
10 14.36 14.93 1.04 22.16 1.54 

Vcloc:it . (Cm/5) 

I 7.09 10.SO 1.48 11.93 1.68 
2 lS.66 21.53 1.37 25.84 U5 
3 22.83 31.4" 1.38 39.39 1.73 
4 30.86 38.8& 1.26 51.22 l,66 
5 38.90 44.07 1.13 61.55 1.58 
6 45.89 48.03 1.05 70.74 1.5-' 
7 51.84 52.10 1.01 79.23 U3 
8 56.10 57.78 1.03 88.02 1.57 
9 61.54 64.80 1.05 96.52 1.57 
10 68.29 71.24 1.04 103.43 1.51 

Ac:cclcration (em/52) 

I 296.35 274.22 0.93 238.18 0.10 
2 449.10 406.01 0.90 336.62 0.15 
3 542.59 506.83 0.93 427.86 0.79 
4 501.20 555.66 1.11 496.43 0.99 
5 "23.77 554.20 1.31 535.3" 1.26 
6 .tD7.42 547.83 1.3" 513.28 UI 
7 -424.85 530.55 1.25 602.33 Ul 
8 536.72 565.65 1.05 661.22 1.23 
9 631.80 664.82 1.0S 737.32 1.17 
10 697.33 791.09 1.13 116.16 1.17 

Maximum Control Force (leN) 
I 138 lO4 1.48 131 1.61 
1 171 218 1.21 17S 1.61 



CHAPTER 6 

OPTIMAL DESIGN OF CONVENTIONAL AND ACTIVE STRUCTURES 

In this chapter. the modified iterated simulated annealing (M1SA) method for 

optimization of structural systems is discussed and compared with three classical 

optimization methods. The optimal design of the active structure. which includes the 

conventional structure and the passive and/or active control systems stated in Chapter 2. is 

performed by using either the time-history analysis of the actual seismic record or the 

global energy-bound convex model. Both the global energy-bound convex model adjusted 

with the excitation-specific reduction factor (ROEB) and the convex model using the 

average reduction factor (ARGEB) are utilized. 

Structural Optimiption 

The optimal design of a ten-bar truss system with static constraints is examined 

using the modified iterated simulated anneaIins (M1SA) method described in Chapter 3. 

and is compared with the state space optimization method. This example is carried out in 

order to evaluate the advantages or disldvantages of the present algorithm. compared to 

standard methods. For the structures with dynamic constraints. a two-story and a ten-



1S4 

story frame are designed for dynamic excitations. The results obtained by the MISA 

method and three classical optimization methods are compared. The design variables are 

defined as the cross-sectional areas of the structural members. The moment of inertia, I, 

of the frame members can be obtained using well-known relations as follows (Haug and 

Arora, 1979): 

~ 
Z, = p,(:) , (

A )X s, =z, a: (6.1) 

where Z j • S I ' and A j are the section modulus, the least radius of gyration, and the cross-

sectional ar~ of the ith element; a I , ~ j ,and X j are constants. 

I , 
Ten-bar Truss with Static Constraints 

The optimal design of the ten-b,:!" truss shown in Figure 6.1 is used to evaluate the 

performance of the MISA method. Two degrees-of-freedom (DOF), the x and y direction 

displacement. are considered at each j6int. The vertical load is applied at joints c and d 

and equal#s 44S ~, respectively. The allowable stress is given as ± 112 MPa, and the 

displaceme"lt constraint is 5.08 em at all joints in both the x andy directions. The Young's 

modulus of the material is 68.9 OPa. 

First, five design variables are used for the ten-bar truss by linking the cross-

sectional area of the truss members in groups of two which have the same areas as 
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Figure 6.1 Ten-bar truss: <a> dimensions and degrees-of-fi'eedom, (b) loading and design 

variables 
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follows: <D and 0), ~ and@, ~ and (f), <D and ®, and ® and @ (see Figure 6.1(b». The 

iteration histories for the iterated simulated annealing (ISA) method (Ackley, 1987) and 

the MISA method are shown in Figure 6.2~ both stress and displacement constraints are 

considered. It can be observed that the MISA method converges to the minimum volume 

in less iterations then the ISA method. The design parameters used in the MISA method 

are as f Jlows : M = 8, n. == 75, n2'= 25, and 1- - I. The optimization results are listed in 
, 

Table 6.1. The number of function calls listed in Table 6.1 for the MISA method is 

defined as the number of iteration loops required to find the minimum volume. The y 

direction displacement at joint d is the active constraint for the optimal designs obtained 
Gi 

by the two methods. The optimal volume usir.g the MISA method is 7.7 % less than that 

of the ISA method. 

Table 6.2 shows the results for the same problem with ten design variables as 

shown in Figure 6.1 (b). The y direction displacements for nodes b and d are the active • 

constraints found by the MISA method. The y direction displacement for node d is ,ctive 

for the ISA method. In this case, the design parameters, M, n., n2 , and k, used in the 

MISA method equalS, 75, 25, and I, respectively. The result obtained by the state space 

optimal (SSO) design method is·also shown in Table 6.2 (Haug and Arora, 1979). They 

'-
direction displacements at nodes b aDd d and the axial stress of member S are the active 

. 
constraints in the ssa design method. The minimum volume of the ten-bar truss obtained 

by the MISA method is only 0.4 % more than the volume obtained from the SSO design 

method. Howevtr, the number of function calls required by the MISA method is larger 

than the SSO design method as shown in Table 6.2 The optimal results obtained by the 
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T bl 61 F' . bl a e lve-vana '1 d' f b . h e optima eSlg-" 0 ten- ar truss wit static constraints 
Cross-sectional area (cm') A.xial stress Displacement 

(kJ?a) (em) 

No. of bar [SA MlSA ISA MISA DOF [SA MlSA 
<D 179.94 221.75 41.92 41.82 I 0.56 0.56 
C2l 54.52 59.86 34.47 7.47 2 -2.16 -1.96 
~ 179.94 221.75 47.99 38.42 3 1.02 0.66 
® 54.52 59.86 • 47.09 66.14 4 -4.70 -4.·41 
~ 72.13 10.08 17.79 81.68 5 -1.27 -1.40 . 
<I) 72.13 10.08 26.06 44.35 6 -5.06 -5.06 
<!J 107.29 6ft4l 66.53 95.33 7 ~.64 ~.Sl 
(i) 89.74 129.21 60.67 52.81 8 -2.41 -lOS 
(J) 89.74 129.21 40.47 43.79 • 107.29 60.41 ·24,82 10.47 

Volume (em') 1 103 175 1023.870 
Function calls 4960 39l 

T bl 62 T a e .. . bl 'mal d f b 'h en-vana e optl e\liI,n 0 ten- ar truss WIt statIc collstnunts 
Cross-sectional area (cln2) ~ Axial stress Oisplac:cmcnt 

(MPa) (cm) 
No. of bar sso (SA MISA 'SSO ISA MISA DOf SSO ISA MISA 

CD 193.7.5 269.48 201.35 '46.42 20.'s,5 44.65 I 0.62 0.28 0.5S 
~ 0.65 79.81 0.65 { 9.04 10.98 5.30 2 -1.87 -3.0's -1.88 
~ 1.50.15 278.4.5 161.55 st,3.5 44.06 .54.28 l O.SO 0.41 0.S3 
® 98.62 152.90 95.68 :45.07 23.37 46.44 4 -.5.08 -3.94 -.5.08 
~ 0.6's 70.39 O.6S 171.44 3S.44 161.13 5 -1.37 -0.1.9 -1.35 
® 3.23 10.26 4.19 1.63 84.67 11.21 6 -.5.06 -.5:)6 ·5.08 
~ 48.18 147.87 49.1& 126.86 104.18 124.60 7 -0.78 ·CUS -0.71 
$ 136.64 14.11 131.5~ 47.10 14.74 4S.S5 8 -4.15 -2.51 -4.04 
~ 139.47 156.06 134.~4S.07 14.01 46.18 • 0.65 87.74 0.6 12.19 32.41 7.50 

Volume(cm' 829448 1.313.103 831:'s 
FWldion calls IS 2~04 ... 392 
Note: SSO - State space optimal method 

ISA - Ackley's iterated simulated annealing method 
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ISA method did not reach the global minimum. As a result, the volume obtained in the 

ISA method is about 58 % larger than the other two methods. 

It can be seen that the MISA method performs better than the ISA method and 

requires less function calls. However, the MISA method requires more function calls than 

the state space optimal design method for the present problem with static constraints. 

Two-sto!), Frame with Dynamic Constraints , 

Figure 6.3(a) shows a one-bay two-story frame with a 6.1 m width and a 4.6 m 

height for each floor, which is used to evaluate the performance of the MlSA method for 

optimization problems with dynamic constraints. The structural analysis of the frame is 

based on the direct stiffness method, with a capability for computing the strength ratio of 

column to beam, and the combined axial and bending stress in the members. Elastic 

response of the frame is assumed throughout the iteration history. The total dynarr.ic 

,. degrees-of-freedom are reduced from 12 to 2 (Figure 6.3(a» by the Guyan reduction 

method (1965), and the lumped mass procedure is used for the solution of the dynamic 

problem. The lumped mass for each floor is given as 27,234 kg and 5 % critical damping 

is assumed in each of the two vi~rational modes. 

Two artificial excitations (Figcre 6.4) are created by using a sinusoidal function 

multiplied by an amplitude function. These excitations are applied as an earthquake 

ground motion. The artificial ground acceleration is expressed as 

i,.1 (I) = eF(/)[sin(SI) + sin(IOt) + sin(20/)] (6.2.) 
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Figure 6.3 Two-story frame: (I) dimensions and degrees-of-fi'eedom, (b) loading and 
design variables 
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(a) 

Figure 6.4 Artificial excitation using an amplitude envelope function: (-) artificial 
eanhquake I (equation (6.2b», (b) artificial earthquake II (equation (6.2c» 
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For the first excitation (artificial earthquake I) shown in Figure 6.4(a), the amplitude 

function is chosen as 

(6.2b) 

where e is a constant which is chosen to achieve a peak ground acceleration equal to 

O.S g; g = 9.81 m/sec2, and to is proportional to the duration of the excitation which is 

defined as 60 sec. in this case. The amplitude function chosen for the second excitation 

(artificial earthquake II) shown in Figure 6.4(b) is (Jennings et al., 1969) 

r;(t) = t 2 14; 

= I; 
= el-o·OlUl(I-IU)). , 

0S;t~2 

2StSI75 

17.5S/s40 

40St S60 

(6.2c) 

The function F2 (t) in equation (6.2c) has been modified from that of the original result of 

Jennings et aI. (1969) , so that the earthquake duration is comparable with the other 

excitation. Figure 6.S shows the amplitude function of equation (6.2c). 

A two-parameter design is used by assigning the columns of the two floors of the 

two-story fi'ame to be identical (AI) and the beams on each floor to have the same size 

(A2) (Figure 6.3(b». The allowable stress (combined axial and bending stress) for each 

fi'ame member is assumed as ISO Mpa (60 % of the yielding stress of2S0 MPa). and the 
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Figure 6.S Tame-dependent variation of amplitude envelope function (equation (6.2c» 
for artificial earthquake 
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interstory drift constraints for each floor are set equal to hl180 or 2.54 cm. The constants, 

Q, , p, ,and XI' in equation (6.1) equal 0.58, 0.58, and 0.67, respectively (Haug & 

Arora, 1979). For this optimization problem, a disjoint feasible region is found for the 

structure subjected to artificial earthquake I as shown in Figure 6.6. The two portions of 

the feasible region for this two-story frame are constrained by the second floor drift and 

the stress in the two columns of the first floor. 

The resulting optimal design for the present optimization problem is shown in 

Table 6.3. The constants M, n., and nl used in the present algorithm were chosen as 8, 

75, and 25, respectively~ k is equal to 1 for this design. The same structural optimization 

problem was solved using classical optimization techniques. The results from program 

DOT (Design Optimization Tools) developed by VMA Engineering (1993) are also shown 

in Table 6.3. Three classical algorithms are presented in Table 6.3 using the DOT 

program; the first is the modified feasible directions (MFO) method, the second is the 

sequential linear programming (SLP) method, and the third is the sequential quadratic 

programming (SQP) method (Appendix E). Table 6.3 shows that in essence all four 

algorithms yield the same answer. However, for different initial values of the design 

variables, the results obtained from the classical optimization methods are different, as 

shown in Table 6.4. 

As can be seen from Table 6.4, the classical methods sometimes converge to local 

minima. For certain initial values, the design converges to point (2), located in the upper 

part of the feasible region (see Figure 6.6), which is the stress constraint for the first floor 

columns; for some other initial values, the design converges to point (1), located in the 
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Figure 6.6 Disjoint feasible region of the two-story frame subjected to artificial 
earthquake I; -2.S4 - - second floor drift constraint, ----. ISO ----. = 
combined stress constraint in columns of the first floor 



T
ab

le
 6

.3
. 

O
ot

im
al

 d
es

iR
l1

 o
ft

h
 

Ii 
bi

ec
te

d 
-

-
--

-
--

--
--

--
--

-
--

. fi
ci

al
 e

ar
th

Q
ua

ke
 I

 
--

--
-

Fr
am

e 
C

ro
ss

-s
cc

:ti
on

 a
re

a 
(a

n 
2)

 
M

an
bc

r 
G

ro
uP

 
M

FD
 

SL
P 

SO
P 

M
IS

A
 

N
o.

 
A1

 
24

5.
20

 
24

5.
22

 
24

5.
24

 
24

5.
28

 
CD

 
A2

 
23

6.
25

 
23

6.
23

 
23

6.
22

 
23

6.
33

 
<Z

> <»
 

®
 

V
ol

um
e 

73
6.

45
6 

73
6,

46
4 

73
6,

49
8 

73
6.

71
5 

~
 

(e
llt

')
 

-
L

-
_

_
_

 
(I

) 

N
()(

C 
: M

FD
 -

M
od

ifi
ed

 f
ea

si
bl

e 
di

re
ct

io
ns

 m
et

ho
d 

SL
P 

-S
eq

ue
nt

ia
l l

in
ea

r p
ro

gr
am

m
in

g 
m

et
ho

d 
SO

P 
-S

eq
ue

nt
ia

l q
ua

dr
at

ic
 p

ro
gr

am
m

in
g 

m
et

ho
d 

C
om

bi
ne

d 
st

re
ss

 (
M

P
al

 
M

FD
 

SL
P 

SO
P 

M
IS

A
 

Fl
oo

r 
M

FD
 

14
1 

14
1 

14
1 

14
0 

1s
t 

2.
30

 
14

2 
14

2 
14

2 
14

1 
2n

d 
2.

54
 

13
2 

13
2 

13
1 

13
1 

19
 

79
 

79
 

79
 

79
 

79
 

79
 

79
 

84
 

84
 

84
 

84
 

In
tc

rs
to

ry
 d

ri
ft

 (e
m

 
SL

P 
SO

P 
M

IS
A

 
2.

30
 

2.
30

 
2.

28
 

2.
54

 
2.

54
 

2.
53

 

-
-

i 



lC57 

Table 6.4. Results for two-story frame subjected to artificial earthquake I for different 
... Id . Inltla ellsns 

Initial OJ)timal Design Method 
Dcsian MFD SLP SOP MISA 

Column Area (cmZ) SOO 386.69 - 386.97 245.28 
Beam Area (em') 500 365.08 - 365.45 236.33 

Volume (em') 1524,000 1 152,289 · I 151557 736,715 
Function ealls 66 lSI 16 320 

Active Constraint Point (2) - Point (2) Point (I) 

Column Area (cmZ) 400 386.68 245.22 386.14 247.1S 
Beam Area (cma:l 400 36.5.11 236.23 365.03 234.97 

VolumeJcm'l 1219200 I 152.291 736,464 1 152 176 739,567 
Function calls 33 34 28 1056 

Active Constraint Point~2) Point (I) Point (2) Poinl(1) 

Column Area (cmZ) 300 245.20 · 245.24 247.78 
Beam Area (em') 300 236.25 · 236.22 234.74 

Volume (em!) 914,400 736,456 · 736.498 739.338 
Function calls 33 151 20 530 

Active Constraint Point (I) · Point (I) Point(l) .. 
Note: POlDt (1) IS when the second floor drift IS active 

Point (2) is when the stress in the columns of the first floor is adive 
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Table 6.4. Results for two-story frame subjected to anificial earthquake I for different 
. 'hld . 1m I eslgns 

Initial Optimal DcsiRll Method 
Desian MFD SLP Sj2P MISA 

ColuRUI Area (cm2) SOO 386.69 - 386.97 245.28 
Beam AIca (cm2) 500 365.08 - 365.45 236.33 

Volume (em') 1,524000 1,152,289 - I 151557 136,715 
Function calls 66 lSI 16 320 

Active Constraint Point (2) - Point (2) Point(l) 
ColuRUI Area (cm2) 400 386.68 245.22 386.74 241.1S 
Beam An=a ~an21 400 365.ll 236.23 365.03 234.91 

Volume (em') 1219200 1 152291 736464 1 15~116 739,561 
Function calls 33 34 28 1056 

Active Constraint Point (2) Point(l) Point!2) f>oin1 {I) 
Column Area (cm2) 300 245.20 - 245.24 247.1& 
Beam Area (cm2) 300 236.25 - 236.22 234.74 

Volume (em') 914,400 736,456 - 736498 739,338 
Fundioo caUs 33 151 20 530 

Active ConsIraint Point (I) - Point (I) Point (I) 

Note: Point (1) IS when the second floor drift IS active 
Point (2) is when the stras in the columns of the first floor is active 
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lower portion of the feasible region (see Figure 6.6), which is the second floor drift 

constraint~ point (I) is the global minimum. The SLP method even failed to find a local 

minimum for certain initial values of the design variables a~ shown in Table 6.4. However, 

the MISA method always came very close to the global minimum regardless of the initial 

values of the design variables. This is because of the random nature of the selection of the 

new design at each iteration. Because of this randomness, the MISA method requires, on 

average, more function calls than classical optimization methods. However, with the 

increasing computational speed found in present day computers this becomes less of a 

disadvantage. The main program for the MISA algorithm and the function of each 

program component are shown in Appendix F. 

Similar results are obtained for this two-story frame when it is subjected to the 

artificial earthquake II excitation (Figure 6.4(b». Figure 6.7 shows the disjoint feasible 

region which is also constrained by the second floor drift and the stress in the two columns 

of the first floor. The resulting optimal designs obtained by the MISA method and three 

classical optimization techniques (MFD, SLP, and SQP methods) are shown in Table 6.S. 

The constants M, n" and nz used in the present algorithm were chosen as 8, 75, and 25, 

respectively~ " is equal to 1 for this design. The results obtained by using the different 

initial values of the design variables are shown in Table 6.6. Similar to the previous case 

of the two-story frame subjected to the anificial earthquake I, a local minimum is found in 

point (2) of Figure 6.7. The local minimum is obtained for some initial designs by the 

classical optimal design methods in the upper portion of the feasible region. 

A four-parameter design is formulated by assigning the two columns of the first 
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Fisure 6.7 Disjoint feasible region of the two-story frame subject~ to artificial 
earthquake 11;-2.54 -- - second floor drift constraint, --- _. 150 - -- _. -

combined stress constraint in columns of the fint floor 
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Tabl 6 SO' I d' f h e .. )ptlma eSlgn 0 t e two-story rame su )Ject fi b' ed 'fi . I h k II to artl ICIa eart aqua e 
OPtimal Dcsian Method 

MFD SLP SQP MISA 
Column Area (emZ) 246.06 246.09 246.09 246.78 
Beam Area (cm2) 237.00 236.99 236.98 236.56 

Volume (em') 738938 738,991 736214 739,726 
Function calls 39 19 IS 744 

Active Constraint 2nd fl. drift 2nd fl. drift 2nd fl. drift 2nd fl. drift 

Table 6.6. Results for two-story frame subjected to artificial earthquake II for different 
. "a1 d . Imtl es!&ns 

Initial OPtimal Desian Method 
Design MFD SLP SQP MISA 

Column Area (em2) 750 390.63 - 246.08 248.54 
Beam Area Ccm!) 750 368.53 - 239.98 236.78 

Volume (cm') 1,I63702 - 738963 743213 
Function calls 63 lSI 33 2064 

Active Constraint Point (2) - Point (I) Point (I) 

Column Area (emZ) 500 390.52 - 390.90 247.84 
Beam Area (cmZ) 500 368.37 - 368.08 236.45 

Volume (emS) 1524,000 1 163,296 - 1,163250 741,530 
Function calls 60 159 16 5312 

Active Constraint Point (2) - Point (2) Point (I) 
Column Area (em2) 400 390.51 391.76 390.48 246.78 
Beam Area (em!) 400 368.37 366.60 368.39 236.56 

Volume (em') 1 21~200 1,163,293 1.163,412 1.163289 739726 
Function calls 33 67 47 744 

Active Constraint Point (2) Point (2) Point (2) Point (1) 
Column Area (em2) 300 246.07 - 246.09 248.87 
Beam Area (em!) 300 236.99 - 236.98 235.28 

Volume (emS) 914,400 738948 - 738.633 741990 
Function calls 39 151 18 720 

Active Constraint Point (l) - Point (I) Point (1) 
Note: Point (I> is when the sceond floor drift is active 

Point (2) is when the stress in the columns of the first floor is active 
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floor to be identical, (AI), and the two columns of the second floor as having the same 

size, (Al). The beams on each floor have a different size, (A2, A.), as shown in Figure 

6.3(b). The strong column-weak beam philosophy is implemented in the program by 

computing the strength ratio of column to beam. which reflects current design code 

requirements for earthquake design. The 1940 EI-Centro earthquake shown in Figure 

4.6(a) is used. 

The present structural optimization problem was solved using the MlSA method 

and other classical optimization techniques. Table 6.7 shows the optimization results by 

using the MISA, MFD, and SQP methods for the problem with dynamic constraints. For 

all methods, the drift of the second floor is the active constraint. The volume of the two-

story frame obtained by the MISA method is 0.7 % more than the volume obtained by the 

MFD and SQP methods. However, some local minima were found for certain initial 

design variables when the MFO and SQP method were used. The minimum values of the 

volume at the local minima were found to be 17 to 3S % higher than the global minimum. 

It should be noted that the SLP method failed to find the optimal structure regardless of 

the initial values of the design variables. 

Table 6.7. Optimal design of two-story frame for the 1940 EI-Centro earthquake 
Group of Cross-sectiOll area (em 2) Member Combined stress (MPa) 

Frame MFD SQP MISA No. MFD 
Al 270.9 267.6 268.8 CD 108.97 
A2 263.1 259.7 2~7.6 0 109.47 
Al 193.1 196.3 211.6 G> 103.29 
A4 190.1 193.6 180.2 ® 78.97 

Volume ~ 79.06 
~anJ) 700,896 00,681 706,083 ~ 81.80 

Note :MISA - Modified ileraled simulared annealina 
MFD - Modified feasible directions 
SQP - Sequential guadratie erosrammina 

SQP MISA 
112.16 111.33 
113.39 111.86 
106.59 106.71 
79.01 67.92 
79.09 68.00 
81.8 87.55 

Drift (an) 
Fl. MFD SQP MISA 
1st 1.70 1.77 1.75 
2nd 2.54 2.54 2.54 
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Figure 6.8 shows the iteration history using the MlSA method for the two-story 

frame optimal design subjected to the 1940 EI-Centro eanhquake. Because of the random 

search of the design variables, there exist intermediate iterations for which the volume 

increases. Note that the constants, m, ft., and nl in the MISA program were kept as 8, 

75, and 2S which are identical to the parameter values used in the other case. 

Ten-story Frame with Dynamic Constraints 

A ten-story frame (Figure 6.9(a» with a 9.1 m width and a 4.6 m height for the 

first floor, and a 3.66 m height for floors above the first is used to test the MlSA method 

for dynamic constraints. The allowable stress for each frame member is assumed as 150 

MPa.. and the allowable interstory drift for each Roor is given as hl180 which is 2.S em for 

the first floor, a.,d 2.0 cm for the second up to the tenth floors. The inherent structural 

damping level is assumed to 5 % of critical at all modes. The strong column-weak beam 

philosophy is implemented in the program, which reflects current building code 

requirements for earthquake design. 

In the first case, a design with only two variables is used by defining the cross­

sectional areas of the colunms in every floor to be the same, and the cross-sectional areas 

ofahe beams in each floor as identical. The lumped mass for each floor is given as 34,034 

kg and 5 % critical damping is assumed in each of the ten vibration modes. The excitation 

is chosen as the 1940 El-Centro earthquake which is shown in Figure 4.6{.). 

There are 30 combined stress constraints, and 10 interstory drift constraints in this 

case. Figure 6.10 shows the feasible region which is constrained by the drift limits for the 
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Figure 6.8 Iteration history for four-variable optimal design of two-story frame using 
the MlSA method 
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Figure 6.9 Ten-story ftame: (a) dimensions and degrees-of-freedom, (b) loading and 
design variables 
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first, third, fourth, and fifth floors. The feasible region is also constrained by the combined 

stresses of the columns on the first floor as shown in Figure 6.11. The disjoint feasible 

region is found when all the drift and stress constraints are considered together for the 

optimization problem stated above. This results in a feasible region with three disjoint 

portions as shown in Figure 6.12, which is formed by the drift constraint on the third, 

fourth, and fifth floors, and the stress constraint in the columns of the first floor. 

Table 6.8 shows the optimization results by using the MISA method and thn:e 

classical optimal design methods (MFD, SLP, and SQP). The minimum v"lume of the 

ten-story frame found by the MISA method is slightly larger than that obtained by the SLP 

and SQP methods. In the present algorithm the following parameters were used: M ... 8, 

n, ... 75, n1 = 25, and k = 1. In this case, the number of function ('.ails required by the 

MISA method is less than that for the classical optimal design methods and is due to the 

randomness inherent in the method. Howevl.!r, in general the MISA method requires a 

larger number of iteratior.s as compared to classical methods. The design found by the 

MFD method, after at least six optimization runs with different initial values for the design 

variables, failed to produce an active constraint. It should be noted that some local 

minima are found by the MFD method at points (3), (4), (5), (7), and (8) in the three 

portions of the feasible region shOWil in Figure 6.12. Similarly, local minima located at 

points (2) and (6) were found by the SQP method for certain initial values of the design 

variables. Similar to the case of the two-variable two-story frame, the SLP method failed 

to find even a local minimum for certain initial values of the design variables. However, 

the MISA method came very close to the global minimum (point (1) in Figure 6.12). 
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constraint on the third, fourth, and fifth floon and the combined stress 
constraint in columns of the first floor 
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Table 6.8. Two-variable optimal design of ten-story frame subjected to the 1940 
EI C h k - entro eart Iqua e 

Optimal Design Memod 
MFD SLP SQP MISA 

Column Area (em!) 449 432 431 438 
Beam Area (em!) 382 377 377 378 

Volume 1cm') 6,852646 6,684,985 6,685,878 6,736,125 
Function calls 21 42 26 24 

Active Constraint none 4, 5 fl. drift 4, 5 fl. drift 3,4, fl. drift 

A second case for the ten-story frame with eight different groups for the cross-

sectional areas is also presented in this example. The eight groups are shown in Figure 

6.9(b). The allowable stresses and allowable interstory drifts are the same as stated above. 

The 1940 EI-Centro earthquake record is also used as the excitation for the present case. 

The results of the optimal design are listed in Table 6.9. In this design, the design 

paJameters using in the MISA method are: M = 8, n. = 75, nl = 25, and k = 3. Similar to 

the previous studies, the results obtained by the classical optimal design methods depend 

on the initial values of the design variables. Different initial values of the design varhbles 

produce different results or even fail to obtain a local minimum as shown in Table 6.10. 

Table 6.9. Eight-variable optimal design often-story frame subjected to the 1940 
EIC h ale - entro cart lqU e ..... _. Design Method 

MFD SLP SQP MISA 
Area (em!) -AI 533 464 426 445 

At 376 383 373 381 
Al 493 418 418 427 
A4 365 373 372 375 
As 392 394 398 410 
A. 365 367 372 364 
A, 403 389 322 407 
AI 287 288 314 284 

Volume (an') 6445092 6228547 6129459 6.291 178 
Function calls 216 95 71 904 

Active Constraint 5, 6 8 fl. drift 5, 6 8 fl. drift 4 S, 8 fl. dnil ~1 61 8 fl. drift 
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T bl 6 0 R I Ii . h . bl a e .1 . esu ts or elgl I-vana fr e len-storr arne or ... Id . I erent 100tla eSlgns 
Initial Final Design 
DesiaR MFD SLP SOP MISA 

Area (em') - A I 1600 1330 - 870 540 
A, 1500 1229 - 738 425 
A) 1500 8S1 - 804 430 
A4 1400 619 - 680 375 
A, 1400 1..0 7SO - 746 413 
A, 1300 590 - 667 365 
At 1300 653 - 517 37.5 
A. 1200 430 - 490 338 

Volume lcm'l 22,7SI,OOO 11,782,700 - 11,046,000 6,.518,109 
function calls 282 4,59 148 808 

Active constraint S-8 n. drift - 8 n. drift S n. drift 
col. stress (lsI) 

Area (cm2) -AI 1200 987 984 919 6.51 
A, 720 620 622 616 392 
A, 960 929 902 916 424 
A. 600 619 619 616 374 
A, 720 674 697 649 378 
A. 480 612 619 563 3.52 
A1 480 609 643 649 349 
A. 480 4.57 448 419 327 

Volume (em') 10776,000 10,9.5,5,470 11,017,670 10,64.5,,570 6,369.010 
Function calls 176 149 41 776 

Active constrainl 3, 5-8 n. drift 3~, 8 fl. drift 2-5, 8 n. drift S-8 n. drift 
col. suas (1 st) col. stress (1st) col. stress ~ 1 st) 

Area (cm') -AI 600 616 - - 465 
AI SSO 469 - - 402 
AJ 5SO .soo - - 441 
A. SOO 3.53 - - 369 
As SOO 420 - - 415 
A. 4SO 3S3 - - 363 
A1 4SO 372 - - 348 
A. 400 302 - - 317 

Volume (c:m') 8047100 6,592121 - - ~11531 
function calls 147 46.5 100 1016 

Actiw constraint 5, a fl. drift - - S, a fl. drift 
Ala (em') - A I 600 533 - - 164 

AI ~ 376 - - 409 
A, 480 493 - - 421 
A. 300 365 - - 375 
A, 360 392 - - 404 
A. 240 365 - - 349 
A1 240 403 - - 347 
A. 240 287 - - 335 

Volume (em') 5387,900 644,S092 - - ~6t's.938 

Function calls 216 460 56 816 
Actiw COIIIIrIiIll S 6, I n. drift - - S fl. drift 
Note: col ...... (lit) - combiacd ..... in the col .... oI'the fint floor 
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The latter was observed for the SLP and SQP classical methods. However. the results 

obtained by the MISA method always came very close to the global minimum design. 

Optimal Structures Using Convex Models 

The ten-story frame shown in Figure 6.9 is used to evaluate the perfonnance of the 

global energy-bound convex model adjusted with the excitation-specific reduction factor 

(RGEB) and the global energy-bound convex model adjusted with the average reduction 

factor (ARGEB). These designs also compared with the results obtained using the time­

history of the actual seismic records. The structural analysis of the frame is based on the 

direct stifthess method. with a capability for computing the strength ratio of column to 

beam which reflects current design code requirements for earthquake design, and the axial 

and bending stresses in the members. Three degrees-of freedom (OOF). the rotation, and 

the x and y direction displacements are considered at each joint, but only the horizontal 

displacement is used for detennining the dynamic constraints. The allowable stress for 

each member is assumed as 60 % of the yielding stress of250 Mpa, and the interstory drift 

constraints for each floor are equal to hl180 or 2.54 cm. The lumped mass for each floor 

is given as 27,234 kg and S % critical damping is usumed in each of the two vibrational 

modes. The constantsai• Pi' and Xi in equation (6.1) equal 0.58,0.58, and 0.67, 

respectively. Three excitations, the SOOE component of the May 18, 1940 EI-Centro 

earthquake, the 816E component of the Feb. 17, 1971 San Fernando eanhquake, and an 

artificial earthquake (III) shown in Figure 5.19( d) are considered. 
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Optimal Design of Conventional Structure for EI-Centro Earthquake 

The optimal design using the time-history response for the 1940 EI-Centro 

eanhquake (AR) and the optimal designs for the global energy-bound convex model 

adjusted with the excitation-specific reduction factor (RGEB). and the average reduction 

factor (ARGEB) are shown in Table 6.11. The values shown for stress and drift are the 

maxima obtained at the final design. The active constraints for each optimal design are 

shaded in Table 6.11. The reduction factor for the RGEB convex model is discussed in 

Chapter 5 which is excitation-specific and can be used only for the 1940 EI-Centro 

earthquake (SOOE component). The average reduction factor for the ARGEB convex 

model is the average value of the reduction factors from 26 California records (subset S7 

of Table 5.9). 

The minimum volume obtained by the RGEB convex model is 3.3 % less than that 

obtained by using the time-history analysis of the actual record (AR). The result obtained 

by using the ARGEB convex model is 49 % more than that obtained by the AR procedure. 

From the definition of the global energy-bound convex model adjusted with the average 

reduction factor (ARGEB) in Chapter 5, the result obtained in Table 6.11 for the ARGEB 

convex model could be used for any other excitation in California which has the same 

global energy bound as the 1940 EI-Centro earthquake. 

The time-history analysis of three earthquake records and that for the 1940 EI· 

Centro earthquake are used to verify the designs using the AR procedure and the ARGEB 

convex model (see Table 6.11). A scaled record of the S16E component of the 1971 San 

Fernando earthquake, the S90N component of the 1994 Northridge earthquake (Santa 



T
ab

le
 6

.1
1.

 
T

b 
im

a1
 d

 
. 

--
---

-
~
-

(t
h

e 
. 

na
l 

bi
ec

te
d 

to
 t

he
 1

94
0 

E
l-

C
 

ho
ua

k,
 -

F
nm

e 
C

I'O
SS

-I
ed

io
na

l u
e
a
 (

em
 ')

 
C

om
bi

ne
d 

st
re

ss
 f

or
 b

ea
m

 (
M

P
a)

 
C

am
bi

ne
d 

sl
Ie

ss
 f

or
 c

ol
um

n 
(M

P
a)

 
In

te
rs

to
ry

 D
ri

ft
 

em
) 

G
ro

u
p

 
A

R
 

RO
EB

 
A

RO
EB

 
Fl

. 
A

R
 

RO
EB

 
A

RO
EB

 
A

R
 

RG
EB

 
A

RG
EB

 
A

R
 

RG
EB

 
A

RG
EB

 
.A

I 
...

. 1
1.3

1 
60

3.
52

 
82

0.
57

 
I 

84
.9

8 
88

.8
6 

10
3.

55
 

11
8.

21
 

11
2.

71
 

13
8.

82
 

1.
35

 
1.

21
 

1.
22

 
.A

2 
37

9.
26

 
29

2.
64

 
59

8.
10

 
2 

92
.4

9 
10

0.
26

 
12

4.
99

 
77

.3
1 

79
.2

2 
10

9.
09

 
1.

72
 

1.
64

 
1.

79
 

.A
3 

43
0.

38
 

52
9.

49
 

69
4.

98
 

3 
87

.7
7 

92
.2

3 
12

5.
91

 
64

.3
2 

63
.1

4 
88

.6
0 

1.
80

 
1.

68
 

1.
99

 
.04

4 
37

5.
54

 
45

3.
80

 
57

4.
74

 
4 

IS
.7

S
 

80
.8

8 
11

9.
23

 
53

.6
3 

SO
. I

I 
76

.9
8 

1.
89

 
I.

 SO
 

1.
98

 
.A

S 
04

02
.9

0 
27

8.
79

 
66

7.
91

 
5 

90
.1

3 
88

.7
5 

11
0.

24
 

60
.3

4 
87

.1
9 

69
.2

6 
1.

99
 

1.
94

 
1.

92
 

.04
6 

36
0.

52
 

26
3.

78
 

55
1.

26
 

6 
88

.8
2 

78
.4

2 
99

.4
2 

SS
.4

4 
53

.8
9 

59
.9

8 
1.

97
 

1.
98

 
1.

81
 

.04
7 

35
3.

38
 

26
7.

66
 

42
9.

92
 

7 
80

.9
2 

75
.S

5 
91

.7
4 

49
.7

1 
42

.7
9 

47
.3

1 
1.

87
 

1.
84

 
1.

67
 

.04
8 

31
0.

48
 

25
3.

01
 

35
1.

54
 

8 
70

.6
4 

78
.7

4 
95

.7
6 

43
.9

2 
48

.2
0 

70
.1

9 
1.

98
 

1.
94

 
1.

95
 

V
oI

um
c:

 
6,

23
2,

04
8 

6,
02

8,
14

2 
9,

28
5,

28
1 

9 
53

.2
7 

70
.2

2 
76

.9
8 

39
.6

3 
49

.6
0 

51
.6

3 
1.

76
 

1.
93

 
1.

90
 

(e
m

')
 

10
 

32
.7

3 
47

.1
4 

49
.8

0 
26

.3
2 

41
.8

7 
35

.9
8 

1
.2

L
 _

1
.5

1
 

1.
42

 
-
-
-
-
-
-
-

N
oc

c 
: A

R
 -

M
ax

im
um

 I'
CS

pO
ns

e 
us

in
g 

th
e 

tim
c-

hi
st

or
y 

of
 th

e 
ac

tu
al

 n
m

rd
 

RO
EB

 -
G

lo
ba

l e
ne

fg
y-

bo
un

d 
C

O
Il

\'e
X

 m
od

el
 a

dj
us

te
d 

w
ith

 th
e 

ex
ci

ta
tio

n-
sp

ec
ifi

c 
re

du
ct

io
n 

fa
ct

or
 

A
R

G
E

B
 -

O
lo

ba
l e

nc
tK

Y-
bo

un
d 

C
O

Il
\'e

X
 m

od
el

 a
dj

us
te

d 
w

ith
 th

e 
av

er
ag

e 
re

du
ct

io
n 

fa
ct

or
 f

ro
m

 s
ub

se
t S

7 
o

n
 T

ab
le

 5
.9

 

-00 w
 



1&4 

Monica City Hall), and an artificial earthquake (IV) (Figure 6.13), all having the same 

global energy bound as the 1940 EI-Centro earthquake, are considered. The peak 

acceleration, duration, and global energy bound of the four elCcitations are shown in Table 

6.12. Note that the artificial earthquake is created using a sinusoidal function multiplied 

by the amplitude envelope function as shown in Figure 6.S. The artificial ground 

acceleration is expressed as 

lS 

i,(t) = bf(t)LQk sin(mkt) (6.3) 
It-I 

where ak and Q) It are the values of the 2S highest peak amplitudes and frequencies chosen 

from the 1940 EI-Centro earthquake record; b is a constant chosen to give the same global 

energy bound as the 1940 EI··Centro earthquake. It should be noted that the artificial 

excitation of Figure 6.13 was not used in the evaluation of the reduction factors of the 

ARGEB convex model. 

Figure 6. 14(a) shows the interstory drift response for the structure designed using 

the time-history of the actual 1940 EI-Centro eanhquake record (Building I); Figure 

6.14(b) shows the interstory drift response for the structure designed by the ARGEB 

Table 6.12. Peak acceleration and global energy-bound of the excitations for verifying the 
structure desi ed b the ARGEB convex model ofsubset S7 of Table 5.9 
Excitations Peak acc:cl. Duration laba1 cocrgy-bound 

1940 El-Centro 
Scaled San Fernando 

Scaled Northricfac 
Artificial IV 

0.348 
0.545 
0.706 
0.252 

ml~ 

11.38 
11.38 
11.38 
11.38 
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0.30 ,------------------------, 

-.2 0.20 

Z o 
~ 0.10 

~ 
U 0.00 

~ 
o Z -0.10 
::J o 
Q:; 
U -0.20 

nME (sec) 

Figure 6.13 Artificial eanhquake IV using the amplitude envelope function of equation 
(6.2c) 
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convex model (Building II). It can be observed that Building I exceeds the allowable drift 

at all floors for the scaled record of the 1971 San Fernando earthquake, and at seven 

floors for the scaled record of the 1994 Northridge earthquake. The maximum drift of 

Building I is 84 and 36 % more than the allowable drift when the structure is subjected to 

the scaled records of the San Fernando and Northridge earthquakes. Building II which 

was designed by the ARGEB convex model has a better response than Building I for both 

scaled records. The maximum drift is only 32 and 11 % larger than that of the allowable 

drift in the scaled record of the San Fernando earthquake and the actual record of the 

1940 EI-Centro earthquake. It should be noted that the drift response to the artificial 

earthquake (IV) of Figure 6.13 for both Buildings I and II remains within the allowable 

limits. 

Optimal Design of Conventional Structure for San Fernando Earthquake 

The optimal design for the actual record of the 1971 San Fernando earthquake and 

the optimal designs using the RGEB and ARGEB convex models are listed in Table 6.13. 

The reduction factor used in the ROEB convex model is excitation-specific, valid onJy for 

the 1971 San Fernando earthquake (SI6E component). The average reduction factor 

used in the ARGES convex model was obtained from the 12 records of the 1971 San 

Fernando and 1994 Northridge earthquakes (subset S6 of Table 5.9). The active 

constraints for each optimal design are shown shaded in Table 6.13. 

The minimum volume obtained by the RGES convex model is 2.0 % more than that 

obtained from the time-history of the actual record (AR). The minimum volume obtained 
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by the ARGEB convex model is 54 % more than that obtained by the AR procedure. It 

can also be observed that the minimum volume of the structure designed for the 1971 San 

Fernando is 2.2 times larger than that for the 1940 EI-Centro earthquake shown in Table 

6.11, which is approximately equal to the square root of the ratio of the global energy 

bound for these two earthquakes. 

The structure designed by the AR procedure (referred to as Building III) and the 

ARGEB convex model (referred to as Building IV) are also verified by a dynamic analysis 

for the 1971 San Fernando and scaled 1994 Northridge earthquakes shown in Table 6.14. 

Figure 6.15 shows the interstory drift of the structures subjected to the actual record of 

the 1971 San Fernando earthquake. and the scaled record of the 1994 Northridge 

earthquake with the same global energy bound. It can be observed that Building III has 

much larger drifts than Building IV when the structures are subjected to the scaled record 

of the 1994 Northridge earthquake. The maximum drifts are 76 and 12 % larger than the 

allowable drift for Buildings III and IV. Figures 6.14 and 6.15 show that in general, the 

structures designed by the ARGEB convex model respond well for other excitations which 

have the same global energy-bound. However, this is not true for structures designed fo~ 

8 single earthquake. 

Table 6.14. Peak acceleration and global energy-bound of the excitations for verifying the 
structure designed ~ the ARGBB convex model of subset S6 of Table 5.9 
Exci1ations Peak accel. Duration ~lobal energy-bound 

(g) (sec:) _(m'/secJt 
1971 San Fernando 1.172 41.0 52.61 
Scaled No.u .. ~~ 1.517 60.0 52.61 
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Optimal Design of Conventional Structure for Artificial Earthquake 

The optimal designs for the actual record of an artificial earthquake (Artificial 

earthquake III. see Figure S.19(d», are shown in Table 6.15. The reduction factors used 

in the RGEB convex model were the excitation-specific values valid only for this 

excitation. The average reduction factors used in the ARGEB convex model were 

determined from 6 excitation records with the same spe( rum (subset 02 of Table 5.11). 

It can be observed from Table 6.15 that the minimum volume obtained by the RGEB 

conve)( model is 24 % less than that obtained by the time-history of the actual record 

(AR). The reason for the larger difference between the RGEB convex model and the AR 

analysis in this case is that the interstory drift used for the design was not directly obtained 

from the RGEB convex model. From the definition of the global energy-bound convex 

model, the maximum displacement, velocity. and acceleration were formulated. and the 

interstory drift was obtained by subtracting the maximum displacement at each floor. The 

minimum volume obtained from ARGEB convex model is 9 % more than the AR optimal 

design which is acceptable. 

Optimal Design of Active Structure for EI-Centro Earthguake 

In this section the optimal design of an active structure with one active bracing 

system (ABS) on the first floor and one ABS on the second floor of the ten-story frame is 

presented. The control force is consl.-airaed to a maximum of 20 % of the excitation's 

effective lateral force. The effective lateral force is detennined by multiplying the total 

mass of the structure by the peak acceleration of the excitation. 
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Table 6.16 shows the optimal design using the time-history analysis of the 1940 El­

Centro earthquake record, the RGES convex model with the excitation-specific reduction 

factor, and the ARGES convex model with the average reduction factor from 26 

California records (subset S7 of Table 5.9). It can De observed that the minimum volume 

obtained by the RGEB convex model is 0.7 % more than that obtained by using the time­

history of the actual record (AR) for the 1940 EI-Centro earthquake. The minimum 

volume obtained by the ARGEB convex model is 64 % more than that of the AR design. 

However, note that compared to the design of the structure without structural control the 

present designs requir~d on the average 15 % less volume. 

The performance of the structure designed by the time-history of the actual EI­

Centro earthquake record (Building V) and the structure designed by the ARGEB convex 

model (Building VI) are examined using a time-history analysis of the four excitations 

shown in Table 6.12 with the same global energy-bound. The same control parameters are 

used in the design of Buildings V and VI. The interstory drifts for these two buildings are 

shown in Figure 6.16. Similar results are obtained as observed in Figures 6.14 and 6.15. 

Building VI responds much better than Building V for all excitations, especially for the 

scaled record of the San Fernando earthquake. The maximum control forces of both ABS 

in Buildings V and VI (Figure 6.17) are on average 19 and 11 % of the excitation effective 

lateral force, respectively. 
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Two ABS were assumed to be installed in the ten-stol)' frame as descried in the 

last section. The optimal designs for the 1971 San Fernando earthquake are shown in 

Table 6.17. The minimum volume obtained by the RGEB convex model is 3.3 % less than 

the minimum volume for the actual record (AR) for the 1971 San Fernando earthquake. 

For the results obtained by the ARGEB convex model, the subset S6 of Table 5.9 is used 

in Table 6.17. The minimum volume results obtained by the ARGEB convex model is 59 

% more than the minimum volume obtained using the actual record (AR) for the San 

Fernando earthquake. Table 6.18 shows the optimal designs for the time-history analysis 

of the 8Itificial earthquake III shown in Figure S.19(d), and the RGEB and ARGEB 

convex models. The minimum volumes obtained by the RGEB convex model is 7.2 "0 less 

than the actual record (AR) of the artificial earthquake III. The results obtained by the 

ARGEB convex model (subset G2 of Table 5.11) is 25 % more than those obtained by the 

AR. 

These values, as well as that obtained for the conventional structures, indicate that 

in general the results obtained by the RGEB convex model are closer to those of the time­

history of the actual record (AR). The results obtained by the ARGEB convex model are 

further away as compared to the RGEB convex model from those of the AR procedure. 

However, the ARGEB convex model results are most of the time on the conservative side 

and within reasonable margins. In general, the structures designed by the ARGEB convex 

model respond better to other excitations than the structures designed by the time-history 

analysis for a specific excitation. The computational advantage of using convex models is 
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obvious in the case of buildings with a large number of design variables, such as tall 

buildings. In that case, the calculations involved in obtaining the active structure using the 

time-history analysis of the actual record are quite expensive. However, the convex model 

solutions could be obtained with less effort because of the static nature of the constraints. 

Optimal Designs of Active Structures 

In this section, the ten-story frame shown in Figure 6.9 with different levels of 

inherent structural damping is used. Three cases are discussed: (I) one active bracing 

system (ABS) installed on the first floor and one ABS on the second ~oor, (2) one 

viscoelastic (VE) damper on the first floor and one VE damper on the second floor, and 

(3) one ADS on the first floor and one VE damper on the second floor. The allowable 

stress for each frame member is assumed as I SO MPa, and the allowable interstory drift 

for each floor is given as h/180 which is 2.S em for the first floor, and 2.0 em for the 

second up to the tenth floors. The strong column-weak beam philosophy is also 

implemented. The constantsCl i, Pi' and Xi in equation (6.1) equal 0.58. 0.58. and 0.67. 

respectively. Note that for Cases (I) and (3) the maximum control forces of ADS are 

limited to be equal or less than 20 % of the excitation lateral force. The thickness of the 

VE dampers equals 0.0127 m. and the cross-sectional area of ~he VE dampers equals 

0.032 mZ which is chosen to achieve the similar performance as the ADS structural 

control. The material properties of the VE dampers are described in Chapter 4. 

The optimal designs of the conventional structure with inherent structural damping 
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levels of I, 2, 3, and 4 % of critical are shown in Table 6.19. The time-history analysis 

method is used with the 1940 EI-Centro earthquake as the excitation. The active 

constraints for each optimization design are shaded in Table 6.19. It can be observed that 

the minimum volume of the optimal structure is decreased as the inherent structural 

damping is increased. Note that the optimal design of the structure with inherent 

structural damping of S % of critical was shown in the previous section (Building I in 

Table 6.11). 

The optimal designs for the three active structures stated above are shown in 

Tables 6.20,6.21, and 6.22. The inherent structural damping levels are assumed to 1,2, 

3, 4, and S % of critical at all modes for each of the three cases. The 1940 EI-Centro 

earthquake is used. The effective damping level, includes the inherent structural damping 

and the damping introduced by the structural control. The minimum volume of the active 

structures are compared with the conventional structures of Table 6.19 and Building I of 

Table 6.11, and are shown in Figures 6.18, 6.19, and 6.20. It can be observed that the 

volume of the optimal structures are decreased as the effective damping level is increased 

for active structures as well as conventional structures. 

The relationship between the effective damping ratios and the optimal volume of 

the active structures can be depicted more clearly by comparing Cases 1 - 3 of Figures 

6.18 - 6.20 as shown in Figure 6.21. It can be observed that in general the minimum 

volume of the active structure is inversely proportional to the effective damping ratio for 

aU three structural control cases. A comparison of the additional damping introduced by 

the control systems in the three cases with respect to the inherent structural damping is 
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shown in Figure 6.22. It can be observed that for the same level of inherent structural 

damping, the additional damping introduced by the VE dampers (Case 2) on average is 0.6 

and 0.9 % less than that of the active bracing systems (Case I) and that of the combined 

system (Case 3). respectively. 

However, the structural control systems reduce the optimal volume of the active 

structures on average by 23 % as compared to the reduction of the optimal conventional 

structures for the different levels of inherent structural damping. Figure 6.23 shows the 

ratios of the optimal volume of the active structures to that of the conventional structures. 

For the structure with the inherent structural damping level of I % of critical, the 

reduction of the structural volume can be achieved more efficiently (35 % on average) by 

the active structure. Note that the reduction of the three active structures, structures 

equipped with two ABS, two VE dampers. or one ADS and one VB damper, on average 

for all inherent damping ratios is 23, 21, and 2S % less than the conventional structure's 

optimal volume. However, a specific cross-sectional area of VE dampers and the 

maximum control force of the ADS are chosen for the active structures to achieve a 

comparable level. The intention of those comparisons is not to run a competition among 

the three cases of active structures, but to demonstrate that the reduction of the structural 

volume can be achieved in more than one way. 
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CHAPTER 7 

INELASTIC ANALYSIS OF CONVENTIONAL 

AND ACTIVE STRUCTURES 

An inelastic analysis is carried out in this Chapter using the finite element software 

DRAIN2DX (Prakash et aI., 1993) for both conventional and active structures. A bilinear 

elastic-plastic model is used for the inelastic analysis. The response of the elastic and 

inelastic models is compared in terms of the displacement, velocity, acceleration, 

per1IWlent deformation, control force requirements, and energy of the structural systems. 

The advantage of using active structures is shown by comparing the structural response 

and number ofyie1d events. 

M'As; Analysis ofFrameci structures 

A simple inelastic element for modellina the frame elements of the structure 

(powell, 1993), which includes beam and beam-column components, is uaed in this 

research. An elastic beam with two rigid-plastic hinges at its ends is considered. Yielding 

takes place only in the plastic hinges. The yield moment capacity is specified for positive 

and neptive bendins at the two ends oftbe element (Yaaure 7.1). The value of this yield 



L. • 

p 

----;-----r---~----+ AI 
Aly+ 

Figure 7.1 Yield surface and sign convention for moment 

moment can be calculated in terms of the yield stress, a 7 as 

211 

(7.1) 

where d and b are the width and the depth of the beam or column element, and z is the 

coordinate in the in-plane direction. 

The effects of the inelastic axial and shear defonnations are ignored. The strain 

hardening in bending is modelled by assuming that the element consists of elastic and 

plastic components in parallel as shown in Figure 7.2. It is assumed that if the bending 

moment on the element is constant, the moment-rotation relationship has the same shape 

as the moment-curvature relationship. Thus, the strain hardening ratio is defined as a 

proportion of Young's modulus. 

The input enersY imparted to an inelastic system by a dynamic excitation is 

dissipated by viscous damping and by the yielding behavior of the structure. The energy 

terms can be defined by integrating the equation of motion of III inelastic system as 

(Chopra, 1995) 



Strain-hardening 
component (an elastic 
element with ideal plastic Node J 

~~ 
~RiJddzone 

Node I 

Moment 

'-- Yield point 
EI 
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Curvature 

(a) (b) 

Figure 7.2 Bilinear model for the inelastic structure; (a) parallel components, (b) 
moment-curvature relationship 

1: nri(t)dx+ fc:tdx+ r j.(x,x)dx = -JJnx,(t)dx (7.2) 

where f,(x,x) is the resisting force for an inelastic (in this case e1BStOplastic) system. 

Equation (7.2) can be described in terms of the energy dissipated by viscous damping. 

yielding, and the recoverable strain energy of the system as 

EK(t) + Ec(t) + E,(t) + E,(t) = E, (t) (7.3) 

where EK(t), Ec(t), E,(t), E,,(t), ad E,(t) art; the kinetic energy usociated with the 

motion of the structure relative to the ground, the damping energy, the yield strain energy, 

the elastic stnin (the recoverable strain) eneI"8Y, and the input energy. These energies are 

defined as 

E, (t) = -r-, (t)dr = £-, (t)i(t)dt (7.4&) 
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EK(t) = r~(t)dr = li mi'(t)dX = nni{t)z 
Jo 0 2 

(7.4b) 

Ec(t) = Lci{t)dx :: r c(i(t)]dt (7.4c:) 

E,(t) = v,{r,i)dr - E,(/) = I~i(t)J.,{r,i)dt - Es{t) (7.4d) 

E (t) = [Is (t) r :: _h_2 
s 2k 2 

(7.4e) 

Conventional Structures 

Building V where properties are shown in Table 6.16 is used to investigate the 

inelastic: behavior of the elastic-plastic structure. The strain hardening ratio is assumed as 

0.0588, and the structural damping level equals S % of critical for all the modes. The 

beam and beam-column components of the structure are assumed to be structural steel W-

shapes. The yield moments and moments of inertia of the structural element are shown in 

Table 7.1. The yield moments for positive and negative bending are assumed to be the 

same. The actual record of the SI6E component of the 1971 San Fernando 

earthquake is used. Scaled records of the SOOE component of the 1940 EI-Centro 

Table 7.1 Moments of inertia and yield moments of the structural elements of Building 
V in Table 6 IS 

Structural element Cross-sectional Moment of Yield Moment 
Area{m 2) inertia (m 4) (N-m) 

I st floor columns .OS0902 2.9931E-3 1.7619E+6 
1 st floor beam .040640 1.9079E-3 1.4111E+6 
2nd-4th floon columns .042036 2.0412E-3 1.4S19E+6 
2nd-4th floon beams .036727 1.5582E-3 1.2"IE+6 
Sth-7th Boon columns .038591 1.7204E-3 1.3410E+6 
Sth-7th Boon beams .035582 1.4625E-3 1.237IE+6 
8th-10th ftoon columns .037396 1.6155E-3 1.3000E+6 
8th-10th floon beams .021248 9.1119E-4 1.0203E+6 
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earthquake and the SOON component of the 1994 Northridge earthquake (Santa Monica 

City Hall), both having the same global energy bound as the 1971 San Fernando 

earthquake, are also considered. The peak acceleration, duration, and global energy 

bound of the three excitations are shown in Table 7.2. 

The maximum response in terms of displacement, drift, velocity, and acceleration 

at each floor is shown in Figures 7.3 - 7.14 for the three excitations. It can be observed 

that the displacement, drift, velocity, and acceleration response obtained by the elastic 

analysis are on average 27, 31, 33, and 20 % larger than those obtained by the inelastic 

analysis for the 1971 San Fernando earthquake, and 13, 9, 5, and I % for the scaled 

record of the EI-Centro earthquake. For the scaled record of the Northridge earthquake, 

the displacement, drift, and velocity response obtained by the elastic analysis are on 

average 2, 1, and 11 % larger than those obtained by the inelastic analysis. The 

acceleration response obtained from the elastic and inelastic analyses are almost the same 

for the scaled record of the Northridge earthquake. In general, it can be found that the 

maximum responses obtained from the elastic analysis were more conservative than those 

obtained from the inelastic analysis if significant yield events had occurred. However, the 

permanent deformations can only be determined from the inelastic analysis. 

Table 7.2. Peak acceleration and global energy-bound of the excitations for investigating 
t he' I . beha' fB 'Idi V' Tabl 615 lneastlc Vloro UI ng m e . 
Excitations Peakaccel. Duration Global eneI'8Y-bound 

(g) (sec) (m2/scc') 
1971 San Fernando 1.172 41.0 52.61 
Scaled El-Centro 0.748 53.0 52.61 
Scaled Northridge I.S18 60.0 S2.61 
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Figure 7.3 Maximum displacement of the ten-story frame for the 1971 San Fernando 
earthquake; (a) elastic analysis, (b) inelastic analysis 

10 10 

sa 8 

IS 8 

7 7 

a: IS 

~ 
«5 

~ 5 5 

" 4 

3 3 

2 2 

1 1 

0.00 0.50 1.00 '1.50 2.00 2.50 0.00 0.50 1.00 1.50 2.00 

DRIFT(%) DRIFT~) 

(a) (b) 

Figure 1.4 Maximum drift of tile ten-story frame for the 1911 San Fernando earthquake; 
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Figure 7.S Maximum velocity of the ten-story frame for the 1971 San Fernando 
earthquake; <a> elastic analysis, (b) inelastic analysis 
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Figure 7.6 Maximum acc:eleration of the ten-lItOry frame for the 1971 San Fernando 
earthquake; <a> elastic analysis, (b) inelastic analysis 
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Figure 7.7 Maximum displacement of the ten-story frame for the scaled record of El­
Centro eanhquake; (a) elastic analysis, (b) inelastic analysis 
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Figure 7.8 MaxiJm.un drift of the ten-story frame for the aled record of E1-Centro 
earthquake; <a) elastic analysis, (b) inelastic analysis 
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Figure 7.9 Maximum velocity of the ten-story frame for the scaled record of EI-Centro 
earthquake~ <a) elastic analysis, (b) inelastic analysi$ 
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Figure 7.11 Maximum displacement of the ten-story frame for the scaled record of 
Northridge earthquake~ (a) elastic analysis, (b) inelastic analysis 
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Figure 7.13 Maximum velocity of the ten-story frame for the scaled record of Northridge 
earthquake; <a> elutic analysis, (b) inelastic analysis 
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Figure 7. 1 S shows the time-history record of the 10th floor displacement obtained 

from the three excitations shown in Table 7.2 for both elastic and inelastic analyses. It can 

be observed that after the peak ground acceleration occurs the structure maintains some 

permanent deformation for the inelastic case. The permanent deformation for each floor 

of the structure is shown in Figure 7.16. It can be found that the permanent deformation 

for the structure subjected to the scaled record of the 1994 Northridge earthquake is 

larger compared to the other two earthquake records. 

The energy time-histories of the elastic and inelastic analyses for the structure 

subjected to the 1971 San Fernando earthquake and the scaled records of the 1940 El­

Centro and J 994 Northridge earthquakes are compared as shown in Figures 7.17 - 7.19. 

It can be observed that the damping energy is reduced when yielding occurs. In the 

inelastic analysis, the input energy is dissipated by structural damping as well as yielding. 

In general, the input energy in the elastic analysis is greater than that of the inelastic 

analysis. This fact can also be observed from the velocity response of the structure shown 

in Figures 7.5, 7.9, and 7.13. 

Active Structures 

Two active structures with elastic-plastic behavior are studied in this seaion. In 

the first case, the ten-story ftame in Table 7.1 equipped with an active bracing system 

(ABS) on the first and second floors is used. The contrd force is constrained to a 

maximum of 20 % of the excitation's effective lateral force. The effective lateral force:; is 

determined by multiplying the total mass of the structure by the peak KCClcration of the 
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F'18W'fI7.15 DiIpIacement timHiItory ohbe 10th floor of the 1b'UCture: (a) 1971 San 
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excitation. The effective damping level for the first two modes of this active structure 

equals 10.6 and 16.8 % of critical, respectively. In the second case, the ten-story frame in 

Table 7.1 is equipped with an ABS on the first, second, third, and fourth floors. The 

control force is also constrained to a maximum of20 % of the excitation's effective lateral 

force. The effective damping level for this active structure equals 20.6 and 27.6 % of 

critical for the first and second modes, respectively. 

The structural response for the cases stated above is compared to the structure 

without the ABS structural control. The displacement, drift, velocity, and acceleration 

r!sponse reduction obtained for the earthquake records of Table 7.2 is shown in Table 7.3. 

In general, the structure with four ABS structural controls can reduce the response even 

more compared to the structure with only two ABS. It can be observed that the 

displacement response of the structure with two ABS structural controls was on average 9 

- 16 % less than that of the structure without control. The displacement response of the 

structure with four ABS structural controls was reduced about 29 - 3S % on average. 

More importantly, the additional structural control system not only reduces the 

dynamic response of the structure, it also reduces the yield events of the structure. Figure 

7.20 shows the number of yield events as a function of time for the three structures stated 

above in the 1971 San Fernando earthquake. It can be observed that the total yielding 

Table 7.3 Average response ratios as compared to the uncontrolled structure with the 
add" f . b . Itlon 0 active racmg systems 

Excitation ADS on the 1st and 2nd floors ADS on the 1st, 2nd 3rd, and 4th floors 
Disp. Drift Vel. AcccI. Disp. Drift Vel. Acccl. 

SanFemaado 0.84 0.88 0.91 0.98 0.71 0.73 0.83 1.00 
Scaled El-Ccatro 0.87 0.79 0.87 0.90 0.72 0.66 0.77 0.14 
Scaled 0.91 0.83 0.8S 0.9S 0.6S 0.62 0.73 0.96 
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events are only two-thirds of those of the no control system for the structure equipped 

with two ABS. and only one-third for the structure with four ABS. Figures 7.21 and 7.22 

show a breakdown of the yield events with respect to the beam and column members of 

the structure. It should be noted that yielding in the columns oc:curred only in the columns 

of the first floor. Similar results can also be observed from the scaled records of the 1940 

EI-Centro earthquake and the 1994 Nonhridge eanhquake that are shown in Figures 7.23 

- 7.28. The total yielding events for the three cases are shown in Table 7.4. It can be seen 

that total yield events for the active structure with two ABS are reduced to one half 

compared to the conventional structure. The yield events for the active structure with 

four ABS are much less than those of the conventional structure. 
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Table 7.4 Yielding events of the inelastic structure equipped with a certain number of 
. b active racana Systems 

Excitation wlo c:antroI 2ABS 4ABS 
Total Beam Column Total Beam Column Total Beam Column 

SanFemando 451 341 110 324 230 94 IS9 117 42 
Scaled EI-Centro 259 167 92 117 73 44 16 6 10 

Sc:aIed Northridge 330 241 89 176 126 SO 21 21 0 



CHAPTERS 

CONCLUSIONS 

The performance of viscoelastic (VE) dampers and active bracing systems (ABS) 

when they are used for structural control was studied. A structural frequency dependent 

property of the VE damper is employed to obtain the effective damping ratio introduced in 

a structure equipped with VE dampers. An optimization method is developed to desisn 

the minimum size of VE dampers for achieving an expected effective damping ratio of the 

structure. A performance index usins drift as the criterion, and another usins velocity and 

acceleration feedback are proposed for the ADS structural control. These algorithms were 

found to reduce floor accelerations better than the instantaneous optimal control 

algorithm. but require higher levels of control fc-l'Ce. A method based on the Lyapunov 
. 

function for obtaining the weighting matrix of an ASS structural control is introcIuc:ed that 

reduces the required control force for certain control algorithms. 

Structural displacements can be reduced to • desired level by using dift'erent 

arrangements of VE dampen and ADS structural controls having the same eft'ective 

clamping ratio. For the same response reduction, the addition of. VE damper to I 

structure equipped with an ADS structural control reduces the required control force IUd 
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damper is improved in the presence of the ABS structural control. The elastic strain and 

kinetic energy of a seismic structure is decreased by using the ADS-VE hybrid structural 

control system. 

An energy-bound convex model is used for estimating the maximum response of a 

structural system subjected to dynamic loads. The estimated structural response using the 

energy-bound convex models is rather conservative when compared to the time-history of 

the response using the actual earthquake record. The energy-bound convex model results 

are slightly imprOVed as the damping level of the structure is increased. A reduction factor 

is defined for a structure subjected to a specific earthquake record and is a function of the 

structure's natural periods and modal damping ratios (global energy-bound convex model 

adjusted with an excitation-specific reduction factor, ROEB convex model). 

The results are extended for finding the maximum response of a structure to an 

unknown excitation but known energy-bound. An average reduction factor is defined by 

taking the average of the reduction factors at the modal level from a set of earthquake 

records. Numerical simulations show that tbe response obtained by the global energy­

bound convex model adjusted by the average reduction factor (ARGEB convex model) is 

not as close to the actual response as that obtained by the excitation-specific RGEB 

convex model. However, the ARGEB convex model still yields an acceptable prediction 

of the maximum response for unknown earthquakes of a given global energy-bound. The 

reduction factor remains constant for different levels of the energy-bound. 

It hu been found that the average reduction factor is sensitive to the location of 
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the records that defines the subset from which the factor was determined. In addition, it 

was found that the average reduction factor for records in the same general location is not 

sensitive to time. Thus, for a certain location if sufficient records of previous earthquakes 

are available, regardless of the chronology of the event, the average reduction factor can 

be determined with some confidence. An alternative procedure is to determine the 

average reduction factor from site-specific spectra whenever they are available. 

A modified iterated simulated annealing (MISA) method with sensitivity analysis 

and automatic reduction of the search range is presented for the structural optimization 

process. The method is based on simulated annealing which is an algorithm that has the 

ability to find the global optimum. First-order sensitivity analysis is used to identify which 

design variables need to be modified in order to decrease a certain constraint in the most 

economical way. Even though the actual values of the new design vari~les are 

determined randomly, the knowledge of which design variables to modify avoids the 

expense of multiple trials and improves the efficiency of the present method considerably. 

The automatic reduction of the search range helps reduce the extent of the search for the 

new design variables. As a result. the computational effort for successive iterations is 

greatly reduced. 

The M1SA method was found to be advantaseous for optimization of suuctural 

systems with dynamic constraints, as compared to classical optimal design methods. For 

dynamically constrained problems, where the feasible region is usually disjoint, the M1SA 

method has the advantage of converging in the proximity of the sJobai minimum even 

when infeasible initial designs are used, and for practically any choice of the initial values 
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of the design variables. In addition. the method proceeds to the global minimum even 

when intermediate design iterations are worse than previous iterations, since design 

iterations use random sequences of candidate designs. By contrast, some of the classical 

optimization methods may converge to local optimal points or not even reach these local 

optimal points because of the disjoint nature of the feasible region. 

The optimal design of conventional as well as active structures using the energy­

bound convex models yields static member sizes that are different from those obtained 

using a historic actual earthquake record. The minimum volume required for conventional 

or active structures designed by the average reduction factor convex model (ARGEB) is 

approximately 50 % larger than the volume required by the optimal structure designed for 

a single historic earthquake record. One advantage of using convex models to perform the 

structural optimization is that they represent a more general excitation than a single 

historic earthquake. Thus, the structures designed using the ARGEB convex model 

respond well for other excitations, which might occur in the future, and having the same 

global energy-bound; by contrast, structures designed for a specific historic earthquake 

record do not respond as well for other possible future earthquakes. This is true for either 

conventional or active structures. Another advantage of using convex models is that the 

computational effort required for the optimization, when usins the energy-bound convex 

models, is much less than that required when using actual historic earthquake records. 

That is the case since the constraints are transfonned from dynamic to static ones. 

For a certain number of VE dampers or a limited control force of the ABS 

structural control, the optimal design of the active structure yields a minimum volume on 
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average twenty percent less than the optimal volume of the conventional structure for 

different levels of inherent structural damping. The constraints for joint displacements and 

member stresses are kept the same ior either the optimal conventional or active structures. 

In this respect, active structures are seen to be more efficient by combing the conventional 

static members with the active members. 

Finally, inelastic analysis based on a bilinear elastic-plastic model is used to 

investigate the behavior of conventional as well as active structures. ]r. general, the 

maximum responses obtained from the elastic analysis were more conseiVative than those 

obtained from the inelastic analysis if significant yielding events had occurred. However, 

the permanent deformations can only be determined from the inelastic analysis. The 

inelastic behavior of the structure can also be observed from the reduced structural 

damping and input energy requirements which are offset by external damping as well as 

yielding in the inelastic analysis. The active structure with the additional structural control 

system can reduce the r~sponse compared to the conventional structure. More 

importantly, it also reduces the yield events experienced by the structure. 



APPENDIX A 

ACTIVE CONTROL ALGORITHMS 
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Research in the area of active control of civil structures subjected to dynamic loads 

has been focused on the development of a number of certain control algorithms based on 

different performance indexes. Discussion in this appendix is focused on some basic 

results of modem control theory as they relate to the results presented in Chapter 2. 

Linear Ouadratic Regulator (LOR) Method 

In classical linear optimal t.uillfol the control vector, ,,(t), is chosen by defining the 

performance index. J. as (Soong, 1990) 

(A.l) 

The first term. J1 • is the initial stage which is used to evaluate the index at the initial and 

final times of the control interval [to, t(]. The second term, J l • is an integral evaluation 

over the control period. z(t) and ,,(t) are the state vector and the control force vector as 

shown in equation (2.8). 

The performance index chosen for the study of the structural control problem is 

quadratic in vectors, z(t) and II(t). Setting the initial time equal to zero. the performance 

index can be represented as in equation (2.7). To find the optimal results one minimizes 

the index of equation (2.7) subject to the constraint of equation (2.8a). The Lagrangian L 

is formed by adjoining these two equations with a time-varying Lagrange multiplier, ~t). 

This can be expressed as (Soong. 1990) 



Let 

Therefore, the Lagrangian can be simplified as 

(A.4) 

The necessary condition for the optimal control can be obtained by finding the first 

variation of the Lagran8ian with respect to the control variables and settin8 it to zero. 

The first variation of equation (A.4) can be obtained as 

By requiring 5L - 0, one obtains 

(g 
--0 when O~t~tr au - , 

(AS) 

(A.6a) 

(A6b) 



and the boundaty condition 

Substituting equation (A.3) into equations (A.6a) and (A.6b), one can obtain 

N(t) = -! R-' BT).. 
2 

~ = -ATA,(t)-2Qz(t) 
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(A.6c) 

(A.7a) 

(A.7b) 

Considering a closed-loop control, the control vector is regulated by the state 

vector which is expressed as (Sage and White, 1977) 

),,(t) = p(t):(t) 

Substituting equation (A.S) into equation (A. 7), one can obtain 

.. (t) = -4- g-' B'f p(t)z(t) = G(t)z(t) 

P(t)t(t) = -1(t):(t) - A'f P(t)%(t) - 2(2%(t) 

(A.S) 

(A,9a) 

(A,9b) 

The control vector .. (t) is linear in &(t). and the matrix G(t) = - i Jr' BT p(t) is the 

control pin. llec:a11ina equation (2.') ad pre-nultiplyina it by matrix 1(t) 



P(t)t(t) = P(t)A:(t) + P(t)s,,(t) + P(t)HF(t) (A 10) 

Therefore, the unknown matrix p(t) can be determined by substituting equation (A.9) into 

(A. 10). In addition, the boundary condition of equation (A.6c) can be obtained from 

equation (A. B). The expression for finding p(t) is obtained as 

[P(t) + P(t)A + AT P(t)+2Q-~P(t)BR-' BT P(t)}(t) + P(t)HF(t) = 0 

p(tr ) = 0 (A. II) 

When F(t) - 0, equation (A II) reduces to 

pet) + P(t)A + AT pet) + 2Q _1. P(t)BR-' BT pet} = O. P(t() = 0 (A. 12) 
2 

Equation (A.12) is called the matrix Ric:c:ati equation in optimal control theory, and p(t) is 

the Ric:cati matrix. Usually, the Riccati matrix. P(t), does not yield an optimal solution 

unless the excitation force F(t) is zero within the control 'period [0, I( ](S. and White, 

1977). In the applications of stNctural control to civil structures, numerical computations 

have shown that the Riccati matrix remains constant over the control period and drops to 

zero rapidly at the end of the interval. Therefore, in most of the cases p{t) can be 

approximated by a constant matrix P. Equation (A 12) can be simplified u 



PA+AT p+2Q-!PBR-1BTP= 0 
2 
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(A.ll) 

and the control gain O(t) is also a constant matrix expressed from equation (A9a) as 

(A.14) 

Instantaneous Qptimal Control (JOC) Method 

Since the classical optimal control, the linear quadratic regulator method, is not 

truly optimum by ignoring the seismic excitation term in the Riccati equation, other 

'Igorithms have been proposed. A time-dependent performance index J(t) was defined by 

Yang el aI. (1987) as shown in equation (2.10). The optimal solution can be obtained by 

minimizing J(t) at every time instant t for the total control period (0 S t S tr ). 

The instantaneous optimal control algorithm is used to successively evolve the 

state vector z(t) through a small time interval ~t. Assuming that matrix A shown in 

equation (2.8) possesses distinct eigenvalues, the state vector can be rxpressed through 

the \.cansformation 

z(t)::. 7W(t) (AtS) 

where T is a 2nx2n modal matrix whose c;olumns are the eigellvecton of matrix A; Ml(t) is 
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the "modal" state vector (Soong, 1990). Substituting equation (A.1S) into equation (2.8) 

and pre-multiplying by the inverse of the modal matrix T- I both sides of the equation, one 

can obtain 

wet) = Aw(t) + net) 

A =T-'.4.T, O(t) = T-I[BIl(t)+HF(t)] 

(A. 16a) 

(A. 16b) 

where A is a diagonal matrix whose diagonal elements are the complex eigenvalues of 

matrix.4.. Solving equation (A.16a) over a small time interval At, the "modal" state vector 

w(t) can be expressed as 

r' A(t·.) 
w(t) = Joe O{t}dt (A. i7) 

According to the trapezoidal rule 

I a-I J(t) & 
J/(t)dt - LI(k.4t)·4t+ . 

.. _I 2 
(A.IB) 

Therefore, equation (A. 11) can be reduced 

(A. 19) 
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Let 

.. I 

D(t - &t) = reA(··IIl6&O(k. &t)&t (A20) 
II-I 

Equation (A20) can be rewritten as 

.·1 
D(t - &.) = reAC •. k)6lQ(k. &t)&t +tU1Q(t - ~t)At 

(A.21) 

Substituting equation (A.20) into equation (A 19), one can obtain 

At At 
D(t - ~t) .. w(t) - O(t) "2; and D(~ - 2~t) - w(t - At) - Q(t - ~t)2 (A.22) 

Equation (A.21) can be written as 

(A.23) 

and 

(A.24) 



For the state vector %(t), equations (A IS) and (A.24) lead to 

,(t)= T{,A-a\lw(t-4t)+ ~t[,A-a\lQ(t-4t)+O(t)]} 

= 79(t - 4t) + 4t [&(t) + HF(t)] 
2 

9(t- 4t)= ,A-a\lT-1{,(t - 4t)+ ~t [&.(t- 4t)+ HF(t -4t)]} 
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(AlSa) 

(A2Sb) 

A similar procedure as given in the last section is used, for the minimization of the 

perfonnance index J(t) given in equation (2.10). The Hamiltionian is 

'3t = :; T (t}{2t(t) +" T (t)R,,(t) +). T (t~ ,(t) - 79(t - 4t) - ~t [&.(t) + HF(t»)} 
(A26) 

The necessary conditions for the minimization are 

which yield 

2Qz(t} + ).(t) = 0 

2.(1) - 4t BTl(t) = 0 
2 

(A 27.} 

(Al7b) 
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At 
z(t) = 79(t - At) + "'2 [BII(t) + HF(t)] (A.27c) 

Using the closed-loop control, A(t) = p(t)z(t) (equation (A.S», equation (A.27a) 

gives 

I'(t)= -2Q 

and equation (A.21b) can be expressed as 

The response state vector t(t) is 

z(t) = 79(t - At) + ~t [ - ~t BR-' BT 0(t) + HF(t)] 

= [1+ A~2 BR-1 BT Q Jl78(t -At) + ~t HF(t) ] 

(A.2SI) 

(A.2Sb) 

(A.29) 

The above expressions of equation (A.28b) and (A.29) are used to calculate the control 

force and the response of structures with active controls using the IOC algorithm . . 



APPENDIXB 

RUNGE-KUTT A METHOD 
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A high-order local truncation error of the Taylor methods is used for evaluation of 

the derivatives of function ./(/.=) which is called the Runge-Kutta method (Burden and 

Faires, 1985). The order of all of the partial derivatives offunction./(/.z) is assuming to be 

less than or equal to ,r+ 1 and be continuous on the domain 

D={(/,z~a!>:/!>:b.c!>:z!>:d}. Let (/O'ZO) "D. Therefore. for every (/.z)eD there 

exists a C between I and I, and an ., between Z and :, with (Burden a'ld Faires, 1987) 

J(/,Z) = P,,(I,z)+R,,(/.z) (B.la) 

I " .. (n + I) (f'J 1 z - I-I " •• -/ z _. J R,,(. ) - ( I),L . ( 0) ( ·0) OI".I-J{J:J (l; • .,) 
II + . ,,0 J 

(B.lc) 

where p. is called the Taylor polynomial of degree n in two variables for the function!; R. 

is the remainder term associated with p. (/,z). 

The first step of the Runge-Kutta method is to determine the parameters, 

a •• a .. and P. ofa.J(/+CX .. Z+P.). which approximates 

h· 
:«2)(/,%) = I(/,Z)+ - 1(/,z) 

2 
(B.2) 



with error no greater than 0(h2), the local truncation error for the Taylor method of order 

two. Note that j(/,z) in equation (8.2) is the derivative of the functionj{I,z) and 

j(/,z) = : (/,z)+ : (/,z)·i(/); and i(/) = 1(/,z) (8.3) 

Therefore, equation (8.2) can be expressed as 

(8.4) 

Expanding f (I + (lt, Z + ~.) into the first degree, the Taylor polynomial is 

for I certain l; between t and 1 + (ll' and 11 between z + ~I' 

From equations (BA) and (8.S), the parameters QI' a., and PI are obtained IS 

h 
a, =-; 

2 

h p, = - /(/.%) 
2 

(8.6) 



and 

(B.7a) 

A similar procedure can be used to obtain the higher order Runge-Kutta method. 

The most common Runge-Kutta method in use is of order four and is given as 

where 

k. = hl('"z,), 

kz = h/(/, +i,z, +-ikl). 
k) = hl(', +i.z, +-ik2)' 
k4 = h/(,,+, ,z, + kJ) 

(B.8a) 

(B.8b) 

(B.8e) 

(B.ld) 

(B. Ie) 

(B.lt) 

The a in equation (B.8a) is the initial value of the function z(a) at time equal a (a SIS b). 
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Generally, two methods, the force method and the displacement method, are used 

for the structural analysis. [n the force method, the redundant forces are primary 

unknowns that can be solved from the compatibility conditions only for the statically 

indetenninate structures (Wang, t 986). In the displacement method, the displacement of 

all the joints in the structure are the primary unknowns that can be solved from the 

equilibrium conditions for both statically determinate and indeterminate structures. 

Usually, the force method is used to analyze the statically indeterminate trusses. For 

building frames, the displacement method is often implemented because of two reasons. 

First, the degree of indeterminacy for the frames is often equal to or sometimes much 

larger than the number of joint displacements. Second, the compatibility equation 

involving tho: redundant forces is more difficult to formulate than the equilibrium equations 

involving the joint displacements. 

In this study. the displacement method is used to analyze both the truss and frame 

structures. The direct stiffhess method uses the direct contribution of each element. The 

global stiffhess matrix is obtained from the local stifti1ess matrix of each element in the 

structure (Wang, 1986). The local stiffhess matrix has four degrees-of-freedom for each 

truss element and six degrees-of-freedom for each frame element (see Figure C.I). 

The local stiflnas includes two translations at each end of the truss element and 

can be expressed as 



NPJ 
(P.,X.) 

HPJ 
(P,. x,) 

HPJ 
(P"XJ 

0, 

HPJ 
(P"XJ 

o. 

(a) 

(b) 

HPJ 
{P"XJ 

NP n : Global freedom number 
P • : Translation force 
X • : Translation displacement 

NP6 
(P"X,) 

NPJ 
{P"XJ 

HP n : Global freedom number 
p. : Translation force 
M.: Moment 
X. : Translation displacement, rotation 

Figure C.l Local freedom numbers for: (a) truss and (b) &.me elements 
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cosl a· , symmetric 

[kl 
EA cosai sinai sinJa j (C.I) =-' 
Li -cos2 a. - cosai sinCl; cosl a I , 

-cosa; sinai -sin2 a, cosa j sinai sin2 a , 

where E is the Young's modulus of the material, A" Li , and a i are the cross-sectional 

area, length, and declining angle of the ith element. The local stiffness of the frame 

element includes two translations and a rotation at each end and can be expressed as 

[k]; = 

47; 

Tz T.+T, 
-7; -7; + r. -fa + 7; 
27; Tz -7; 
-7; -T. - T, 7;-r. 
7; T,-r. -fa - T, 

EI 
1. _-' . 1- , 

Li 
12El 1 

T. =--' sin n.' 
4 L.' 101" , 

T, = EAi sin1 PI; 
Li 

47; 
-7; 
7; 

symmetric 

T.+T, 
-1, + r. 

(C.2) 

r. + T, 
6E/. 

7;= L.:'cosP i ; , 

where Ii and Pi are the moment o( inertia and the declining angle of the ith &arne 

element. The global stifthess matrix can be obtained by using the superposition method 

from the known global freedom number, NPn (shown in Figure C), of each element 

corresponding to the local matrix. A ~mple procedure can be used (or the computer 

program to assemble the alobal stiftbess matrix 
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do loopl- I, n 
do loop1- 1,,, 

GlobalStiJIlNp(loopl),Np(loop2}) • OlobaIStifllNp(loopl),Np(loop2)l + kfioopl,Ioop2J 
end loop2 

enclloopl 

where n ,. 4 for the truss structure; and n - 6 for the trame structure. One must repeat 

tlUs procedure for every element of the structure. 

Once the global stiffness matrix has been established by using the direct stiffi1ess 

method, the displacement method of truss/frame analysis can be solved through the force-

displacement relationships as 

[X] = [Kr'[P] (C.3) 

where [K)"I is the inverse form of the global stiffitess matrix; vectors [X] and [Pj are the 

global displacement and applied force to the structural system. 

Guyan Reduction 

For the dynamic analysis, Guyan's condensation method (19(;5) is used to reduce 

the degrees-of-fteedom of the stNctural system to only translations in the horizontal 

direction. A state reduction is used. The equations of equilibrium for free displacement, 

equation (C.l) can be expressed as 

(C.4) 
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The subscript A in equation (C.4) denotes the displacements that are to be eliminated, and 

subscript B refers to those that will be retained which are the translations in the horizontal 

direction in this case. Equation (C.4) can be written as two sets of equations as follows: 

KM,XA + KAJJXB = PI. 

K8A X A + KBBX. = p. 

(C.Sa) 

(C.Sb) 

The dependent displacements (Weaver and Johnston, 1987), X A' can be solved from 

equation (C. Sa) as 

Substituting equation (C.6) into equation (C.Sb), one can obtain 

K;"X. = P~ 

K;' = Xaa - K8AKM, -IKAB 

Fa = p. - KIAKM,-lpA, 

(C.6) 

(C. 7.) 

(C.7b) 

(C.7c) 

The independent displacements. X •• can be solved by pre-multiplying the inverse matrix 

of the reduced stiffness matrix, K;' , on both sides of equation (C.7.). Once the 

independent displacements are obtained. the dependent displacements can be solved by the 

back-substitution formula in equation (C.6), 
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The first-order sensitivity analysis is used to modify the structural design in an 

optimal way (Grierson, 1994). The equations of equilibriuna in matrix form can be 

expressed as 

KX=P (D. 1) 

where K is the stiffness matrix of the structure, and vectors, X and P, are the nodal 

displacements and the applied forces at the nodal degrees-of-freedom. Consider a 

particular displacement, ej , which is related to the vector of nodal displacements as 

(D. 2) 

where hj is a vector with the values of ones or zeros which depend on the nature of the 

displacement ej • For example, ej could be the horizontal drift between two floors. The 

first-order sensitivity of displacement ej is calculated by taking the first-derivative of 

equation (D.2) with respect to the design variables (the cross-sectional area of the 

structural members. ~j' in this problem), which can be expressed as 

(D.3) 



Similarly by taking the first-derivative of equation (D. I) with respect to .d j one can obtain 

(0.4) 

The right-hand side of equation (0.4) equals zero by assuming that the applied loads Pare 

invariant with the cross-sectional area of the structural members. Equation (D.4) can be 

rewritten as 

(D.S) 

Therefore, equation (D.3) becomes 

(0.6) 

Equation (0.6) defines the first-order sensitivity of displacement with respect to 

the changins variables. The sip of the sensitivity indica~es the relationship of the 

displacement and the variables. For the structural desisn problem. the negative sip of the 

sensitivity (OIj/iJlij in equation (0.6» means that the displacement ~; wiU decrease as 

~ increases. Thls is useful for the desisn procedure since one needs to chanse only the 

size of the members that will decrease a siven displacement and not the size of aU the 

members. 
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In this section, the three classical optimization methods used in Chapter 6. i.e., the 

modified feasible directions method (MFD), the sequential linear programming method 

(SLP). and sequential quadratic programming method (SQP) are described. An 

optimization program. Design Optimization Tools (DOT), was developed by VMA 

Engineering (1993) which includes three numerical optimization search methods for 

constrained problems and is used here to compare with MISA. 

Modified Feasible Directions Method MOl 

In general. the optimization problem is stated as follows (Vanderplaats. 1984 b): 

Minimize or maximize 

Subject to: 

j - t. "'. N; 

Objedve function 

Inequality constraints 

Side constraints 

(E.l) 

(E.2a) 

(E.2b) 

where di' d~. and 4!~ are the ith design variable, and the lower and upper bound of the 

ith design variable; N is the number of constraints; Ndv is the number of design variables. 

In the method of feasible directions. one will first find a search direction S and then 

move in this direction to update the design variables (4!). This procedure can be 
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expressed as 

(E.3) 

where (l. is a scalar and the search direction ~ is defined as 

(E.4a) 

(E.4b) 

The basic concept of the feasible directions method is to obtain an a" that will 

minimize o(d,·1 +a"S") subject to the constraints. The MFD method of the DOT 

program (VMA, 1993) creates a first order Maclaurin series approximation to the 

objective fUnction in terms of a". Substituting equation (E.3) into equation (E. 1), one 

can obtain 

(E.S) 

Thus, an approximation to o(d') is 

(E.6) 
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or 

(E.7) 

where ~~~") is the ith entry ofsradient of the obje<:tive function, Vo(d~") which can 
_I 

be derived by finite differences as 

and 

VO(A) = 

8di =$ 
iJa." I 

Therefore 

O(A +6.d,~-0(.d} 
6A, 

O(A +6~2~-o(~l 
6A1 

O(A +6~N)-~~l 
6dtl 

~ 
oA. 
~ 

:: oA l (E.8) 

~Al 
cAM 

(E.9) 

(B. 10) 
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Since the gradient and the search direction are available. the slope of the function can be 

obtained from equation (E. 10). The objective function o(d~) is expected to reduce by 

some fraction, say 10 %, and is expressed by using a linear approximation 

(E. 11) 

Thus, an estimate of ex· which will reduce the objective function by 10 % can be obtained 

as 

(E.12) 

However, since the gradients of some constraints are also available, the approach by 

driving gj(d') to zero can be used instead of reducing by 10 % the value of the objective 

function (equation (E.11». Thus, a linear approximation to find gj{d')- 0.0 is 

(E. 13) 

and an estimate for (10 is 
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-g. A~-' 
• J -a.. = _ .... (r--:)"'" 

dgjd~-' 
(E. 14) 

ch· 

Therefore. even at the beginning of the !tearch, a considerable amount of information is 

available to direct the process. Using similar approximations. an upper bound of a' can 

be derived by driving the design variables to their lower or upper bounds. and this would 

provide a maximum value for a' to be allowed_ 

Sequential Unear Progomming Method (SLP) 

The sequential linear programming method (SLP) instead of using the origi",1 

nonlinear functions, uses a Taylor Series approximation for the optimization. The DOT 

program (VMA. 1993) creates the Taylor Suies expansion in the fom: of 

ow = o(~f"') + Vo(d'-'r 6d 

gj(d) = gj(d,-I) + Vgj(d""'Y 6d; j EJ .. 

and J.. is the set of retained constraints. 

(E.lSa) 

(E.lSb) 

(E.16) 
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Equation (E.t S) can be rewritten as 

0(4) = 0° + Vo(d""r 4" (£.16a) 

i;(d) =ijo + Vg;(d"·'r 4"; j eJrc (E.I6b) 

where 

(E. 17a) 

(E.I7b) 

Thus. the linear approximation optimization problem can be solved by minimizing O(d") 

subject to 

-L -u 
4i S Ai S 4i; i-I •...• NdV; 

where 

(E. 18) 

(E. 19) 

(E.20a) 

{E.2Ob) 
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The multiplier 3 in equation (E.20) is a variable number which is dependent on the 

progress of the optimization. 

Seqyential Ouadratic Programming Method (SOP) 

The basic concept of the sequential quadratic programming method is very similar 

to the sequential linear programming method. A Taylor Series approximation is also 

created for the objective and constraint functions. However, instead of minimizing the 

linearized objective, a quadratic approximate objective function is created by the fonn 

Minimize: V(S) = 0° + VOTS+!ST DS 
2 

(£.21) 

Subject to: (Vgjf S+g: SO; j .. I, ... , N (£.22) 

where matrix D is I positive definite matrix, vector S is the search direction IS described in 

the modified feasible directions method (MFD). This subprogram is solved usina the 

MFD prosnm. Usually, matrix D is initially defined IS an identity matrix, and is updated 

to approach the Hessian of the Lagrangian function. The updated D matrix can be 

expressed IS 

(E.23) 



'1 = 9r +(1-9)D6& 

v1 = max(IAj~i(vr' +1).;0] 

{ 

1.0 if(6AYr ~ 0.2(6A)T D(6A) 

9 = 0.8(61.)' 0(61.) if(6AYr < O.2(6AY D(6A) 
(6A)T 0(6A)-(6A)'r 

275 

(E. 24a) 

(E.24b) 

(E.24c) 

(E. 24d) 

(E.24e) 

(E.24t) 

In the search process of the SQP method in DOT program, the approximations are made 

by using the components of'll. This function has discontinuous derivatives at the 

constraints boundaries which has smooth components. 

The convergence criteria for the MFO. SLP, and SQP methods should satisfy 

either the maximum iterations allowed or the Kuhn-Tucker conditions (Zangwill. 1969). 

The Kuhn-Tucker conditions dictate that the Lagrangian function must have I vanishing 

gradient at the optimum design denoted by ~:. The Kuhn-Tucker necesSlry conditions 

for optimality are: 

1. ~: is feasible (all gj(~f) :s; 0) (E.2Sa) 

2. The product ofLaannae multipliers. Aj • and g;(tf) equals zero 

(E.26) 
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N 

VO(d) + LA.jVgj(d) = 0 (E..'.7a) 
jool 

j -1 •...• N (E.27b) 
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The MISA program includes several subroutines requIred to implement the 

developed algorithm. Figure F.l shows the order of execution of the MISA program. In 

Figure F.I, the boxes with solid lines indicate the name of the subroutine and the function 

of the subroutine is described near the box. The boxes with dashed lines are the joldgment 

procedures in the MISA program. Finally, the required input data of the MISA is listed in 

Tables F.l and F.2. The name of the input file can be any string with a maximum of 

twelve characters. The input data must follow the line set order shown in Table F.I. One 

set of data may include as many lines as needed to specify the required data. A free 

fOnnltted data is used. A comma (,) or a blank space is used to separate the input data at 

the same line. The data type and data description are shown in Table F.2. Data type is 

declared as type I or R. Type I is integer, and type R is real. It should be noted that the 

analysis method and the dynamic excitation are input from the keyboard. 

Line SCI 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Table F.l In~ut order for required data in the MISApro~am 
Description Note 

Program initiation. 
Material properties. 
External static loads. 
Frame element definition. Omit ilthc~ are no frame elemenls. 
Truss element definition. Omit iCthere are no lrUSI elements. 
Lumped mass and response constraints. 
Damping matrixlDamping ratio. 
Control parameter for ASS. Omit ilthere are no ASS structural controls. 
Location of ASS. Omit if there are no ASS suuctura1 controls. 
Side constraints. 
SW: and location ofVE .:..a.......... Omit ilthc~ are no VE dampers. 



279 

MAIN 

i DA t AIN I .... tho "'''''''",;!y ..... ''''' p __ .... com ............ ODd ... 
controllcr requirements (ADS and VE damper) 

~ .... ,. . .. . .......... . 
: Do loop. N: Stan the outer itcration loop with counter n ~ N 

:::::::::l:::::::':::~ 
: Do loop, M ~ Stan the inner itcl'l'tion loop with countcr m ~ M 
~ ........... . 

-~ Detenninc the design variables randomly 

Detennine the glotal stiffness matrix 

Detennir.c the cigenvector and cigenvalue of the uncontrolled system 

Calculatc the weighting matrices, (1, R, according to the 
L--...,..--_...J n:quest 

Calculate the effective damping level and the additional 
'---...,r----' stiffness due to the VE damper 

'---=-p=_..... Call the subroutine ac:cording to tile n:quested method 
I. Static Analysis 
2. Instantaneous Optimal Control 
3. Step-by-step method· Duhamel's integral 
4. Energy-bound convex models 

STATIC 

INSTANT ANE Calculate the matrix of control pin 

STEP 

CONVEX FACTOR Use &he intcrpolatioo technique to deIermine the 
rMuction factors or the awraae reduction factors 

," ............. " ................... ". depending upon the request 
:Check the diS~lacement: Not satisfY ~SENSITIVIT ~ 
: COnstraInts: U Ibc ... analysis to . . .L.... 

"'~SIiiifi' ..:.....= ... ...---
Figure F.l Execution order of tile MISA program 
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Calculate the a:'lial and bcndina stfCSSCS in the members and the strength ratio of 
column to beam 

r·····Ch~k·ih~·~t~~~······j Not satisfy .18' 
L ...... ~~~n~in~~ ......... j ~ 

,,~ ....... - .......................... . 
1 Implement the stronsl 
~ column-weak beam l Not satisfy @ 

philosophy 
:·· .... ··l·satiS~··· .... · .. ····· 

Change the values for the required 
variables randomly, also check the 
ma.'Cimum and minimum limit of 
the variables 

['E~~~~t~·t~· ~pii~·1 
. design . Current desiln ~ Candidate design 

: ........... ·.·.1·.·.~~~~ .. ~~~ .. ;~.·~N1jdate agn 

~Save the current destsn~ 

L.':'T""t~ desi!"H: 

lR~pi~~~·i·h~·~did~t~j 

. ................... 1. .................... . 
Compute the acceptance -.,l _N_Ol_ .............. 

probability i 
·· .. · .. ··· .... ~··A~·· .. · .... ·: 

1 design by the current 1 

L .......... ~~~ ............ .! 

r'E~~p·M .. l : .... · .. ·1 ...... ·· .. · .. ·: 
r .. · .. T~·y'T' .. · .. l Chanp the puamder, T, (or the annealinl probability 

:· ...... ·1··· .......... : 
r"E~ i~p'N"! :·· ...... 1 .... · ...... ···: 
END PROGRAM 

Fapre F.l (Continued) 
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a e escnpllon or mput ata In t e T bl F 2 D . f fl . d . h MISA program . 
Variable Data Line Description Note 

type # -
NS I I Number of stories for the structure. 
NB I I Number of bays for the structure. 
NM I I Number of frame elements. Includes beams, column. 
NP I I Degree~f-freedom of the structure. 

ITURSS I I Number of truss elements. 
IC I I (a) I : Input the damping matrix. 

(b) 2 : Input the inherent damping ratio. 
IUNIT I I (a) I : SI units. 

(b) 2 : US units. 
IMAT I I Number of design variables. 
MAC I I Number of ABS. 0: noABS. 
leF I I (a) 0 : no ABS or using the initial 

control parameter. 
(b) 1 : changing the control parameter to 

achieve the required control force. 
IVE I 1 Number ofVE dampers. o : no VE dampers. 
E R 2 Elastic modulus. 
P R 3 External static load at each DOF. P(i), I = I, NP. 

NO I 4a Element number. a - first line of this set. 
MATERIAL I 4a Variable number. 

XL R 4a Length of current element. 
ANG R 4a Angle of current element with horizontal. Degrees. 

SLiMIT R 4a Yield stress for current element. 
NPE (1) I 4b DOF's number of horizontal translation b - second line of this set. 

direction @ end I. 
NPE (2) I 4b DOF's number of vertical translation 

direction @ end I. 
NPE(3) I 4b DOF's number of rotation direction @ 

end I. 
NPE(4) I 4b DOF's number of horizontal translation 

direction @ end J. 
NPE(S) I 4b DOF's Dumber of vertical translation 

direction @ end J. 
NPE(€) I 4b DOF's ~r of rotation direction @ 

endJ. 
FNP (1) R 4b NodcISpan loads in horizontal direction 

@end/. 
FNP (2) R 4b NodcISpan loads in vertical direction @ 

end I. 
FNP (3) R 4b Node/Span moment @ end I. 
FNP (4) R 4b NodeISpan loads in horizontal direction 

@endJ. 
FNP (5) R 4b NodeISpan loads in vertical direction @ 

endJ. 
FNP(6} R 4b NodeISpan moment @ end J. 
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Table F.2 (Continued) 
Variable Data Line Description Note 

type N 
NO I S Element number. 

MATERIAL I S Variable number. 
NPE (I) I S DOF's number of horizontal translation 

direction @ end I. 
NPE (2) I 5 DOF's number of vertical translation 

direction@end/. 
NPE(3) I 5 DOF's number of horizontal translation 

direction @ end J. 
NPE(4) I 5 DOF's number of vertical translation 

direction @ end J. 
XL R 5 Length of current element. 

ANG R 5 Angle of current element with horizontal. Degrees. 
SLiMIT R 5 Yield stress for current element. 

LUMPM(k) R 6 Lumped mass @ floor t. NS lines are nccdcd in 
XLlMIT(k) R 6 Displacement constraint @ floor k. this set. 
VLIMIT (k) R 6 Velocity constraint @ floor k. (K= I. NS) 
ALIMIT(k) R 6 Acceleration constraint @ floor t. 

ZO(k) R 6 Initial displacement. 
ZO(k+NS) R 6 Initial velocity. 

DAMP R 7 (a) Damping matrix. Damp(ij).j = I, NS. 
NS lines are nccdcd for 
this input data. 

(hl Dam()ing ratio. Damp(i,i), i = INS. 
R R 8 Scale factor for identity weiahting matrix. 

FLOOR I 9 Location of ABS. Floor(i), i = 1. NS. 
o : no ASS at this floor. 
I : an ASS at this floor. 

MAXRANGE R 10 Upper bound of desip variable. IMA T lines are needed 
MINRANGE R 10 Lower bound of design variable. in this set. 

RANGE R 10 Initial value of design variable. 
VE_T R II Thic:kncss of VE damper. IVE lines are nccdcd in 

VE_AREA R II Area ofVE damper. this set. 
VE_A R II Angle of VE bracing system with Radian. 

horizontal. 
N_VE(I) I II DOF's number of horizontal translation 

direction @ end 1. 
N_VE(2) I II DOF's number of vertical translation 

direction @ end 1. 
N_VE(3) I II DOF's number ofborizontal transIatioa 

direction @ end J. 
N_YE(4) I II DOF's number of vertical translation 

direction @ end J. 
LYE I II Location ofVE cMmPer (Floor number). 
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