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ABSTRACT

The response behavior of seismically excited frame structures with active
control and boundless soil is investigated. Mathematical models based on the
existence or absence of structure-soil interaction (SSI) and/or control are presented.
With SSI consideration, the frequency-dependent property of unbounded
nonhomogeneous soil and foundation embedment is applied. Optimal closed-loop
laws are established based on the generalized performance index. In the control
system considering SSI effects, foundation translation and rocking are included in the
control rule. Algorithms are implemented in the time domain,

Studies indicate the strong influence of foundation embedment and depth of
soil layer on soil rocking coefficients and consequently on structural response. In a
certain structure, additional modes as a result of the foundation’s degrees of freedom
dominate and hence result in distinct structural response behavior. For example, the
rocking mode is important in a massive and/or high-rise structure while the translation
mode dominates in a low-rise structure. In a massive low-rise structure such as a
nuclear reactor, the combination of these two dominant modes leads to large structural
responses. In the control system including SSI effects, reduction of structural
response is a result of the decrease in foundation rocking rather than relative floor
translation which occurs where the structure is fixed at its base. Furthermore, the
effect of control force in strengthening the system’s stiffness and damping is reduced

in the case of a structure founded on soft soil.
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I. INTRODUCTION

A. OBJECTIVE

Understanding  the response behavior of a dynamic systen: with control and
boundless soil domain is necessary prior to the construction implementation of such an
integrated control in civil engineering structure. In the past, studies of structural dynamic
controlled system were based on the fixed-base (FIX) model for which the structure is
assumed to be fixed at its base. This model may be well-founded where the structure is
built on rock. If the structure is constructed on soft soil, the dynamic system should
include structure-soil interaction (SSI) which covers the foundation's translational and
rotational degrees of freedom. Added modes as a result of the foundation degrees of
freedom could lead to various changes in structural response behavior and accordingly
control behavior and effectiveness. Especially, a rocking (rotation) mode which is omitted
in the FIX-model may dominate in a particular structure.

The objective of this study is first to develop mathematical models representing the
vegarded dvnamic system Four models are developed based on the existence or absence
of the structure-soil interaction and control. They are regarded as a FIX-model,
SSI-model, FIX-model with control, and SSI-model with control. To represent closely an
actual system, the frequency-dependent coefficients of nonhomogeneous unbounded soil
are considered in the SSI-model and SSI-model with control. The foundation embedment
is also taken into account. Yet the algorithms used in determining structural response are

formulated or: the basis of time domain since it is more familiar 1o most civil engineers



than frequency domain. More importantly, the implementation of an active control must be
carried out in real-time fashion. The concept of a closed-loop control is applied to both
FIX-model with control and SSI-model with control The optimum control rules are
developed by minimizing a generalized performance index. In the SSI-model with control.
not only structural response but also foundation response is included in the control rule
Prior to the investigation of a total dynamic system's behavior, the influence of
parametric soil conditions on the soil dynamic stiffness coefficients is siudied. The soil
condition parameters are damping ratio, foundation embedment, and layer depth. The soil
condition of an actual site is also examined. The soil profile of Takenaka Expenimental
Building in Japan is used Finally, the effects of structure-soil interaction on structural

response and control are assessed.

B. LITERATURE REVIEW

An active control has recently gained recognition in civil engineering The control
algorithrn has a few general approaches such as Riccati matrix, instantaneous optimal
control, and generalized optimal control (Cheng and Tian, 1993; Soong, 1990; Cheng,
1088; Yang et al., 1987, Cheng and Pantelides, 1986). These control algorithms have been
developed based on the FIX-model. Among these three approaches, only a generalized
optimal control vields a control iaw which is neither a function of time nor time increment
(Cheng et al., 1992). Consequently the control force driven by a digital-type actuator is
not depend upon its time interval.

As for the calculation of soil stiffness coefficients required in a structure-soil

interaction consideration, a few well-known approaches are discussed. The estimated



spring constari based on soil's shear modulus is used in an approximate approach. This
estimated coefficient lacks a crucial frequency-dependent property and leads to an
unjustified solution Furthermore, the role of foundation configuration and embedment are
not included More complicated approaches that yield a frequency-dependent coefficient
are the finite element method and the boundary element method Both methods take
foundation configuration and embedment intc account. In the finite element method. the
fictitious boundary attaching dash-pot is imposed at some distance from a vibrating
structure to create a bounded region since soil is a semi-infinite medium. The dash-pot
does not allow waves originating from the structure to reflect back into the region The
large discretized domain in the finite element method requires numercus data and
computing storage. Without utilizing the fictitious boundary and without introducing
nodes in the interior, the boundary element method (Wolf and Darbre, 1984ab. 1983) is
appropriately applied to the unbounded domain.

With respect to response solution technique, two major approaches can be applied
One is carried out in the frequency domain and the other in the time domain. The former
seems 1o be suitable since the soil system has frequency-dependent property. But this
method requires the transformation of input excitation in the time domain into its
corresponding pair in the frequency domain. Therefore the complete series of an input
excitation needs to be known prior to the calculation. This approach cannot be executed in
a real-time fashion which is required in the implementation of an aciual active control
system. Furthermore, the second transformation is needed for output response. The latter

requires the transformation of the frequency-dependent soil coefficient. By applying the



special technique (Hayashi and Katukura, 1990), only the frequency band limited soil
coefficient is exercised. In this technique, the static component of the coefficient is not
needed.

Recently there has been some research on structural control including
structure-sail interaction. A limited number of control devices, strategies and algorithms
have been studied Wong and Luco (1991) formulated their algorithm in the frequency
¢omain which is not suitable for the actual active control system An active control device
is introduced as the absorbing boundary such that all upward propagating waves are
absorbed and no downward propagating waves are reflected. Alam and Baba (1993)
presented an active optimal control algorithm taking structure-soil interaction into
account. Their optimal closed-open-loop control law is formulated to satisfy the stationary
Riccati equation. An approximate frequency-independent soil coefficient is used in
structure-soil interaction application. Smith et al. (1994) developed an optimal closed-loop
control algorithm considering structure-soil interaction effects. In their studies, an optimal
control rule is based on the Ruccati equation. To incorporate this control rule into the
frequency-domain formulation, only a harmonic ground motion was considered Cheng
and Suthiwong (1994) and Cheng et al (1994) developed a generalized optimal active
control algorithm including structure-soil interaction effects. Their algorithm can be
implemented in real-time fashion while frequency-dependent soil coefficient obtained by
the boundary element method is taken into account. An active tendon is used as a control
device in this closed-loop control. These publications are also part of the author's research

study.



-,

C. OVERVIEW

In Section 1I, the various models and systems used in this study and their
assumptions are defined. Their symbols and notations are described as well Modeling
diagrams are included.

Section I1 contains the formulations of state equations for a FIX- and SS1-model
with and without control. The transformation to therr canomcal form and solution
technique of the first-order differential equation are demonstrated In addition, the
derivation of interaction forces at foundation-soil interface based on a convolution integral
technique is presented. This method requires the impulse velocity coefficients formulated
in Section VA physical interpretation of SSI-model's motion equation is given as weli.

In Section IV, the optimal control rules or feedback gain matrices for a FIX-model
and SSI-model are established. A generalized performance index as objective functional is
defined. Euler's equation and transversality condition are formulated and enforced to
obtain an optimal solution. The weighting matrices used in the performance index and the
feedback gain matrix are presented.

Section V describes the methods of determining frequency-dependent coefficients
of various soil systems. The indirect boundary element method is discussed for a free-field
system's dynamic stiffness coefficients. This method requires the displacement Green's
influence function formulated in Appendix A. Numerical integration techniques such as an
adaptive quadrature and Simpson's method are addressed as well. The finite element
method is detailed for the dynamic stiffness coefficients of a system's excavated part.

Four-node rectangular element and consistent mass matrix are employed For a ground



system's dynamic stiffness coefficients, the subtraction method and its cautious measure
are pointed out. Then the time-derivative dynamic flexibility coefficient of ground svstem
is defined. Finally, the discussion of the discrete Fourier transform with causality condition
is given. This technique is used in transforming the time-denivative dynamic flexibility
coefficients in frequency domain to impulse velocity coefficients in time domain.

In Section VI, the nondimensicnalized dynamic <tiffness coefficients of various soil
systems are examined. The parameters studied include soil hysteretic damping, foundation
embedment, and depth of a soil layer on rock base. In addition to the parametric study. the
actual site of Takenaka Experimental Building in Japan is investigated. For a ground
system, the dynamic stiffness, time-denivative flexibility, and impulse velocity coefficients
are presented. Coefficients of the systems with half-plane and a varying depth layer on
rock are compared as well.

Section VII involves the investigation of total dynamic systems with and without
control. The investigating parameters are classified as concerning parameters and
governing parameters. The furmer relste to the parameters indicating structure and
foundation failures. The latter may be described as the parameters affecting structural
response and control behavior. Effects of the governing parameters on the concemning
parameters are discussed. Effects of structure-soil interaction on control are also pointed
out.

In Section VIII, the work is summarized Then conclusions are given. Some

suggestions are included as well.



In Appendix A, the displacement-Green's-influence-functions as fundamental
solutions of indirect boundary element method are derived. These functions relate the
displacements along the assumed line of a nonhomogenous semi-infinite medium to the
applied linearly distributed loads acting on the same line. The assumed line consists of
vertical and horizontal lines which subsequently form a structure-soil interface. Green's
functions are first formulated in the k wave-number domain and then transformed to the
space domain. Dynamic stiffness matrices in the k-domain of a layer and half-plane given
in Appendix B are part of the formulation. The in-plane displacement equations in
Appendix C are used as well Included is a special case corresponding to the vertically
incident wave (k=0).

Appendix B presents the derivation of dynamic suffness matrices in k-domain of an
unbounded layer and half-plane. Both mediums are homogeneous. The displacement
equations in Appendix C are needed. Special cases corresponding to & = ( are provided.
For a half-plane. the formulations in both negative and positive & wave-number are
demonstrated.

In Appendix C, the primary- and secondary-wave equations are formulated based
upon the dynamic-equilibrium equations of an infinitesimal cube. For an in-plane problem,
the displacement equations of an unbounded horizontal layer are established. Their

required boundary condition and the definition of a ¥ wave-number are given.



II. DYNAMIC SYSTEM MODELING

A multistory controlled building sits on a rectangular mat foundation embedded in
unbounded soil, as shown in Figure 1. The building is equipped with an intelligent control
of active tendon system This system consists of response sensors connected to 2
computerized control panel and actuators with a tendon linked to hydraulic equipment
operated by the control panel. The unbounded soil domain is modeled by layered
half-space made up of stacking horizontal unbounded layers resting on a half-space The
soil domain is assumed to be an isotropic viscoelastic medium with hysteretic damping. Its
properties may vary with depth but remain constant within the individual layers.

The origin of the global Cartesian coordinate system with z.axis pointing
downward is at the bottom center of the foundation. In general, it is assumed that incident
P- and S-wave (see details in Appendix C), composing earthquake excitation, have
directions of propagation lying on the same vertical plane It is also assumed that this

vertical plane is on x-z plane, parallel to the face of the building.

A. TOTAL DYNAMIC SYSTEM

To investigate response behavior, a two-dimensional system on x-z plane shown in
Figure 2 is selected to represent the physical properties in x- and z-direction for the whole
system. This system is subjected to only the body P- and SV-wave, since the amplitude of
SH-wave is in y-direction. A NO-story seismic shear structure equipped with an active
tendon system rests on a rigid rectangular foundation embedded in a layered half-space.

The layered half-space consists of N-1 honizantal layers having infinite length in x-
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System d/ : _
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Figure 1. Multistory Controlied Building Embedded in Unbounded Soil



- rla

NO ¢ ro—— T3P Xy
NO-10Z 3P X0
NO-2 fr - T X
i+1 IL_\ R X,
<,
i lT = > x|
2 [I = 3 x} Active Tendon
System
] 3 x)

Honzontal Layers —

Half-space
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direction and a half-space. By introducing artificial horizontal interfaces, the amount of
honzontal layers may be larger than that of given soil layers For example, interfaces 2 and
M+1 are added in Figure 2. The horizontal interface on which the botiom of the
foundation rests is called interface Af+1, lying underneath the designated layer M

Since the foundation is assumed to be rigid, only two degrees of freedom at poim
0, a horizontal translation x; and a rotation 8; around y-axis, can be used to represent the
degrees of freedom along the foundation-soil interface. To investigate response behavior
of the shear structure, a vertical translation at point O is negiected For the
superstructure, horizontal transiations x;, for i=1,2,. NO, are used to describe the degree
of freedom on each floor . Superscript ¢ stands for total dynamic system.

At the foundation-soil interface, the total dynamic system is divided into two
systems, a structure system and a ground system. The former consists of a
two-dimensional NO-story shear structure equipped with an active tendon system and its
foundation. The latter is soil with excavation comprising honzontal unbounded layers and
a half-space. By using the substructure method, both systems are separately analyzed,

based on an assumption that the interface between these two systems is in complete

contact.

B. STRUCT SYSTEM

Two models in Figure 3 can be used to represent the structure system. a
structure-soil interaction model (SS1) and a fixed-base model (FIX) The former, taking

structure-soil interaction into consideration, involves a rigorous mathematical soil model
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The latter, a relatively simple model, assumes that a structure is fixed at its support and
thus may be valid only where a structure is built on rock.

For both models, structure masses m,_are lumped on each floor /, for i=1.2,. . .NO.
Floor translational spring stiffness are represented by two columns on each floor, each

column having a stiffness of £,/2. Proportional damping ratios of two transiational modes,

= ' TN = I
'HxNo —‘- - - L2 — "—’XN()

—»x.
k ks k k2
K ] h L X2
2 m 14 [1 2 f 2 ml 2 ]
1—Px; - S o
k ky mook ky
D i .7
A
mo, I . he  Fixed-base Model (FIX)
S
PR Structure-soil Interaction Mode! (SSI)
0 x‘Or ~ _”_
¢, —Re v ‘

Figure 3. Structure Systern Modeling
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n; and n;,\’arc used to determine viscous damping of the structure. Floor heights are
equal to A Only horizontal translations x; are used to describe floor degrees of freedom.
Included in the models are NCR number of digital-type active tendon controllers, where
NCR can be equal to or iess than NO. These models will be analyzed on the basis of
time-domain procedure.

Only for an SSI-model do foundation properties and foundation degrees of
freedom need to be included. The former are foundation mass m, foundation mass
moment of inertia with respect to point 0, /,, and foundation depth A, The latter consist
of, at point 0, a translation x; in x-direction and a rotation 8) around y-axis Furthermore,
the floor mass moments of inertia with respect to point 0, / , are taken into account. The
SSI-model has its interface connected 1o the ground system. Interaction here leads 1o an
interaction force R, and an interaction moment Ry at point 0 in x-direction and around

y-axis, respectively

C. SOIL SYSTEM

1. Free-field Svystem. In Figure 4, the site prior to excavation and construction
is called a free-field system which is an unbounded continuous domain represented by N-1
unbounded horizontal layers resting on a half-space. Each layer /, for /=12 N-1, has
constant properties: soil density p, modulus of elasticity £, Poisson's ratio v, hysteretic
damping ratio {, and layer depth d. The half-space has the following properties scil
density p,. modulus of elasticity £,, Poisson's ratio v,, and hysteretic damping ratio {,

Since the half-space is mostly used to represent rock bed. subscript R is introduced. The

system is subjected to incident P- and SV-wave.
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< Rigid Interface Saiil

Oxi:v

o/¥v:)

Figure 4. Free-field System with Rigid Interface

After inserting rigid interface along the line which subsequently forms
structure-soil interface, three degrees of freedom at point 0, a horizontal translation r'of .a
vertical translation z(f . and a rotation 0}, suffice to represent the degrees of freedom along
inserted nigid interface Superscript / denotes the free-field system Length of the
horizontal interface is equal to width of the foundation, 2B Length of the vertical
interface, D, can be determined by the summation of d, for i=1,2,_ .M, which may be
equal to foundation depth, A, in case of full embedment of the foundation.

Since the properties of this unbounded system are frequency-dependent. the
indirect boundary element method in frequency domain is appropriately applied without

using a fictitious boundary and without introducing the system's interior nodes.
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2. Excavated Part of Svstem. Excavated soil, which will be replaced by the

foundation, defines this system as shown in Figure 5. It has a dimension of D = id, by
28 Three degrees of freedom at point 0, x5, z;, and 0§ in x-, z-direction and around
y-direction, represent the degrees of freedom along the rigid interface. Superscrnipt e
denotes the excavated part of the system. Since this system is ¢ bounded medium, the

finite element method in the frequency domain is employed.

3. fround System. This system, shown in Figure 6, is described as a free-field
system with excavation. Degrees of freedom along the nigid interface are represented at
point 0 by xi, z5., and 5 in x- z-direction and around y-direction, respectively.
Superscript g denotes the ground system.

Even though soil systems behave nonlincarly when subjected to high levels of
earthquake excitation, the behavior of a linear system has to be fully understood. As the
superposition principle is valid for a linear system, the linear properties of this system (for
example, linear system's stiffness) can be obtained by subtracting those of the system's

excavated pa:. from those of the free-field system.

.. 2B 1
M -
D=3%d k Rigid Interface
~]
i o 5y
0 F vz

Figure 5. Excavated Part of System with Rigid Interface
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d, L( Rigid Interface Soil 1
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P ¢ v 2 Soil II
d, B
+
dy- Soil IT1
-,-
Half-space
P-wave

SV-wave

Figure 6. Ground System with Rigid Interface

D. MODELING DIAGRAM

The two aforemeiitioned models (FIX-model and SSI-model) representing the
structure system ase integrated with a closed-loop control system. Therefore the modcling

diagrams can be summarized as shown in Figures 7, 8, 9, and 10

Earthquake Excitation Structure System Structural responses

(FIX-type) -

Figure 7. Fixed-base Diagram
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Earthquake Structure System Structural responses

Excitation (FIX-type)

Control| Fosces

Computerized|

Control 1-—— Response
Equipment Sensors

Figure 8 Controlled Fixed-base Diagram

Earthquake Ground ssu;;cten;e Structural responses
Excitation System (SSl-type)

Figure 9. Structure-soil Interaction Diagram
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Figure 10 Controlled Structure-soil Interaction Diagram
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lll: STATE EQUATIONS FOR FIX- AND SSI-MODEL

WITH / WITHOUT CONTROL

A. FORMULATION FOR FIXED BASE MODEL

For n fixed-base model (see FIX-type in Figure 3), the motion equation of &
NO-story seismic shear structure equipped with an active tendon control, at any "

time-instant, may be expressed as
(Mss){ X2} +(Cssl{X2m)} + [KssXE ) = ys){Uem) + {8s kb))

where [Mss), [Css), and [Kss) of dimension NO by NO are diagonal lumped-mass,
proportional damping, and symmetrical spring-stiffness matrices, respectively {X¥'} of
dimension NO by 1 is floor displacement vector, [ xf%, x%,, - x® . x¥ x¥ ]r.
Superscript rb indicates values in the response vector are of the total dynamic system and
relative to those of the structure-base. Subscript S or 5§ indicates that elements in the
denoted vector or matrix correspond to the superstructure's degrees of freedom. At this
state of formulation, these notations may appear to be unnecessary. A dot and a double
dot over a symbol denote the first derivative and second derivative in relation to time,
respectively. [Ys] of dimension NO by NCR is a controller-location matrix, where NCR is
the number of active controllers. {ff } of dimension NCR by 1 is the vector of horizontal
control forces, [iu'mq AT ]T. {ds} of dimension MO by 1 is a horizontal

base-acceleration coefficient vector; each row equals the negative value of a lumped mass

corresponding to the row number of a degree of freedom. £* is a horizontal acceleration
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of the structure-base. For the formulation of a system without control, the term associated

with control force vector is omitted.

An example of a controller-location matrix [ys] for a two-controller system,
having controiler no.1 attached between structure-base and first floor (node no 1) and

controller no.2 attached between second floor (node no.2) and third floor (node no 3), is

shown as
[0 0 |
00
[Ys]= -1 0 (2)
I O
[ 0 -1 ]

The motion Equation (1) can be rewritten in form of a state equation as

A

{ron) H [0) ul ]{xg*’(n)}
(e} |7 [ Ml Kss] AMss]™(Cssl || {x& o}

10] 7 {0} "
{ (M1 rs) ]{U(")}+{ [Ms]™ (35) }" ) (3)

where [/} is an identity matrix of dimension NO by NO. In compact form, the state

Equation (3) can be written as

{z%m) =[4](z*omy+[B){Dm} + {Elerem )

with
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won={ g | 2
[4]- i -[Mss[lo']' [Kss) -[Mss[][']' (Css) ] ()
[5]= [Mss,[lo']' [s] ] M
(€] ={ [Mss{](zl}{Ss} } ®)

Note

1]
x\ =x¥ +x5

xh=xg +x%
8, =05 +65,05=0

< ----Rigid Interface - 1 " 7] Layered-
0. xp,R:, »x <« .| Soil
65.Re '
- I
z 'l Half-space

—>

+4 »- SV

Vertically|Incident Shear Wave

Figure 11. Single-story SSI-model
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where {Z7] is a siate vector of dimension 2NO by 1. A dot over a letter denotes a
derivative with respect to time The charactenstic matrix [A] of dimension 2NQO by 2NO
is a time-independent matrix as are matrix [B] of dimension 2O by NCR and vector { Cl

of dimension 2NC by |

B. FORMULATION FOR STRUCTURE-SOIL INTERACTION MODEL
1. Single-story Eguation of Motion. For a structure-soil interaction model

subjected to a vertically incident shear wave, rotational seismic input may be omitted
Therefore, at any »™ time-instant. the motion equation of a single-story seismic shear
structure equipped with an active tendon system (see Figures 11 and 12) can be obtained

as

m 0 0 ¥ () &y 1 hacy xt(m
0 mo —haomo ggin) b+l =) a1 ~hact [§ x¥m)
=hamy —haomg f|+lo+h§omo lﬁ:f (n) 0 0 0 9:18(”)
kv =ky hak || xFm -m,

&, ki —hak {13 t= -my eAL))
Lo o o 85 () harmy +haomo

[-1 0
+{ 1 Y im+{ =R.(n) (9)
‘l 0 =Rg(n) |

where m,and mo are floor lumped mass and foundation lumped mass, respectively.
Iy and /, are floor and foundation mass moments of inertia around point 0. A and Ay
are accumulated heights from rotational point 0 to the centroid of floor lumped mass and

foundation lumped mass, respectively. &, is translational spring-stifiness coefficient ¢, is
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ite vector of dimension 2NC by 1. A dot over a letter denotes a
2t 1o time. The characteristic matrix [A] of dimension 2NQ by 2NO
matrix as are matrix | 3 | of dimension 2¥O by NCR and vector { ("}

ON FOR STRUCTURE-SOIL INTERACTION MODEL
_ory Eguation of Motion. For a structure-soil interaction model
tically incident shear wave, rotational seismic input may be onutted
7 time-instant, the motiopr equation of a single-story seismic shear

ith an active tendon system (see Figures 11 and 12) can be obtained

0 £ (n) l 1 € hac xy(n)
~hamq fon) p+| —c1 o —haci ] xgm
s 1 +Io+h§o"lo 0:)‘ (n) ] 0 0 0 Gg'ln)
k ~k hak xE(n) —m)
=+, ki —hak xf,'(n] = ="y i‘g(n)
0 0 0 0¥ (n) homy + homo
-1 0
+ 1 ey +<{ =Rdm) {9)
0 ~Rq(m)

e floor lumped mass and foundstion lumped mass, respectively.
d foundation mass moments of inertia around point 0 h, and A
hts from rotational poim O to the centroid of flcor lumped mass and

ass, respectively. k; is translational spring-stiffness coefficient ¢ is
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0 indicate th;t elements in the denoted vector or matrix correspond to the degrees of
freedom of superstructure and foundation, respectively. w and B; can be determined by
solving 0t +B.w? = 2w,n, for 1 = 1, 2 where 1}, are damping ratios of translational mode
of frequency ®, {85} of dimension NO by 1 and {8¢} of dimension 2 by 1 are horizontal
ground-acceleration coefficient vectors for superstructure and foundation, respectively

Aa, 1=0.1, ,NO, are accumulated heights from rotational point 0 to the centroid of mass
m, h, i=1, NO, arethe i floor height.

Vector {X & } of dimension NO by 1| is the floor translation vector.
[xB <%, x® . XF 7 ]T, {X¢} of dimension 2 by 1 is a vector consisting of
foundation translation and rotation at point 0, [x[f oF ]T, Superscript 1g indicates all
responses are of the total dynamic system and relative to those of ground system. A dot
and a double dot over a symboi denote the first derivative and second derivative in
relation to time, respectively. i§ is the horizontal acceleration, at point 0, of the ground
system with ngid interface. {Ry) of dimension 2 by 1 is a vector consisting of horizontal
interaction force and interaction moment at point 0, [ R. Re ]T.

Matrices [Ys] of dimension NO by NCR and [yo] of dimension 2 by NCR are
controller-location matrices for superstructure and foundation, respectively NCR is the
number of active controllers. {EJ } of dimension NCR by | is the vector of honzontal
control forces, [ #ncr - & - i ]T_ An example of matrices [ys] and [Yo] for a
two-controlier system, having controller no.1 attached between rigid foundation and first
floor (node no.1) and controller no.2 attached between second floor (node no 2) and third

floor (node no 3}, is shown as
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0 indicate thét elements in the denoted vector or matrix correspond to the degrees of
h;rcedom of superstructure and foundation, respectively. o and B; can be determined by
solving Olm +Piw’ =2w/n, for i = 1, 2 where 1, are damping ratios of translational mode
of frequency w, {85} of dimension NO by | and {0} of dimension 2 by 1 are horizontal
ground-acceleration coefficient vectors for superstructure and foundation, respectively
ha,i=0,1, .. NO, are accumulated heights from rotational point O to the centroid of mass
m, h,i=1, NO, are the " floor height.

Vector {X Py } of dimension NO by 1| is the floor translation vector,

T
g 1§ g g
[ryo Xyo-1 0 X, Xy X ]

_ {Xé‘} of dimension 2 by 1 is a vector consisting of
foundation translation and rotation at point 0, [x'o‘ o ]T. Superscript fg indicates all
responses are of the total dynamic system and relative to those of ground system A dot
and a double dot over a symbol denote the first derivative and second derivative in
relation to time, respectively. £§ is the horizontal acceleration, at point 0, of the ground
system with rigid interface. {Ro} of dimension 2 by 1 is a vector consisting of horizontal
interaction force and interaction moment at point 0, [ R: Re ]T.

Matrices [ys] of dimension NO by NCR and [yo] of dimension 2 by NCR are
controller-location matrices for superstructure and foundation, respectively. NCR is the
number of active controllers. {f/} of dimension NCR by 1 is the vector of horizontal
control forces, [iim-g U W ]r_ An example of matrices [Ys)and [Y,] for a
two-controller system, having controller no.1 attached between rigid foundation and first

floor (node no. 1) and controller no.2 attached between second floor (node no.2) and third

fioor (node no.3), is shown as
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(o) = [Fao)(Rote- vk (26)

with

[Fiott)] =[ ii i::: ] (27)
where 7 and T are ume varniables. [F &,] is the ground system's impulse velocity matnx with
rigid interface (see Subsection C 3 of Section V). CocfSicients F&, F5 F§ and F§ arc
velocities, at time equals T, corresponding to the first subscript’s degree of freedom due to
a unit impuise force, at time equals zero, corresponding to the second subscript's degree of
freedom. Based on causality conditions, interaction forces and velocities under a unit
impulse force, prier to time equal to zero, must be zerc. Thus T vanies from O to 7.

Since the solution procedure of a state equation is carried on in the discrete time

domain, the convolution integral can be replaced by summation as
(XFm)=ar _}_:o [F&m J(Rotn—m)) (28)

where Ar and n are time increment and time-instant number, respectively. m varies from
zero to n. To reduce the number of operations in Equation (28), one may take advantage
of the fact that a ground system with half-space has radiation damping. Then the amplitude
of velocity under a unit impulse load (impulse velocity function) attenuates as time

proceeds. At time-instant number equals /, for instance, all elements in the impulse velocity
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(X0} = [ [Flo]Rete- ek 126)
with

_ FL Ft
Fhool=| > " 27
[Footm)] [ FL FL @
where r and T are time vaniables. [F &,] is the ground system'’s impulse velocity matrix with
rigid interface (see Subsection C.3 of Section V). Coefficients F& FZ% F& . and F& are
velocities, at time equals T, corresponding to the first subscript's degree of freedom due to

a unit impulse force, at time equals zero, corresponding to the second subscript's degree of

freedom. Based on causality conditions, interaction forces and velocities under a unit
impulse force, prior to time equal to zero, must be zero. Thus t varies from O to .
Since the solution procedure of a state equation is carried on in the discrete time

domain, the convolution integral can be replaced by summation as

(e} =& X [Flolm K Rotn-m) (28)

where A and » are time increment and time-instant number, respectively. m varies from
zero 10 1. To reduce the number of operations in £quation (28), one may take advantage
of the fact that a ground system with half-space has radiation damping. Then the amplitude
of velocity under a unit impulse load (impulse velocity function) attenuates as time

proceeds. At time-instant number equals /, for instance, all elements in the impulse velocity
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{Ro(n)}) =[ Koo J{ X5 (m)} - {Ra(n~1)} (32)
with
[kw]= 2 [Fo0)] (33)

{Ro(n~1)} =[ Koo ] [{Xé‘(n— )
. LI
%({X;‘(n-l)}+mz[F&,(m)]{Ro(n—m)}) ] (34)
=]

where the time-independent matrix [iw] of dimension 2 by 2 is a pseudo-static-stiffness
matrix of ground system. Vector {Ro} of dimension 2 by ! is a dynamic-equivalent-force
vector making up for the ground system's dynamic effect. This vector depends only upon
the events ©ror to 7™ time-instant.

4. State Equation of SSI-medel.  Substituting interaction force vector

[Equation (32)] in the multistory equation of motion [Equation (10)} results in

[[Mss] (Ml ]{ (x5 m) H (Cs] (Cs] H (xF o} }

Mos) Mol ]| (XFm} | L [Cus] [Coa) J] {X5'(m)}
ksl Kel ][ {¥5) ={{5s} }t.(n)
[Kos] (Kool +[Koo] || (X} {&} [
[vs] {7 {o}
{ [l ]{U(")}+{ {Rotn = 1)} } )
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{Ro(m)} = [ Koo J{ Xo (M) - {Ro(n~ 1)} (32)
with
[Reo]= 2 Fa@] (33)

{Ro(n~1)} =[Kn] [{x.;'(n— 1}
M5 3 T
4—-2—[{x¢§‘(n-1)}+m ):I [rgo(m)]{kc(n-m)}) ] (34)

where the time-independent matrix [foo] of dimension 2 by 2 is a pseudo-static-stiffness
matrix of ground system. Vector {Ry} of dimensicn 2 by 1 is a dynamic-equivalent-force

vector making up for the ground sysiem's dynamic effect. This vector depends only upon

the events prior to n™time-instant.
4. Statc Eguation of SSI-mode].  Substituting interaction force vector

{Equation (32)] in the multistory equation of motion [Equation (10)] results in
[ Mss] (M) ] (e om) +[ [Css} (Cal ] (X}
[Mos) IMoo) ]| (X8 (m) [Cos) [Cwl ]| {Xm))

Ks)  (Kul ]l ixson} | {{as} }r.(",
[Kos] [Koo}+[Koo] || {XH(m) {80} |

(¥s] |7 (0}
{ (o} ]{U(n)}+{ {Roe(n-1)} } @3
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Ta.kmg [ioo] in the total system's stiffness matrix could be physically interpreted
as attaching a set of fictitious springs, having coefficients of i,,i ,g,f o-.and Kog
(elements of [iou]), to a structure system's rigid foundation as shown in Figure 13
Meanwhile the total system is subjected to the equivalent forces of amplitude -m x5 at the
centroid of each mass i, where i = 0,1, ., NO, and is subjected to an equivalent moment of
amplitude ih,,m,tﬁ around point 0 (contribution of {8§5}%2 and {8¢}%% ). Furthermore,
at point 0, dynamic-equivalent force R, and moment Ry ({Ro} =£ R: Ro ]T ) are added
to compensate for the ground system's dynamic effect.

Rearranging Equation (35), acceleration vector can e expressed as

{ (X&) }_ (Mss) [Mso] H (Cs] (Csl H (X} }

{f(;g(n)} | [Mos] [Mo) [Cost [Coo] {Xff(n)}

[Mss) [Ms) ]‘[ Kss)  Ksl

{ {xEm}

[Mos] (M) (Kos) [Koo1+[im]] {x&m}
-1
Mss] (M) {85} | ¢
| [Mas) (Mno] | {{50} jrotm
[Mss) [Mso) ““[ ORIe
[Mos) (Mos] | [ [Yo) ]{U(n)}

[ (Mss] [Ms0) ]“ { {0} } a6)

[Mos) (Mool {Ro(n=-1)}
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Taking [ Koo | in the total system's stiffness matrix could be physically interpreted

as attaching a set of fictitious springs, having coefhicients of Ko Ko Ko and Koo

(elzments of [im]), to a structure system's rigid foundation as shown in Figure |3

Meanwhile the total system is subjected to the equivalent forces of amplitude —m,§ at the

centroid of eact: mass i, wherei=0,1,.,

NO, and is subjected to an equivalent moment of

NO
amplitude 5 ham.x§ around point 0 (contribution of {55}k and {0 }%& ). Furthermore,

at point 0, dynamic-equivalent force R; and moment Rg ({Ro} = [ R: Rg ]T ) are added

to compensate for the ground system's dynamic effect.

Rearranging Equation (35), acceleration vector can be expressed as

(ko) | _ T sl [Msu]] [Css] [Cm] XEm}
{X;‘(n)} IMos] (M) [Cos) [Coo] X;‘(n)
_| Mss] [Msd :|-] (K'ss) (K50l Xs ()}
| [Mos] M) | | [Kos) [Kool+[Kao] || (X&)}
[ Mss) Ms] ][ (8s) }

+L (Mos] (M) ] | {80} ¥t

+

[ [Mss] (M)

| [Mos] Moo) |

[¥s]
{Yo]

I
g
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{

{0}

{ko<n—1)}=|[wss] (M} ]“{ { } (44)
Mas) Moo} | | {Rotm=1} ’

where the characteristic matrix [A} of dimension 2(NO+2) by 2(NO+2) is a time-
independent matrix as are matrix [ B of dimension 2(NO+2) by NCR and vector {C} of
dimension 2(NC+2) by 1. Acceleration vector {ko} of dimension 2(NO+2) by 1 is

associated with dynamic-equivalent forces, depending only upon the outcomes prior to n*

time-instant.
C. SOLUTION TECHNIQUE FOR STATE EQUATIONS

As discussed in Section 1V, for a closed-loop control, control forces and structural

responses are rejated to an optimal control law as

{Un} =1G™) ()} for FIX-model (45)
(U} =1GS){z8(m}  for SSI-modei (46)

where {G™] of dimension NCR by 2N¥O and {G*] of dimension NCR by 2(NO +2) are
time-independent feedback gain matrices for FIX-model and SSI-model, respectively.

Therefore the state Equations (4) and (38) can be written in a similar form as

{Z‘b (n)} = [b]{Z"’(n)} + {E(n)} for FIX-model (47)
{z#m)} =[D]izem)+{Em}  for SSL-mode! (48)

with
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{0}

{Ro(n-1)} = [[Mss] Ml H (0} } J (44)
[Mas] (Moo {Ro(n-1)}

where the characteristic matrix [A] of dimension 2(NO=2) by 2(NO+2) is a time-
independent matrix as are matrix [é] of dimension 2(N(+2) by NCR and vector {C } of
dimension 2(NO+2) by 1. Acceleration vector {Ro} of dimension 2(NO+2) by 1 is

associated with dynamic-equivalent forces, depending only upon the outcomes prior to n*

time-instant.

C. SOLUTION TECHNI FOR S EQUATION

As discussed in Section IV, for a closed-loop control, control forces and structural

responses are related to an optimal controi law as

{Ttm} = 1G™){Z®(m)}  for FIX-model (45)
{Tem} =1G5){Z#m)}  for SSI-model (46)

where [G"] of dimension NCR by 2NO and [G*¥] of dimension NCR by 2(NO +2) are
time-independent feedback gain matrices for FIX-model and SSI-model, respectively

Therefore the state Equations (4) and (38) can be written in a similar form as
{Z"‘(n)} = [b]{Z"’(u)} + {E(n)l for FIX-mode! (47)
{z%m) = [b]{zm(n)} + {f-;{n)} for SSI-model (48)

with



pseudo-spring-stifiness The plant matrix yields N@ complex conjugate pairs of
eigenvalues o, £ 1B, and their corresponding eigenvectors {a,} £1{5,} , where 1= /- .
a,,B, are real scalars; {a,},{4,} are real vectors of dimension 2¥@ by 1, andi =12, .
NO.

Transformation matrix | 7] is needed to transform the state equation into canonical
form. [T} is a real matrix of dimension 2X@ by 2N@, consisting of real pans {a.} and

imaginary parts {5,] of the plant matrix's ¢igenvectors, and can be expressed as
(T1=[ {a1} {51} - {a} {6}  {awo} {bxo} ] (54)

Transformation matrix [7] and plant matnx [D] are related to matrix [A],

consisting of real parts o, and imaginary parts B, of the plant matrix's eigenvalues, as
[T17DIT] = (Al (55)

where [A] of dimension 2N@ by 2N is a real matrix of the following form.

[Ad) - (0] - 0]
[Al=| [0] © [A] - (0] (56)

0 & 100 : lAsol

_| o B
[A,]—[_ﬂ' a,} (s7)

Let solution of the state Equation (53) be expressed as

{Zim} = [TH{®(m) (58)
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pseudo-spring-stiffness. The plant matrix yields ¥@ complex conjugate pairs of
eigenvajues a, =18, and their corresponding eigenvectors {a,} 1{6,} . where 1= /-1 .
o.. B, are real scalars, {a,}, {5} are real vectors of dimension 2X@ by |, ands1=12. ..
NO

Transformation matrix (7] is needed to transform the state equation into canonscal
form_ (7] is a real matrix of dimension 2N(@ by 2¥Q, consisting of real pans {a,} and

imaginary parts {4,} of the plant matrix's eigenvectors, and can be expressed as
(T1={ ta} {8} {a} {8}  (awe} {bxo)} ] (54)

Transformation matrix (7] and plant matrix [D] are related to matrix [A],

consisting of real parts o, and imaginary parts B, of the plant matrix's eigenvalues, as
[717'(DIT] = (A] (55)

where [A] of dimension 2N@ by 2NQ is a real matrix of the following form.
[[m] o o1 - [0]
iAl=l 61 (A) - (0] (56)
{ 01 © {0 : [Axol

(A =[ I B ] 57)

Let solution of the state Equation (53) be expressed as

{Z(m)} = [TH®(m} (58)
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By assuming {exp([0])] is equal to an identity matrix (/] and using Taylor
polynomial expansion at [A}r equals [0}, matrix |exp([A]r)] of dimension 2X@ by 2NQ

can be approximated as

[exp([Ai]D)] - (0] [0}
[exp([Aln) = (0]  [exp((A)0] - (0) ‘ (65)
[l L0 expUAxoln]

with

cos(B.) sin(B.1) ]

66
—sin(B.1) cos(B,0) (66)

fexp([A])] = exp(a.t)[

Applying the initial conditions in Equations (61) and (62) and utilizing trapezoidal

rule with time increment Az, the solution Equation (64} at n* time-instant can be written as

{D(1AN} = [exp (AlnAN]{B(0)) + ézi[exp({ AlnAn}iT(0)}

1
+A1 Y [exp (IAl(n— mAD){T(mAn} + %{r(nmn
L !
n—1
=Ar T, [exp ([Aln—m)AN|{T(mAN} + %mnmn 67)
=]

In compact form, the solution Equation (67) can be derived as

{w(n)}={n(n-m+%{nnn (68)
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By assuming [exp([0])] is equal to an identity matrix [/] and using Taylor
polynomual expansion at [A]r equals [0}, matrix |exp([A}0)] of dimension 20 by 280

can be approximated as

{exp([A1]0] - (0] . [0]
[exp([A]D] = (0]  [exp(A)D) (0] (65)
0) (0 [exp(lAseln)]

with

ICXP([A,]r)]=exp(q,,,[ cos(B.f) sin(B.1) ]

66
-sin(B.1) cos(B.0) (66)

Applying the initial conditions in Equations (61) and (62) and utilizing trapezoidal

rule with time increment A, the solution Equation (64) at #* time-instant can be written as

{®inAn) = [exp ([AlnAD}{ D(0)} + %lexp(mlnm]{rm)}

n=}
+A1 Y, [exp ([A](n-- mADN){T(mAN} + %{F(nm)}
]
1
=Ar Y [exp ([A](n - m)AN{T(mAD} + %{r(nm) } (67)
=]

In compact form, the solution Equation (67} can be derived as

(®(m)} = {TKn-1)) +42’-{r(n)} (68)
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IV. OPTIMAL CONTROL LAW

The time-continuous version of state Equations (4) for FIX-model and (38) for

$5I-model can be written in a parallel format as

{20} =[a]iz8 )+ [B){To}+ {Ew}  for FTX-model (71)

{zew) =[4)(zewy1+[B}{Uw} + {E)]  for SSI-model (12)
with

{Em}={Clew (73)

{Ew) = {Cleh@+ {Rotr-an)] (74)

where {E} and [:E} of dimension 2¥@ by | are external disturbance vectors for FIX-
model and SSI-model, respectively. X¥@ equals NO for FIX-model and NO+2 for SSI-
model, where NO is the number of a structure's floors. [/‘!] and [3] of dimension 2¥§Q
by 2¥@ are characteristic matrices for FIX-model and SSI-model, respectively {7}

and {Z%} of dimension 2¥Q by 1 are state vectors for FIX-model and SSI-model,
respectively. [B] and [B] of dimension 2¥@ by NCR are the matrices associated with a
controller's location for FIX-model and SSI-model, respectively NCR is the number of
active controllers. [if} of dimension NCR by 1 is the vector consisting of horizontal

control forces.

41



1V. OPTIMAL CONTROL LAW

The time-continuous version of state Equations (4) for FIX-model and (38) for

SSI-model can be written in a parallel format as

(ze0} =[4}iz2wy+ [B) U0} + {En)  for FX-model 1)

{7} =[A]izeinn+[B){Um} + {Ew]  for SSI-model (72)
with

{Ew} ={Clen (73)

{Eo) =T+ Rotr-an} (74)

where {E} and {E} of dimension 2¥@ by | are external disturbance vectors for FIX-
model and SSI-model, respectively. NQ equals NO for FIX-model and NO+2 for SSI-
model, where MO is the number of a structure's floors. [A] and [A] of dimension 2¥Q

by 2¥Q are characteristic matrices for FIX-model and SSI-model, respectively {Z%)

and {Z"%}of dimension 2¥Q by 1 are state vectors for FIX-model and SSl-model,
respectively. [é] and [5] of dimension 2¥® by NCR are the matrices associated with a
controller’s location for FIX-model and SSI-model, respectively. NCR is the number of
active controllers. {ff} of dimension NCR by 1 is the vector consisting of horizontal

control forces.
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with
I-a l in T - T -

{1z, lUm})=§ I7 (zoyionzmy+{om) (RI{ 10} Ja (78)

For each time interval », the amplitude of state variables z,(r) for i=1,2, ,2N@ and
control forces u,(#), at time r,, are specified from the previous time interval, those at
time ¢, are not This leads to the problem of minimizing a variable-end-point functional
for which the unknown amplitude of state vector {Z(1)} at time r, should also be
minimized Therefore the function of this state vector needs to be included in the

expression of performance index. A new objective functional or generalized performance

index. at time interval [f.-),7.) can be defined as

L1z 20), {00} ) =gz +[7 s(szan, O} )ar (19)
with

gH{ZunD = 120 1512} (80)

£z [Bw} ) =3 (@0 Quzm + {To) i} ) (81)

To ensure a posiiive value for Equation (80), the weighting mainx {§] of

dimension 2NQ® by 2XQ is a positive semi-definite.

1. Transversality Condition. To minimize the generalized performance index

J, in Equation (79) with a free endpoint condition and consequently the performance
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with
s{1zon {Tw)) =1 " (zoyianzor ({Tn) wido} e os)

For each time interval 7, the amplitude of state varisbles z,{¢) for =12, 2XQ and
control forces u,(f), at time 1,;. are specified from the previous time interval: those at

time 7, are not. This leads to the problem of minimizing a variable-end-point functional

for which the unknown amplitude of state vector {Z(r}} at time f, should also be -

minimized. Therefore the function of this state vector needs to be included in the
expression of performance index. A new objective functional or generalized performance

index. at time interval [1,1.¢,) can be defined as

sz, 2wy G} ) =guzenn |7 f{n@on {bw) ) (79)
with

gUZtn))) = 2V ISHZ0)) (s0)

A1z, {Tn} ) = Y@z ienzan + {Zw) wijdo)) (81)

To ensure a positive value for Equation (80), the weighting matrix [§] of

dimension 2NQ@ by 2N is a positive semi-definite.

1. TIransversality Condition. To minimize the generalized performance index

J, in Equation (79) with a free endpoim condition and consequently the performance
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tw1 =to—(n-1)Ar
G= %{z(;,)f{s}{zu,.)} +{Ae} 4 {ZUm1)} ~{Zns)

(85)
I, —1g ~nit
1 . - T -
F=1((zwyio1zoy+ {To) r{io) )
iy ({20} -1z} - BT} - (Emy ) (86)

Applying the fundamental necessary condition (vanation of J = 0) to Equation

(84) with unknown endpoints leads to the transversality condition as

[ In

"'UF.IZ(v)}}T{d{Z(‘)}}J =0 (87)

[

4G+ | (F={F ) {200) :]

Il

where the letter d represents differential of function or variable following it. A comma
denotes a partial derivative with respect 1o the subscript following it.

Since tny, {Z(tn1)}), and 1, are known and fixed, their differentiais dt,..
d{Z(ts1)} and dr, equal zero. Therefore the transversality condition in Equation (87)

can be reduced as

T
{{Guznan} + [F iz} | 112001y =0 (8%)

Substituting Equations (85) and (86) in Equation (88), and knowing that

{d{Z(1,)}} #{0} , leads to

ISHZD)} + (A1)} = {0} (89)
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. tt == {n— 1t
G= .;.(z(l,)}T[S]{Z(r,)} +{Ag} | {2(tmi)} = {Zni}

(85)
In—19 —nAl
F= -;-({zm} ‘oKz + {0} R D) )
0y ({20} -1a1tzoy - B U0} - E@) ) (86)

Applying the fundamental necessary condition (vaniation of J, = 0) to Equation

(84) with unknown endpoints leads to the transversality condition as

dG+ [(F- {F.,zt,)}}r{Z(z)} )d:}" +[{F_,-z.,,;}r{d{2(r)) }}

In-1

n
=0 (87)

fa1

where the letter d represents differential of function or variable following it. A comma

denotes a partial derivative with respect to the subscript following it.

Since a1, {Z({n-1)}, and ¢, are known and fixed, their differemials o'r...,
d{Z(t,1)} and d1, equal zero. Therefore the transversality condition in Equation (87)

can be reduced as

r
{(G iz +{F .} | t@tzeam =0 (88)

in

Substituting Equations (85) and (86) in Equaiion (88), and knowing that

{d{Z(12)}} # {0} , leads to

[SHZit)) + {As(1)} = {0} (89)
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index which can be done by satisfying the Euler aquations and the transversality condition

previously described

At each endpoint # (r=1,)forn=1,2, ..NT, the Euler Equation (92) can be

written as

-+

{Ultm} = 1R (B {Asita)) (94)
Substituting transversality condition from Equation (89) in Equaiion (94) leads to
{Oan) =R BIIS K20t} (95)

By comparing Equations (95) to {93), the feedback gain matnix at each endpoint »

can be expressed as
(Gl = -(RI7'[BI7IS] (96)

Gain matrix [G(f,)) is cv - >tant and neither & function of time ¢ nor time increment

Al Therefore it is valid at every endpoint ».

Analogous to [G(r.)], feedback gain matrices for FIX-model and SSI-model can

be expressed as
(")={R]"[B][5] for FX-model o7

(G ={&]"[B] 5] for SSI-model 98)
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index which can be done by satisfying the Euler equations and the transversality condition

previously descnibed.

At each endpoint n (1=1,)forn=1,2, .,NT, the Euler Equation (92) can be

written as
[Tz} =R (BY (hy e} (34)
Substituting transversality condition from Equation (89) in Equation (94) leads to
{Trn} =-1R1™(BIIS HZu)) 95)

By comparing Equations (95) 10 (93), the feedback gain matrix at each endpoint »

can be expressed as
(G0 = 4RI (BY(S] (96)

Gain matrix [G(1,)] is constant and neither a function of time 1 nor time increment

Az Therefore it is valid at every endpoint 7.

Analogous to [G(1,)], feedback gain matrices for FIX-model and SSI-model can

be expressed &s
(G = —[R]"[&]T[ﬂ for FIX-model 97)
(G)= -[}:\’]_I[B]T[S] for §SI-model (98)

47



where [Kss];-[Kso].[Mss].[Moo].['Ys]and [Yo] are given in Equations (14), (15), (11),

(13), (24), and (25), respectively.

A weighting matrix [S] of dimension 2¥@ by 2N@ is selected as an arbitrary

row-matrix as
-~ v 0
[51-[31-] o

where elements on the R* row of submatrices [Spland [Sv] of dimension ¥@ by ¥O
equal the arbitrary constants sp and 5., respectively, which satisfy a positive semi-definite
assumption. For each controller, R equals NO-ONC +1, where ONC is one of the

controller's node numbers which does not allow any two consecutive rows of the matrix to
be filled.

To assure a positive semi-definite condition of matrix [§], altermately, a
symmetrical matrix can be chosen as

[5] o] B K] [Kss]

Kss] Bl Kss]] for FIX-model (105)

[§]=vo BE}[{K] [] } for SSI-model (106)

] 8[K]

with
. [Kss] [Kso
Kl= v 107
[£] [[Kso]T [Koo}] (1o
where Tparid B are a stiffness scaling factor and a damping scaling factor, respectively.
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The influence of sp, si and yp, By on the total system can be demonstrated by
using a fixed-base single-story shear structure as an example. Substituting the gain matrix

of the FIX single-story structure [Equation (97)] in the plant matrix Equation (49) leads to

[b]=[’i]‘%{é}{f’}r[3] (108)

R
with
. 0 1
[A]—[—(lt;/ﬂh) -(c./ml) ] (109)

5] ={ —(1?»:,) } and

where [ 4], {B},and R are obtained for the FIX single-story structure by using Equations

e

=1
o (110)

(6), (7), and (101), respectively. Then inserting the row and symmetrical weighting

matrices [v] in Equations (104) and (105) into Equation (108) leads to

[b]: 0 1
(kim0 +sp/m) —(ci/m X1 +svki/cimy)

for row matrix [3‘] (111)

[b] - 0 1
~(ki/m (1 +Ypki/my) ~(c\/m )1+ Brypkiicim,)

for symmetrical matrix [s] (112)
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By cc;mparing the characteristic matrix [A] of the structure system in Equation
(109) to the plant matrices {D] of the structure system with control [Equations (111) and
(112)]. the constants sp, ypand sy, yi- increase the stiffness and damping coefficients of
the new system, respectively. As the stiffness and damping coefficients correspond to
displacement and velocity vectors, sp, Ypand sy, Yv can also be described as displacement
control and velocity control factors, respectively. The complex conjugate pairs of

eigenvalues of the plant matrices in Equations (111) and (112) can be expressed as o+,

where
__Ci(1+svkifcim;) for Equation (111) (1)
2m,
14 Buyoki/
o = X Byyokifcim:) for Equation (112) (14
2m,
and

8= [h(lﬂolm)_(cl(l+sm/ﬁml}

2
i o, ) for Equation (111) (115)

B= jkl(] +Ypk./m)) _[cl(I +Byyokiicim)

2
™5 T ) for Equation (112) (116)

For a subcritical damping system, an imaginary part of the root, B, can be interpreted as a

damped free vibration frequency w and —a/B as a damping ratio. In order to maintain the
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system in thé subcritical range (B is a real number # 0), sp, 5y 0r Yo, B must be selected

according to the following inequality condition.
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V. FREQUENCY-DEPENDENT COEFFICIENTS

OF SOIL SYSTEMS

A. FREE-FIELD SYSTEM'S STIFFNESS MATRIX

1. Definition and Concept. The dynamic-stiffhess matrix [s&,(m)] of the
continuous free-field system with rigid interface is represented in Figure 14. It specifies
the amplitude of forces F{, M), F! due to unit amplitude of displacements xé, Bof, :’J

applied at node 0 of the rigid interface for harmonic motion with excitation frequency w as

F x{;
M) =[S ]} o (119)
F zg

2B

Soil 1

- -Ragid Interface- -

o Fixl,

Mo/ ®wF] o/

Soil II

Figure 14. Forces and Displacements of Free-field System with Rigid Interface
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The Eoncept of the indirect boundary element method, a special case of
weighted-residual technique, can be applied to the free-field system even though the rigid
interface is not a boundary. Assume that loading patterns acting along the rigid interface
do exist and that these loads result, along the same interface, in the prescribed
displacements of unit nodal values x{. 95‘ z{ . This can be achieved by adjusting load
intensities to satisfy this condition. Integrating loading patterns with prescribed
displacements will lead to the dynamic-stiffness matrix. Since only a finite number of load
intensities can be chosen, an approximate solution results.

In Figure 15, the rigid interface consists of two vertical interfaces for length D and
a horizontal interface for length 2B, As additional horizontal interfaces are introduced into
the system, the former is divided into elements of length d, for /=1,2,.. M, on each of the
vertical interfaces. The latter is equally divided into 2L elements, each of length 4. The
elements are numbered from 1 to 2 (A~+L). Element | is started from the top element of
the left vertical interface to the bottom one, element Af Elements M/+1, | AM+2[ define the
elements of the horizontal interface from the left element to the right one. On the right
vertical interface, elements AMf+2L+1,., 2(M+L) are used to describe the elements from top
to bottom.

Rigid body kinematics relate the prescribed displacement amplitudes u(9). w(19)

along the rigid interface (see Figure 15) to the rigid body degrees of freedom associated

with the dynamic-stiffness's definition as

o 5
{"‘ ) }:[N(ﬂ)] ol (120)
w(1)
P
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where ¥ denctes symbolically a point on the assumed line which subsequently forms the
rigid interface A bold letter in the matrix used in Subsection A indicates the

corresponding matrix is in the space domain.

On the continuous system in Figure 16, load amplitudes p(1§), 1) along the

assumed line are related to the initially unknown intensities p,, 7, on node / as

r

P {_ 9 ‘b‘ 4 21
{r(ﬁ)} (1L )]1 . (121)

PNV

M
D=%a.
=]

B Soil Tl

LA

Soil 111

Half-space

Figure 15. Prescribed Displacements along Rigid Interface
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| Sail

= Sail 111

Figure 16. Linearly Distnbuted Loads along Assumed Line

(L{9®)] represents a selected interpolation function (for example, a linearly
distributed function) Nodes are numbered from 1 to NN, where NN is a number of the
nodes along the assumed line and equals 2(A/+L)+3 as the discontinuities of load parterns
are introduced at the corners of the assumed line. Node 1 goes from the top node of the
left vertical interface to the bottom one, node M+1. Nodes M+2, . M+2L+2 define the
nodes of the horizontal interface from the left node to the right one. On the nght vertical
interface. nodes A/+2L+3, . 2{(M~+L)+3 are used to describe the nodes from top to bottom.

Green's influence functions relate the amplitudes of displacements u_(8). w (&)

along the assumed line to initially unknown intensinies p, r, on node i as
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FPI 1
ry-
upr(®) | _ A
{ww(ﬁ)}'["“’“’” ’, (122)
Pl.w
\rm'

Since only a finite number of load intensities p, 7 can be introduced, the

displacement-boundary condition on the interface cannot be satisfied exactly but is

expressed in an average sense as

T upr(ﬁ) _{ u(ﬁ) }) =
[, Wy [{ w”(ﬂ)} e [ |d8=10)

in order to guarantee the symmetry of the dynamic-stiffness matrix, for indirect

(123)

boundary element method, the weighting matrix [W(8)] is chosen to be equal to [L(13)].

Substituting Equations (120) and (122) in Equation (123), the load intensities p,, r

which satisfy the condition in Equation (123) can be determined as

4 3

4
r
| xo
{ Bt =R 6 (124)
r, ¥
: 2
Pwv
L v )

where
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(F) = [, (o)) uwpr(®)} 40 (125)

(T)=[, IO INWD) 0 (126)

The flexibility matrix [F] of & dimension 2(NN) by 2(NN), where NN=2(M+L)+3,
is symmetric. The generalized strain-displacement matrix [ T] has a dimension of 2(NN)
by 3.

As is well known from virtual work consideration, amplitudes of the concentrated
loads F%, M}, F{ can be obtained by integrating loading patterns with prescribed

displacements as

Fi
M =], [N(ﬂ)f{ P }4.5 (127)
Ff

Using Equations (121) and (124) in Equation (127) leads to the dynamic-stiffness

matrix of free-field system with rigid interface as

Fl x}
M =[Sh@)]{ 6f (128)
Fl 4
where
[St0(@) ] = [TI(FY'(T] (129)
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~

2. Generalized Strain-displacement Matriz. Integration in Equation (126) is
performed, along the rigid interface, on cach element based on its local coordinates Origin
of the local coordinates is located at the top node for the vertical element and at the left
node for the horizontal element.

By using the geometric configuration shown in Figure 15, the rigid body

kinematics in Equation (120) can be broken down into one of each element as

[ M
[ﬁ(z)],= . -(Ed")+z 0 for elementi, i=1_ M (130)
|0 B !
) (1 0 o0
[N(x)],= 0 (%b)-—x | for element i, 1 =M+1,  M+[ (131)
L rey
) 1 0 0
[N»] =| 4 _[ ¥ b)+b_x | | for element s, s =ML+, M+2L (132)
b L]
M
[N =| '(,_,.E_ud")“ O | for clements, i =M+2L+1, , 2M+1) (133)
0 ~-B 1

where a horizontal bar on top of a letter denotes that the given matrnix is element matrix

As an example, the determination of the terms on the first row and second column of the
M

matrix in Equation (130) is described as follows. The termn Yd, represents the distance

from the top node of i element to the level of point 0. Subtracting = (distance from the

M M
top node of i* element to a considering point) from Y d. results in Y d,—z which
ey

r—
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represent the distance from a considering point to the level of point 0. Multiplying
M
Y dn~z by 0{, (rotation at point 0) leads to a negative horizontal displacement at a

considering point. The expression on the first row and second column of this matrix

relates to the horizontal displacement at a considering point, ¥(z), to the rotation at point

M
0, @, therefore it equals —3. d. +z

For linearly distributed loads in Figure 16, a two-node element is employed. Since
only the nodal values on these two corresponding nodes dictate loading patterns on the

clement, the interpolation matrix in Equation (121) can be written as

= 1 -2/ 0 =zid O ) L
] = ' ' for el
[La)] [ o 1-zd © zd ] or element i on vertical interface  (134)

= 1-xtb O x/b O ) . .
[L(x)l—[ 0 lexib O x/b:\forelementlonhcmzcmtalmterfar.x: (135)

Using Equations (130) to (135), the element strain-displacement matrix [T] can

be obtained as
[T],= 7 [L)][N(z)] de. for element i on vertical interfaces (136)
[T],=J. [L) ] [Nn)], 2. for element i on horizontal interface (137)
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represent the distance from a considering point to the level of point 0 Multiplying
M

Y d.-z by 9} (rotation at point 0) leads to a negative horizontal displacement at a
=y

considering point. The expression on the first row and second column of this matrix

relates to the horizontal displaceinent at a considering point, #(z), to the rotation at point

M
0, 8}, therefore it equals —%, d+2 .

For linearly distributed loads in Figure 16, a two-node element is employed. Since
only the nodal values on these two corresponding nodes dictate loading patierns on the

clement, the interpolation matrix in Equation (121) can be written as

- 1-2d, O zid, 0 ] L
- t ' f l
[L(z)l [ 0 I—zd 0 2d, -[ or element 1 on vertical interface  (134)

- 1-x/b 0 x/b 0 . . .
[L(x)]i-[ 6 1-x/b 0 x/b]forelement:onhonzontalmterflcc (135)

Using Equations (130) to (135), the element strain-displacement matrix [i‘]' can

be obtained as
[T],= ' [L@] [R)], 2. for element i on vertical interfaces (136)
[i‘l = I: [l:(x)]f[ﬁ(x)l dx, for element / on horizontal interface (137)
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Completing the integration in Equations (136) and (137) results, for element /. in

d,/2 ~
0

M
A )d,/z +d%6 0

Bd,/2 d/2

9

(7]

(1]

[ b2

b2

[,2
0
d./z
L0

M
dn —(Zd,. )d,/z +d*3 0
L O

Bd 2

0

b)b!Z -b%6 b2

0

b]blz -b3 b2

0

0 --( )3 b)b.’2+b’/3 b2
meh o 1

0

0 -[ Y b)b/2+b=/6 b2
L i L L

M

M
-( Yy 4. )d,/z +d*3 0
ry-pf=2l

—Bd,/?.

2 |

° |

0

.

0

0

-
d —( b d,.)d,l2+d,’l6 0
-2

d,.{z

df2 |

| =ML, ML,

i =M+L+],  M+2L

i =M+2L+1,., 2AM-L).

(138)

(139)

(140)

(141)

Therefore the generalized strain-dispiacement matrix [T] of a dimension of 2(N¥N)

by 3 can be obtained by assembling the element strain-displacement matrices. In the
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assembling pnlocess, the eleraent matnices of two adjacent elements are overlapped on the
rows corresponding to the same node. This overlapping does not apply to the nodes
corresponding to the comers of the assumed line since discontinuities in loading patterns
were introduced.

3. PRexibility Matriy. Integration in Equation (125) is performed in the same
manner as that of Equation (126) for generalized strain-displacement matrix.

As noted in Appendix A, Green's influence function relates amplitudes of
displacements 1, w,, in layer i to initially unknown intensities of linearly distributed loads

on the vertical assumed line in layer j (see Figure 16) as

P,
il 2) |7 PRI 142
{wp,(x’,z] }I [“wpr( vz)]j P;'H ‘ )
Fr
with
[uwprix’,2)]) = [ [swprik, 2)] exp(—vke’)ak (143)
where

(awprth, )12 = mwABek, )] (oA B.(R) ' SUB, ([ ST 1] ™)

([PRprf(k)]} -[Shseth) ]J [swpri k)], ) (144)



[uwprtk, 2)]}"™ = [uwpr” (k, 2)] = [uwdB(k,2)], [uwAB. ()} [sowprl k)],
i ABUK,2)) fuwAB. () SUB, ([ 7 0] )
([PRPI":U:)}J’[S[ﬁ-sv(k)]][WPrf(k)]J) (143)
(iwprik = 0,2))"* = ~{uwABG)] wwdB.1= T
sm,,[[[s,’,,w]"“]" )[PRprilj"'“ (146)
[aewpr(k = 0,2))""7 = fwpr' ()] - [wwAB()] ™[ luwaB.1= "

SUB,,([[SJLS,,]"""]'1 )[PRpr’.]jW (147)

Details of formulation and nomenclature of Equations (142} to (147) can be found
in Equations (419), (420), (358), {360}, (412), and (41¢), respectively.

As for linearly distributed loads on the horizontal element with node / and node
I+1, which are on the horizontai interface underncaty layer M (see Figure 16), Green's

influence function in layer i can be obtained as

1 p’
upr(x’',2) _ v ) on
{w,,..(x’,z) }m-[uwpr(:u:’,z)]MJ pi (148)
Tkl
with
[uwpr(e’, 2)],,,= | (iwprik 2)I;, expl-voc )k (149)
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where
lwprtk, 2)),,, =
(i AB(K,2)] lawAB. 0] suba( [ ST.ov )] J1PRor. k1, (150)

[wwprik =0,2)],,,=

(imvaB(eN [ liwaB1 =] subad [ 5.1 T JiPRor1 a151)

Equations (148) to (151) are duplicated from Equations (421), (422). (369), and
(418), respectively. Since the horizontal interface is evenly divided, identical Green's
influence functions for loads on the horizontal element arise.

The z-axes in Equations (142) to (151) are based on that of layer i. But the x"-axes
are based on that of distributed loads, as shown in Figure 16, on that of layer j for loads
on vertical interface, and on that of element / for loads on horizontal interface. By using
axis transformation and Equations (142) and (148), Green's influence function baseu on

the local coordinates of element 7 due to the linearly distributed loads on ¢lement ¢ can be

obtained as Iollows.
ii op vertical left i=
[wwpr(z), ] = (uwpr(0,2)]}, , 1=1,.. M (152)
[awpr(x), ] = (uwpr({i—-M-1}b+x,du)]"* . i=M+1, . M+2L (153)
[uwpr(), ] = (wwpr(28, )] % | i =M+2L+1,. 2MHL) (154)
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[uwpr(2), ] = [uwpr({M+1-ii}b.2)],,,, .7 =1..M (155)
[uwpr(x)!, ] = [awpr({i - ii}b +x,dy)ly;,, . § =M+1,. M+2L (156)

[uwpr(z), ] = (uwpr({M—2L +1-ii}b, )15 . i=M+2L+1,. . 2(M+L) (157)

[uwpr(z), ] = [wwpr(=28,2)),,_, o .7 =1,.. M (158)
[uwpr(x), ] = (uwpr({i-M +2L - 1}o+x,du)I¥ .y, i =M*1, M+2L  (159)

[uwpr(z), ] = (uwpr(0,2)] 5,5 |, i sM+2L+1,. 2(M+L) (160)

In the Green's influence matrices on the left side of Equations (152) to (160),
superscript i denotes displacements on the element /i and subscript ii indicates that the
displacements on element i are due to the distributed loads on element ii. The coordinates
used in these matrices are based on those of element i Taking Equation (155) as an
example, element / of this equation is on the vertical left interface and element ii is on the
horizontal interface. Therefore. Green's influence matrix of layer i (superscript i of the
matrix on the iight side of the equation) due to the distributed loads on the horizontaj
element having node ii and i+1, which is on the horizontal interface undemeath layer M,
is used. Since the z-axis used in this matrix is based on that of layer ¢ (element J). no
transformation is needed However, the x’-axis is referred to that of element ii on the

horizontal interface (see Figure 16). To obtain the displacement of element i, the distance
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from the leR node of element if (origin of x'-axis) to the vertical left interface is
substituted into x-ordinate. AM+1 is the element number of the element having its left
node aligned with the vertical left interface (see Figure 15). Therefore, ii-M-1 is equal to a
number of elements between the vertical left interface and the left node of element
Then {M+1-ii}h is determined as the negative distance from the left node of element
to the vertical ieft interface

Substituting the interpolation matrices in Equations (134), (135) and Green's
influence matrices in Equations (152) to (160) into Equation (125), the element flexibility
matrix [l-"]:‘ relating nodal strains of element / to nodal stresses of element i can be

expressed as follows.

lement ¢ on vertical left in i=

(F] = I: (L)) (uwpr(0, D)}’ dz , 1§ =1,... M (161)

[F] = [ (Lo fuwpr((M+ 1 —ii}b, ), ds i =M1, M+2L (162)

[F). = | (LN ToWr-2B, 20,y s 51 "MY2L¥1, . 2(ML) (163)
1 on for i =M+ 4
Fl =( T : M ..

[F], =], o Tuwpr((i- M= 1}b+x,du)} e i =1, M (164)
il = T L M 3

[F]" =jo [L(x)]; [uwpr({i~ ii}b+x,du)]y i , di =M+, M+2L (165)
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[ﬂ;:[: [L(x)],rllmrpr({i-M+2L-1}b,L,:,ﬁiM)]ﬁr_,h‘_z‘Lmr

i =M2L+] . 2(M+L) (166)

[F] =7 W luwpr2B, 91> e i =1, M (167)
[],=] : (L) [uwpr({M - 2L + 1 ii}b, ) 42 ds  ii =M1, ., M+2L (168)
[F]. = j‘: (L) [uwpr(0, )32 de | ii =M+2L+1,. 2(M+L) (169)

Thus assembling the element flexibility matrix [ F]' of a 4 by 4 dimension leads to
the flexibility matrix [F] of a dimension of 2(NN) by 2(NN). In the assembling process,
element matrices are overlapped on the matrix's elements corresponding to the same
nodes. Rows of the element flexibility matrix correspond tc the nodal strains of eiement /,

and columns to the nodal stresses of element ii.

Since integration of the element flexibility matrix [ F]| in Equations (161) through
(169) is intricate and time-consuming, one may take advantage of the symmetry of the
flexibility matrix [F] and interface configuration. Not all elements in the flexibility matrix
need to be determined. For examples, the flexibility matrix may be divided into nine
submatrices as shown in Figure 17, each relates strains along vertical or horizontal
interface to stresses along vertical or horizontal interface. As the flexibility matrix is

symmetrical, the submatrices [1-2), [3-1], [3-2] are identical to the transposed

67



submatrices [2~1)7,[1-3]7, [2—3]7, respectively. Submatrix [3—3] is identical to

submatrix [1 - 1] dus to identical vertical interfaces on the left and night .

4. Iptegration Techmigue. To obtain the flexibility matrix (F], unlike the
generalized strain-displacement matrix [T], a numerical integration needs to be employed.
This is due to rigorous mathematical form of Green's influence functions [see Equations
(142) to (151)] in the flexibility matrix {F]. Substituting Equation (143) or (149) into
Equations (161) through (169), the element flexibility matrix [i‘]:‘ can be expressed in a

double integration form as follows.

Stresses on Stresses on Stresses on
vertical left horizontal vertical right
interface interface interface
- S ~ Rows
Strains on [1-2] 1
vertical ieft identical to
interface Wf+2
2M+3
Strains on
honizontal
interface
WAf+4L +4
Strains on (3-1] (3-2] *
vertical nght identical to identical to identical to
interface [1_3]7. [2_3]]' [1-1]\ 4(A'I+L)+6
M+2 M+4L+4 4M+L)+6
Columns | 2M+3 IM+4L+5

Figure 17. Flexibility Matrix Diagram
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[F] = f: [ 0 aowprth, 2)), ke it =1, M (170)
[¥], =] : |7 L) lawprik, 2))),  exp(-tk{M+ | - ii}b)dkdz
A=ML . Ms2L (7))

(F],= .[ : J f_ (L)1, lwwpr(k, 1)), ., exp(2ukB) dkdz

i =MA2L+1,. 2(M+L) (172)

i on hon i r i =Af+ 4+
[‘-‘"]:, = f Z f I. (L(x)) [swprik, du)Y exp [—ub({i -M ~1}b+x)] didx
=1 M (173)

[¥] =] : | (Lo Tuwprtk, du )T}, exp (-vkt {i - ii}b+x)] dk dx

i =M1, M+2L (174)

(F] = I, [ (Lo tuwprtk, du)1t o oxp [kl =M+ 2L = 1 )b+ 5) dk s

i =M+2L+1,. 2(M+L) (175)

| nt ¢ verti i i i =M+2[+] . [
(F].= I : E. (L) (swprik, 2} exp-2ukB) dhds | if =1,.., M (176)
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[FY, = [0 |7 (L luwprik, )24 exp(-u(M - 2L + | ~ }b) dkds

ii =M+, M+2L (177

b 1} d, r= —. .
Fl' =] . [ (L twwpr, )] 575 dkdz i =MH2L+1, 2MsL)  (178)

To optimize accuracy and computational time for integration in Equations (170) to
(178), the adaptive quadrature numerical integration [3urden and Faires, 1988] is applied
along k-axis due to the fluctuated nature and variation of fuactions along this axis (see
Figures 18, 19, 20, and 21). This efficient technique can distinguish the amount of

functional variation and adapt step size to varying requirements. Therefore the

approximation error is uniformly distributed.

Also along k-axis, the functions diminish in both positive and negative directions
when the absolute value of k increases. Thus certain values of k are used as upper and
lower limits. Note the case of an interval corresponding to a large absolute value of &
Here, if percentage of the area under the interval to the area under the whole range is
equal to or less than the desired value, the corresponding k defines the limits

Since the contours of the functions along x- and z-axis are quite smooth. Simpson's

method is adequately empioyed.

B. EXCAVATED PART'S STIFFNESS MATRIX

1. Definitiop and Concept. For harmonic motion with excitation frequency w,

the dynamic-stiffness matrix [550(w)) of the bounded excavated part of the system with
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-0.001
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Figure 18. Diagonal Integrand of Submatnix [1-1] vs. Wave-number (k)

0.0015

0.0005 * /\ —

-0,0005 ot -/

-0.001 Ly

-0.0015 - l . ’ ‘

Wave-number (k)

Figure 19. Off-diagonal Integrand of Submatrix [1-1] vs. Wave-number (k)
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Figure 20. Diagonal Integrand of Submatrix [1-3] vs. Wave-number (k)
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Figure 21. Off-diagona! Integrand of Submatrix [1-3} vs. Wave-number (k)
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rigid interface is demonstrated in Figure 22. It defines amplitude of forces F%, M}, F} due

to unit amplitude of displacements x§, 05, z5 applied at node 0 of the rigid interface as

Fe 13 )
M5+ =[Ss(w))§ 65 (179)
Ft %
with
1850 ()] = (K1 + 201) - w?[Af¢] (180)

where [K?] and [Af*] are the stiffness matrix and the mass matrix of the excavated part of
the system, respectively. Symbols { and 1 represent the linear hysteretic damping ratio and
/1, respectively

As the excavated part of the system represents a bounded domain, the concept of
the finite element method can be applied. First, the domain is discretized into elements
connected to each other at nodal points. Determnining and assembling the element
dynamic-stiffness matrix leads to the dynamic-stiffness matrix corresponding to the

degrees of freedom of all nodal points. Then the condensation process is needed to

2B

M
D= F_I.d, < Rigid Interface

_ 0o xo.Fi,,

85.M; &w ;5 Fy

Figure 22. Forces and Displacements of Excavated Part of System with Rigid Interface

73



eliminate the degrees of freedom of the nodes not lying on the rigid interface Finally.
relating the degrees of freedom of the nodes along the interface to the rigid-body degrees
of freedom at point O yields the desired dynamic-stiffness matrix.

As shown in Figure 23, depth D of the excavated domain is equally divided into
Me portions, each of length d,. And the domain's width at length 2B is evenly divided into
2Le portions, each of length &, This results in 2LeMe rectangular elements of dimension

d, by b,, each having four nodal points.

Shown in the same figure, rectangular elements are numbered from 1 to 2LeMe
starting from left to right and top to bottom. The nodes are categorized into two groups:
nodes along the interfaces (subscript B) and nodes in the domain's interior, including those
along the top boundary (subscript /). The former are numbered from | to Me+1, going

from top to bottom of the vertical left interface, from Me+1 to Me+2Le+] going from left

LR Uarlep+]

Figure 23. Discretization of Excavated Part of System
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to right of the horizontal interface, and from Me+2Le+1 to 2(Me+Le)+1 going from
bottom to top of the vertical nght interface. The latter are numbered from 2(AMe+7e)+2 to

(Me+1)(2Le+1) going from top to bottom and left to right for the intenor.

The 8 x 8 dynamic-stiffness matrix [3“((»)]} of element j, where j =1, ., 2LeMe_ can

be obtained as
[S*w] =[X](1+250-w[Mr] (181)

where [i{‘], and [At{‘]} are the stiffness matrix and mass matrix of element ;. They are
discussed in the next two subsections (2 and 3).

In the standard assembling process, the element dynamic-stiffness matrices
[3"(0))] of adjacent discretizing elements are overlapped on the matrix's elements

corresponding 10 the same nodes. The resulting matrix can be expressed as

{PRs} {uwp}
=[5*(w 182
{ {PR;} } 15% )}{ {uw,} } (182)
with
P, W [ Prteten
R, Raestere
{PRs} = 1 :’ > and {PR/} =1 i‘ \ (183)
Pzw@»: PlMﬂl.)(ZLﬂI)
L Rateriare ) | Rurertjates1)
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[S'(m;] =[ %‘;ﬂ [[2‘:::" ] (184)

r 3 ( \

| ¥1iMerLaye2
W WM eriep+d
u u
{uwy} = ' » and  {uw;} =1 ' > (185)
W. wl
H2MasLare) U Meel)(2Les))
| Walkferia)+l ) | Wiker1)2Lov1)

where P, and R, are the horizontal and vertical forces at node J, respectively. u,and w, are
the horizontal and vertical displacements at node f, respectively. The dynamic-stiffness
matrix [S*(w)] of dimension 2(Me+1)2Le+1) by 2(Me+1)2Le+1) consists of four
submatrices, cach corresponding to the degrees of freedom of subscripts' nodes. Subscript
B indicates the nodes along the interfaces. Subscript / stands for the interior nodes,
including those along the top boundary. Superscript e denotes the excavated part system.
Since no external forces act on the nodes in the interior ({PR;} =0), Equation

(182) can be condensed and expressed as

{PRp} = [Spa(w)]{sws]} (186)
with

[1S5s(@)) = [S28]~[Sa[30] [5] (187)

where [S55(0)] has a dimension of 4(Me+Le)+2 by 4(Me+Le)+2.

76



Since the interface is ngid, as shown in Figure 24 the degrees of freedom of the

nodes along the interface relate to the rigic body degrees of freedom at point 0 as

{uwg} =[4]4 8

with

(4] 1
{42]
[As]
[A44] I

(4] =

where

NTA

(4] =

4:)=) Mt

45) =

77

for node i, i =1,.., Me

for node i, i =Me+1,.., Me+Le

for node J, i=Me+Le+1,.., Me+2Le+]

(188)

(189)

(190)

(1591)

{192)



r: \
[Ad= - z deO

o+1lavd

0 -B 1

for node i, i =Me+2Le+2, 2(Me+Le)+1 (193)

Matrix [4] of dimension 4(Me+Le)+2 by 3 consists of 4 submatrices, [4,],[A4.].
[43], and {44]. Matrix [4,], having a dimension of 2Me by 3, corresponds to the degrees
of freedom along the vertical left interface. Matrix [4]), having a dimension of 2Le by 3,
corresponds to the degrees of freedom along the left portion of the horizontal interface.
Matrix {4,], having a dimension of 2Le+2 by 3, corresponds to the degrees of freedom

along the right portion of the horizontal intertace. Matrix |A44], having a dimension of 2Me
by 3, corresponds to the degrees of freedom along the vertical right interface These

submatrices can be determined by using geometric consideration in Figure 24. For

)

exampie, theterm -~ Y,  d, in Equation (193) relates a horizontal displacement at node
Merlle+vl

Figure 24. Rigid Body Degrees of Freedom of Excavated Part of System
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i of the vertical right interface, u,, to the rotation at point 0, 87. This term represents the
negative distance from node / to the level of point 0 as the positive rotation results in the
negative horizontal displacement at node 1. The summation of d, from Me+2Le+2 to ¢

leads to the distance from the level of point 0 to the node

Using matrix [4] in Equation (188) and its transposed form in Equation (186). the

dynamic-stiffness matrix of the excavated pan of the system with rigid interface can be

expressed as
F: '
M b = [Selw)) 65 (194)
Ft 24
where
(Sto(@)] = [A1T[She(w)](A4 (195)
and
Fe
M; ¢ ={A)7{PRs} (196)
Ft

2. Element Stiffness Matriz. The local coordinate and node numbering system
of a four-node rectangular element is shown in Figure 25 The element has lengths
b.and d. along x- and z-axis, respectively. For a plane elastic problem, the element has

eight degrees of freedom, two degrees of freedom on each node.
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Figure 25. Four-node Rectangular Element

Therefore the displacement pattern can be represented by eight unknown
coefficients of the polynomial as

u(x,z) =0 + 03X+ 037+ Qexs (197)

W(x,Z) = Ols + OteX + 072 + O gXZ (198)

Substituting the values of nodal coordinates in Equations (197), (198) and then

solving for {a}, displacement shape functions can be expressed in terms of nodai

displacements as

U

[ uix.2) }:[N(x,:)h ool (199)

i\ wix, z}) W,

Uq
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with

)] %" 0, "6 5" B 6 (200
where

E’u.u=ﬁ(z.z)=|'bi‘-i+f;—‘ (201)
Nus=Nogy= ;—. = bf:d. (202)
Nu.n =ﬁtz.c: =i-ﬁ; (203)
Nan=Ngy= f—;: (204)
The strain-displacement relationship can be expressed as

€ =u.(x,2) (205)
€ =w.(x,2) (206)
Ye =Ya =4:(X,2)+w, (X, 2) (207)

where the normal strain and shear strain amplitudes are denoted by € and ¥, respectively.
The first subscript denotes the direction of the strain component. The second denotes the
direction of the infinitesimal area's normal where the strain component is. A comma
denotes a partial derivative with respect to the subscript following it.

Using Equation (199), the strains in Equations (205) through (207) can be

expressed in terms of nodal displacements as
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u|
W
€.(x,2) _ u
ex2) t=[Bea]y 't (208)
Ye(x,2) !
u,
\ w‘ ’

with
) Bay © Bay 0 Bun 0 Bapy O 1
[Bny]=| 0 Basy 0 Baw 0 Bag 0 Bay (209)
By Bpay Bas Boa Basy Bas Bon Bas
where

Buy=Bpyn=-Bus=-Bag= :If + 3:23"' (210)
Bus =Beay=-Bon=-Bay =ﬁ: 211)
Ban =Bon=-Bay=-Bos =;—i+ﬁ": (212)
Boo =Bosy=-Bay=-Bun= if,: (213)

Normal stress and shear stress amplitudes @, T can be obtained in terms of normal

strain and shear strain amplitudes ¢, ¥ in matrix form as

cx - Ex
o. t=[D] e @14)
T Yz
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with

o [2r+n A o"
[D]=] » 2r+ro0
o 0 Y

where

E

the shear modulus of elasticity Y = 30 +9)

V)

the Lame constant A = ﬁ_*'m

(21%)

(216)

(217)

and the letter E represents Young's modulus of elasticity. The symbol v represents

Poisson's ratio.

By using Equations (208) and (214) and applying the principle of virtual work,

nodal forces relate to the nodal displacements in terms of the symmetrical element stiffness

matrix as
’Pl [ y w
R[ L7
Pl w e ) ér s
< R' P—[K ]} w,
Pa ”
kR‘ J iw‘ 4
with
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where

(&)= 1" [Boe. 0 (5] (B, e

Kby Kby Koa Khs K(‘zs) K::-n Qs
- Kb, K‘m K'as) Ky Kb Ko

: ETQ¢, ﬁfﬁs) ﬁf;s) Kr;ﬂ ITL.,

© Kiys Kisg K?s‘n Kisny

: K'ss) K‘“} wa

Kb, K?m

L : : : : : ‘ &

- _ o b
Kl =K3) = Kis 5= Kign = %[(2]‘ +A )b¢ N3 ]

- = = = b, d,
K2 =Kise =Kis =Ky = [(ZTJ + 7‘-;)'; +T, b_]

W |

Kin=Khe= Kisy =Koy = %(Ti +4,)
Kin=Kin=Khy=Ksg= ‘—4_1(1'1 +4,))
Kio=Kh3=Kip=Kin = %(11 =T)
Kig=Khs =Ky =Kgn = _4—1(11 -T)
K3 =Kism = %[(271 + 1;):—: - 2T;3—:]

k('l.ﬁ) =E(¢4.3) = _[(ZTJ +A. )_ - ZT ]
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(220)
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{224)
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6

Kog= K'w‘i 2(2T;+7‘-f)—‘7b ]

1 - - [ d. b
Kis=Kon= ?! LZ(ZTJ + l})i"“ - TJ‘Z:']

- — b‘
Kan =K =_ (ZYJ"'l )b +TJ ]

—
Ll

- = - b, d,
Koy =Kie=— QT+ )'I)d—"']lg]

6.

(228)

(229)

(230)

(231)

3. Elcment Mass Matniz. Instead of using lumpwd mass at each node,

consistent mass is considered. The mass of element j distributed to each degree of freedom

can be defined as

[ = 2 7 oy [P T [Fiee, ] e

(232)

Inserting Equation (200) into Equation (232) results in the symmetrical element

mass matrix as

(19 0 118 ¢ 118 0 1736 ©

19 0 1/1I8 0 118 0 1/36

149 0 1736 0 118 0

- S 1 18 0 136 0 118
(], = psbed, Sl e 0 118 0
9 0 118

179 0

] 19
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C. GROUND SYSTEM'S STIFFNESS AND FLEXTBILITY MATRICES

1. mi iffnegs Matrixz. In Figure 26, the dynamic-stiffness matnix
{55:(®)] of the unbounded ground system with rigid interface is depicted It specifies the
amplitude of forces F¥, My, F¥ due to unit ampiitude of displacements x§, 85, =5 applied

at node 0 These forces, for harmonic moticn with excitation frequency w, are expressed

as
H xg
M§ | =(Sh(w)]] 6f (234)
H 23
with
5 S5 0
0 0 S%

where ground system coefficients S&, 5%, 5§, 5. and S& are forces corresponding to the
first subscript's degree of freedom due to a unit displacement excitation corresponding to
the second subscript's degree of freedom. Since the soil domain is assumed to be a linear
system, the law of superposition is valid. Thus the dynamic-stiffness matnix of the ground
system can be obtained by subtracting that of the excavated part of the system (195) from

that of the free-field system (129) as

[Shot@)] = [ Sto(@) ] - [Sho(@)] (236)
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Figure 26. Forces and Displacements of Ground System with Rigid Interface

Near the natural frequency of the system's excavated part, that system's
dynamic-stiffness coefficients as well as the free-field system's will be large Since the
dynamic-stiffness coefficients of the ground system involve two large numbers obtained
from two different methods, a number of discretizing elements must be chosen carefully in
this vicinity.

2. Time-derivative Dvpamic Flexibility Matriz. Since harmonic motion is
represented as exp(iw), the ground system's force-displacement relationship in Equation

(234) can also be written as

F¥ x:
explwr)d MF |+ = exp(ur)( S (w)]{ 65 (237)
| F? e

where 1 and / represent J=1 and time variable, respectively.
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Dynamic-flexibility matrix is the inverse form of dynamic-stiffness matrix [n the
case of a ground system with rigid interface (see Figure 26), the dynamic-flexibility matrix
specifies amplitude of displacements xf, 8¢, -§ due to unit amplitude of forces F£. A1 F*
applied at node O of the rigid interface for harmonic motion with excitation frequency @

This relationship can be expressed as

x5 Ff
exp(o¥)¢ 0% 3 = exp (1) Fao(w)]{ M7 (238)
P F¥
with
(Fé()) = [Sho(e))” (239)

where [Fgo{®)] of dimension 3 by 3 is dynamic-flexibility matrix of ground system with
rigid interface for harmonic motion with excitation frequency w.
Differentiating the displacement-force Equation (238) with respect to time, and

omitting term exp(wuw), results in a velocity-force relationship of ground system in

harmonic motion as

gl (R
8 ¢ =[Fh ] M (240)
LA Ft

where [Fﬁo(m)] is a symbolic form, not a derivative, representing the so-called time-

derivative dynamic flexibility matrix of ground system as shown later in Equation (242).



% | x
8% =wH af (241)
2

[Fh)]=w{F&w)= (S

Fi Fi 0
=| FL F& © (242)

0 0 F%
where [F A (w)] of dimension 3 by 3 specifies amplitude of velocities x§, 83, 2§ due to unit
amplitude of forces Ff M} F7 applied at node O of the rigid interface for harmonic

motion with excitation frequency .

3. Impulse Veloorty Matrix. At node O of the rigid interface, the amplitude of
velocities x5.0% 22 at time ¢ and a series of amplitudes of impulse forces Ff M} F¥ are

related t0 impulse velocity matrix of ground system with rigid interface by convolution

integral as
wol|l o Fii-1)
oy =] [Fh K Mbu-v {ae (243)
0 F-1)
with
_ FLFS o
[Faw]=| FL F& o (44)
0 0 FE

where [l" go] is impulse velocity matrix of ground system with rigid interface. Coetlicients

FE FY% FE Fh, and F& are velocities, at time 1, corresponding to the first subscript's
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degree of ﬁ'e;adom due to a unit impuise force, at time equal to zero, corresponding to the
second subscript's degree of freedom. Clearly, these coefficients are time-dependent causal
functions.

This impulse velocity matrix [#%(r)] can be obtained by the inverse Fourier
transformation of the ground system's time-derivative dynamic flexibility matnix

[ Fi(w) ] in Equation (242) as

[Flotn] =50 | [Flata) Jexptionao (245)

where 1 and & equal to J-T and pi number, respectively.

Since the soil system's dynamic-stiffness matrices and thus the time-derivative
dynamic {lexibility matrix used in Equation (245) are obtained in discrete-frequency
domain, the discrete version of inverse Fourier transform applies as

[Fanan] = %-:3 'f [ F&(mAw) Jexp(imAwnar) (246)

el -NS
where Ar and n are time increment and time-instant number, respectively. Aw and m are
frequency increment and frequency number, respectively. NS is a number of sampling
steps where (NS)Aw and (NS)Ar equal a truncated frequency {27 and time range 7, of
impulse velocity function, respectively.

In the discrete version, the time-derivative dynamic flexibility functions F&(w,
Fiw), FE(w), F&(w), F(w in Equation (242), non-periodic ones, are truncated at an

arbitrary frequency. This truncated frequency £1r must include all predominant
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frequencies of total dynamic system. ground system, and incident waves. As a result of the
truncation, band-limited functions, having a frequency range from -{27 to Qr, are formed.
Then neriodic extensions of these band-limited functions, required by the form of
Equation (24€), are used in the transformation. Therefore, only within time range
(=T T;]. is the discrete version in Equation (246) similar to the continuous version in

Equation (245)

Truncated frequency {2r dictates a size of time increment Az Size of frequency

increment Aw depends upon a number of sampling steps, NS Their relationship can be

expressed as
_ K __=X
Af= 2r  (NSAo (247)
and
fr__ = =z .
AO= NS = WA T, (298)

According to Equation (247), if truncated frequency L7 is too small (not including
all predominant frequencies), time increment At will be too large for discrete
representation of the continuous functions of the entire dynamic system's response,
impulse velocity, and earthquake excitation. Since impulse velccity functions attenuate as
time goes on and the discrete version's precision is only within a time range [-T,, 7]
where 7, = (N5S)At, this time range must cover all significant ranges of impulse velocity
functions and beyond. (From a practical point of view, T should double the significant

imit of impulse velocity functions to guarantee causality condition) Therefore the
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number of sampling steps, NS. needs to be large enough to cover these ranges
According to Equation {248), S must also be large enough to make frequency increment
Aw small enough for discrete representation of the continuous band-limited functions of
time-derivative flexibility functions F& (), F&(w), F&(w), Fis(w), Fiim

Band-limited sequence of the time-derivative flexibility matrix [ F&,(maw) ], from
frequency ~(M5-DAw to (NS)Aw, is used for the transformation in Equation (246)
Knowing that the time-derivative flexibility pair corresponding to a positive-negative
frequency pair is complex conjugate, the band-limited sequence can be constructed from a
given sequence along the positive half of the frequency range. This complex conjugate
relationship can be proved by substituting a positive-negative frequency pair in the discrete
Fourier transform fo-mula for a causal function. This formula describes time-derivative

flexibility matrix as
. AT
[Fho(maw) ] = ar X [ Fio(nan Jexp-t mbwnAf) (249)
eutlh
Substituting m = {
U
[F&tiaw) ) = At T [ Fio(nAn Jexp(-1 iawnAr)
)

NS _ |
=cos(IAwnAnAr 3, [ Fiy(nas) ]
)

NS
—tsin ({AwnAnA X [ Flnan | (250)
el



NS _
[ Flo(—low) ] = at X [ F&(nan) Jexp(i iswna)
)
NS
= cos (IAwnANAr 3. [ Fh(nan ]

()

NS _
+sin( [Awnanar 3 [ Fhinan] (251)

re)

Equations (250) and (251) always form a complex conjugate pair because signs of their
imaginary part are opposite for any integer /.

Phase angle of impulse velocity responses 1s assumed to be either 0" or 180"
Impuise velocity functions F& (), F&(1), F&.(1), F& (1), FE(1) are then assumed 10 be real

number. Therefore the following properties are applied.

1. Impulse velocity function F(s) can be expressed as the sum of an even part

F (1) and an odd part F,(1)
Fiy=Fun+F,(1) (252)

2. The even part F,(1), or conjugate-symmetric one, can be obtained by inverse
Fourier transform of the real part of time-derivative flexibility F{w). If the even

part is defined as

F.=F.- and F,(0)=F(0) (253)

then

93



F.= ﬁ [ Re F(w))exp(mw)dm (254)

3. The odd part F,(#), or conjugate-antisymmetric one, can be obtained by inverse

Fourier transform of the imaginary part of time-derivative flexibility F(w) If the

odd part is defined as

Fo)==F,(~r) and F,0)=0 (255)
then

Fun=3-]" lmg(F(m))cxp(m:t)dm (256)

Impulse velocity function F(1) is causal (amplitude of function equals zero for time
1 < 0). Therefore, for t < 0, the summation of even and odd parts must be zero Their

relationship can be expressed as
F.n=-F,;) fortime1<0 (257)

Using Equations (252), (253), and (255) and the causality condition in Equation
(257), impuise velocity function can be expressed in terms of either an even part or an odd

part as

F(t) = 2F () U() - F.(0)8(1) (298)

and

F(1) = 2F (nU(1) + F(0)8(1) (259)
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where U{r) is a unit step function in the interval of time ¢ greater than or equal to zero
8(r) 1s the Dirac-delta function equal to 1 at time f equal to zero It should be noted that
tmpulse velocity function F(1), for 1 =0, cannot be determined by using the odd part alone
[see Equation (259)].

Therefore, by using Equations (254) and (258), impulse velocity function F(r) can

be determined by using only the real part of F(w) as

1" Reall? o
Fo)= o j__ ReaI(F (m))dm fortimei=0 (260)
and

F(t):,l—‘r_Rea F(o)))exp(w)t)dco for time 1> 0 (261)

For a ground system with rigid interface, discrete impulse velocity matrix can be
obtained by applying the discrete version of transformation [Equation (246)] and its

complex conjugate property [demonstrated in Equations (250) and {251)] to Equations

(260) and (261) as

[r:om)]=%$ 3 Real([F;,(mAco)])

wml-NS

=4 N”}:[ Reaj([Fgo(mAm)]) + %Real(['F So(ﬂr)]) (262)

and
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[Fhnan] =42 ”_}:E'S_Ns Reat([l’?:., (mAw)])expu mAwnAf

forn=12,..NS (263)

Note that the static components of the ground system's time-derivative flexibility
matnx [F&,(m = 0)] always equal zero [see Equation (242)]. Therefore those of ground
systemn's stiffness matrix need not to be determined. Only the dynamic-stiffness matrices on
the positive half of frequency range are neeC>d due to their complex conjugate property.
To minimize computing time, Fast Fourier Transform (FFT), an efficient technique of

calculating discrete Fourier transform, is employed.
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VL. INVESTIGATION OF DYNAMIC STIFFNESS

COEFFICIENTS OF SOIL SYSTEMS

A SCOPE OF INVESTIGATION

1. Studyv Parameters and Actual Site Data. To investigate the influence of
soil hysteretic damping, foundation embedment D, and the depth of a soil layer on the
rock bed on the dynamic-stiffness matrix, a half-plane and a homogeneous layer with
depth H built on the rock are examined by using Poisson’s ratio of 0.33. The undamped
case and the cases of 0.03, 0.05, and 0.07 damping ratio § are investigated The ratio of
embedment to foundation half-width, D/B, and the ratio of layer's depth to foundation
half-width, 4. B, are varied parametrically.

In addition to the parametric study, the actual site of Takenaka Experimental
Building (TEBS) is investigated. The ratio of embedment to half-width, D/B, is chosen to
be 0.5. The testing data and calculating data of this site are listed in Table I P- and
S-wave velocities, Cp and Cs, are obtained from the field test. Soil mass density p is
evaluated from the lab test of scil samples. Soil hysteretic damping ratio § is estimated
based on the soil type. Shear modulus YT, Young's modulus £, and Poisson's ratio v are

determined by using the following formulae.
T=pCs (264)

_ pCs(3C3-4CY)

E
Cp-Cs

(265)
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o= E;_]gl’ (266)

Soil layers and their properties are simplified as presented in the last coiumn of
Table 1. The soil of the first three meters depth is treated as 4-layered homogeneous soil,
cach layer being 0.75 m. The physical properties of this homogeneous medium are
obtained by taking the weighting average of the first three soil layers' properties (results
shown in the last column of Table I). The soil profile from a depth of 3.00 mto 61 80 m is
divided into 62 homogeneous layers as detailed in the last column. The average shear
modulus and S-wave velocity of all simplified layers are 94.20 MN/sq.m and 224 m/sec.
respectively. Soil underneath 61.80m depth is considered as a half-plane. Again the
weighting average is used to determine the properties of this assumed homogeneous
domain (results shown in the last column of Table I). Only the soil properties listed in the
highlighted columns noted by [1],[2],..,[5] are used as data in the code for determining the
dynamic-stiffness matrices.

2. Nondimemsioualized Spring and Damping Coefficients. The various

dynamic-stiffness matrices [So0] in Equations (129), (195), and (236) are decomposed as

[So0] = [Koo)([K(do)] + o[ Lleo)]) (267)
with
1 00
(Koo]=2Y| 0 B2 0 (268)
0 01
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‘ Kx KxyB 0 |
(K(4o))=| Kxy/B Ky © (269)
|0 0 Kz | '
Cx CxyB 0 )
[Cdo))=} Cxy/B Cy O {270)
L O ¢ Cz |

where [Koo] is the arbitrary diagonal static-stiffness matrix. Y is the average of the soil
shear moduli of the calculating system. B is the foundation half-width. (K] and () are
the matrices containing nondimensionalized spring and damping coefficients. respectively
Small letters x and z denote the coefficients in the horizontal and vertical directions; y is
used for rotation (rocking) with respect to point O of the rigid foundation, and xy
represents the coupling between the horizontal direction and rocking. The dimensionless
frequency do is equal to wB/Cs, where Cs is the average of the s0il shear wave velocities

of the determining domain. The symbol « represents 1.

B. INVESTIGATION OF AVA PART'S FFICIENT

The dynamic-stiffness matrix of the system's excavated part in Equation (195) can

be written in the form of a 3 by 3 matrix as

5% Sw O
[S.oo(m)] = S‘h S‘u 0 271
0 0 §%

where the first and second subscripts denote the force and unit displacement degrees of

freedom, respectively.
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Using Equations (267) to (270), the nondimensionalized spring and damping

coefficients of the system's excavated part can be obtained as

Real($%)

=T

Cx = Imag(S5)

nl& ¢

_ Real(S%y) _ Real(Sk;)
Ky=—8 ~ 1B

o mag(Se) _ Imag(Se)
XY = T XYBa, _ nYBd,

Real(S%)
Ky=—m

Cy= Imag_1 S'go)
Y 7B,

__ReaKSé)
Kz= Yy

Cz= I_m__S;,)
ﬂr‘o

(272)

(273

274)

(275)

(276)

QQm

(278)

(279)

For D/B = 0.5, 1.0, and 2.0, the excavated part of system is finely discretized into

400, 450, and 400 elements, respectively. To create the square elements, the vertical side

and the horizontal side of this domain are equally divided into 10 and 40 portions for

DiB = 0.5, 15 and 30 portions for D/B = 1.0, and 20 and 20 portions for D/B=20. The

4-node element is employed in the finite element procedure.
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1. Effects of Hysteretic Damping. As described in Equation (180), the
hysteretic damping { relates to the dynamic-stiffness coefficients of the system's

excavated part as
(SSow)] = [Ke)(1 + 20y ~ w[M*) (280)

For the system's bounded excavated part, the dimensionless natural frequencies
associated with various modes can be determined. In Table II, the natural frequencies in
the range of interest (less than 4.0) are presented for the excavated part of the undamped
system with D/B = 2.0. The antisymmetric mode applies to the horizontal (x) and rocking
(y) degrees of freedom. The symmetric mode refers to the vertical (z) degree of freedom.
The zero values of Kx, Ky, and Kz correspond to the dimensionless natural frequencies of
the system's excavated part having rigid-body constraint with the released degrees of

freedom in the horizontal direction, rocking, and vertical direction, respectively.

Table I1. Dimensionless Natural Frequencies of Undamped
Bounded Domain with D/B =2.0

286 2,07 0 0 0
3.04 * 2.97 292 3.04
3.94 * 348 375 *

* out of the interested range
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At the frequencies corresponding to the antisymmetric mode (2 86, 3.04, and 3.94
in Figures 27 to 32), the spring and damping coefficients approach infinity. The first two
frequencies of this undamped medium are very close. Coefficients approaching infinity are
also applied, at frequency 2 07 in Figures 33 and 34, for the symmetric mode. At the
frequencies 0, 2.97, and 3 .48 in Figure 27, the frequencies 0, 2.92, and 3.75 in Figure 31,
and the frequencies 0 and 3.04 in Figure 33, the spring coefficients are equal to zero
These frequencies are the natural frequencies of the medium having a rigid constraint with
the released degrees of freedom, the horizontal direction (Figure 27), the rocking (Figure
31), and the vertical direction (Figure 33), respectively. It should be noted that the
frequencies corresponding to the second mode of the horizontal and rocking released
degrees of freedom (2.97 in Figure 27 and 2. 92 in Figure 31, respectively) occur between
the two close frequencies corresponding to the antisymmetric mode (2.86 and 3.04).

Figures 27 to 34 also show the influence of various hyster:tic damping ratios on
the nondimensionalized spring and damping coefficients of the system's excavated part
The damping coefficients of the undamped medium (see Figures 18, 30, 32, and 34} are
equal to zero duc to no radiation of energy in the bounded domain. For the damping case,
all damping coefficients arise as the result of a frictional loss of energy. As the damping
ratio increases, the spring coefficients have no significant change except in the vicinity of
the natural frequencies (see Figures 27, 29, 31, and 33). In this zone, both spring and
damping coefficients are reduced The damping ratio can cause considerable change in the
vibrational mode. Taking the antisymmetric mode as an example, only one natural

frequency of the damping medium develops in the narrow frequency range where the two
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Nondimensionalized Coefficients

Nondimensionalized Coeflicients

100

50

Q 1 2 3
Dimensionless Frequency

--- Undamp
— 3% Dmp
— %% Dmp
7% Dmp

Figure 27 Spring Coefficient (Kx) of Excavated Part of System,

D/B=2.0, with Indicated Damping Ratio

30
=
20
- i
10
0
0 1 2 3
Dimensionless Frequency

-- Undamp
~ 3% Dmp
—~ 5% Dmp
- 7% Dmp

Figure 28. Damping Coefficient (Cx) of Excavated Part of System,

D/B=2.0, with Indicated Damping Ratio
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Nondimensionalized Coeflicients

Nondimensionalized Coefficients

100

50 -

S - —

-100

Dimensionless Frequency

--- Undamp
— 3% Dmp
— 5% Dmp

7% Dmp

Figure 29. Spring Coefficient (Kxy) of Excavated Part of System,

D/B=2 .0, with Indicated Damping Ratio

-10

20 -

0 ] 2 3
Dimensionless Frequency

--- Undamp
— 3% Dmp
— 5% Dmp

7% Dmp

Figure 30. Damping Coefficient {Cxy) of Excavated Part of System.

D/B=2.0, with Indicated Damping Ratio
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Nondimensionalized Coefficients

Nondimensionalized Coefficients

100

50 |—
i ; .- Undamp
0 vy — 3% Dmp
af: I — 5% Dmp
- ? 7% Dmp
50 - it 8
-100 .
0 1 2 3 4

Dimensioniess Frequency

Figure 31. Spring Coefficient (Ky) of Excavated Part of System,
D/B=2.0, with Indicated Damping Ratio

60
40 --- Undamp
— 3% Dmp
— 5% Dmp
20 - T% Dmp
0
0 1 2 3 4

Dimensionless Frequency

Figure 32. Damping Coefficient (Cy) of Excavated Parnt of System,
D/B=2.0, with Indicated Damping Ratio
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Nondimensionalized Coefficients

Nondimensionalized Coefficients

30

15 : —
o --- Undamp
0 — 3% Dmp
— 5% Dmp
B 7% Dmp
-15
-30
0 1 2 3 4
Dimensionless Frequency
Figure 33. Spring Coeflicient (Kz) of Excavated Part of System,
D/B=2 0, with Indicated Damping Ratio
30
20 ] --- Undamp
— 3% Dmp
— 5% Dmp
10 - 7% Dmp
c
0 1 2 3 4

Dimensionless Frequency

Figure 34. Damping Coeficient (Cz) of Excavated Part of System,

D/B=2.0, with Indicated Damping Ratio
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natural frequencies of the undamped medium (2 86 and 3.04 in Figures 27 to 32) occur
Consequently, the natural frequencies corresponding to the released degrees of freedom
between the two (2.97 in Figure 27 and 2.92 in Figure 31) disappear. Also the frequency
corresponding to the rocking released degree of freedom in the vicinity of frequency 3 75

in Figure 31 will not occur for the damping case studied.

2. [Eflects of Foundatiop Embedment. As shown in Figure 23, the foundation
embedment D can be expressed as D =Me *d, The dynamic-stiffness coefficients of the
system's excavated part are influenced by the discretized element's length d, through the
clement stiffness matrix [1—(']] in Equation (219), the element mass matrix [A-d"l in
Equation {233), and the transformation matrix (4] in Equations (189), (190), and (193)

In Table I, the hysteretic damping ratio of the actual site ranges from 0 30 to 0 07
Therefore the hysteretic damping ratio of 0.0S is selected for the systems with the
foundation embedment to half-width ratios, D/B, equal 10 05, 10, and 20 Their
nondimensionalized spring and damping coefficients of the systems' excavated part are
demonstrated in Figures 35 to 42 In the same set of figures, the coefficients of the actuai
site (TEBS) are also included. At a particular frequency in the low frequency range (less
than the first mode natural frequency), the bigger D/B leads to the larger spring and
damping coefficients as the result of the bigger medium. Also in this range. the spring and
damping coefficients corresponding to the coupling between the Lorizontal translation and
rocking (see Figures 37 and 38) have the sign opposite to the translational and rocking
coefficients (see Figures 35, 36, 39, 40, 41, and 42). The spring coefficients convert to

zero when the dimensionless frequency approaches zero (see Figures 35, 37, 39, and 41)
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Nondimensionalized Coefficients
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Figure 35. Spring Coefficient (Kx) of Excavated Part of Sysiem,

Indicated D/B, with 3% Damping Ratio
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Figure 36. Damping Coefficient (Cx) of Excavated Part of Cystem,

Indicated D/B, with 5% Damping Ratio
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Figure 37. Spring Coeflicient (Kxy) of Excavated Part of System,
Indicated D/B, with 5% Damping Ratio
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Figure 38 Damping Coefficient (Cxy) of Excavated Part of System,
Indicated D/B, with 5% Damping Ratio

110



Nondimensionalized Coefficients

Nendimensionalized Coefficients

— D/B=0 5§

—D/B=]11

--- D/B=2.0
- TEBS

Dimensionless Frequency

Figure 39. Spring Coefficient (Ky) of Excavated Part of System,
Indicated D/B, with 5% Damping Ratio
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Figure 40. Damping Coefficient (Cy) of Excavated Part of System,
Indicated D/B, with 5% Damping Ratio
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Figure 41. Spring Coefficient (Kz) of Excavated Part of System,
Indicated D/B, with 5% Damping Ratio
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Figure 42. Damping Coeflicient (Cz) of Excavated Part of Sysiem,
Indicated D/B, with 5% Damping Ratio
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The damping coefficients in the i1ow frequency range are flatly zero (see Figures 36, 38,
40, and 42) As a point of an almost vertical line in the spring coefficient plot crossing the
frequency axis suggests a natural frequency of the system's excavated part, Figures 35, 37,
39, and 41 show that the bigger D/B results in the lower first mode narural frequency. The
first mode natural frequencies of the TEBS system's excavated part and the system's
excavated part with D/B = 0.5 are greater than 4.0, therefore they do not show in these
figures. Comparing the horizontal spring and damping coefficients in the low frequency
range {see Figures 35 and 36) to the vertical spring and damping coefficients (see Figures
41 and 42), the former are bigger for D/B = 0.5, about the same for D/B = 1.0, and smaller
forDIB=20

As for the actual site (TEBS), all coefficients are very close to those of the D/B =
0.5 since the excavated part of the actual site is assumed to be the homogeneous medium
having D/B = 0.5. The smaller coefficients of the actual site are caused by the difference in

the hysteretic damping and Poisson's ratios.

C. INVESTIGATION OF FREE-FIELD SYSTEM COEFFICIENTS

Analogous to the system's excavated part, the dynamic-stiffness matrix of a

free-field system in Equation (129) can be expressed as

| SL sh o
[Sht@) ] =] sL sk © (281
0 0 s%

where the first and second subscripts denote the force and unit displacemem degrees of

freedom, respectively.
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Therefore the nondimensionalized spring and damping coefficients of the free-field

system can be determined as

!
K = Re2l02) (282)
_ Imag(Sh) .
Cx = mogiie) (283)

_ ReallSh) _ Real(Sg)

Ko=—Y8 - =B (284)
_ Imag(S’e) _ Imag(Sk)
Oy = N Bay ~ x{Bde (285)
Real(S%)
- Seala 8
Ky 57 (286}
_ Imag(sk)
Cy XY B0 (287)
Kz = ReallS2) (288)
ar
_ Imag(5L)
Cz= ——’-ﬁ.-z;—- (289)

Two extreme cases of a free-field system, the half-plane and the homogeneous
layer with depth A built on a rock, are considered. The rock is defined as the medium
having its shear wave velocity ten times faster than that of the topping soil layer. On the
vertical and horizontal assumed lines of the boundary element technique (which coincide

with the rigid structure-soil interface), 4 by 16 elements, 6 by 12 elements, and 8 by 8
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clements are selected for D/B = 0.5, 1.0, and 2.0, respectively The distributed loads vary
linearly along the elements with continuity generally enforced at all nodes except the
comer one This leads to a total of 54 nodal forces for all cases, as each element contains

four nodal forces.

1. Eff f i ment. The foundation embedment is equal to
gd; as shown in Figure 14 The depth d, of soil layer, where / = 1 M, effects the
dynamic-stiffness coefficients of the free-field system [see Equation (129)] through the
element strain-displacement matrix [?1 in Equations (138) and (141) and the element
flexibility matrix [i:']:‘ in Equations (170) to (178},

Presented in Figures 43 to SO are the nondimensionalized spring and damping
coefficients of the free-field systems comprising the half-plane with the 5% damping ratio
and indicated D/B. Those of the free-field system consisting of the TEBS with D/B = 0.5
are contained as well. The natural frequencies of the free-field system (see Figure 43, 45,
47 and 49) appear at the same frequencies as those of the system's excava.ed (see Figures
35, 37, 39, and 41) ™ contrast to the system's excavated part, the spring coefficients (see
Figures 43, 45, 47 and 43) do not transform to zero as the frequency reaches zero This is
an indication of the free-field system's non-zerc static stiffness coefficients In the lower-
frequency range (less than 1.0), an increase of the D/B has no significamt effect on the
horizontal and vertical spring coefficients (see Figures 43 and 49). On the contrary, the
rocking spring coefficients increase while the D/B increases (see Figure 47)

In the low frequency range, the damping ccefficients (see Figures 44, 46, 48, and

50) are not equal to zero like those of the system's excavated part due to the free-field
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Figure 43. Spring Coefficient (Kx) of Free-field System, Half-plane,
Indicated D/B, with 5% Damping Ratio
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Figure 44 Damping Coefficient (Cx) of Free-field System, Half-plane,
Indicated D/B, with 5% Damping Ratio
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Figure 45. Spring Coefficient (Kxy) of Free-field System, Half-plane,
Indicated D/B, with 5% Damping Ratio
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Figure 46. Damping Coefficient (Cxy) of Free-field System, Half-plane,
Indicated D/B, with 5% Damping Ratio
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Figure 47 Spring CoefFicient (Ky) of Free-field System, Half-plane,

Indicated D/B. with 5% Damping Ratio
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Figure 48. Damping Coefficient (Cy) of Free-field System, Half-plane,

Indicated D/B, with 5% Damping Ratio

118



Nondimensionalized Coefficients

Nondimensionalized Coefficients

— D/B=05

— D/B=10

--- D/B=20
TEBS

Dimensioniess Frequency

Figure 49. Spring Coefficient (K2) of Free-field System, Half-plane,
Indicated D/B, with 5% Damping Ratio
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Figure 50. Damping Coefficient (Cz) of Free-field System, Half-plane,
Indicated D/B, with 5% Damping Ratio
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system's radiation of energy toward infinity. The increase of the horizontal and vertical
damping coefficients is proportional to the /B (see Figures 44 and 50) A
nonproportional but more remarkable increase can be seen in the rocking damping
coefficients, especially for D/B = 2 0 (see Figure 48) Companng the horizontal damping
coefficients (see Figure 44) 1o the vertical damping coefficients (see Figure 50), the former
are greater for D/B = 2.0 and about the same for D/B = 0.5 and 1.0. Despite the rising
value of the damping coefficients in the very low and narrow frequency range (0 - 0 2), the
imaginary part of the dynamic-stiffness coefficients (dimensionless frequency times
damping coefficients, also see Equation 64) maintains a small value

2. Effects of Laver's Depth. Prior to the discussion of the free-field system
consisting of the TEBS with D/B = 0.5 (nonhomogeneous soil), the influence of the layer's
depth on a rock should be understood. As shown in Figure 14, this depth can be expressed
as A;i: d,. The depth d,, where i = 1, N-1, has an effect on the layer's dynamic-stiffness
matrix [ Sp_qAk)] in Equations (446) and (489) and the total dynamic-stiffness matrix
[S;_S,{k)] in Equation (352). The latter is part of the Green's influence function's
formulation as shown in Equations (143) to (147) and (149) to (151). Through these
Green's functions, {uwpr(x’,z)] and [uwpr(x’,2)],,,. the layer's depth on rock affects the
element flexibility matrix [!7" ]:I in kquations (170) to {(178) and the dynamic-stffness
coefficients of the free-field system in Equation (129).

Shown in Figures 51 to 58 are the nondimensionalized spring and damping
coefficients of the free-field systems comprising the layer on rock with the 5% damping

ratio and indicated A/B. As the layer's depth to half-width ratio, H/B, decreases (the rock
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Figure 51. Spring Coefficient (Kx) of Free-field System, Layer on Rock,
Indicated H/B, D/B=0 5, with 5% Damping Ratio
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Figure 52. Damping Coefficient (Cx) of Free-field System, Layer on Rock,
Indicated H/B, D/B=0 5, with 5% Damping Ratio
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Figure 53. Spring Coefficient (Kxy) of Free-field System, Layer on Rock,
Indicated H/B, D/B=C 5 with 5% Damping Ratio
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Figure 54. Damping Coefficient (Cxy) of Free-field System, Layer on Rock,
Indicated H/B, D/B=0.5, with 5% Damping Ratio
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Figure 55 Spring Coefficient (Ky) of Free-field System, Layer on Rock,
Indicated H/B, D/B=0 S, with 5% Damping Ratio
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Figure 56 Damping Coefficient (Cy) of Free-field System, Layer on Rock,
Indicated H/B, D/B=0.5, with 5% Damping Ratio
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Figure 7. Spring Coeflicient (Kz) of Free-field System, Layer on Rock,
Indicated H/B, D/B=0.5, with % Damping Ratio
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Figure 58. Damping Coefficient (Cz) of Free-field System, Layer on Rock,
Indicated H/B, D/B=0 5, with 5% Damping Ratio



base comes closer to the surface), the spring cocfhicients in the lower-frequency range (see
Figures 51, 53, 55, and 57) increase. This effect is more noticeable in the vertical direction
(see Figure 57) In the same range, all spring coeflicients of the layer on a rock are greater
than those of the half-plane. As the frequency increases, the spring coefficients
corresponding to H/B = 2.0 and 3.0 oscillate around those corresponding to the
half-plane. This implies a stronger frequency dependence of the former. The smoother
spring coefficients are exhibited in a case of the very shallow layer, /B = 1 0 In contrast
to the half-plane, a layer on the rock demonstrates a cutoff frequency below which only
small amount of energy can be radiated toward infinity. This leads to a small damping
coefficient As shown in Figures 52, 56, and 58, the small damping coefficients can be
found below these cutoff frequencies. The corresponding damping coefficients are less
than those of the half-plane. In the cases of A/B = 2.0 and 3.0, the damping coefficients
corresponding to the horizontal direction and rocking (see Figures 52 and 56) suddenly
increase, above the cutoff frequencies, to the levels of those corresponding to half-plane
Gradual increase is found in the coefficient corresponding to the vertical direction. The
more shallow layer (smaller H/B) leads to the higher cutoff frequency, especially in the
case of H/B = 1.0. The latter means a system's energy is trapped within the layer in the
wider frequency range.

Turning back to the free-field system consisting of the TEBS with D/B = 0.5 in
Figures 43 to 50, this system's coefficients are similar to those corresponding to half-plane
with D/B = 0.5, But stronger frequency dependence of the former is noticeable due to its

nonhomogeneous domain. As the average shear wave velocity of the TEBS's half-plane is
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about two times faster than that of the thick TEBS's layer (61.8m), the amplitudes of the
TEBS's vertical and rocking coefficients are affected and therefore differ from the
corresponding amplitudes of the homogeneous half-plane. The cutoff frequencies are quite

low and the energy trap range is then barely noticeable.

D. INVESTIGATION OF GROUND SYSTEM COEFFICIENTS

Four parametric cases and one actual site are examined. They are as follows: the
5% damping ratio systems consisting of the half-plane with /B = 0 5 (DS), the half-plane
with D/B = 1 0 (D10), the layer on a rock having /B = 0.5 and H/B = 1 0 (DSH10), the
layer on a rock having D/B = 0.5 and H/B = 2.0 (DSH20). and the actual site with D/B =
0.5 (TEBS).

1. Dynamic Stiffness Coeflicients. The spring and damping coefficients of a
ground system can directiy be determined by using an indirect boundary element method
(IBEM). But the method requires two Green's influence functions relating to the
displacement and surfac traction along a structure-soil interface Since the calculation of
the free-field system's coefficients needs only the displacement Green's influence function,
it can be simpler to determine the coefficients of system'’s excavated part by the finite
clement method (FEM) and then subtract them from those of the free-field system to yield
the ground system's coefficients.

Close to the natural frequencies of the system's excavated part, the spring and
damping coefficients of both system's excavated part and free-field sysiem are very large.
Since the errors inherent in the two different methods (IBEM and FEM) are not

consistent, the difference between these two large numbers may yield a problematic result
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No problem 'is found in the cases of D5, DSH10, D5SH20, and TEBS since their systems’
fundamental frequency is beyond the range of interest (0 - 4.0). For the D10, the problem
arises in the frequency range of 3.0 - 4.0 (see Figures 59 to 66). This problem can be
minimized but not eliminated by an increase in a number of the discretizing elements As
an example, for this particular case, the 6 elements on the vertical interface and 12
elements on the horizontal interface in the IBEM increase to 11 and 22 elements,
respectively. The D10’s coefficients, shown in Figures 59 to 66, are the result of these
increasing elements. The remaining problem (the unexpectedly non-smooth coefficients)
may be tackled by the function interpolation using values before and after the natural
frequency Since the lower damping ratio produces larger stiffness coefficients, in the
vicinity of a natural frequency, of a system's excavated part and a free-field, and the larger
D/B tends lower the first natural frequency (as discussed in Subsection B), the subtraction
technique is not recommended for such a case because an unacceptable error may arise at
the relatively-important low range of frequency.

In the very low frequency range (0 - 0.2), it should be emphasized that the
imaginary part of the dynamic-stiffness coefficients (dimensionless frequency times
damping coefficients) maintains a smail value regardless of the increasing value of the
nondimensionalized damping coefficients.

a. [Effects of Foundation Embedment. Comparing the coefficients of D5 10 those
of D10, the foundation embedment barely has an effect on both translational spring
coefficients (see Figures 59 and 65). On the contrary, the deeper embedment (D10) leads

to a greater rocking spring coefficient {see Figure 63). In both translation directions and
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Figure 59. Spring Coefficient (Kx) of Ground System,
with 5% Damping Ratio
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Figure 60. Damping Coefficient (Cx) of Ground System,
with 5% Damping Ratio

128

—DIlo

— DS
—~-D5SHIO
---DSH20
- TEBS

—DI10
—D5

--D5HI10
---DSH20
. TEBS



Nondimensionalized Coefficients

Nondimensionalized Coefficients

0.5

-0.5

0.5

- -

] ' " A [P P .
¥ 7 )
g &J\ e e

- —

PR, 2t

pa——
cnm——

1 2 3 4
Dimensionless Frequency

Figure 61. Spring Coefficient (Kxy) of Ground System,
with 5% Damping Ratio
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Figure 62. Damping Coefficient (Cxy) of Ground System,

with 5% Damping Ratio
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Figure 63. Spring Coefficient (Ky) of Ground System,
with 5% Damping Ratio
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Figure 64. Damping Coefficient (Cy) of Ground System,
with 5% Damping Ratio
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Figure 65. Spring Coefficient (Kz) of Ground System,
with 5% Damping Ratio
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Figure 66. Damping Coefficient (Cz) of Ground System,
with 5% Damping Ratio
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rocking. the larger damping coefficients of D10 appear (see Figures 60, 64, and 66) A
bigger increase is found in the rocking. This phenomenon seems to be consistent with that
of the free-field system in the low and lower ranges of frequency because the ground
system's coefficients are the difference between the coefficients of the free-field system
and the system's excavated part, and the latter convert to zero in these ranges. Of D10's
ground system, the horizontal and vertical coefficients are about the same (see Figures 59,
60, 65, and 66) for which the identical behavior is also found in the free-field and the
system's excavated part. In the case of the DS's ground system, the horizontal damping
coefficient is slightly smaller than the vertical damping coefficient (see Figures 60 and 66)
since both coefficients of the free-field system are about the same but the horizontal
damping coefficient of the system’s excavated part is slightly bigger than the vertical
damping coefficients.

b Effects of Laver's Depth. For D5H10, DSH20, and TESB, the same tendency
of the free-field system in the low and lower frequency range is also applied. The D5H10's
spring coefficients are greater than those of DSH20, especially in the vertical direction
The former's smaller frequency-dependence is shown. The spring coefficients of both
systems are greater than those of DS (half-plane). The cutoff frequencies exist at the same
points as those in the free-fieid system Below these frequencies, the damping coefficients
of DSHI10 and DSH20 are less than those of half-plane. Then beyond the cutoff
frequencies, they increase to the level of the half-plane For DSH20 and TEBS, both

spnng and damping coefficients display a strong dependence of frequency In the high
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frequency rar-lge of D5SH20, the large oscillation is clearly demonstrated. The negative
spring coefficients occur in the three cases.

2. Time-derivative Flexibility CoefTicients. The investigation so far leads to the
conclusion that the deeper foundation embedment results in the greater rocking
dynamic-stiffness coefficients. To clearly demonstrate the influence of the rocking
component in the structure-soil interaction, only the cases of shallow embedment (D5,
D5H10, and D5H20) will be explored hereafter. Since the vertical degree of freedom of a
shear structure investigated in Section VII is neglected, the comresponding degree of
freedom of ground system is omitted as well.

Using the shear modulus T of 320 0 MN/sq.m, shear wave velocity Cs of 400 @
m/sec, and foundation half-width B of 3.0 m, the dynamic stiffness coefficients of ground
system can be determined from their nondimensionalized coefficients (see Equations 267
to 270). In Figures 67 to 72, the ground system’'s dynamic stiffness coefficients of DS,
D5HI10, and D5H20 are illustrated in the range of their system frequency w equal 0 to 80
Hz This 80 Hz frequency corresponds to the dimensionless frequency #¢ of 3 77 as
65 = WB/Cs. The sh#pe of the dynamic-stiffness coefficients' real part (see Figures 67, 69,
and 71) is similar to that of nondimensionalized spring coefficients in the frequency range
below 3.77 (see Figures 59, 61, and 63). On the contrary, that of the dynamic-stiffness
coefficients’ imaginary part (see Figures 68, 70, and 72) is different from that of
nondimensionalized damping coefficients (see Figures 60, 62, and 64). Since the imaginary
part is the product of system's frequency and damping coefficient, it then increases as a

function of frequency. In the case of D5SH10 and DSH20 (layer on a rock), the imaginary
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part maintains its small value up to therr cutoff frequency and then increases as the
system's frequency rises.

Time-derivative flexibility coefficients can be obtained as described in Equation
(242). First, the inversion of the ground system's dynamic stiffness matrices corresponding
to discrete frequencies ranging from 0 to 80 Hz is determined. Then, multiplying the
former by their corresponding frequencies and imaginary number results in the desired
coefficients. These coefficients of DS, DSH10, and DSH20 are displayed in Figures 73 to
78. All coefficients are equal to zero where their systems' frequencies are also equal to
zero. Similar to the ground system's dynamic-stiffness coefficients, the more frequency-
dependent coefficients are noticeable in the cases of DSH20. In both DSH10 and D5H20,
the small coefficients' real part in the range of low frequency is shown.

3. Impulse Velocity Coefficients. An impulse velocity coefficient of time ¢ is a
velocity at time 1 due to impulse force ar time equal to 0. To obtain the coefficients, the
inverse discrete Fourier transform is applied to the real parts of time-derivative flexibility
coefficients in Figures 73, 75, and 77 [Equations (262) and (263)]. The coefficients on the
negative side of frequency axis are constructed by forming their complex conjugate pairs.
Using the truncated frequency Q7 of 80 Hz and the sampling step number NS of 160 leads
to the frequency increment A® of 0.5 Hz, the time increment Az of 0.00625 sec and then
the time range T of 1.0 sec [Equations (247) and (248)].

In Figures 79 to 81, the resultant coefficients of DS, DSH10, and D5SH20 are
shown in the time range of 0 to 0.1 sec. The horizontal impulse velocity coefficients of all

three soil conditions, at time ¢ =0, are about the same since the same foundation
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embedment and soil type are used. But the rocking coefficient of DSHIC is less than those
of IS and DSH20. The rock base in DSH10 but not in D3H20 has an influence on the
rocking component by increasing its stiffness a> .+ former's rock base level is closer to
the surface. The coefficients of DS (helf-plane) attenuate faster than DSHI0 and DSH20

since more energy in the former propagates toward infinity.

142



VII. INVESTIGATION OF TOTAL DYNAMIC SYSTEMS

WITH AND WITHOUT CONTROL

A. SCOPE OF INVESTIGATION

1. Coucerping Parametery. In the analysis and design of a dynamic structure-
soil interaction system, structure and foundation failure are the- primary concem The
former may be categorized into two types; a global failure and a local failure. The local ‘
failure will not be discussed here.

Two parameters concerning the structure system's global failure are investigated.
First, the failure governed by the system's strain energy is induced by the floor relative
displacement excluding rigid motion effect due to foundation rotation. Ds represents the
corresponding displacement as the letter s stands for the structure system's strain energy.
As depicted in Figure 12, the corresponding displacement (Ds) of a single- story shear

structure can be expressed as
Ds=xF -x3 +h, 08 (290)

where x¥ x& and 7 are floor translation, foundation translation, and foundation rotation,
respectively. Superscript fg indicates the corresponding responses which are of the total
dynamic system and relative to those of the ground system. A, is accumulated height
from rotational point 0 to the centroid of floor lumped mass. For a multistory structure,

the corresponding displacement (Ds) of the i floor, where i = 2, NO, can be obtained as
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Ds(i) =x® -x%, +h,0F 291)

where A, is the @ floor height. Secondly, the floor displacement relative to ground system
(% or Dg) is related to the failure due to a structure collision with adjacent structures,
especially for a high slenderness ratio structure. The small letter g of Dg stands for a
ground system.

As for a foundation failure, a horizontal interaction force R, and an interaction
moment Ry as the measurement of the maximum stresses along a structure-soil interface
are examined. By extending the free-body diagram in Figure 12 for a multistory shear

structure, these forces can be obtained as

NO -
R,=—Em,(£:'+iﬁ)—mo(i:f+i:ﬁ—h,.o 8 ) (292)

-]

NO ~1g 1p NO ® ® - 1g
Re=-X1,8F -1, 0" J-Zrn.h...(x, +xg)+mh.,o(ro Y S, ) (293)

-~ ]

rere m, and I, are the /* floor lumped mass and mass moment of inertia with respect to
point 0 mg and [, are foundation mass and mass moment of inertia with respect to point
0. ho and hoo are accumulated height from rotational point O to the centroid of /* floor

lumped mass and foundation mass, respectively. ¥° and ¥ are the /* floor and foundation
. . . . t - - - v -
honizontal accelerations, respectively. e: is foundation rotational acceleration. Superscript

1g indicates all responses are of the total dynamic system and relative to those of the

ground system. %5 is the horizontal acceleration, at point 0, of the ground system with
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rigid interface. Also the interaction forces can be obtained from the ground system's

impulse velocity matrix as described in Section ITI.
In a FIX-model, a horizontal base shear §;2, and base moment MY are
determined and compared with the corresponding forces of an SSI's model, 55 and

base

M evaluated at the connection between a superstructure and foundation Using the

free body diagrams analogous to that of Figure 12, these forces can be expressed as

) NO
Siase =T, (ﬁb e ) (294)
=l
)
Mis = X miba (f'm & ) (295)
™=
.o
St =~ m, (t," +x4 ) (296)
]!
NO g NO
Mff:'t:_zl‘ eO +Emr(hm "’M)(’?*’X%) (297)
=l =]

where £ and ¥ are the ® floor acceleration and the horizontal acceleration of the

structure-base, respectively. Superscnpt b indicates the corresponding responses are of
the total dynamic system and relative to that of the structure-base. A,, is the accumulated
height trom the structure-base to the centroid of the /* floor lumped mass 4, is the depth
of foundation.

To understand a change in the behavior of a dynamic system, the system's

properties such as frequency ratio and damping ratio are also explored. The frequency
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ratio it determined by the first translational mode's natural frequency of an SSI-model
divided by that of a FIX-model. The plant matrix [D}] of a dynamic system (discussed in
Section III) yields WQ complex conjugate pairs of cigenvalues a +18, and their
corresponding eigenvectors (a,} t1{4}, where 1= /=1 . Therefore, the /* mode's
natural frequency (in radian) and its corresponding damping ratio of the system can be
obtained as §, and —,/P,, respectively,

2. Governing Parameters. Soil condition including embedment to foundation
half-width ratio, structure property, type of excitation input, and state weighting matrix

[S] (a control parameter) are the governing parameters. The structure properties consist

of a fixed-base natural frequency, the /* floor mass ratio /,, a footing mass ratio #1¢, and

a structure slendemess ratio # The corresponding ratios are defined as follows.

- m,

m, =EE—] {29%)
— m

mo = ;;—3 (299)
=t

h= B (300)

where m, mg,and i are the /* floor mass, foundation mass, and structure height,
respectively. p is soil mass density of the study soil condition B is foundation half-width
The * floor and foundation mass moments of inertia, /, and /o, with respect to point 0 are

also a substantial structural mass-dependent property and can be expressed as

i
], =m,(%+h:() (301)
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wr B
10=ma[—1‘2['+—33) (302)

where W/, and W, are structure and foundation width. The latter equals to 28 In Equation
(302), the centrcid of a rectangular foundation is assumed to be at the midpoint of
foundation depth.

As for excitation input, 1940 El Centro earthquake acceleration record, north-
south component and 1985 Mexico earthquake acceleration record, east-west component
are used as horizontal acceleration inputs of a FIX-model (¥*) and an SSI-model (¥f) By
assuming a vertically incident shear wave and a shallow embedded foundation in an
SSI-model, the rotational acceleration, at point O of a ground system's rigid interface, is
neglected. The first 20 seconds of El Centro earthquake record and the 50-70 seconds of
Mexico earthquake record are shown in Figure 82. Their characteristics (see in Figure 83)
are specified by the maximum response of a one-degree-of-freedom FIX-model system
with 2% damping ratio excited by their time history records.

In a control system, the weighting matrix (5] (discussed in Section IV) is selected
as an arbitrary row-matrix where both sp and sy on the R® row are equal to sl The sl is
any real number and varied in order tc obtain the optimal performance index. For each
controiler, R equals NO-ONC+1, where ONC is one of the controller's node number which

does not allow any two consecutive rows of the matrix to be filled.

B. INVESTIGATION OF SINGLE STORY WITHOUT CONTROL

A shear wave velocity of 400 m/sec and shear modulus of 320 MN/sq.m are used

for three types of soil condition, DS, DSH10, and DSH20 (discussed in Section VI which

147



f—

(5]

<§

=S NI U AT S MTE TN LW YA A B E! Centro
2 :

= — Mexico
joe

2

L5

o

3]

-«

0 5 10 15 20
Time (sec)

Figure 82 Acceleration Records of 1940 E] Centro Earthquake, North-south
and 1985 Mexico Earthquake, East-west (50-70sec)

10.000 .
1000 3
E —m— R —
H ~ ':-’.t:r
g 0.100 _—#———1——_— e
g ‘:ﬁ\ ‘A’q -z- El Centro
g 0010 = iy X‘;:» — Mexico
= e
b3 o~

0000 oo .

0.000

01 I 10

Fixed-base Frequency (Hz)

Figure 83 Maximum Displacement Response vs. Fixed-base Frequency.
2% Damping FIX-model, El Centro and Mexico Earthquakes

148



are designato;d as 8$0-, S1-, and S2-soil condition, respectively. These three soil conditions
are described as a half-plane, a 3.0-meter depth layer on rock, and a 6.0-meter depth layer
on rock, respectively. The foundation embedment and half-width of the named soil
conditions are 1.5 m and 3.0 m, respectively.

The FIX-models and SSI-models are considered with 2% damping ratio and
natural frequencies of 0.7 Hz, 1.25 Hz, and 3 0 Hz of a fixed-base frame. When the
FIX-models of 1.25 Hz and 3.0 Hz are subjected to El Centro earthquake, the maximum
displacements of 0.173 m and 0.022 m are produced, respectively (see Figure B3) In the
same figure, the maximum responses of 0.224 m and 0.050 m can be obtained for the
FIX-models of 0.7 Hz and 125 Hz subjected to Mexico earthquake Therefore the
structures with the fixed-base frequency of 3.0 Hz and 1.%5 Hz are considered to be stiff
structures corresponding to El Centro and Mexico earthquakes, respectively. Those with a
frequency of 125 Hz and 0.7 Hz are regarded as flexible structures corresponding to the
same earthquakes.

Floor mass ratios vary from 1 to 29 while the footing mass ratio is equal to 2 The
floor mass ratios of | and 20 represent the lightest and heaviest (massive) structure,
respectively For a foundation width of 6 0 m, foundation depth of 1.5 m, and soil mass
density of 2.0 gm/cu.cm, the specified footing mass ratio yields the foundation mass of
0 108 Kton and the foundation mass moment of inertia of 0.405 Kton-sq.m. Floor masses
and mass moments of inertia with respect to point 0, for the floor width of 5.0 m and the
indicated structure slenderness ratios, are listed in Table III. Three structure slendemness

ratios of 1, 3, and 5. which represent a low-rise, medium-rise, and high-rise structure, are
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Table HI. Floor Mass and Mass Moment of Inerna

Floor Floor Mass Floor Mass Moment of Inerna (Kton-sg m)
Mass Ratio (Kton) hl ! h3 i hs

! 0.054 1.206 - 6.066 ' 14.814
2 0.108 2412 L 12132 | 29628
3 0162 3618 | 18198 . 44442
4 0216 4324 L 24204 . 59256
5 0.270 6.030 30.330 . 74.070
6 0324 7.236 | 3639 ' 88.884
7 0.378 8 442 L 42462 . 103698
8 0432 9 648 48528 118512
9 0.486 10.854 i 54594 C 133326
10 0.540 12.060 | 60.660 14840
11 0.5%4 13.266 . 66.726 ~ 162.954
12 0.648 14 472 72792 177.768
13 0.702 15 678 78 858 192 582
14 0.756 16 8BB4 84924 . 207.396
15 0.810 18 050 L 90.990 L 222210
16 0.864 19.296 | 97056 L 237.024
17 0918 20,502 T103.122 | 251838
18 0.972 21.708 . 109188 i 266652
19 1.026 22.914 {115.254 281 466
20 1.080 24120 P 121320 1 296280

studied. These ratios are named as h1, h3, and hS, respectively. For the study foundation
half-width, they correspond to the floor height of 3.0 m, 9.0 m, and 15.0 m, respectively

1. Structural Response vs. Time. The responses of the FIX-model and SSI-
model subjected to El Centro earthquake are shown in Figures 84 and 85 The
displacement responses Ds and Dg of a SSI-model are compared to the response of a
FIX-model The fixed-base natural frequencies of both models are equal to 1.25 Hz. In
SSI-model, the structure having the floor mass ratio of 10 and the slendemess ratio of 5

(h5) sits on a rigid rectangular foundation. The foundation has its mass ratio equal to 2
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and is embedded in the S0-soil. The maximum of Ds in Figure 84 (0.146 m at time equal
to 5.81 sec) is less than that of the FIX-model's displacement (0.173 m at time equal (o
6.42 sec). In Figure 85, the maximum of Dg (0.338 m at time equal to 5.86 sec) is greater
than that of the FIX-model's displacement. In both figures, a longer penod of response in
the SSI-model is noticeable as a result of the system becoming more flexible (system's
fundamental frequency reduces from 125 Hz in the FIX-model to 104 Hz in the
SSI-model).

Figures 86 and 87 show the same comparnison for the 0.7 Hz fixed-base natural
frequency's models subjected to Mexico earthquake. Other structure properties and soil
conditions are the same. The maximum of Ds in Figure 86 (0.257 m at time equal to 7.99
sec) and the maximum of Dg in Figure 87 (0.349 m at time equal to 8 01 sec) are greater
than that of FIX-model's displacement {0.224 m at time equal to 7.875 sec). The system's
fundamental frequency drops from 0.7 Hz in the FIX-model to 0.66 Hz in the SSI-modei.

This leads to the conclusion that a dynamic system becomes more flexible when
considering structure-soil interaction. Furthermore, the maximum of Dg is greater than
that of the FIX-model's displacement as a result of footing translation and rctation. But
the maximum of Ds is not necessary greater than that of the FIX-model's displacement.

2. Effects of Floor Mass and Slenderness Ratios. In Figures 88 to 91, the
floor mass ratio of SSI-model varies from | to 20 but the fixed-base natural frequency is
kept constant of 1.25 Hz by adjusting the structural stiffness with the varying masses.
Structure slendemess ratios are selected to be hl, h3, and h5. The ngid foundation of

mass ratio equal to 2 is embedded in the S0-s0il. This system is subjected to El Centro
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earthquake. As the fioor mass ratio increases, frequency ratio and damping ratio decrease
(see Figure &8) The effect is more prominent for higher slendemness ratio. This implies
that, for an SSI-model, greater floor mass and height lead to a more flexible system with
less damping

As a single-story SSI-model has three degrees of fiecedom, its three normal modes
include a rigid translational mode, a relative translaiional mode, and a rigid rocking mode.
The rigid translational and rocking modes involve a horizontal translation and rotation of
the system's rigid-body. The former reflects a foundation's horizontal translation and then
a horizontal interaction force. The latter contributes to a foundation's rotation and then a
whole system's rotation. An interaction moment as well as a base moment can be used to
describe this rocking component. The relative translational mode involves relative
displacement between floor and foundation excluding a rigid-body rotational effect. This
relative displacement is equal to Ds and proportional to a base shear. While Ds is only
influenced by the relative translational mode, Dg (which is the floor displacement relative
to a ground system) is affected by all three modes, the rigid translational, relative
translational, and rigid rocking modes.

In Figure 89, the increasing of the maximum Dg but decreasing of the maximum
Ds occurs as the floor mass ratio increases. A greater effect is noticeable in the structure
with higher slenderness ratio (h3 and h5). The maximum Ds of the massive structure (floor
mass ratic = 10 to 20) is Jess than the maximum FIX-model's displacement. Therefore, for
the cases studied, greater floor mass and height resuits in less importance of the relative

translational mode but more importance of the rigid rocking mode. The change of the

156



maximum Dg in the structure with h$ is less in the floor mass ratio range of 10 to 20 than
that of 0 to 10. This phenomena also occurs in its maximum base moment and interaction
moment (see Figure 91) since they are the effect of the same cause, foundation rocking.
The maximum Ds of the structure with higher slenderness ratio is smaller as is its
maximum base shear shown in Figure 90. Therefore, the higher floor height leads to the
lesser maximum base shear and horizontal interaction force. The difference between the
maximum base shears and horizontal interaction forces is the result of foundation's
translations. These maximum basc shears and horizontal interaction forces of the
SSI-model are less than the maximum base shear of the FIX-model. In contrast, the higher
floor height results in the greater maximum base moment and interaction moment as
shown in Figure 91 Especially for h5-slendemness ratio, the maximum base moment and
interaction moment of the SSI-model are greater than the maximum base moment of the
FIX-model.

In Figures 92 to 94, the same investigation is also made for 0.7 Hz fixed-base
natural frequency’s system subjected to Mexico earthquake. In the range of a massive
structure (floor mass ratio = 10 to 20) with h5-sienderness ratio, a large increase of both
maximum Dg and Ds occurs and the maximum Ds is greater than the maximum
FIX-model's displacement {seec Figure 92). This is due to the dominance of the system's
relative translational and rigid rocking mode. As shown in Figure 93, the maximum base
shear of the corresponding system is very high which implies the relative translational
mode's dominance and thus results in the large maximum Ds. It should be noted that this

increase of maximum Ds is inconsistent with the previous cases studied. In the massive
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structure ranéc of Figure 94, the larger maximum base moment and interaction moment
imply the larger contribution of the rocking mode.

The behavior of a dynamic system depends upon the combination of the system's
dominant modes. The influence of floor mass ratio and structure sienderness ratio on these
dominant modes is different for various systems. n general, the larger floor mass and
sienderness ratios lead to the larger maximum Dg, base moment, and interaction moment
as the result of the more foundation rocking. Dominance of the relative translation mode
as factors of the floor nass and slenderness ratio is not certain. Therefore, as the ratios
rise, the maximum Ds decreases in some cases but increases in others. In most cases. the

maximum base shear and horizontal interaction force increase as the slenderness ratio

decreases.
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3. M:MM Figures 95 to 98 demonstrate the effects
of fixed-base frequency (1.25Hz and 3.0Hz) for a high-rise structure (hS- slenderness
ratio) The similar demonstration for a low-rise structure (hl-slenderness ratio) is shown
in Figures 99 to 102 The S0-soil condition and El Centro earthquake are used. Other
structure properties are not changed. Figures 95 and 99 indicate the higher fixed-base
frequency (f3 0) and the higher slenderness ratio (hS) lead to greater changes in the
frequency ratio and damping ratio. The lower frequency ratio is a result of the system
becoming more flexible

In Figure 96, the maximum Dg of the high-rise structures having 125 Hz
fixed-base frequency (flexible structure) and 3.0 Hz fixed-base frequency (stiff structure)
increases as the floor mass ratio rises The increase in the stiff structure is greater than that
in the flexible structure. These increases are roundly proportional to the differences
between the FIX-model's and SSI-model's maximum base moments (see Figure 98). This
implies that the increases in the maximum of Dg are predominantly a contribution of
foundation rocking. For the massive stiff structure (Soor mass ratto=15-20 and 13.0), the
rigid translational mode is also part of the increase of the maximum Dg. In Figure 97, the
corresponding systern's horizontal interaction force's sharp increase and larger value than
the system's base shear hints at the dominance of a rigid translational mode. As the floor
mass ratio increases in Figure 96, the decrease of the maximum Ds in the flexible structure
(f1.25) is more obvious than that in the stiff structure (f3.0). Also in Figure 87, the
difference between the FIX-model's and SSI-model's maximum base shears of the flexible

structure system (f1.25) is greater than that of the stiff structure system (f3.0). This
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implies the greater importance of a relative translational mode in the stiff structure system
Both the maximum Ds's and base shears of the SSI-models are less than those of the
FIX-models.

In the low-rise structure (see Figure 100), the increase in the maximum Dg as a
function of the floor mass ratio is not as great as that of the high-rise structure since the
importance of its rigid rocking mode decreases. This lesser importance of the rocking
mode is evidenced by the small values of the maximum base moment and interaction
moment in Figure 102. The large increase of the maximum Dg in the massive stiff low-rise
structure (see floor mass ratio=18-20. hl, and 3.0 in Figure 100) is a result of the rigid
translational mode's dominance. This occurrence is indicated by the cormresponding
system’s horizontal interaction force's sharp increase and larger value than the system's
base shear in Figure 100. The importance of the low-rise structure's relaiive translational
mode increases since the decrease of the maximum Ds as a function of the floor mass ratio
is small (see Figure 100). The maximum Ds of the stiff low-nise structure (3.0 and hl} is
even slightly larger than that of the FIX-model's displacement. Also the difference between
the FIX-model's and SSI-model's maximum base shears of the low-rise structure (see
Figure 101) is smaller than that of the high-rise structure (see Figure 97). Of the suff
low-rise structure (see f3.0 and hl in Figure 101), the maximum base shear in the
$SI-model is even greater than that in the FIX-model.

The siiffer structure (higher fixed-base frequency) results in the smaller responses
Also stiffer structure leads 1o the greater importance of all modes. Therefore the behavior

(Dg) of a flexible high-rise structure is dominated by its rigid rocking mode, a stiff
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high-rise structure by its rigid rocking and translational mode, and a massive stiff low- rise

structure by its rigid translational mode.

4. Effects of Soil's Laver Depth. In Figures 103 to 106, the influence of

different soil conditions (SO, S1, and S2) is demonstrated for the flexible high-rise
structure (f1.25 and h5) The structure properties and input motion are the same as in the
previous study. As the floor mass ratio increases, the change in the frequency ratio and
damping ratio of the system embedded in S1-s0il is less than that of the system embedded
in SO-soil and S2-soil (see Figure 103) The change in the ratios of the system embedded
in §0-soil and S2-soil is almost the same. This implies that the effect of the rock base in
$1-s0il condition (shallow soil layer) is important and resuits in a stiffer system. The same
behavior of the system embedded in SO-soil and S2-s0il is due to negligible influence of
the rock base in $2-s0il condition (deeper soil layer) on the system studied.

As a function of the floor mass ratio, the change in the maximum Ds and Dg of the
system embedded in S1-soil is less than that of the other two cases (see Figure 104). Since
a rigid rocking mode dominates in a flexible high-rise structure, this mode is the main
contribution to Dg. Therefore the smaller change in the maximum Dg of the system
embedded in S1-soil is due to its smaller foundation rocking. The latter is supported by its
smaller maximum base moment and interaction moment in Figure 106. The smaller change
in the maximum Ds cf the system embedded in $1-50il indicates the greater importance of
its system's relative translational mode. Also the smaller difference between the
FIX-model's and SSI-model's maximum base shears of the corresponding system is found

in Figure 105 In the same figure, the maximum base shear and horizontal interaction force
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of the system embedded in S1-s50il are closer than those of the other two cases due to the
former's less rigid translational motion.

Therefore the system embedded in S1-soil (shallow soil layer) which is considered
as the stiffer soil system results in the lesser importance of the rigid translational and

rocking mode but the greater importance of the relative translational mode.

C. STIGATION OF 10-S [ STRUC WITH CONTROL

In Figure 107, a dynamic system which is used to demonstrate the influence of
structure-soil interaction and control consists of a 10-story shear structure equipped with
an active tendon system attached to its foundation and second floor (node no.1). The
structure sits on a 6.0 x 6.0 m rigid square foundation having its 3.0-meter depth
embedded into a half-plane (D/B=1.0). Structural properties are: each floor mass (m,) =
10 ton; each floor mass moment of inertia (/, - m.h,) = 20.83 ton-sq.m; foundation mass
{mg) = 28.75 ton; foundation mass moment of inertia (/) = 172.5 ton-sq.m; floor
translational stiffness (k) = 1244 MN/m, proportional damping ratios (n,and 1z) = 0.02
for the first mode and 0.10 for the second mode; and floor height (A,) = 3.00 m for every
floor. Half-plane properties are: shear modulus of elasticity (Y) = 7.2 MN/sq.m; soil
density (p) = 2.0 gram/cu.cm; Poisson's ratio (v) = 0.33; and hysteretic damping ratio ({)
= 0.04. The shear wave velocity (Cs) is 60 m/sec. The first 20-second 1940 El Centro
earthquake acceleration record, north-south component, is selected as the horizontal
acceleration ar point 0 of the ground system's rigid interface. Since vertically incident

shear wave is assumed, the rotational component of the ground system is omitted. As for a
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one-controller system, the control weighting matrix [R] consists of only one element r. To
obtain an optimal performance of the system, s!/r ratio is varied parametrically.
The fundamental system frequency is 2.65 Hz for the FIX-model and 1.15 Hz for

the SSI-model. The smaller frequency in the SSI-model is a result of its greater flexibility

In a system with control, its frequency and damping ratio are incrzased as sl/r ratio
reaches an optimal point (the minimum point of performance index). For the FIX-model
(see Figure 108), the fundamental system frequency and damping ratio are increased. at
the optimal point (s1/r=0 6), to 2.85 Hz and 0.36, respectively. For the SSI-model (Figure
109), at the opumw.! point (51/r=0.6), the fundamental system frequency and damping
ratio are increased to 1.19 Hz and 0.15, respectively. This is because control force, which
is related to the system's displacement and velocity vector by a gain matrix (G]. helps to
increase stiffness and damping of the system. It should be noted that this effect is smaller
in the SSI-mode!. Displacemem control and velocity control are manipulated by sp and 5:-

in the state weighting matrix [S] and therefore in the gain matrix [G], which are chosen
to be equal 10 an arbitrary real number sl.

In a system without control, the maximum of the top floor displacement relative
to footing is equal to 0.053 m (x'ﬁ,) for the F[X-model and 1219 m (x'l‘o -x{f) for the
SSI-model. The larger displacement in the SSI-model may be a result of foundation
rotation 85 since the rigid rocking mode trends to dominate in a flexible high-rise
structure. Comparnison of the top floor displacement relative to footing (x',%) in the

FIX-model and the top floor displacement relative to footing excluding rigid motion

effect due to foundation rotation (x'l'o — X3 +ha00¢ ) in the SSI-model is shown in Figure
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110. Without the rotational effect, the envelope of both responses is quite similar.
Therefore the larger displacement in the SSI-model as the result of foundation rotation is
verified. The FIX-model's period of response is shorter than that of the SSI-model due to
its more rigid model.

Figure 111 shows the same comparison for a system with control. The smaller
displacement in the FIX-model implies that the study system's control force is more
effective in reducing the F'X-model's translational displacement than the SSI-model's
relative displacement excluding rotational! effect. For the FIX-model with control (see
Figure 112), an increase of sl/r ratic results in an increase of the maximum of control
force and then & decrease of the maximum of the top floor displacement relative to
footing (x'l"a ) At the optimal point, the maximum displacement is reduced from 0.053 m
(without control) to 0.016 m with the maximum control force of 8. 68 MN.

For the SSI-mode! with comrol (see Figure 113), an increase of sl/r ratio also
results in the same manner as the case of the FIX-model. But the change in the maximum
of the top floor displacement relative to footing exciuding rotational effect (DISP W/O
ROT) as a function of sl/r ratio is very small. This indicates that the decrease of
displacement relative to footing is mainly the result of the decrease of footing rotation. At
the optimal point, the maximum displacement is reduced from 1.219 m (without control)
to 0.735 m with the maximum control force of 68.54 MN. The footing rotation is reduced
from 0.035 radian (without control) to 0.022 radian as shown in Figure 114. The
maximum of relative displacement excluding rotational effect is slightly changed from

0.052 m (without control) to 0.058 m as shown in Figures 110 and 111 for the case of the
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SSI-model. Since interaction moment and footing rotation are related to the impulse
velocity coefficients of ground system by the convolution integral, the former is reduced,
as expected, from 66.13 MN-m (without control) to 39.11 MN-m at the optimal point as
shown in Figure 115 Also in the same figure, the horizontal interaction force is reduced
from 1.51 MN (without control) to 1 37 MN.

Therefore the active tendon system, attached to the foundation aad second floor of
a structure embedded in a soft soil, limits structural responses by mean of reducing
foundation rotation Its control force also reduces a horizontal interaction force and
interaction moment. This active sysiem is not so effective in reducing relative floor
translation. To limit structural responses even more, the second active system on the upper
floor is recommend -d.

Since the foundation degrees of freedom in an SSI-modet distinguish this model's
behavior from a FIX-model's, the responses of these two models are different and thus
require different control forces. The control force required in the SSI-model is greater
than that in the FIX-model as a result of the former's larger response. Furthermore, an
additional amount of control force is needed to limit the movement of foundation. Even in
a closed-loop control, the structural responses are directly measured by response sensors;
the control force determined by a FIX-model's gain matrix may not be large enough to
limit the foundation movement and thus the structural responses Moreover, the control
force set by the FIX-model's gain matrix is dictated only by floor translations. By using the
SSI-model's gain matrix, a suitable control force is determined as the functions of both

floor and foundation responses.
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VIII. CONCLUSIONS

A. MATHEMATICAL MODELS

Four mathematical models of a multistory seismic shear structure were presented.
First, a fixed-base model (FIX) is valid where the structure is placed on rock If the
structure is founded on soft soil, a second model, so-called structure-soil interaction
model {SSI), may appropriately be employed. An integrated active tendon control to limit
dynamic system's response results in other two models, 2 FIX-model with control and
SSI-model with control.

The SSI-model can be applied to a seismic structure with a rigid rectangular mat
foundation embedded in an unbounded soil. The unbounded soil domain is modeied as
unbounded horizontal layers stacked on a haif-space (layered haif-space). An isotropic
viscoelastic property of soil may vary with depth but remain constant within the individual
layers. The indirect boundary element method is applied to unbounded part of soil
(free-field system), while the finite element method with 4-node rectangular element is
employed to bounded part (system's excavated part). In the indirect boundary element
method, an adaptive quadrature integration technique is used in a Green's influence
function's transformation from the k wave-number domain to space domain. For the
integration along a boundary (foundation-soil interface), Simpson's method is employed.
The frequency-dependent time-derivative flexibility coefficient of ground system is
determined and then, by using the discrete Fourier transformation (or fast Fourier

transform) with causality condition, an impulse velocity coefficient is obtained. By virtue
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of the soil coefficient's time derivative, its static component is not required. In a discrete
time fashion, a structure-soil interaction force is computed through the convolution
integral of the impulse velocity coefficient. This coefficient relates the difference of the
ground system's and foundation's responses to the interaction force Since vertically
incident shear wave and shallow foundation are assumed, the rotational component of the
ground system's response is neglected.

In the integrated control systems, the concept of a generalized optimal active
control is applied. The optimal control rules of both FIX-model and SSI-model are
developed based on the generalized performance indexes (objective functional) in which
an endpoint state veéctoi is included. Euler's equation and transversality condition are
enforced to obtain an optimal solution. This results in the constant feedback gain matrices
(control laws) which are neither a function of time nor time increment. The weighting
marrix [S] associated with the endpoint state vector is chosen to be either a row matrix or
a symmetrical matrix Since this weighting matrix is integrated into the gain matrix, the
displacemem control and velocity control are manipulated by the weighting elements
(Sp.Ypand §1,Yv) corresponding to a system's displacement vector and velocity vector,
respectively. In the SSI-model with control, foundation responses (translation and
rocking) are included in the state vector and then dictate control force. Therefore, in a
closed-loop control, not only a response sensor on each floor but also an innovative sensor
for a foundation is needed. The foundation sensor may detect the pressure (or stress or
strain) at a foundation-soil interface and then convert to the foundation's response relative

to the ground system.
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To obtain a system's response, the state equation is transformed into its canonical
form and the first-order differential equation is then solved by applying the trapezoidal
rule. For all cases (FIX-model and SSI-model with or without control), this technique is

implemented on the basis of time domain.

B. STUDY QF SOIL SYSTEMS

In the indirect boundary element method (IBEM), the calculation of the
frequency-dependent dynamic stiffness coefficients in the free-field system needs only the
displacement Green's influence function. Unlike the finite element method (FEM), this
method does not require the fictitious boundary and interior nodes for an unbounded soil
Therefore it is simpler to determine the coefficients of system's excavated part (bounded
domain) by the finite element method and then subtract them from those of the free-field
system to vield the comresponding coefficients of the ground system. Since the errors
inherent in the two different methods (IBEM and FEM) are not consistent, this subtraction
technique may yield problematic results in the vicinity of the natural frequency. Therefore
the technique is not recommended in cases of small damping and high foundation
embedment to half-width ratio (D/B). In such cases, the indirect boundary element
method, which requires Green's influence functions for both displacement and surface
traction, should directly be appiied to the ground system.

Parametric studies of dynamic stiffness coefficients were made on various soil
systems to investigate the influence of soil hysteretic damping {. foundation embedment

D, and the depth H of a soil layer on rock. An investigation of the actual site {Takenaka
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Experimental Building Site or TEBS) was also presented These results can be

summanzed as follows.

1. System's Excavated Part. Since there is no radiation of energy in a bounded
domain, the damping coefficient of undamped medium is zero. For a damping case. the
damping coefficient arises as the result of frictional loss. The spring coefficient has no
significant change as the hysteretic damping ratio increases. In the vicinity of the natural
frequency, both spring and damping coefficients change as the reverse function of the
damping ratio. The damping ratio can cause considerabie change in the vibratuona! mode.
The spring and damping coefficients convert to zero where their dimensionless frequency
approaches zero. Thus their static component (w=0) of the system's excavated part is
equal to zero. The bigger D/B results in a lower first mode natural frequency

For the actual site (TEBS), its coefficients are very close to those of the
homogeneous system having D/B = 0.5, since the excavated part of the actual site is
assumed to be the homogeneous medium having D/B = 0.5 The difference is due to the

hysteretic damping and Poisson's ratio used in actual site and homogeneous medium.

2. Freeficid System. Two types of free-field systems were investigated. The
influence of foundation embedment D was based on a free-field sysiem with a
homogeneous half-plane Then the effect of layer's depth was studied in a free-field system
comprising a homogeneous layer with depth / built on rock base.

The natural frequencies of the free-field system are the same as those of the
system's excavated part. In contrast to the system's excavated part, the spring a.id damping

coefficients do not transform to zero as their frequency reaches zero. This indicates the
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non-zero static stiffness coefficient of the free-field system. The increase of /8 has no
significant effect on the honzontal and vertical spring coefficients. On the contrary, in the
low frequency range (less than the first mode's natural frequency) the rocking spring
coefficients increase while D/B increases. Due to the free-field system's radiation of energy
toward infinity, the damping coefBicient is not equal to zero. The increase of the horizontal
and vertical damping coefficients is proportional to D/8. More remarkable increase can be
seen in the rocking damping coefficient, especially for D/B =20,

As depth A of the layer decreases, the spring coefficients in the Jow frequency
range increase. The effect is more noticeable in the vertical direction. The spring
coefficients of the system with a layer on rock are greater than those of the system with 2
half-plane. For #/B = 2.0 and 3.0 (A = layer's depth and B = foundation half-width), the
spring coefficients have a stronger frequency-dependence. A smoother spring coefficient is
found in the case of a very shallow layer (H/B=10) In contrast to the system with
haif-plane, the one with a layer on rock demonstrates a cutoff frequency below which only
a small amount of energy can be radiated toward infinity. This leads to small damping
coefficients below that frequency. The corresponding coefficients are less than those of the
half-plane medium. A bigger H/B leads to a smaller cutoff frequency.

For the actual site (TEBS), the strongly frequency-dependent coefficients of this
nonhomogeneous domain are expected. Amplitudes of the coeflicients are close to those
of the homogeneous half-plane having the same /B, except in the vertical direction and

rocking as a result of the TEBS's half-plane. The level of TEBS's half-plane, in which
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average shear wave velocity is about 2 times faster than that of topping layers, is quite
deep (61.8m). Therefore the cutoff frequency is very low.

3. Groynd Svstem. The behavior of this system's coefficients tends to be the
same as that of the free-field coefficients in the low frequency range. The foundation
embedment barely has any effect on both horizontal and vertical spring coefficients On the
contrary, the deeper embedment leads to stronger rocking spring coefficients. For both
translation directions and rocking, the larger damping coefficients are founr in the deeper
foundation embedment. A greater effect appears in the rocking. As for depth of soil layer
on rock base, spring coefficients of the more shallow layer system are greater, especially in
a vertical direction. Spring coefficients of the system comprising a layer on rock base are
larger than those of the system with a half-plane. But the system's damping coefficients are
smaller below a cutoff frequency and then increase to the level of those corresponding to a
half-plane medium. The cutoff frequency exists at the same point as that in the free-field
system. Both spring and damping coefficients display a strong dependence of frequency,
except in the case of a very shallow layer. In a high frequency range, a large oscillation is
demonstrated and the negative spring coefficients occur to a greater extent. For the actual
site (TEBS), the same conclusion in the free-fieid system is applied here.

Therefore, for an embedded foundation, the assumption of a surface foundation is
too conservative. This is because foundation embedment does increase damping
coefficients and rocking spring coefficient. As for impulse velocity coefficients, the
coefficients of the system with a half-plane attenuate faster than those corresponding to a

layer on rock medium since more energy in the half-plane propagates toward infinity. The
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rock base of a very shallow layer has an effect on a rocking impulse velocity coefficient as

its dynamic-stiffness coefficient is stronger

C. BEHAVIOR OF TOTAL DYNAMIC SYSTEMS

1. System without Control. In an SSI-model. two types of displacement
concerning structural failure were investigated. Ds is defined as floor relative displacement
excluding rigid motion effect due to foundation rotation. Dg is floor displacement relative
to ground system. The former is related to a structure system's strain energy. The latter
concerns the structure collision with an adjacent system Regarding foundation failure, a
horizontal interaction force and interaction moment as the measurement of maximum
stresses along a structure-soil interface were examined. In a single-story SSI-model, three
normal modes include a rigid translational mode, relative translationa! mode, and rigid
rocking mode. A base shear and Ds are directly effected by the dominance of a relative
translational mode while Dg is influenced by the dominance of every mode. A base
moment and interaction moment are dominated by the ngid rocking mode much as a
horizontal interaction force is controlled by the rigid and relative translational modes. In a
FIX-model, a floor relative displacement, base shear, and base moment were compared to
the corresponding responses of the SSI-model.

The longer period of response in the SSI-model is noticeable as a result of the
system becoming more flexible. The maximum of Dg is always bigger than that of the
FIX-model's floor relative displacement due to foundation translation and rotation. The

maximum of Ds and base shear may be larger or smaller than that of the FIX-model's fioor
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reiative displ;;ce:nent and base shear, respectively. The former are larger in the case of a
relative translational mode's dominance .

In the SSI-model, its greater floor mass and/or height result in a more flexible
system as well as the more importance of a ngid rocking mode. The latter leads to the
larger maximum for Dg, base moment, and interaction mome=t. In the case of a high-rise
structure, this maximum base moment is larger than that of a FIX-model. On the contrar,,
the translational modes tend to dominate in a low-nise structure, which leads to the greater
maximum of Ds, base shear, and horizontal interaction force. Therefore, both translational
and rocking modes potentially dominate in a massive low-rise structure such as a nuclear
reactor, and then produce a large response. The dominant mode of a similar dynamic
system subjected to different seismic excitation could also be different This leads to a
distinct structural responses.

The fixed-base natura! frequency of a dynamic system is used as a relative indicator
whether a structure is stiff or flexibie. In general, a stiff structure leads to a smaller
response but greater importance of every mode, especially a rigid translation mode.
Therefore, in a stiff high-rise structure, a large response is caused by the dominance of
both rigid rocking and translational modes. The dominance of a rigid translational mode is
found in a massive stiff low-rise structure. Also a stiffer structure results in a bigger
change in the total dynamic system's frequency.

To some extent, the level of rock hase has an influence on a flexible high-rise
structure The ngid rocking mode is normally important for the flexible high-rise structure

embedded in soil (half-plane). This importance is reduced in the case of a shallow soil
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layer on roci( as the result of its smaller rocking impuise velocity coefficient In turn, this
leads to the smaller maximum of Dg, base moment, and interaction moment. For a stiffer
soil system, the greater importance of a relative translational mode but lesser importance
of a rigid translational mode is described. In contrast to a stiff structure system mentioned
in the previous paragraph, a stiff soil system leads to a smaller change in the total system's
frequency.

2. System with Control. A flexible high-rise structure with an active tendon
system attached to its foundation and second floor was investigated As the structure
(without control) interacts with soil, the total dynamic system predictably becomes more
flexible (smaller system's frequency). Dominance of its rigid rocking mode leads to a large
foundation rotation and thus greater floor translation than that of a FIX-model In a
closed-loop control, its control force (which is the function of displacement and velocity)
strengthens the system's stiffness and damping. Therefore the frequency and damping ratio
of an integrated control system are increased. A lesser impact is noticeable in the
SSI-modet. For the control system used in this study, structural response is limited by
means of reducing foundation rocking rather than relative floor translation as done in the
FIX-model. Consequently, this control system's interaction moment is greatly reduced as
is its honzontal interaction force to a lesser extent. In order to reduce the floor translation
without rotational effect, a second active tendon control on an upper floor is
recommended. The larger control force in an SSI-model is required to limut its larger
response and foundation movement. Even this larger response is directly detected by

response sensors in a closed-loop control. A control force calculated by a FIX-model's
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gain matrix may not be large enough to limit the response of a structure on soft soil,
Proper control force as a function of floor translation, foundation translation and

foundation rotation can be determined by using an SSI-model's gain matrix
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APPENDIX A

GREEN'S INFLUENCE FUNCTION



In the indirect boundary element method, a so-called fundamental solution is
needed for an applied load acting on a continuous system I[n order to determine the
dynamic stiffness of the free-field system in Subsection A of Section V, displacements
u,(xz) and w,(x.z), on the assumed line which subsequently forms the structure-soil
interface, are needed for the applied distributed loads acting on the same line of a

continuous soil system,
1. Displacem in k~domain for Loads on Vertical Line.

As shown in Figure 116, the horizontal linearly distributed load p(x.z). with ncdal

values of p and p,, and the vertical linearly distnbisted load H(x,z), with nodal values of »,
and r_,, act on part of the vertical assumed line between node ; and node s+1 in x- and
z-direction, respectively. The procedure to determine the displacements is divided into
two parts. In part I (superscript /) as shown in Figure 117, an additional horizonial
interface needs to be introduced through node ; The introduced layer ; on which the
distributed loads act is fixed at the interfaces. Corresponding reaction forces, Pj(lc),
P, (k) and R/(k), R, (k) in x- and z-direction, are calculated to achieve this condition
whereby local displacements w/,(k,z) and wi,(k, z), between the nodes, are determined. In
part [I (superscript /7) as shown in Figure 118, amplitudes of the reaction forces are then
applied at the nodes of the total soil system with the opposite direction, displacements
ull(k,z) and wi(k z) along the vertical assumed line are calculated. To find global
displacements (k) and w, (k.2), local displacements (part I) have to be supenmposed
on them (part II). Subscnpt pr indicates that displacements ¥ and w in x- and z-direction

are the resuit of both applied distributed loads p and .
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Figure 116. Linearly Distributed Loads on Vertical Assumed Line
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Figure 117. Loaded Layer with Reaction Forces (Pan I)
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Figure 118 Total Soil System with External Forces (Part II)

a. Fized Laver (Part I). For harmonic excitation with frequency @, the
dynamic-equilibrium equations of loaded layer j (see Figure 116} in Cartesian coordinates

x and z can be written as

Orax(X, 2) + Tz(x, 2) = -p@iulx, 2) ~ plx, 2) (303)

Tax(X, 1) + O:(x, 2) = ~pwiw(x,2) - rx, 2) (304)

Normal stress and shear stress amplitudes are denoted as ¢ and T, respectively.
The first subscript denotes the direction of the stress component. The second one denotes
the direction of the infinitesimal area's normal that the stress component acts on. A comma
denotes a partiat derivative with respect to the subscript following it. The letter p
represents the mass density. Displacement amplitudes u#(x,z) and w(x.z) are in x- and

z-direction, respectively. Linearly distributed loads p(x,2) and r(x.z) can be expressed as
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plx,z) = [p, +(Pp -p/)é]ﬁ(r) 1305)
rx,2) = [r, + -r,)ﬁ]ﬁ(x) (306)

where the letter d represents the depth of the loaded layer s and &(x) represents the Dirac-

delta function equal to 1 at x =0 and O where x # 0.

By using the stress-strain relationship (Hook's law) and strain-displacement

relationship, the normal stress and shear stress amplitudes can be expressed as

Ox(%,2) =27 + A" Ju (x, 2} + A" w.(x,2) (307}
o2, 2) = [2Y" + A Iw(x, ) + A u . (x, 2) £308)
Telx,2) = Tx(x, 2) = T {(U2(x,2) + wA(x, 2)] (309)

where the complex shear mndulus Y* and the complex Lame constant A’ [Equations
(512). (519), and (535)] can be expressed as the functions of Young's modulus of

elasticity E, Poisson's ratio v, and the ratio of the linear hysteretic damping { as follows

._(1+20) . W1+20)
Y _2(1+u)E and % ‘(1+u)(1-2n)£ G109

As discussed in Equations {568) to (571), the x-z plane displacement equations of

layer can be derived and expressed as follows

w(x. 2) = u(k, z)exp (—kx) 1)

w(x, z) = w(k, z)exp (—ux) (312)
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with
uik, z) = ;[ Apexp (Ukfz) + Bpexp (—Uf2)]
s [A srexp (Uesz) — Bsyexp(—iksz)] (313)

w(k z) =i, f [Apexp (\Afz) — Brexp (-kf2)]

—m[A sy exp (tksz) + B exp(—tkss)] G149

where /,/Cp = m,/Cs needs to be enforced.

The symbol \ represents J: . The scalar k represents the wave number which is
equal to /(. The letter (' stands for phase velocity which is equal to 5/, and Cy/m,
C, and C, represent P- and S-wave velocities, and are equal to f(ET'_-i—-J\.‘_}/p and
'/W , respectively. Scalars /, and m, inay be considered propagating directional cosines
1o the x-axis (=cos W, and =cos y,) of the P- and S-wave, respectively. Algebraically, they
are equal to kCp/w and kCs/w, respectively, which can be real, imaginary, or complex
numbers. Therefore this interpretation holds only for real values smaller than or equal to
1. Scalars f and s are JEE——I and [1/m] -1, respectively. A4, and A, are the
amplitudes of the P- and SV-wave traveling in the negative z-direction (incident waves).
B, and By, are the amplitudes of the P- and SV-wave traveling in the positive z-direction
(reflected waves).

Substituting the stresses in Equations (307) through (309) and the displ.~ements in
Equations (311) and (312) into the dynamic-equilibrium Equations (303) and (304) results

in
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(Y uz=(k,2) = kX" + A Iw.(k, 2) - k227" + A" Ju(k, 2) Yexp(-vhx) =

—pw’uik, )exp (—ukx) - p(x, z) (315)
(k2T "Wk, 2) — WY + A Ju ok, 2) + (27" + A° Jw o (k, =) Yexp(—ukx) =

~pu?w(k, Z)exp(—vhkx) - r(x,2) (316)

Distributed loads p{x.z) and r(x,z), defined in Equations (305) and (306), are thzn

expanded in the x-direction into Fourner integrals, with term exp(-ukx), as

plk.2)= ilr_l: j: pix, ziexp (Uar)dx = ilﬁ[pl + (P —pj)-f?] 317
wEk o= é j; rix, z)exp (Vo)dx = ﬁ[r, + Tyt —r,)j] (318)

Thus, using Equations (315) to (318) and omitting term exp(-ukx), the equilibrium

equations of loaded layer, for harmonic motion in k-domain, can be written as
T u o (k,2) X" + A" Jw (k22 K2 [27° + A" Ju(k,2) =

-pwiulk,z) - %;[p) +(Pm -p,)fi] (319)

Y wik, 2) = Y + N Juslh, 2)+ 12T + A wz(k,2) =
-pawiwik z)—L[r +(re1 =7 )5] (320)
BT R AR

By inspection, the particular solutions (superscript P) of Equations (319) and

(320) can be obtained and written in matrix form as
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-

P

u"(k,z)} r l

= k /

{wp(m) ,- [uwpr”(k,2)], o (321)

with
[wwpr® (&, )], =
1 [ ~1-zd)A) Bk A=Ak  -Biky ] (322)
2rl Bk ~1-zd)Tk) Btk ~=d)Ck)
where
;’(khkwif*[) , E’(k):%  Ch= e b:%’j’ (323)

and the j subscription for vectors or matrices denotes that they are associated with
distributed loads on and/or physical properties of layer ;.
At the top (node j, z=0) and the bottom (node j+1, z=d) of loaded layer j, the

particular parts of corresponding displacements can be obtained as

u; (k) o
P
w, (k) r
= fwpri0) | " 324
uf,l(k) [wwpr.{k)], Prol (324)
whi (k) Il

with



-Atky By 0 -B
1| Bty —Ctk) -Bth) 0
2t 0 Bk -Ak) -Blk)

Btky 0 -Btk) —Ciky

{uwpriik)), = (32%)

where the subscript * denotes that the given matrix yields nodal values
Based on Equations (308), (309), (311), {(312), and (321). on any :-planes
(s=constant) the particular parts in k-domain of the normal stress in z-direction and of the

shear stress in x-directi n can be obtained as
oftk,z) = [2T" + A WAk, D) = Uh w’ (k, 2

- E%[ UAK)D - 2)d-2) ~vkdBk)(D -2} + (D

b
vA(kYD -2z vkadBUND~2)-CihoD | P"’ (326)
fad)
r,q
thik, 2) = Y [uf(k, 2) - vewP (K 2)]
=X [ Zoky — wdF U -z
= [ A -vdBiy uCthna-2)
b
A0+ By Wz |4 (327
Pm

er

The particular parts of reactions at the top and bottom of the loaded layer are
defined as PF (k) = —tZ.(k, 0), RY (k) = —o%(k, 0), P}, (k) = t2(k,d) and R}, (k) = of(k.d).

By using Equations (326) and (327), they can be obtained in matrix form as
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Prk)

B
R (k) .
= [PRpri(k !
e (PRpri(k)), P (328)
Ry.\(k) s
with
[ [PRo.] [PRE 0] ]
PRorE (k)] = 1— [ (. 0D 329
(PRpra(®)], an[ [PRpriun] [PRorG] o
where
_ ~A(k) + JdB(k) ~ukdC (k)
[PRP’ﬁ.nJ ‘[ ~ukdA (k)(D - 2) kdB(k)D - 2)-Ci)D ] 0
) _| Aky-vdB) 0
[PRpfﬁm]-[PRPfﬁ.n]-[ 0 —U‘dB(k)(D—Z)+C(k)D] @b
_[ Ak +wdB(h) wdCk)
[PRP'J:&:)]‘[ wkdA(k)(D - 2) tkdﬁ(k)(b-z)-(-:(")b} .

To complete the first part of the procedure, the homogeneous parts (superscript
H) of the displacements and reactions will be determined and superimposed on the
particular ones. Boundary conditions at node j and node j+1 of the homogeneous
Equations (313) and (314) must be equal to the negative values of «’(k), w'(k}, o7, (),
and w%, (k) in order to fix those two interfaces of the loaded layer. The homogeneous
Equations (313) and (314) can be rewritten into matrix form in terms of the unknowns A,

B, Ay and B, as
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Ap

ll(k,:) _ Bp
{ wik.2) }: = [uwAB(k,2)], As } (333)

Bsy

with
[uwAB(k, )}, =

[ Iexp(Ukfz)  leexp(—fz) —mosexp(uksz) m,sexp(—uks:) (334)
=l fexp(Wfz) I, fexp(~Wfz) —mqexp(iksz) —m.exp(—tksz)

By using Equation (333), the unknowns 4,, B,, A, and B, can be expressed in

terms of four boundary conditions at the top and bottom of the layer as

Ap ";(k)
Bp | _ -] wyk)
i | StmaB M (335)
BSV J Wﬁ;(k)
with
(swAB ) (wvwAB.2)
A.B. k = 336
liowA BB, I:[WABILI)] (1wAB ) ] (336)
where
[uwAB.,)] = 1:[ __lf }] (337)
[WAB«1.2)]="':|: oo ] (338)
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[““’A-B<21)]=l,[ exp(ugd) exp(—kad)]

—fexp(Ufd) fexp(—ikfd) (339)
= —sexp(uksd ) sexp(—uksd)
[1wAB 2 1) m.[ —expitksd) _“p(_w}] (340)

Knowing the boundary conditions and then using Equations (324), (333) and

(335). the homogeneous parts of the displacements can be obtained as

P,
u¥(k, 2) _ l r,
{w”(k,z) }J =fmprt ki (341
¥l
with
(wwprfi (k. 2)), = —(wwAB(k, 2)] [uwAB.(K)]; " [uwprf (k)] (342)

Local displacements (part 1) are the summation of the particular parts in Equation

(321) and the homogeneous parts in Equation (341) which can be expressed as

4]
ul,(k, 2) r
= k, 343
{WLr(k.:) }) [awpr( ’)]; oo (343)
’}4.]

with
(uwpr'(k, 2)], = [twpr®(k,2)], + [uwpr® (k,2)),

= [uwpr” (k,2)), - [4wABIk,2)) [iwAB. (b)) | [awpri k), (344)
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Homogeneous parts of the reaction forces can be determined by using the dynamic

stiffness of the horizontal layer in k-domain. As shown in Equation (445), external forces

and nodal displacements of layer j are related to its stiffness matrix as

Piik) u,(k)
R,(k) L W(k)

=[$h ok : 345
Pthy [Sh0tt] byt (K) 9)
Ry (k) Wyt (k)

By substituting negative values of the particular pans of the nodal displacements

into Equation (345), homogeneous parts of the reactions can be obtained as

WAG p,
J ﬁ”z.(::) = [PRpr{ k)], P:’H (346)
l R,Ji| (k) L]
with
(PRt (k) = ~{ Shsv (k)] [awprl (KY), (347)

For loaded layer j, the reaction forces (see Figure 117) to counterbalance the

linearly distributed loads and fix the interfaces can be obtained by combining Equations

(328) and (346) as
2 | i
J( ) = [PRpr (k r, 348
Pl [ Rerih)ly ,° (348)
R, (k) Fpl
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with
[PRprl.(k)], = [PRorl (k)] + [PRpr¥ (k).

= [PRprL(K)), = [ Shosr (k)] Linwprich)], (349)

b. Free Laver (Part II)- The dynamic-stiffness matrix [ S7_g,-(k)] of the total
soil system which consists of N-1 layers and a half-space (see Figure 119) is first
assembled by using the direct stiffness approach. In the assembling process, the stiffness
matrices of two adjacent layers and half-space are overlapped on the matrix's elements
corresponding to the same node. Superscript 7 stands for the total soil system.

In Equations (445) and (488), the dynamic-stifiness matrices [Sﬁ.s,r(k}]‘ of any
horizontal layer i, for i=1,2, N-1, relate displacement amplitudes # and w at node 1 and

node i+1 to load amplitudes P and R at the same nodes. The force-displacement

| Soil I

1 Soil I

N Ly

Figure 119. Total Soil System in k-dom.ain
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relationship of the half-space can be obtained by the dynamic-stiffness matrices [S';hs,.(k)]

in Equations (460), (458), and (501). Both relationships can be expressed as follows

P.(k) [ uo
R:(k) - Wv(*)
Paitk) '[5#““’(")]'[ Ui (K) (350)
Rn[(k) wﬂl(k)
Po(k) ua(k)
= k
{Rom} [SBsr( )]{ Wm} (351)

As shown in Equations (311) and (312). the variaticn of displacement amplitudes
u(x,z) and w(x,z) in the x-direction is determined by wave number & and is thus constant
with depth for the layer. Boundary conditicns at the interface of two adjacent layers and
half-space force the value of k to be constant for the total soil system. For a given
frequency w, phase velocity C has to be constant (C=w/k) for all layers and half-space.
After determining [ 5% g, (k)]‘ and [ S_g (0] by taking this into consideration, the total

dynamic-stiffness matrix in &-domain [ 57, (k) ] can be assembled and expressed as

Pi(k) } w, (k)

Rk w1 (k)

PB | _rer u k) |

{ Rab) =[Shetb]; w, (k) 352)
Prik) uy(k)

Ru(k) | wwik)

For the distributed loads acang on the vertical assumed line cf any layer j between

node j and node j+1, reactions at the corresponding nodes were determined in pant [ as

206



shown in Equation (348). Applying these forces in the opposite direction at the same
nodes to the total soil system (see Figure 118), nodal displacements at any node / and

node /+1 can be calculated. Using Equation (348) and (352), they can be expressed as

uy () \ ( P;
wi (k) N
: =[uwpri(B)]'{ 353
AT B P (333)
wi (k) . Fiel

with
[wpriihy) = -SUB.,[[SE_S,,(.&)]_' )[PRpri(Ic)]l
=-SUB,([ S0 0] )

(12Ror2th) = [Shosv 0] prwpr2, (354

wheee SUB([SEs (0] ) is the submatrix of dimension 4 by 4, comprising the
coefficients in the matrix [S;_Sy(k)]-l from row 4/-3® to row 4/® and column 4/-3" to
column 4/ and (PRpr{(k)], is shown in Equation (349). The / superscription for vectors
or matrices indicates that they are associated with layer 's displacements.

Displacements /,(k,z) and w/(k,z) between node i and node i+1 are determined
by using nodal displacements in Equation (353) as the boundary conditions of
homogeneous Equations (313) and (314). Using Equations (333), (335) and (353), the

displacement vector in part II can be obtained as
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[ p
s | o
pri®c) | _ 1 ln
{ Wik 2) }, {uwpr* (k,z)l,l o (355)
with
[uwpr(k, 2)), = [uwAB(k, 2)),[uwd B. (0)];" (wwprl (k)
= —{iowAB(k, ), wAB. )]} SUB, ([ ST )] )
(1PRorzib), - [ Sh.ov (0] (imprichy, (356)

c. Global Displacements. Along the vertical line in any layer . fori=1,2, ., M
where M = number of layers along the vertical assumed line, on which no distributed
loads act (i » ), global displacements u_(kz) and w_(k.z) are equal to the displacements

determined in part II (355) and can be written as

uplk,2) |7 [ w2 |’ k)™ ‘:j
+ = pri™ = k [ J 7
{ W’-(k,Z) }I { Wlpl'(k,Z) }] [ ’:)]J p,u (35 )
Frel
with
(wwpr(k,2))" = -{uwAB(k, z)],[wAB.(k)],'lSUB,,([S;.sy W] )
(1PRort @, ~ [ S5 )] Lty ) (358)
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Along the vertical line in any layer / on which the distributed loads act (=), global
displacements u,,(k,z) and w’,(k, z) are the combination of displacements obtained in part [

(343) and part II (355), and can be expressed as

e , P
{ tp(k,2) } ’ ={ u‘{,r(k.?r) } +{ “f;{'(k,z) } = [uwprik ) r (359)
y - j
P
p) ! 7

wpf( ka z) wgr(kv z) L wgr(k» z) gad!

F el
with
Luwprtk, )] = (uwprfik, 2)] - [WwAB(k, 2)) [uwAB. (b))} (1wpr? k)],

_[uwAB(k,z)],[uwAB.(Ic}],"SUB,,([S,T._SV(k)]" )

(1PRor20), ~[Shoor ()] fineprZi, ) (360)

2. Displ nts in k 1 Horizontal Line.

As shown in Figure 120, the horizontal linearly distributed load p(x), with nodal
values of p, and p,,, in x-direction, and the vertical linearly distributed load r(x), with nodal
values of 7, and 7, in z-direction, act on part of the horizontal assumed line between node
! and node /+1. which i.2s underneath layer M. Since the distributed loads act on the
horizontal interface, not between the interfaces, the first part of the procedure mentioned

in the previous subsection is not required.
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Figure 120 Linearly Distributed Loads on Horizontal Assumed Line

Linearly distributed loads p(x) and #(x) can be expressed in matrix form as

Pt

plx) | _| (1-x/b) 0 xib 0 r

{r(x) }‘[ 0 (1-xb) 0 x/b] Di 361y
i

where the letter b is the length between node / and node /+1. Then the distributed loads

are expanded in the x-direction into Fourier integrals, with term exp(-ikx), as

{ Prni(K) } i { plx) }exp(lkr)dx

Ruwi(k) |~ 2mdo | )
P
Lo
=[FPRpr.(k 362
(FPRpr«(K)} pin (362)
Fiel
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with

[PRpr. (k)] = 2'—“[ PO‘" : _,& P’;’*' R: " (363)
where

Ppi=Rr=3l1 —exp(lkb)]—;;—b-[exp(tkb)(l —kb)-1] (364)

PP =Rri = ﬁ[exp(dcb)( 1-ub) -1} (365)

The M,! subscription for vectors and matrices denotes that they are associated with
distnbuted loads on the horizontal element between node / and node /+1 which are on the
horizontal interface underneath layer M.

These external !nads are then applied to the total soil system at node M+1]
corresponding to the horizontal assumed line (see Figure 120). By using the total
dynamic-stiffness matrix [ S7_s, (k)] mentioned in Equetion (352) and the external loads in

Equation (362), nodal displacements at any node / and node i+1 on vertical line can be

obtained as
u, (k) P!
w, (k) _ i rr
U (k) = lwpra (), Pl (366)
wailk) | i)
with
[wwpro ()., = subm([Sﬁ_sy(k)]'l ){PRpr.(k)]M_, (367)
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where ubu([S;_g,-(k)]") is the submatrix of dimension 4 by 2. This dimension

comprises elements in the matrix [.S‘,(,_‘g,,(k)]-1 from row 4i-3® to row 4/* and column

4M-1" to column 4M™ [PRpr.(k)] can be obtained from Equation (363) The

superscription for vectors or matrices indicates that they are associated with layer /s

displacements.

Analogous to part II of displacements for loads on the vertical assumed line in the

previous subsection, displacements u_(k.z) and w,(k.z) between node / and node i+1 are

calculated by using nodal displacements in Equation (366) as the boundary conditions of

displacement Equations (313) and (314) Using Equations (333), (335) and (365), the

displacement vector can be obtained as

i pl
uFr(k, Z) = k 1 rl
L4

with
(awprik, 2)],,, = [1wAB(k,2)) [uwAB.(K)] ;" [wwpr.(K)],,,
= [uwAB(k, 7)) (uwAB. (k)] "

subM([S;_s,,(k)]-l )[PRpr.(k)]M ’
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3. Displacements for Vertically Incident Wave.

a. Loads on Vertical Line. A procedure is analogous to Subsection 1. For the
vertically incident waves which correspond to a zero wave number &, displacement

equations [see Equations (572) and (573) of Appendix C] can be expressed as

u(x,z)< = -4 srexp (%2) + Bsyexp (—lc-,u;z) (370)
wix, 2)¥0 = -4 pexp (é—‘iz) + Brexp (—lz,%z) (371)

Using stress Equations (308) and (309) and displacement Equations (370} and
(371), the dynamic-equilibrium Equations (303) and (304) for loaded layer ; can be

reformulated as

Y*u =(2) = —pwiu(z) - ﬁ[p, +(pm -mi] (372)
27" +A° Jwz(2) = poiw(z) - ﬁ[r, +(rp -r,)f;,] (373)

Displacements in Equations (372) and (373) are uncoupled. By inspection, the

particular solutions of these equations can be obtained in matrix form as

4

uf(2) } =)
= (374)

{ Wi |, lovpr* (@), P

rpl

with
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<} [ 1-zd 0
[uwpr”(z)]f"’-——s—[ 40 } (375)

Ty 0 l-zd O zid

At the top (node j.z = 0) and bottom (node j+1,z = d) of the loaded layer, the

particular parts of corresponding displacements can be obtained as

o

ll} P
Wf [ ’_P]k-o r (376
= [uwpr,
“ﬁl pred Ppi )
W;l Tt
with
1000
-} lo100
o T
Lowpr, 2n0’r] 0010 (377)
0001

Based on Equations (308), (309), and (374), on any z-pianes (z=constant) the

particular parts of the normal stress in z-direction and the shear stress in x-direction can be

obtained as
of(z T+ A Wiz -——-C; 7
f2) =[2T" +A7] .-(~)=2m, =) (378)
p P &
el S TTUES) = (P = P) 379)

By using Equations (378) and (379), the particular parts of reactions at the top and

bottom of the ioaded layer can be obtained in matrix form as
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:i 1]
pr [ =[PROFEY p"l (380)
el Pad
R}P;—l Fpe
with
-ct 0o Ct o
o _ 1 0o C: o C}
[PRpr], Tmwid] C3 0 CE O (381)
0 2 o0 C}

Homogeneous Equations (370) and (371) can be rewritten in matnx form in terms

of the unknowns 4,. B,, A,,, and B, as

Ap
2y | _ 0] Bp
{w(:) }, = [uwd B(z)], dsy (382)
Bsy
with
(uwAB(z)]]™ =
0 0 —exp(1wz/Cs) exp(-102/Cs) (383)
—exp(wwz/Cr) exp(—uaz/Cp) 0 0

By using Equation (382), the unknowns 4, 8,, A, and B,, can be expressed in

terms of four boundary conditions at the top and bottom of the layer a5
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BP - oty 71 W,

e =[lww4B.]] u— (384)

Bg- , W s

with
[uwAB.]JH =
0 0 -1 1 ]
-1 | 0 0 (385)
0 0 —exp(d/Cs) exp{—wd/Cs)
—exp(Ld/Cr) exp(—1wd/Cp) 0 0

Knowing the boundary conditions which equal the negative values of u”, w’ u],
w), and then using Equations (376), (382), and (384), the homogeneous pars of the

displacements can be obtained as

P;

u¥(z) = bt | F;
{w‘"(:) }‘ [uwPr”(z)]j . (386)

"‘,.H

with
[1pr# ()] = ~uwA ()]~ [uwdB.} ] uwprt) ™
C: |wwpr(y, O wwprgy, O
= — . 387
Zmzr'[ 0 wwpre 2 0 mwpr 3.4) 8D
where
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. sina(d-2)/Cs]
wwprg .y = lin((llﬂcs)

(388)
(Hl _ sin{wez/Cs)

3= sin (wd/Cs)

(389)
 sin[w(d=2)/Cr]
ipr i) = sin(@d/Cp)

(3%0)
_ sin(wz/Ce)
wp’ﬁ.‘) = sin (MCP) (39 l)

Local displacements for k=0 are the summation of the particular parts in Equation

(374) and the homogeneous parts in Equation (387) which can be expressed as

]
ul,(z) _ | 7

(392)
(R0

with

[awpri ()], = [iwpr” (D)}, + [awpr* (23],

_ Ci [wwprhny 0 wwprpy O (393)
2xwi Y 0 WP’{:_:) 0 wwpr {2.4)
where
_sinfa(d-2)/Cs] 2z _ 94
pras = sin (Wd/Cs) *a! %9
sin (@z/Cs) =
IS £ 95
BT = in (wdiCs)  d (393)
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| _sin [ad—z)/Cpr) z_
WWpriyz) = —ntadc,) i (396)
in («e2/C
wpriyg = -——;‘: :MC‘: )) -z (397

As shown in Equation (488), external forces and nodal displacements of layer ;.

for k = 0, are related to its stiffness matrix as

P, u
B [ssa]={ ™ (398)
Pﬁl p-sv g Upe|
Rﬁ[ erl

By substituting negative values of the particular pans of nodal displacements (376)

into Equation (398), the homogeneous parts of the reactions can be obtained as

%

P
R ] 7
= [PRpr! ! 399
P, [ ), Pt (399)
R}H*l Fr
with
(PRor) = { Sk ] Luwprt)™
PRpriy, O PRorls O
=_(_:S_ 0 PRP'{’Z.:) 0 PRprg.n (400]
2mw| PRprfy O  PRpris, O
0 PRpries 0 PRpriv
where
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PRprl,, = PRprly, = cor (&) (s01)

PRpriis = PReriy = oo mvcs) (402)

PRpr .y, = PRpriyq = ( )‘:0‘(?:) (403)
C -

PRorly o =PRovy = (S8 ) =t (404

For loaded layer j, the reaction forces for =0 (see Figure 117) to counterbalance

linearly distributed loads and fix the interfaces can be obtained by combining Equations

(380) and (399) as
PJ; P
R, | 7
= (PRpr! i (405
.P‘{‘.l [ Rp ], p[q»l )
R}IH-I T
with

(PRpr.))™ = [PRpri | +(PRprt|™

PRpry,, 0 PRpri; 0
_Cs| 0 PRorhay O PRpriy,

' (406)
2303 PRprﬂ D 0 PRP’()‘]) 0
0 PRpriyz; O PRopri,
where
C
PRpri,.\, = PRpri3 = cot (%)"‘mﬁ (407)

219



! - C
PRP’ft.n =PRpr(y, = —-_l—"' =% (408)

sin(wd/Cs) wd
C C?
PRpriy 5, =PRpricy = (Eg)cm (2—1; ) - Cs:)d (409)
J C - Ci
PRprz 4 = PRpries = (Ef) sin(u‘i,cp) rote (410)

Analogous to the derivation of Equation (357), global displacements u,(k=0,2)
and w,(k=0,z) along the vertical line in any layer « on which no distributed loads act

(r=J), can be expressed as

P;
g
“pr(k = 0, Z) 1w ’J
= =0
{ Wik =0,2) }j (wwpr(k =0,2)], o (411)
rﬁl

with
[wwprik =0, z)];'"' = —{uwAB(:)]f"’[[wAB-]f"’]"
s, ([[$5.01"]" JipRerty™ @12)

where [PRpri]™ can be obtained from Equation (406).
And similar to the derivation of Equation (359), global displacements u,(k=0.z)
and w,_(k=0,z) along the vertical line in any fayer j, on which the distributed loads act

{1=7). can be expressed as
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, P

Upr(k=0,.'!) H_ . Uq[ r!

{“’rr("=0,2) | T hmprw=0.) Ip,»lj “13)
e

with
[wwpr(k =0, :)]}"" = [uwpr"(z)]ro - [WAB(:)]‘,M[[WAB. ]:"o]_|
-1
sus,([[stw]™] JipRerisy™ (414)

where (uwpri(z)] and (PRpri]™ can be obtained from Equations (393) and (406),

respactively.

b. Loads on Horizontal Lipe. Analogous to Subsection 2, external loads
P(k=0) and R{}=0) can be formulate:] as

{PM+|(’C=0)}=L b{p(x) }dr
R (k=0) 2xJ0 | Hx)

Dt
=[PRpr.50{ ™ 415
(PRpr.),,, Put (415)
e}
with
mo_b[ 1010
[PR”"lMJ'm[o 101 ] “le)
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Similar to the derivation of Equation (368), displacements u (k=0,2) and
w, (k=0,z) between node i and node i+1, for loads on horizontal element / underneath

layer M, can be expressed as

' b
“Pr(k=0.2) } - k_o [} r 4
= =0, 17
{wpr(k=0,:) Ml fiowprt e Pl @)
Fiel
with
[wwpr(k =0,2)],,, =
=0 md) -1 r =7 w0
lawAB(2)] [ [uwdB. 1= ] sub.n([[s,w] ] )[PRpr.]M_., (418)

4. Green's "atluence Functions in Space Domain.

In the previous subsections, displacements were determined in A-domain. The
inverse Fourier transform needs to be formulated in order to obtain Green's influence
functions in the space domain. The z-axis is based on the local z-axis of iayer /. The x"-axis
is based on the local x-axis of layer ; for distributed loads on vertical interface, and of
element / for distributed loads on horizontal interface.

Green's influence function in any layer i on x'-z plane, for the linearly distributed

loads on the vertical assumed line in any layer j, can be expressed as

]
upr(x’.z)}= ool B 419
{w,(xf,,) e P )
rrpl
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with
(uwpr(x',2)); = [__ [wwprik, )}, exp(—ike Jak (420)

where [uwpr(k.2))' can be obtained from Equation (358) or (360) for non-zero wave
numbers & and from Equation (412) or (414) for a zero wave number & Bold letters in the
matrix indicate that the corresponding matrix is in the space domain.

As for linearly distributed loads on the horizontal element with any node / and
node /+1, which are on the horizontal interface underneath layer M. Green's influence

function in any layer / on x"-z plane can be expressed as

-

]
1 b1
upr(xla:) } = x[ i ri 421
{w,,,(x’.z) . [wwpr(x’,2)],,, pot l (421)
Fiet
with
[wwpr(x’,2)1,,, = [ _ (awprik, 2)),, sexp(—ikc’)dk (422)

where (uwpr(k,2)],,, can be obtained from Equation {369) for non-zero wave numbers k

and from Equation (418) for a zero wave number £.
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APPENDIX B

STIFFNESS MATRICES OF LAYER AND HALF-PLANE



In order to formulate Green's influence function described in Appendix A, the

dynamic-stiffness matrices of individual components, a horizontal layer and a half-plane,

are needed. Ir this appendix, the force-displacement relationship in k-domain for harmonic

excitation of both basic components is derived.

1. Dynamic-stiffness Coefficients of Horizontal Layer.

In Figure 121, the horizontal layer / of depth d, extending to infinity in both
x-directions, has constant material properties. Origin of the local coordinate system with
the z-axis pointing downward is located at the top of the layer. As discussed in Equations
(568) to (571), the in-plane displacement equations of a layer can be expressed as

u(x,z) = u(k, z)exp(~kx) (423)

w{x,z) = w(k, 7)exp{—1kx) (424)
with

ulk, z) = {{ A pexp (WfZ) + Bpexp(-uf2)]

-m.s [Asvexp (ksz) — Bsyexp(—uksz)) (425)
wik,z) = -1, f [ pexp (fz) - Bpexp (—U2)]
—m A syexp (1ksz) + Bsyrexp(-iks2)} (426)

where 1./Cz = m /Cs needs to be enforced.

The symbol 1 represents J=1 The scalar & represents the wave number which is

equal to «/C. The letter C stands for phase velocity which is equal to Cp/l; and Cs/m.
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Figure 121. Displacements, Stresses, and External Forces on Layer i

Cp, and C; represent P- and S-wave velocities and are equal to m and
W , respectively. T and A’ are the complex shear modulus and the complex Lame
constant, respectively. p represents the mass density. Scalars / and m, may be considered
propagating directional cosines to the x-axis (=cos y, and =cos y,) of the P- and S-wave,
respectively. Algebraically, they are equal to Cp/w and kCs/w, respectively, which can be
real, imaginary, or complex numbers. Therefore this interpretation holds only for real
values that are smaller than or equal to 1. Scalars f and s are m and J1/mi-1,
respectively. A, and A, are amplitudes of the P- and SV-wave traveling in the negative
z-direction (incident waves). B, and By, are amplitudes of the P- and SV-wave traveling in

the positive z-direction (reflected waves).
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By using the stress-strain relationship (Hook's law) and strain-displacement

relationship, normal stress and shear stress amplitudes on the horizontal interface can be

obtained as follows
G.{x,2) =27 + X' Iw_(x,2) + L u _(x, 2) (427
Te(x, ) = T (u {x, 2) +w . (x, 2)] (428)

Normal stress and shear stress amplitudes are denoted as & and <, respectively
The first subscript denotes the direction of the stress componenf. The second one denotes
the direction of the infinitesimal area’s normal that the stress component acts on A comma
denotes a partial derivative with respect to the subscript following it

Substituting the displacements in Equations (423}, (424), (425) and (426) into
Equations (427) and {428) and omitting term exp(-vkx), normal stress and shear stress

amplitudes in k-domain can be expressed as
ok, 2) = [27* + A" Iw (K, 2) — kA u(k, 7)
= —Uk{27* + 1] { e/ {4 pexp (Ufz) + Brexp (—ufz)]
+m.s [Asvexp (iksz) — Bsyexp(—ths=)] )
—uiA* { 1[4 pexp (Uf2) + Brexp (-1t )

[ A sy exp (vksz) - Bsvexp(—vksz)] }

227



= UY* {101 = 53)[A pexp (W) + Bpexp (—Ug)]
~2m.s [Asvexp (1ksz) - Bsyexpl-tksz)] } (429)

Tk, 2) = T [u(k, 2) - Uowik, 2)}

= WY {1/ [4pexp (Ufz) ~ Brexp (—uifz))
—m 5| A syexp (thsz) + Bsyexp(—uksz))
+of [Apexp (Ukf2) - Brexp (—Uf2)]

+m.{A svexp (vksz) + Bsyexp(—tksz)] }
= T {21, /T4 pexp (kfz) - Boexp (-1kfs)]
+m(1 - 5%)[A svexp (ksz) + Bsyexp(~uesz)] } (430)

By using Equations (425), (426), (429), and (430), displacements and stresses at
the top (node i,z=0) of layer i can be expressed in matrix form in terms of wave

amplitudes 4,, B, 4, and B, as
4

u,(k) Ap
w, (k) mo) Bp
= AB . (k {431
e k) [itoA4B.(k)) As )
G, (K) Bsy

with

~ [MCAB}“)] [MoABfII.]

ka0
LwrodB.(B)™ = [wwr0aB™""] [1wr0aB™)

(432)
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where

[iwtadB'! ] = I.[ _lf} ] (433)
[iwiaas]=m 2 2 | 4
[maAsz‘”]ﬂkl,T'[ lif; , 1‘_2{ ; ] (435)
[chBf“’]ﬂbn,r-I: ‘_‘; ';:2 ] (436)

Al the bottom (node i+1, z=d) of layer i, displacements and stresses can be

expressed in terms of the wave amplitudes 4, 8, A, and B, as

u«-l(k) AP
W1 (k) mo) Be
- AB o (k 437
- [swTCAB 1 (k)] Asy (437)
Gty (K) Bsw
with
MOAB(L”] [MGAB(I.Z)]
CAB (D] = [ py Py 438
{uwr 1(4)) [[MGAB&"”] [MGABgf) (438)
where
w2l exp(Ufd)  exp(-ukfd) 439
[1woas”] "[ ~ fexpiuifd) fexp(-l*fd)] 7



[MGAB(I.ZH |:-sexp(lksd) sexp(-uksd ) ]

s = —exp(iksd) —exp(-tksd) (440)
AB*Y ] = wi, T 2f expiugd) =2f exp(—-utfd)
[MU l ] [ (1 —s’)exp(l!gfd) (1 —sz}exp(—lkfd) (441)
2 rl
A7 - o, T (1-s5%)expltksd) (1 -5*)exp(—tksd)
(w045’ “2sexplksd)  2sexpl-vsd) (442)

Using Equations (431) and (437), displacement and stress amplitudes at node i~1

are expressed as a function of those at node / by the transfer matrix as

lln-[(k) u:(k)
wl#l(k) +1 L W,(k)
= ik
Ty (k) [Mc' ( )] Tew (k) (443)
Cpenyik) O, (k)
with
[iwta* ()] = [uwro4 B, (1) ™[ (iweodB. (0] ] (444)

When assembling the stiffness matrix, applied loads are defined in the
global-coordinate system. The local system used to define the stresses is opposite to it on

the negative side of a layer. Therefore, as shown in Figure 121, introducing external load
amplitudes P = —_ . R = -0, P_ =1, and R =0, into Equation {444) and

performing a partial inversion leads to the dynamic-stiffness matrix of a horizontal layer as

P.(k) u (k)
Rl(k) L. wd) wl(k)

= . 445
P (k) [sp-s; (k)]‘ . (k) ( :
Ru-l (k) Wisl (k)
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with

Si Stz Sis Sie
Su S22 S23 S
S 8§32 51 S (448)
Sa Sa Sa Sa

(S5 (0]™ =Cof

where
_ (1+s2)kY*
Cof= 2[1 — cos(kfd )cos(ksd )] + (fs + /fs)sin(kfd )sin(ksd ) (447)
Su1 =83 = 1 costhfd sin(ksd) +f sin(kfd Jcos(ksa) (448)
N N _(3--52)1 _
S[; = 521 = Su -Sn = (] +s’) [l COS(W)COS(de)]
(1422 -5 .
N T sin(kfd)sin(ksd ) (449)
813 =83 = ~fsin(kfd) - L sin(ksa) (450)
S ==54 =51 = =512 = \[cos(kfd) — cos(ksd )] (451)
Sy =Su= }s&nufd)cos(ksd) +s{cos(kfd sin(ksd )] (452)
Sa =S4z = =L sinikfd ) - slsintisd)] (453)

/

Superscript L stands for horizontal layer i and subscript P-SV indicates the

corresponding stiffness matrix associated with P- and SV-wave
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2. Dynamic-stiffness Coefficients of Half-plang.

A half-plane can be regarded as a horizontal layer with depth approaching infinity
Applying an external load at the free surface of a half-plane, only waves traveling in the
positive z-direction {ouigoing waves) are developed as shown in Figure 122 The radiation
condition states that no energy can propagatc from infinity toward the free surface
Therefore the incoming waves with amplitudes 4, and 4, in Equations (425) and (426)

are excluded.

a.  Positive Wave Number k. The in-plane displacement equations for a

positive wave number & can be expressed as

ulk,z) = 1,8 pexp(—Wg) + m.sB s exp(—iksz) (454)

w(k, 2) = [, fBprexp(—kfz) — m.B sy exp(—uksz) (455)
node 0 Tz;nm " cl,Po x
woV 35 N -

B AN

& ~a

Outgoing  -Bg +Bey g"lsoms%
P-wave(—) W /' -wave(+k)
~-B s

B

> Outgoi Outgoing
S_\:,';?:(g &) \F S-wave (+k)

Figure 122 Displacements, Stresses, and External Forces on Half-plaue
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Substituting displacement Equations (423), (424), (454), and (455) into stress
Equations (427) and (428), and omitting term exp(-ukx), the stress amplitudes in k-domain
can be expressed as

(k. 2) =[27° +A°)w . (k,2) -~ kL u(k, z)

= T {{(1 - 5?1 Bpexp(—Ukfz) + 2sm B syexp(—ksz)] (456)

Tk, 2) = T [u(k, 2) — vhw(k, 2)]

= T (-2, fBpexp(-ifz) + m.(1 - 57 )Bsy exp(—tksz)] (457)

At node O (z=0) on the surface of a half-plane. displacements and external forces

(Py=—T_ufly=—0,,) in Figure 122 can be expressed in terms of wave amplitudes B, and

B as
uolk) | _ le mes Be
{ wo(k) } '[ If —m: ]{ Bw } (458)
Pok) | _ .., 2f  -m(1-5) || Bp
{ Ro(k) }-lkr [ A (1-5Y) <2m.s ]{ By } (459)

Eliminating B,, 8., in Equations (458) and (459), the dynamic-stiffness matrix of a

half-piane, for a positive non-zero £, can be expressed as

Pok) | _ oo uo(k) 0
{ Roh) } ) {WG ® } (460)

with
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=0 of 2 FIET LN -
[P et] ™ =t [—fx(l-fs’) o )][ w:;i]

=u:r'[ S +s)/(1 +5) 2«—[(l+32)/(l+fs)]] 61)

=2+[(1+)(1+f5)]  s(1+5W(1+f5)

As the half-plane is used mainly to represent rock bed, a superscript R is
introduced. Subscript P-SV indicates that the corresponding stiffness matrix is associated

with P- and SV-wave.

b. Negative Wave Number k. The displacement equations having the outgoing
waves (propagating in the positive z-direction and the negative x-direction as shown in
Figure 122) with amplitudes B, and B, can be expressed as

u(k, z) = I, Bpexp(Ukfz) — m.sB sy exp(uksz) (462)

wik, 2} = </, f Bpexp(Wkfz) - m B sy exp{Uhsz) (463)

Substituting displacement Equations (423), (424), (462), and (463) into stress

Equations (427) and (428), and omitting term exp(-ukx), normal stress and shear stress

amplitudes can be expressed as
O:(k, 2) = KT [I(1 - s*)Bpexp(uhfz) — 2sm B sv-exp(uksz)) (464}
Tk, 2) = WY [ 2/ f Bpexp(ikfz) + my(1 ~ 5?)B sy exp(iksz)] (465)

At node 0 (z=0) on the surface of a half-plane, the displacements and external

forces (P, =T 0 ==0,,) shown in Figure 122 can be expressed as

234



{uoin }= A— {3,} P
wo(k) ~if -m, || Bs (466)
Potk) | _ o =20f -m1-s5%) || Bp

{ Ro(k) }"” [ L (1-5%)  2mys ]{ Bs } (467)

Eliminating B, B, in Equations (466) and (467). the dynamic-stiffness matrix of

haif-plane. for a negative k, can be expressed as
Py(k) R k<0 | uo(k)
=¥ k
{ Ro(k) } 5ot )] { wo(k) } (46%)
with

- _e2 - -1
[Sﬁ_g,(k)]"“’:u,ro[ 2f  —m(l-5?) ][ L m‘s]

=l(1-5%) 2m.s —if -m.

ﬂﬂ.[ (1 + (1 +£5) 2—[({+sJ)/(l+fs)]] (469)

=24+[(1+52)(1 +/5)] -s(1 +s>)/(] +/5)
3. Dynamic-stiffness Coefficients for Vertically Incident Wave
a. Horizostal Laver. This special case corresponds to a zero wave number &.
The derivation is analogous to Subsection 1, except the in-plane displacement equations of

a layer [Equations (572) and (573)] can be expressed as

u(x, )"0 = -A grexp( ;.'—(D;:) +B svexp(--‘c%z) (470)
w(x, 2)"0 = -4 pexp( -lc%:) + Bpexp(—lc%:) (471)
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Using the displacements in Equations (470) and {471) and the stresses in

Equations (427) and (428), normal stress and shear stress amplitudes can be expressed as

G.(2) =2T" + A" Jw.(x.2)

= —WC’SPT'[Apexp (%z)-&-Bpexp (-—ém-;:)] (472)

s
T () =T u,(x z)

=Wy Lol ~u,
= CST [Asyexp(csz)+85yexp( Cs*)] (473)

Using Equations (470) to (473), the displacements and the stresses at node  (==0)

can be expressed as

u, Ap
o b= lmtodB ™ f; (474)
Cx) Bsy
with
McABfl.l) Mw}l.l)
IMGAB']H =[ %MGAB“‘I% MGABQ‘Z’% (47%)
where
[iwrcas™"] =[ o ] (476)
aay_f -11 477
[uwtodB)*] = s (4711
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[moABfm] = WC’S’T‘[ (l) (1) :l

:
[mm:w]“lcﬂsr-[ Vol

At node r+1 {z=d)) the displacements and the stresses can be expressed as

Uiy AP
w B»p
1Y = (uwtodB, ™0
T.\zm-n ASV
Cryel) By

with

nvtcdB [ | [704BR] [mcwfif’]]

[MOAB(: ! ’] [moABff,f'

where

1 4] 0
[MOAB ]— | —exp (wwd/Cr) exp(—1wd/Cp) ]

0 0

[M GAB“’” -exp(mdle) expt—und/Cs) ]

-

r any_ W)CP . 0 0
WA i ] Cc: [exp(tarﬂCp) exp(—1wd/Cp)

QDT W | EXPUALCs) exp(-d/Cs) |
[uwmAB = CST[ 0 0 J
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(479)

(480)

(481)

{482)

(483)

(484)

(485)



Using Equations (474) and (480), the displacement and stress amplitudes at node

i+1 are expressed as a function of those at node i by the transfer matrix as

LS| u,
Wit w10 W,
={ uw1t0 (486)
Teztrel) [ ' ] Tx)
Trirel) Oz
with
-1
[wwte™ 1™ = (uwrodB.. 1" luwtcdB.) ™ ] (487)
Introducing external load amplitudes P, = -1_ . R = 6, P =1, andR_ =

G,., into Equation (486), and performing a partial inversion leads to the dynamic-

stiffness matrix of a layer (k=0) as

P, u,
:; =[Shs ] :’:‘1 (488)
R Wi |
with
[511 0 83 ©
[S,%_S,,]f""=Cof| ‘:l S(’}’ S‘; Sé‘ (489)
0 Sa 0 Sa
where
Cof =551 (490)
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-

- - wd
Su -S;;-cm(-c-;-) (491)

_ - =1

Sp=8u= edC) (492)
S = Q) (g\

Sn—Sq—(CS cot CP} (493)
esa=(CeY\ =L

Su=Sa= (C’s )sin(wd/Cp) (494)

b. Half-plane. Analogous to Subsection 2, only the outgoing waves with
amplitudes B, and B, are developed. Therefore the displacements in Equations (470) and

(471) are reduced to

u(x,2)™ = Bsyexp (—g”—sz) (495)
wix,z)* = Bpexp (-—(‘%z) (496)

Using the displacements in Equations (495) and (496) and the stresses in
Equations (427) and (428), the normal stress and shear stress amplitudes can be expressed

as

g.(2) = WESF T*Bpexp (—%,(%:) (497)
5
1=(2) = —E—“;T‘stexp (—%z) (498)

239



At node 0 (==0) on the surface of a half-plane, the displacements and external

forces (P,=-1_,.R,=~0,,) can be expressed as
Ho _ 01 Bp
e lte )

Pc _lg - 0 l BP ‘OO
{Ro}‘CST[CP/CSG]{BSY} (500)

Using Equations (499) and (500), the dynamic-stiffness matrix of a half-plane, for

k=0, can be expressed as

Po _[cR o0 | Ug
{Ro }_[s,,ﬂw] {Wo } (501)

with

=ty L O 502
[SP'SV] CST [ 0 Cp/Cs } (302)
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APPENDIX C

WAVE EQUATIONS IN CARTESIAN COORDINATES



-

The fundamental equations of elastodynamics relevant to the establishment of the
formulations related to so\! system are crucial and are summarized in this appendix.

1. Dvnanuc-equilibrium Equation.

The inninitesirial cube, shown in Figure 123, is assumed to be an isotropic
homogeneous elastic medium with hysteretic damping For harmonic excitation with

frequency w, the dynamic-equilibrium equations without body forces can be expressed as

CrxlX, ¥, 2) + ToyplX, ¥, 2) + Tz(x, ¥,2) = —pwulx, y,2) (503)
T.r,z‘x.)', o+ 0‘,".y(r.y. )+ 1)-;;(I,y, 2)= —pwJV(x,y, o) (504)
Loex(X,y,2) + Toy (%), 2) + O22(x, ¥, 2) = —pwiw(x, y,2) (505)

Normal stress and shear stress amplitudes are denoted as ¢ and t, respectively

The first subscript denotes the direction of the siress component. The second one denotes

#

-
y
—>
dz
-

Figure 123. Infinitesimal Cube in Harmonic Motion
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the direction of the infinitesimal area’s normal on which the stress component acts A
comma denotes a partial derivative with respect to the subscript following it. The letter p
represents the mass density. Displacements #, v, and w are in x-, y-, and z-direction,
respectively. All amplitudes are a function of x, ¥, and z.

Hook's law, the constitutive equation, is specified as

Ex = é(o, - V06, —V0:) (506)
g, = é—(-uo, +3), = V0:) (507)
£ = E(-—um -0, +6:) (508)
Tw=7ﬁ=t?q=tTw (0%
h=h=%=% (510)
Yo=Yy =E= (511)

where the normal strain and shear strain amplitudes are denoted by € and v, respectively.

Shear modulus Y can be expressed as a function of Young's modulus of elasticity £ ana

Poisson's ratio 1 as

__E
T'zuw) (312)

Stress amplitudes in Equations (506) to (511) can be written in terms of strain

amplitudes as
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O, = (iT-&-l)e,-o—Me, +E;)
Oy = (2T +A)e, + Me, +€;)
G: = (2T + A)E; + MEL +E))
To=Tn=T¥p =T¥x
= =Ta=TYe = TY¥=
==Y =YY,

where the Lame constant A is expressed as

= LE
(1 +uKl=-2v)

Strain-displacement equations are formulated as

€ =Uo(X,y,2)
€y =V,(x.¥,2)
€ =w:(x,2)
Yo =Y = (X, ¥, 2)+ V(X y,2)
Ye =Yx =u:(x,y.2) +w.lx,y.2)

Y =Y =Vi(x,y,2) +w,(x,y, 1)
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(513)

(514)

(51%5)

(516)

(517}

(518)

(519)

{520)

(521)

(522)

(523)

(524)

(325)



Substituting the stress-strain relationship in Equations (513) to (518) and the
strain-displacement relationship in Equations (520) to (525) into the equilibrium Equations

(503), (504), and (505) leads to

QY +AU e + AV + W)+ Ty + Vgt Uz +W o) = -p0iu (526)
QT +AW , + AU+ W o )+ T (Vo + 4 e+ V o+ W, ) = oy (527)
RY MW+ AU+ v )+ V(W U+ W+ V) = —pwdw (528)

In order to uncouple the displacements in Equations ($26), (527), and (528) and to
idenufy the different types of waves, the volumetric strain with amplitude ¢ and the

rotational-strain vector {Q} with amplitudes £, Q, »od € are introduced as

e(X, Y,y U4V, +wW, (529)
Q; W‘y—v;
(Qxy.0}=1{Q, =% T (530)
Q. Ve—ity
Note that

By using Equations (529), (530), and (531), dynamic-equilibrium Equations (526),

(527), and (528) can be rewritter as

(2T +M)e + 2Y(Q,: - Q:,) = -pwiu (532)

(2T + D, + 2Y(Q; - Q) = —par’y (533)
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(2Y +A)e: + 2T(£2y — K1y 2) = —piw (534)

The material camping occurring in a soil system involves frictional loss of energy
or linear hysteretic damping. The effect of material damping, which may differ for various
tvpes of waves, is assumed to be the same. This frequency-independent property can be
wncorporated by replacing the elastic material constants with the corresponding complex

ones. Complex shear modulus T* and complex Lame constant A" can be expressed as

T =+2Q)T and A" =(1+21))A (535)

where symbols { and t represent the ratio of linear hysteretic damping and A1,
respectively. Replacing the elastic matrnal constants in Equations (532), (533), and (534)

with the complex ones leads to

(27 +A%)e, +27°(Q,; - ,,) = —pwiu (536)
(27 +A%)e, +27(Q. . -0.;) = pw?v (537)
(27" +A%)e +27(Q,, -Q,,) = -p’w (538)

Eliminating rotational strains 2, Q, and ), by differentiating Equation (536) with
respect to x, Equation (537) with respect to y, and Equation (538) with respect to z, and

then adding these three relationships leads to

(27* + X% ) e x +€ +e =) = —pwdle

(02
€ty té-=~""2¢ (539)
Cr
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where the dilatational wave velocity is specified as

Cr= ‘/ g——‘-:'—)ﬁ (540)

Eliminating volumetric strain ¢ by differentiating Equation (537) with respect t0 z
and Equation (538) with respect to y, subtracting these two expressions, and noting that

the derivative of Equation (53 1) with respect to x aiso vanishes, results in

Y (e + gy + Qrez) = 0,

2
n,_,+nm+nm=%n, (541)
S

where the shear wave velocity is defined as

= |
Cs=J5 (542)

Analogously, two other expressions can result as

2

Qe+ Qe+ =-%n, (543)
s
mz

nu"'ng\yy"'nm = —Fﬂg (544)
'§

Putting Equations (541), (543), and (544) together becomes

(Q} . +{Q),+(Q)_ =--2—§{m (545)
£
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Therefore, for harmonic excitation, the equations of motion are specified in
Equations (539) and (545) with the unknown amplitudes of the volumetric strain e and the
rotational-strain vector {£2), respectively. These wave equations are lincar partial

differential equations of second order.

2. Primary-wave Equation.

As the P-wave (primary wave or dilatational wave) travels, it altemnately
compresses and dilates the medium (see Figure 124). The volumetric strain e defined in
Equation (529) can be used to describe this behavior. To find the unknown amplitude of

the volumetric strain for Equation (539), the following trial function is assumed.

e(x,y,z) = --‘é,g);A,,exp [--‘C-E‘-’(l,n Ly+ l,z)] (546)
P

The trial function (546) satisfies the wave Equation (539) only if 2 +/2+{l=1
These three scalars /, /, and /, may be considered the direction cosines of the wave
propagation's direction. The trial function [Equation (546)] is multiplied by 72 +/2 + /2
which is equal to 1. Using Equation (529), the former are then expanded and grouped
into @,8,@ corresponding to w_.,v, and w_, respectively. Integrating each group
(@, ®,8), leads to displacements u,, v,, and w, (see Figure 125) corresponding to x-, y-,

and z- direction, respectively.
e UV, AW = —‘é‘ﬁ(& +0 +1§)4chp[-é,£(l,x+lyy+lgz)] =
4

D UL -%EA,exp [—%ti,xw hy+ i,:)] —-»@
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=, = ~-‘-C‘9;I§A,exp[—§°;(l.x sly+ !::)] - ®

> w.= —%EA,exp[—:T(’:(I,x-rl,yd—l,: } -8

@— up =1 A,exp [-lcf_'i.(l', +iy+ I,:)] (C.45)
P

@— vp =, 4d,exp [-»-E.@-(I,x +Ly+1 g}] (C 46)
P

@— wp =1.4,exp \:-‘Z,m-(l,x +y+ 1,:)} (C47)
°p

At x = y = 7 = (0, the amplitude of P-wave equal to 4, is defined an imnal
condition. Therefore, in x-, y-, and z-direction, amplitudes of the wave at the same
location are equal to /.4 p, {,Ap,and .4 , respectively. By enforcing these conditions. the
integration constants in Equations (C.45), {C.46), and (C.47) are equal to zero. Subscript
P indicates that the congsponding displacements are associated with P-wave. Equations
(C.45), (C.46), and (C.47) also show the P-wave amplitude is constant over a plane
perpendicular to the direction of propagation. The velocity of propagation C, is constant

and depends on material properties only.

P wave compressions unOISIUrDed Mecium

L gilatations J

Figure 124 Cross Section of Incident P-wave

249



s, wp
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Figure 125. Displacements Associated with Incident P-wave

3. Secondary-wave Equation.

As the S-wave (secondary wave or distortional wave) propagates, it shears the
medium sideways at right angles to the direction of propagation (see Figure 126). The
rotational-strain vector (2} defined in Equation (530) can be used to interpret this
behavior. To find the unknown amplitudes of the rotational-strain vector for Equation

(545), the trial vector is assumed as

- = _.io— lm -
{Qx,y, 2)} ZCS{C}exp[ Cs(m,x+m,_y+ m_z)] (550)

The trial vector in Equation {550) satisfies equilibrium Equation (545), only if
mi+mi+mi=1 and m,C,+m,C,+m.C.=0 where C, C, and C, are components of

vector {C). Direction cosines m,, m, and m, in the former specify the direction of

250



propagation. -Sincc the scalar product in the latter vanishes, vector {C} and thus {}} are
perpendicular to the direction of propagation. Applying m: +m: +mi=1 m.C,+m,C,
+m.C.; =0 and Equation (530) to the trial vector [Equation (550)), each row of the trial
vector is expanded and separated into groups These groups correspond to ., u-(@),
Ve, v:(®),and w ., w, (@), respectively Then, integrating each group (@, ®, ®) and setting
its integration constant to zero results in displacements ., v, and w, corresponding to x-,
y-, and z-direction, respectively.

First row multipli 2
2Q,=w,-v.= —-;':,9[(',,(111}r +mi+miy-mmCc+m,C,+m.C.)|
s

exp [—Q(rn,x +m,y+ m::)] =

Cs
= W, = -%m,(m,C. -m,C,lexp [-%(mxx +m,y +m::)] — &
F
=S v, = —%_%m,(rn;(‘, -m,(;)exp I_—g—;(m,x+ m,y+m,z)] -8

Second row myltiplied by 2

2Q, =u.-w,= -‘C—,‘9[C,,(m§ +m2 +m2)=m,(m.C.+m,C, +m.C.)]
g

exp[—;:—(:(m,x +myy+ m,z}] =

DS H:= —lfﬂm,(m_-('y -m,C.)exp ‘:'ﬁ(mxx*‘my)”’m::)] -0
Cs Cs

S w,= -E,—“;m,(m,,C, -m.C,)exp [—E—O:(m,n- my+ m,z):! -0
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Third row multiplied by 2

2Q.=v—uy,= —E—“;[C:(mﬁ +mi+mly—m(m.C;+m,C,+m.,C,)]|

exp [-&(m,x +m,y +rn;:):| =

Cs
D= -%%mx(me . —m;Crelexp [-%(m,x+m,y+m::)} -®
= Uy = -%m,(m,C, -m,C,)exp[-::,—“;(m,x+m,,y+m,:):| - @
Displacements
Q- us=(mC, —m,,C,)exp[-E%(m,x +m,<y+m:z)] (551)
®— vg=(m,C, —mzC,)exp[ g‘;(m,x+mxy+m=z)] (552)
D= ws =(m,C -m.C,)exp [-é,%(mg+ma+mgz)] (553)

Subscript § indicates that the corresponding displacements are associated with
S-wave. Equations (551), {552), and (553) show that the displacement amplitudes are
proportional to the components of the vector product of {C} and the direction of
propagation. It follows that the particle motion of S-wave lies in the plane perpendicular
to the direction of propagation and is constant over this plane. The inaterial-dependent
velocity of propagation C, is constant.

By using geometric consideration in Figure 127, the displacement vector can be

further decomposed into a horizontal component with amplitude 4, ., lying in the plane
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Figure 126 Cross Section of Incident S-wave
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Figure 127 Displacements Associated with Incident S-wave
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which is parallel to x-y plane, and into a component with amplitude A, ., lying in the plane

which contains the vertical z-axis and direction of propagation.

C:

A = ——tiee (554)
/m;+m§

m:Cy —mny

(535)
Jmi+m;

ASV =

where A, and 4, are the amplitudes of SH- and SV-wave at the point wherex =y =:=

0, respectively The displacements (see Figure 127) can be reformulated in terms of these

amplitudes as
+m,m.A
us = gy +ugy = —ASH + mam S"exp[ O —— (556)
/mi +m? Cs J
Asy + A
Vg:Vm+VgV=m S zm,r:_ 5.Ve:::p[ (L:m(m,x+myy+m;z)] (557)
‘/m, +m; S
Ws=Wep=— Jmi +m? Asvexp [—%,%(m,x+m,y+ m,z)] (558)

As described in Equations (540) and (542), P- and S-wave velocities are equal to

J2Y"+X")/p and [Y*/p , respectively The always larger numerator of the former leads
to P-wave velocity being faster than S-wave velocity. Therefore, at an observation point
on the surface, amplitude of P-wave is first recorded and then that of S-wave as shown in

Figure 128

254



L

~

-

IlllIllllllllllllllllllllII|

?

time murltiel'i|
|m|g|m|mq|m|

1 2

Figure 128. Typical Earthquake Record

4. In-plane Displacement Equation for Honzontal Laver.

The origin of the local coordinate system with the z-axis pointing downward is
located at the top of the horizontal layer as shown in Figure 129. Assuming the directions
of propagation of the P- and S-wave lie in the same vertical plane, say the x-z plane, leads
to /= m = 0. Adding the displacements caused by P-wave (C.45) and {C 47) and S-wave

(C.54) and (C 56) in x- and z-direction, the total motion can be expressed as

u(x,z) = lyApexp [—-@-(I,x + I,z)] +m.Agyexp [—Q(m,x + m::)} (C57)
Ce Cs
U0} U 1
w(x,2) = I.Apexp [-—C—(I,x + I,z):‘ - m. Agsrexp L—E-(m,x +m.z2) ] (C58)
P s

In-plane displacements with amplitudes ¥ and w depend only on the P- and
SV-wave The out-of-plane displacement with amplitude v (perpendicular to x-: plane),
caused by the SH-wave, is independent of v, w and not mentioned here. The form of
Equations (C.57) and (C.58) compels the boundary conditions at the top and bottom of
the layer :0 vary as exp(—w/.x/Cp) and as exp(-iwm.x/Cs). To achieve the same

variation with x, the following condition needs to be imposed.
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e _my

=T (561)

As a total of four boundary conditicns has to be satisfied (displacements with
amplitudes  and w at top and bottom of layer), a second P- and SV-wave with the same
vaniation in x is introduced (see Figure 129). Since / = 0, for any value of /. /, can be
selected as :ﬁ——!,"} . The value /, equals cos y,. whereby v, is the angle of incidence of
the P-wave measured from x-axis. This interpretation holds only for a real value which is
smaller than or equal to 1. Anaiogously, m, can be chosen as £ /1 -m2 with m=cos y_,
whereby y; is the angle of incidence of the S-wave measured from x-axis. Substituting /.
and m, into Equations (559) and (560) leads to

[T=F frr-

wix,z)= I,[A pexp (u.o—x—z] + Bpexp (—w)—'-zﬂexp (-uoé—'x ) -yl- m?
P

CP Cp
,/l- 2 Jl- :
Asvexp un——m—z)-—ngexp —m——mz exp(-tmﬂx) (562)
Cs ) Cs Cs

C

w(x,z) =~ 1 -1 [A pexp [tm—'l;’}':J - Bpexp (—-10,___‘1'132]]“;, (—w)’—‘x )_

M —m2 1
1—m? J1-m?
m,| Asyexp le-’"—: + Bgyexp -tm-——'f-'—: exp (—unﬂx) (563)
Cs Cs Cs
where 4,, A, and B,, B;, are amplitudes of waves traveling in the negative and positive
z-direction. respectively (see Figure 129). Definitions of A, and A, here differ from
Equations (359) and (560) where they are defined as the amplitudes of general waves. For

convenience, the following notation is introduced.
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Figure 129. In-plane Displacements for a Honzontal Layer

Ce _Cs

Phase velocity : C= 1. = (564)
Wave number : k= % (565)
Scalar f: f= . {(566)
Scalars: s= [ -1 (567y

m3

Using Equations (564) through (567), the in-plane displacements in Equations

(562) and (563) can be rewritten as
u(x, 2) = u(k, z)exp(-vkx) (568)

w(x, 7) =w(k, z)exp(—vkx) (569)
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with
utk,z) = I{A pexp(ukfz) + Bpexp(~uif2)]
—ms{Asrexp(Wksz) — Bsi-exp(—iksr)) (570)
w(k,z) = =1, fTA pexp(ufz) = Bpexp(-hz))
-m . [A svexp(ukss) + Bsrexp(~tksz)) (57

where /,/Cp =m,/Cs needs to be enforced. Displacements u(k,z) and w(k,z) in Equations
(568) and (569) can be interpreted as the amplitudes of waves propagating in the positive
x-direction (for a positive wave number &) with phase velocity C.

For the vertically incident wave, the angle of incident Wy = ys=90" {{ = m _=0)
Therefore the phase velocity C equals infinity and 4=0. Since /, = m_=0, the in-piane

displacements in Equations (562) and (563) can be reformulated as

u(x,2)™0 = -4 si-exp( %z) + stexp(-é—%:) (572)
w(x, 2y = -4 pexp((t,—":z) + Bpexp(-;.—":z) (573)

In this special case, it should be noted that the displacements have no variation in

x-direction.
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