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ABSTRACT

The response behavior of seismically excited frame structures with active

control and boundless soil is investigated. Mathematical models based on the

existence or absence of structure-soil interaction (SSl) and/or control are presented.

With SSI consideration, the frequency-dependent property of unbounded

nonhomogeneous soil and foundation embedment is applied. Optimal closed-loop

laws are established based on the generalized performance index. In the control

system considering SSl effects, foundation translation and rocking are included in the

control rule. Algorithms are implemented in the time domain.

Studies indicate the strong influence of foundation embedment and depth of

soil layer on soil rocking coefficients and consequently on structural response. In a

certain structure, additional modrs as a result of the foundation's degrees of freedom

dominate and hence result in distinct structural response behavior. For example, the

rocking mode is important in a massive and/or high-rise structure while the translation

mode dominates in a low-rise structure. In a massive low-rise structure such as a

nuclear reactor, the combination of these two dominant modes leads to large structural

responses. In the control system including SSI effects, miuction of structural

response is a result of the dt.crease in foundation rocking rather than relative floor

ttanslation which OCCUR where the structure is fixed at its base. Furthennore, the

effect of control force in strengthening the system I s stiffness and damping is reduced

in the case of a structure founded on soft soil.
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I. INTRODUCTION

A. OBJECTIVE

Understanding the response behavior of a dynamic systcnl with control and

boundless soil domain is necessary prior to the construction implementation of such an

integrated control in civil engineering structure. In the past, studies of structural dynamic

controlled system were based on the fixed-base (FIX) model for which the structure is

assumed to be fixed at itl' base. This model may be well-founded where the structure is

built on rock If the structure is constructed on soft soil, the dynamic system should

include structure-soil interaction (SSI) which covers the foundation's translational and

rotational degrees of freedom Added modes as a result of the foundation degrees of

freedom could lead to various changes in structural response behavior and accordingly

control behavior and effectiveness. Especially, a rocking (rotation) mode which is omitted

in the FIX-model may dominate in a panicular structure.

The objective of.his study is first to develop mathematical models representing the

.·egarded dynamic system. Four models are developed based on the existence or absence

of the structure-soil interaction and control They are regarded as a FIX-model.

SSI-model. FIX-model with control, and SSI-model with control. To represent closely an

actual system, the frequency-dependent coefficients of nonhomogeneous unbounded soil

are considered in the SSI-model and SSI-model with control. The foundation embedment

is also taken into account. Yet the algorithms used in determining structural response are

formulated or. the basis of time domain since it is more familiar to most civil engineers



than frequency domain More importantly, the implementation ofan active control must be

carried out in real-time fashion. The concept of a closed-loop control is applied to both

FIX-model with control and SSI-model with control The optimum control rules are

developed by minimizing a generalized performance index. In the SSI-model with control.

not only structural response but also foundation response is included in the control rule

Prior to the investigation of a total dynamic system's behavior, the influence of

parametric soil conditions on the soil dynamic stiffness coefficients is s~udied The soil

condition parameters are damping ratio, foundation embedment, and layer depth. The soil

condition of an actual site is also examined. The soil profile of Takenaka Experimental

Building in Japan is used. Finally, the effects of structure-soil interaction on structural

response and control are assessed.

B. LITERATURE REVIEW

An active control has recently gained recognition in civil engineering The control

algorithm has a few general approaches such as Riccati matrix, instantaneous optimal

control. and generalized optimal control (Cheng and Tian, 1993; Soong, 1990, Cheng,

1Q88; Yang et aI., 1987; Cheng and Pantelides, 1986). These control algorithms have been

developed based on the FIX-model. Among these three approaches, only a generalized

ootimal control yields a control law which is neither a function of time nor time increment

(Cheng et al., 1992). Consequently the control force driven by a digital-type actuator is

not depend upon its time interval.

As for the calculation of soil stiffitess coefficients required in a structure-soil

interaction consideration, a few well-known approaches are discussed. The estimated
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spring constar:t based on soil's shear modulus is used in an approximate approach This

estimated coefficient lacks a crucial frequency-dependent property and leads to an

unjustified solution Furthermore, the role offoundation configuration and embedment are

not included. More complicated approaches that yield a frequency-dependent coefficient

are the finite element method and the boundary element method Both methods take

foundation configuration and embedment into account. In the finite element method, the

fictitious boundary attaching dash-pot is imposed at some distance from a vibrating

structure to create a bounded region since soil is a semi-infinite medium. The dash-pot

does not allow waves originating from the structure to reflect back into the region The

large discretized domain in the finite element method requires numerous data and

computing storage. Without utilizing the fictitious boundary and without introducing

nodes in the interior. the boundary element method (Wolf and Darbre, I984a.b; 1983) is

appropriately applied to the unbounded domain.

With respect to response solution tecimique, two major approaches can be applied

One is carried out in the frequency domain and the other in the time domain. The former

seems to be suitable since the soil system has frequency-dependent property But this

method requires the transformation of input excitation in the time domain into its

corresponding pair in the frequency domain. Therefore the complete series of an input

excitation needs to be known prior to the calculation This approach cannot be executed in

a real-time fashion which is required in the implementation of an actual active control

system Furthermore. the second transformation is needed for output response. The latter

requires the transformation of the frequency-dependent soil coefficient By applying the
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special technique (Hayashi and Katukura, 1990), only the frequency band limited soil

coefficient is exercised. In this technique, the static component of the coefficient is not

needed.

Recently there has been some research on structural control including

structure-soil interaction A limited number of control devices. strategies and algorithms

have been studied Wong and Luco (1991) formulated their algorithm in the frequency

c.'omain which is not suitable for the actual active control system. An active control device

is introduced as the absorbing boundary such that all upward propagating waves are

absorbed and no downward propagating waves are reflected. Alam and Baba (1993)

presented an active optimal control algorithm taking structure-soil interaction into

account Their optimal closed-open-Ioop control law is formulated to satisfY the stationary

Riccati equation. An approximate frequency-independent soil coefficient is used in

structure-soil interaction application. Smith et aI. (1994) developed an optimal closed-loop

control algorithm considering structure-soil interaction effects In their studies, an optimal

control rule is based on the Riccati equation. To incorporate this control rule into the

frequency-domain tormulation, only a harmonic ground motion was considered. Cheng

and Suthiwong (1994) and Cheng et a1. (1994) developed a generalized optimal active

control algorithm including structure-soil interaction effects. Their algorithm can be

implemented in real-time fashion while frequency-dependent soil coefficient obtained by

the boundary element method is taken into account. An active tendon is used as a control

device in this closed-loop control. These publications are also part ofthe author's research

study.
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C. OVERVIEW

In Section II, the various models and systems used in this study and their

assumptions are defined. Their symbols and notations are described as well Modeling

diagrams are included.

Section III contains the formulations of state equations for a FIX- and SSI-model

with and without control. The transformation to their canonical form and solution

technique of the first-order differential equation are demonstrated In addition, the

derivation of interaction forces at foundation-soil interface based (\n a convolution integral

technique is presented. This method requires the impulse velocity coefficients formulated

in Section V A physical interpretation of SSI-model's motion equation is given as weli

In Section IV, the optimal control rules or feedback gain matrices for a FIX-model

and SSI-model are established. A generalized performance index as objective functional is

defined. Euler's equation and transversality condition are formulated and enforced to

obtain an optimal solution. The weighting matrices used in the performance index and the

feedback gain matrix are presented

Section V describes the methods of determining frequency-dependent coefficients

of various soil systems. The indirect boundary element method is discussed for a free-field

system's dynamic stiffness coefficients. This method requires the displacement Green's

influence function formulated in Appendix A. Numerical integration techniques such as an

adaptive quadrature and Simpson's method are addressed as well The finite element

me~hod is detailed for the dynamic stifthess coefficients of a system's excavated part.

Four-node rectangular element and consistent ma5~ matrix are employed For a ground
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system's dynamic stiffness coefficients, the subtraction method and its cautious measure

are pointed out. Then the time-derivative dynamic flexibility coefficient of ground system

is defined. Finally, the discussion of the discrete Fourier transform with causality condition

is given. This technique is Ulled in transforming the time-derivative dynamic flexibility

coefficients in frequency domain to impulse velocity coefficients in time domain.

In Section VI, the nondimensionalized dynamic ~tiffness coefficients of various soil

systems are examined. The parameters studied include soil hysteretic damping, foundation

embedment, and depth of a soil layer on rock base. In addition to the parametric study, the

actual site of Takenaka Experimental Buildmg in Japan is investigated. For a ground

system, the dynamic stiffness, time-derivative flexibility. and impulse velocity coefficients

are presented Coefficients of the systems \\;th half-plane and a varying depth layer on

rock are compared as well.

Section VII involves the investigation of total dynamic systems with and without

control The investigating parameters are classified as concerning parameteis and

governing parameters. The former rel...te to the parameters indicating structure and

foundation failures The latter may be described as the parameters affecting structural

response and control behavior. Effects of the governing parameters on the concerning

parameters are discussed. Effects of structure-soil interaction on control are also pointed

out.

In Section VIII, the work is summarized. Then conclusions are gIven Some

suggestions are included as well.
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In Appendix A, the displacement-Green's-influence-funetions as fundamental

solutions of indirect boundary element method are derived. These functions relate the

displacements along the assumed line of a nonhomogenous semi-infinite medium to the

applied linearly distributed loads acting on the same line The assumed line consists of

vertical and horizontal lines which subsequently form a stNcture-soil interface. Green's

functions are first formulated in the k wave-number domain and then transformed to the

space domain Dynamic stiffitess matrices in the k-domain of a layer and half-plane given

in Appendix B are part of the formulation. The in-plane displacement equations in

Appendix C are used as well InclUded is a special case corresponding to the vertically

incident wave (k=O).

Appendix B presents the derivation of dynamic stiffness matrices in k-dornain of an

unbounded layer and half-plane. Both mediums are homogeneous The di~placement

equations in Appendix C are needed. Special cases corresponding to k = 0 are provided.

For a half-plane. the formulations in both negative and positive k wave-number are

demonstrated.

In Appendix C, the primary- and secondary-wave equations are formulated based

upon the dynamic-equilibrium equations of an infinitesimal cube. For an in-plane problem,

the displacement equations of an unbounded horizontal layer are established. Their

required boundary condition and the definition ofa k wave-number are Etiven.
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II. DYNAMIC SYSTEM MODELING

A multistory controlled building sits on a rectangular mat foundation embedded in

unbounded soil, as shown in Figure I. The building is equipped with an intelligent control

of active tendon system. This system consists of response sensors connected to a

computerized control panel and actuators with a tendon linked to hydraulic equipment

operated by tile control panel. The unb(\unded soil domain is modeled by layered

half-space made up of stacking horizontal unbounded layers resting on a half-space. The

soil domain is assumed to be an iSCltropic viscoelastic medium with hysteretic damping. Its

properties may vary with depth but remain constant within the individual layers

The origin of the global Cartesian coordinate system with z-axis pointing

downward is at the bottom center of the foundation. In general, it is assumed that incident

p- and S-wave (see details in Appendix C), composing earthquake excitation, have

directions of propagation lying on the same vertical plane It is also assumed that this

vertical plane is on x-z plane, parallel to the face of tile building.

A. TOTAL DYNAMIC SYSTEM

To in"estigate response behavior, a two-dimensional system on x-z plane shown in

Figure 2 is selected to represent the physical properties in x- and z-direction for the whole

system This system is subjected to only the body P- and SV-wave, since the amplitude of

SH-wave is in y-direction. A NO-story seismic shear structure equipped with an active

tendon system rests on a rigid rectangular foundation embedded in a layered half-space

The layered half-space consists of N-I horizontal layers having infinite length in x-

8
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Figure I. Multistory Controlled Building Embedded in Unbounded Soil
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direction and a half-space. By introducing anificial horizontal interfaces. the amount of

horizontal layers may be larger than that ofgiven soil layers For example, interfaces 2 and

M+ 1 are added in Figure 2. The horizontal interface on which the bottom of the

foundation rests is called interface M+ 1, lying underneath the designated layer M

Since the foundation is assumed to be rigid, only two degrees of freedom at point

0, a horizontal translation x~ and a rotation e~ around y-axis, can be used to represent the

degrees of freedom along the foundation-soil interface To investigate response behavior

of the shear structure, a vertical translation at point 0 is neglected. For the

superstructure, horizontal translations x:. for ,=1,2,..NO. are used to describe the degree

of freedom on each floor i. Superscript t stands for total dynamic system.

At the foundation-soil interface, the total dynamic system is divided into two

systems, a structure system and a ground system. The former consists of a

two-dimensional NO-story shear structure equipped with an active tendon system and its

foundation. The latter is soil with excavation comprising horizontal unbounded layers and

a half-space. By using the substructure method, both systems are separately analyzed,

based on an assumption that the interface between these two systems is in complete

contact

B. STRUCTURE SYSTEM

Two models in Figure 3 can be used to represent the structure system. a

structure-soil interaction model (551) and a fixed-base model (FIX) The former, taking

structure-soil interaction into consideration. involves a rigorous mathematical soil model

11



The latter, a relatively simple model, assumes that a structure is fixed at its support and

thus may be valid only where a structure is built on rock.

For both models, structure masses m, are lumped on each floor i, for i=J ,2, ..NO

Floor translational spring stiffness are represented by two columns on each floor, each

column having a stiffness of k,/2. Proportional damping ratios of two transla!ional modes,

¢========:~""'X2

~~§£f.J)"j__%f~~giiL.

A

¢===~:::::==~J-."~

":+1 ...... x:+1

2
hr+'

x' ...... x:,

m J
,,~o .. m,:-/o

xNo
kNo kNO

hNo
kNo kNO

2 m 2 2 m 2

"~~l ...... XNQ-l

kNQ-1 kN~1
hND-l

kNQ-l kNo- 1

2 2 2 m 2
X~o--2 ...... II· ",: x~"o-~

ho Fixed-base ModeJ (FIX)

.... ";)-

-- ..,.-
5tructure-soillnteraetion Model (5SI)

Figure 3. Structure System Modeling
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11. and 112. are used to determine viscous damping of the structure. Floor heights are

equal to h, Only horizontal translations x: are used to describe floor degrees of freedom.

Included in the models are NCR number of digital-type active tendon controllers, where

NCR can be equal to or less than NO. These models will be analyzed on the basis of

time-domain procedure

Only for an SSI-model do foundation properties and foundation degrees of

freedom need to be included. The fanner are foundation mass mo, foundation mass

moment of inettia with respect to point 0, 10 , and foundation depth ho. T:'e latter consist

of, at point 0, a translation x~ in r-direction and a rotation 9~ around y-axis Funhermore,

the floor mass moments of inenia with respect to point O. I" are taken into account. The

SSI-model has its interface connected to the ground system. Interaction here leads to an

interaction force Rx and an interaction moment R9 at point 0 in x-direction and around

y-axis. respectively

c. SOIL SYSTEM

1. Free-field System. In Figure 4, the site prior to excavation and construction

is called a free-field system which is an unbounded continuous domain represented by N-l

unbounded horizontal layers resting on a half-space. Each layer i. for i=I.2,.,N-I. has

constant properties: soil density P" modulus of elasticity £" Poisson's ratio \),, hysteretic

damping ratio ~,' and layer depth d, The half-space has the following properties soil

density PR' modulus of elasticity ER• Poisson's ratio \)R' and hysteretic damping ratio ~R

Since the half-space is mostly used to represent rock bed. subscript R is introduced. The

system is subjected to incident P- and SV-wave

13
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Figure 4. Free-field System with Rigid Interface

After inserting rigid interface along the line which subsequently forms

structure-soil interface, three degrees of freedom at point 0, a horizontal translation r~. a

vertical translation z~, and a rotation e~, suffice to represent the degrees offreedom along

Inserted rigid interface Superscript f denotes the free-field system Length of the

horizontal interface is equal to width of the foundation, 2B Length of the vertical

interface, D. can be determined by the summation of d., for ;= /.2, .. ,M, which may be

equal to foundation depth, ho' in case of full embedment of the foundation

Since the properties of this unbounded system are frequency-dependent. the

indirect boundary element method in frequency domain is appropriately applied without

using a fictitious boundary and without introducing the system's interior nodes
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2. EXcavated Part of System. Excavated soil, which will be replaced by the

M
foundation, defines this system as shown in Figure 5. It has a dimension ofD =~ d, by

,..\

28. Three degrees of freedom at point 0, x~, :~, and a~ in X-, :-direetion and around

y-direction, represent the degrees of freedom along the rigid interface. Superscript e

denotes the excavated part of the system. Since this system is a bounded medium, the

finite element method in the frequency domain is employed.

3. f;round Sntem. This system, shown in Figure 6, is described as a free-field

system with excavation. Degrees of freedom along the rigid interface are represented at

point 0 by x{, ~, and e~ in X-, z-direetion and around y-direetion, re~pectively

Superscript ~ denotes the ground system.

Even though soil systems behave nonlinearly when subjected to high levels of

earthquake excitation, the behavior of a linear system has to be fully understood. As the

superposition principle is valid for a linear system, the linear properties of this system (for

example, linear system's stifthess) can be obtained by subtracting those of the system's

excavated pal . from those of the free-field system.

2B

M

D =Id, iC
,.1

Rigid Interface
.,

o x~ v
8o~ ---""--....

Figure s. Excavated Part of System with Rigid Interface
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o x~
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Figure 6. Ground System with Rigid Interface

Soil I

Soil II

Soil III

D. MODELING DIAGRAM

The two aforeowmtioned models (FIX-model and SSI-model) representing the

structure system '.Ie integrated with a closed-loop control system. Therefore the moddi"!it

diagrams can be summarized as shown in Figures 7,8,9, and 10

Earthquake Excitation Struetw"e System

(FIX-type)

Figure 7. Fixed-base Diagram

16

Structural responses



Earthquake . Structure System Structural responses -Excitation (FlX-type)

,

Control Forces

,
~puterized

ResponseControl I-

Equipment Sensors

Figure 8. Controlled Fixed-base Diagram

Earthquake Ground
Structure

Structural responsesSystem .
Exr,itation

.
System

.
(SSI-type)

Figure 9. Structure-soil Interaction Diagram
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Earthquake Ground
Structure

Structural responses
System,

SystemExcitatIon (SSI-type)

Control Forces

l~

Computerized
ResponseControl I""
SensorsEquipment '-._---

Figure 10 Controlled Structure-soil Interaction Diagram
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III. STATE EQUATIONS FOR FIX- AND SSI-MODEL

WITH I WITHOUT CONTROL

A. FORMULATION FOR FIXED BASE MODEL

For a fixed-base model (see FIX-type in Figure 3), the motion equation of a

NO-story seismic shear structure equipped with an active tendon control, at any nth

time-instant, may be expressed as

where [MssJ, less), and [Kss] of dimension NO by NO are diagonal lumped-mass,

proportional damping, and symmetrical spring-stiffness matrices, respectively. {X~b} of

do ° J.rO b 1 ° fl dO 1 l /11 /11 III rll III JTImenslon JYI y IS oor ISP acement vector, XNO XNQ-I ... X, ... X2 XI .

Superscript tb indicates values in the response vector are of the total dynamic system and

relative to those of the structure-base. Subscript S or SS indicates that elements in the

denoted vector or matrix correspond to the superstructure's degrees of freedom. At this

state of formulation, these notations may appear to be unnecessary. A dot and a double

dot over a symbol denote the first derivative and second derivative in relation to time,

respectively. [1s] of dimension NO by NCR is a controller-location matrix, where NCR is

the number of active comrollers {if} of dimension NCR by 1 is the vector of horizontal

control forces, [UNCR ... u/ ... UI r {as} of dimension NO by I is a horizontal

base-acceleration coefficient vector; each row equals the negative value of a lumped mass

corresponding to the row number of a degree of freedom. i" is a horizontal acceleration
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of the structure-base. For the fonnulation ofa system without control, the tenn associated

with control force vector is omitted.

An example of a controller-location matrix [Ys] for a two-controller system,

having controller no. 1 attached between structure-base and first floor (node no 1) and

controller nO.2 attached between second floor (node no.2) and third floor (node no 3), is

shl1wn as

0 0

[ys] =
0 0

(2)
-I 0

l ~
0
-I

The motion Equation (1) can be rewritten in form of a state equation as

(3)

where [I] is an identity matrix of dimension NO by NO. In compact form, the state

Equation (3) can be written as

(4)

with

20



rb { {X;b(n)} )
{Z (n)} = {Xff'(n)}

[.4J-[ [0] [I]]
- -[Mssr1[Kss] -[Mssrl[Cssl

-z

z

i
+...·SV

Vertical1y Incident Shear Wave

Figure 11. Single-story SSI-model
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Summation ofhorizontal
forces acting on mass m\
leads to first row of
Equation ofMotion (3.9)

-z

Summation ofmoments
acting around node 0
leads to third row of
Equation ofMotion (3.9)

Summation ofhorizontal
forces acting on mass mo
leads to second 'ow of
Equation ofMotion (3.9)

Figure 12. Free-body Diagram of Single~storySSI-modeJ
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where {Z It>} is a state vector of dimension 2NO by I. A dot over a letter denotes a

derivative with respect to time The characteristic matrix [A] of dimension 2NO by 2NO

is a time-independent matrix as are matrix [ B] ofdimension 2NO by NCR and vector {C~

of dimension 2NO by 1

B. FORMULATION FOR STRUCTIJRE-SOIL INTERACTION MODEL

1. SillJlt-'torv [Quation of Motion. For a structure-soil interaction model

subjected to a vertically incident shear wave. rotational seiSmiC input may be omitted

Therefore. at any nit. time-instant, the motion equation of a single-story seismic shear

structure equipped with an active tendon system (sec Figures II and 12) can be obtained

as

-k. halkl

k l -ha1k 1

o 0

r -I I {O I+11 iiI (n) + -RJC(n)

o -Re(n) J

(9)

where m I and mo are floor lumped mass and foundation lumped mass. respectively

II and 10 are floor and foundation mass moments of inertia around point 0 hal and haO

are accumulated heights from rotational point 0 to the centroid of floor lumped mass and

foundation lumped mass. respectively. k. is translational spring-stiffness coefficient. CI is
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lte vector of dimension 2NO by 1 A dot over a letter denotes a

;t to time The characteristic matrix [A] of dimension 2ND by 2NO

matrix as are matrix [B] ofdimension 2NO by NCR and vector {c)

ON FOR STRUCTURE-SOIL INTERACTION MODEL

00' Equatiop of Motiop. For a structure-soil interaction model

tically incideJ'lt shear wave. rotational seismic input may be omitted

n~ time-instant. the motiol'l equation of a single-story seismic shear

ith an active tendon system (see Figures II and 12) can be obtained

(9)

e floor lumped mass and foundation lumped mass, respectively.

d foundation mass moments of inenia around point 0 hoi and h aO

hts from rotational point 0 to the centroid of floor lumped mass and

ass. respectively. k. is translational spring-stiffiJess coefficient c. is
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[Mssl = 0 ... m, o (11 )

o ... 0 ml

[Mso ]= [0]; [Mas] =[0 O· 0 ]
-htINomNO . -h",m, .. , -hlllmi (12)

(13)

kNo -leNO
-leNO kNO + kHO-I

o -leNo-l

o
-leNO-I

kNo-. +kNO-z

o
o
o

o
o
o

o
o
o

(Kss] = o o o '" 1c,+k"'l o o

o
o

o
o

o
o

o
o

.. Ie) +kz -1e2

-lez Ie: +k l

(14)

0 hNOkNO
0 hNG-lk",o-l -hNOk",o
0 h.lI/O-zkNQ-z - h"'G-lkNQ-1

[Ksol =
0 h,lc, - h...lk....

0 h2lcz-h3k3
-leI. hlllk i -hZle2

[K 1= [ 0 0 0 .. 0 ... 0 -leI ]
os 000 ··0··0 0
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o

[Mss] = 0 '" m,

o

o (11 )

o 0 ... m,

(12)

(t 3)

kNo -leNo 0 0 0 0
-leND leNO + leND-1 -leNV-I 0 0 0

0 -leNG-t kND-1 + leNG-2 0 0 0

[Kssl = ......... "

0 0 0 ... 1e,+k'_1 0 0
. - - . . - - '. . ... "" ...

0 0 0 0 ., Ie] +le2 -1c2
0 0 0 0 -le2 le2 +kt

(14)

0 hNOkNO
0 h.vo-Ilc.o;o-t - hNOkNO
0 hNo-2kNo-2- hNo-tkNo-1

[K~] =
0 h,Ie, -hr+I1cr+t

0 hzkz -h]le]
-leI hQ1k l -h."k."

[Kosl =[ 00 0
0

0
0

0 . - 0 -Ie, ]
-- 0 - 0 0
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o indicate that elements in the denoted vector or matrix correspond to the degrees of

freedom of superstructure and foundation, respectively. a", and Pc can be detennined by

solving am + Pcw: = 2w,11, for I :: 1, 2 where T'\, are damping ratios of translational mode

of frequency w, {Os} of dimension NO by 1 and {&o} of dimension 2 by 1 are horizontal

ground-acceleration coefficient vectors for superstructure and foundation, respectively

hal, 1= 0, 1, ., NO, are accumulated heights from rotational point 0 to the centroid of mass

m, h,,; =I, NO, are the,it1 floor height.

Vector {X~g} of dimension NO by 1 is the floor translation vector.

[X~0 .r~o-I x:'·· x~ x~g r {X: ~ of dimension 2 by I is a vector consisting of

foundation translation and rotation at point 0, [x: e: ]T Superscript Ig indicates all

responses are of the total dynamic system and relative to those of ground system A dot

and a double dot over a symbol denote the first derivative and second derivative in

relation to time, respectively. ~ is the horizontal acceleration, at point 0, of the ground

system with rigid interface. {Ro} of dimension 2 by I is a vector consisting of horizontal

interaction force and interaction moment at point 0, [Rr Re ] T.

Matrices [Ys] of dimension NO by NCR and [yo] of dimension 2 by NCR are

controller-location matrices for superstructure and foundation, respectively. NCR is the

number of active controllers. {U} of dimension NCR by I is the vector of horizontal

control forces, [UNCR ii,· iii r An example of matrices [ys) and (YoJ for a

two-controlier system, having controller no I attached between rigid foundation and first

floor (node no. I) and controller n02 attached betWeen second floor (node no 2) and third

floor (node no.3), is shown as
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o indicate that elements in the denoted vector or matrix correspond to the degrees of

freedom of superstructure and foundation, respectively. (I", and ~k can be determined by

solving (I", +~kOO~ =200,1'\, for i:: 1,2 where 1'\, are damping ratios of translational mode

of frequency w" {Os} ofdimension NO by 1 and {&o} of dimension 2 by 1 are horizontal

ground-acceleration coefficient vectors for sup~·strlJcture and foundation, respectively

hal, i =0,1, .. ,NO, are accumulated heights from rotational point 0 to the centroid of mass

m I hi, I = 1, .NO, are the i~ floor height.

Vector {X;'} of dimension NO by 1 is the floor translation vector,

[x~o X~o-l .. x~ . x~ x~ ] T. {X:} of dimension 2 by 1 is a vector consisting of

foundation translation and rotation at point 0, [x: e~ r Superscript tg indicates all

responses are of the total dynamic system and relative to those of ground system. A dot

and a double dot over a symbol denote the first derivative and second derivative in

relation to time, respectively. x~ is the horizomal acceleration, at point 0, of the ground

system with rigid interface. {Ro} of dimension 2 by 1 is a vector consisting of horizontal

interaction force and interaction moment at point 0, [ R" Re r
Matrices [Ys] of dimension NO by NCR and [Yo) of dimension 2 by NCR are

controller-location matrices for superstructure and foundation. respectively NCR is the

number of active controUers. {U} of dimension NCR by 1 is the vector of horizontal

control forces, [UNCR ... u, .. , "I r· An example of matrices [Ys) and [Yo) for a

two-controUer system, having controUer 00.1 attached between rigid foundation and first

floor (node no. 1) and controUer nO.2 attached between second floor (node no 2) and third

floor (node no.3), is shown as
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with

'.

{X:(t)} =I: [i'lo(t)]{Ro(t-t)}dt

[ j;' (t)] = [~!z ~:. ]
00 FL Fie

(26)

(27)

where t and t are time variables. [F~] is the ground system's impulse velocity matrix with

rigid interface (see Subsection C3 of Section V). Coefficients j;~,F:',Ft,and Fie are

velocities, at time equals t, corresponding to the first subscript's degree of freedom due to

a unit impulse force, at time equal~ zero, corresponding to the second subscript's degree of

freedom. Based on causality conditions, interaction forces and velocities under a unit

impulse force, prior to time equal to zero, must be zero Thus t varies from 0 to t.

Since the solution procedure of a state equation is carried on in the discrete time

domain, the convolution integral can be replaced by summation as

(28)

where !it and 11 are time increment and time-instant number, respectively. m varies from

zero to 11. To reduce the number of operations in Equation (28), one may take advantage

of the fact that a ground system with half-space has radiation damping. Then the amplitude

of velocity under a unit impulse load (impulse velocity function) attenuates as time

proceeds At time-instant number equals /, for instance, all elements in the impulse velocity
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with

'.

{X:(I)} = I: [F~(t)j{Ro(t-t)}df (26)

(27)

where t and t are time variables. [F~] is the ground system's impulse velocity matrix with

rigid interface (see Subsection C.3 of Section V). Coeflicienu F~,F:e,F:r, and F:e are

velocities, at time equals or, corresponding to the first subscript's degr~ of freedom due to

a unit impulse force, at time equals zero, corresponding to the second subscript's degree of

freedom. Based on causality conditions, interaction forces and velocities under a unit

impulse force, prior to time equal to zero, must be zero. Thus t varies from 0 to t.

Since the solution procedure of a state equation is carried on in the discrete time

domain, the convolution integral can be replaced by summation as

(28)

where !it and n are time increment and time-instant number. respectively, m vuies from

zero to n. To reduce the number of operations in Equation (28), one may take advantage

of the fact that a ground system with half-space has radiation damping. Then the amplitude

of velocity under a unit impulse load (impulse velocity function) attenuates as time

proceeds. At time-instant number equals J, for instance, all elements in the impulse velocity
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with

{Ro(n)} =[ioo ]{X: (n) }- {~o(n-l)} (32)

[ioo] = ~2[Fct.(O)r1
(33)

{~o(n - I)} = [iooJ [{x:(n-l)}

where the time-independent matrix [i00] of dimension 2 by 2 is • pseudo-static-stiffness

matrix of ground system. Vector {.lo} of dimension 2 by 1 is a dynamic-equivalent-force

vector making up for the ground system's dynamic etIect. This vector depends only upon

the events ~nor to ".. time-instant.

4. State Egp.tjan or SSI-model. Substituting interaction force vector

[Equation (32)] in the multistory equation ofmotion [Equation (10)] results in

[
[Mss] [M~] ]{ {x:(n)}} [[Css] [C~] l{ {Xl(n)} }
[Mos] [Moo] {X:(n)} + [Cos] [Coo] J {X:(n)}

{
[Kss] [K~] ]J {Xl(n)}} {{l)s}}~
[Kos] [KooJ+[ioo ] 1{X~(n)} = {~IJ} o(n)

{
[Ys] ]{U(n)} + { {OJ }
[Yo] (~o(n-l)}

31
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with

{Ro(n)} = [ioo]{x.;'<n)} - {~o(n-l)}

[ -] 2 [. r ]-1L oo = 1!J2 1'00(0)

{~o(n -In = [Coo] [{x~(n-l}}

(32)

(33)

(34)

where the time-independent matrix [Loo] of dimension 2 by 2 is a pseudo-static-stiffitess

matrix of ground system. Vector {.Jo} of dimension 2 by I is a dynamic-equivalent-force

vector making up for the ground system's dynamic effect. This vector depends only upon

the events prior to nlll time-instant.

<I. ~tc Eop.tjop of SSI.model. Substituting interaction force vector

[Equation (32)] in the multistory equation ofmotion [Equation (10») results in

[
[Mssl [M~l ]{ {x:<n)}} [[C~] [Csvl ]{ {~:<n)} }
[Mos) [Moo] {K:<n)} + [Cos] [Coo] {Xc:'(n)}

i ]{ I ~ 1 1 { }[Kssl [Ksol ~Xs (n) I {5s}.
[Kosl lKool+[ioo] {~(n)} = {50} ~(n)

J[YSl]{u(n)}+{ to} }1 [yo1 {Ro(n -I)}

31
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Taking [ioo ] in the ts>ta1 system's stiflhess matrix could be physically interpreted

as attaching a set of fictitious springs, having coefficients of i a , i ri , i "-. and i ee

(elements of [Lo:JJ), to a structure system's rigid foundation as shown in Figure 13

Meanwhile the total system is subjected to the equivalent forces of amplitude -m li~ at the

centroid of each mass i, where i = 0,1, .. , NO, and is subjected to an equivalent moment of

so
amplitude r.h",m,x~ around point 0 (contribution of {~s}x~ and {~o}~). Furthermore,

~

at point 0, dynamic-equivalent force Rx and moment Re ({Ro} = [ Rx Re JT ) are added

to compensate for the ground system's dynamic effect.

Rearranging Equation (35). acceleration vector can I,e expressed as

{
{X7(n>} 1=J [Mss] [M~} ]-I[ [Css} [Csa] ]1 {xl(n)} }
{X~(n)} 1 [Mas} [Moo} [Cosl [Coo] {X~(n)}

-[
[Mss} [Msa ] ]-I[ [Kss} [Ksal ]1 {X;g(n)} 1
[Mas} [Moo] [Kos} [Koo] + [Coo] {X~;(n)} J

.r [Mss} [Msa} ]-I{ {~s} l.i~(n)1 [Mas} [Moo} {~a} J

J [Mssl [Msa} J-I[ [1s] l{ U(n) t
1 [Mas} [Moo} [101 J

i
r

[Mss) [Msa ] ]-I{ {O}} (36)
[Mas) [Moo} {Ro(n - 1)}
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Taking [Loo ] in the t~tal system's stiflDess matrix could be physically interpreted

as attaching a set of fictitious springs, having coefficients of X.a:, i ri , i ex, and 1'88

(ek"":'1ents of [ioo]l. to a structure system's rigid foundation as shown in Figure 13

~leanwhile the total system is subjected to the equivalent forces of amplitude -m ,i'~ at the

centroid of ucl. mass i, where i - 0, 1,. " NO, and is subjected to an equivalent mi>ment of

.'10

amplitude 1: h",m ,.r~ around point 0 (contribution of {osli{ and (oo }.r~ ) Furthennore,
~

at point O. dynamic-equivalent force Rx and moment Ire ({Ra} =[It x Ita r)are added

to compensate for the ground system's dynamic effect.

Rearranging Equation (35), acceleration vector can be expresJed as

J {x~g(n)}} {lMssl lMsal ]-I[ lCss] lCSlll ]1 {X~g(n)} l1{X~(n)} = [Masl [Mool [Cos] [Coo] 1{X:Cn)}

J[Mss] [Msol ]-I[ lKssl [KSlll ]J {xff(n)} l
- L [Mos] [Mool [Kasl [Kool+[ioo ] 1{X~'(n)}

J [Mssl [M~] T1

[ [Ys] ]{U(n)}
1 [Masl [Moo] J [Yo]

1 ]-1' }[Mss] (M.sol CO}
[Mas] [Mool { {Ra(n-l)}
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( to} }
{io<n-l)}=t[[MSS) [M91) T1

{ to} }
(Mos) [Moo] J UMn-l)}

(44)

where the characteristic matrix [A] of dimension 2(N0+2) hy 2(NO+2) is a time

independent matrix as are matrix [B] of dimension 2(N0+2) by NCR and vector {C} of

dimension 2(N0+2) by 1. Acceleration vector {io1of dimension 2(N0+2) by I is

associated with dynamic-equivalent forces, depending only upon the outcomes prior to nib

time-instant

c. soumON TECHNIQUE FOR STATE EOUATIONS

As discussed in Section IV, for a closed-loop control, control forces and structural

responses are related to an optimal control law as

{ U(n) } =[GFlYH Z'b(PI}} for FIX-model

{ U(n)} = [GSSl]{Z"(n)} for SSI-model

(45)

(46)

where [GFZX] of dimension NCR by 2NOand [GSS/) of dimension NCR by 2(NO+ 2) are

time-independent feedback gain matrices for FIX-model and SSI-model, respectively.

Therefore the state Equations (4) and (38) can be written in a similar form as

(47)

(48)

with
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· 1 {OJ I
{~o(n-l)}:: [[Mssl [Msol ]-l{ {OJ } r

[Mas] [Moo] {~o(n - I)} J
(44)

where the characteristic matrix [A] of dimension 2(N0+2) by 2(NO+2) is a time

independent matrix as are matrix [B] of dimension 2(N0+2) by NCR and vector {C} of

dimension 2(N0+2) by 1. Acceleration vector {Ro} of dimension 2(N0+2) by 1 is

associated with dynamic-equivalent forces. depending only upon the outcomes prior to n~

time-instant.

C. SOLUTION TECHNIQUE FOR STATE EQUATIONS

As discussed in Section IV, for a closed-loop control, control forces and structural

responses are related to an optimal control law as

{ l\n)} :;: [GSS/]{Z'6(n)} for SSI-model

(45)

(46)

where [GF7X ] of dimension NCR by 2NO and [Gw] of dimension NCR by 2(NO +2) are

time-independent feedback gain matrices for FIX-model and SSI-model, respectively

Therefore the state Equations (4) and (38) can be written in a similar form as

with

for FIX-model

for SSI-model

(47)

(48)
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pseudo-spring-stiffness The plant matrix yields JI(J) complex conjugate plllrs of

eigenvalues (x, ± .P, and their corresponding eigenvectors {a,) ± t{ h,} . where t =r::J.

a"p, are real scalars; {a,},{b,} are real vcetC'tS of dimension 2JlQ) by I.andl= 1.2..

b!(J).

Transformation matrix [T] is needed to transform the state equation into canonical

form [T] is a real matrix of dimension 2JlQ) by 2JlQ), consisting of real pattI; ~ a,} and

imaginary parts {h,} of the plant matrix's eigenvectors. and can bt- expressed as

[T] =[ {ad {bd {a,} {h,} (54 )

Transfonnation matrix [T] and plant matrix [D) are related to matrix [AL

consisting of real parts (I, and imaginary parts ~, of the plant matrix's eigenvalues. as

[Tr1[D][T] =[A)

where [A] of dimension 2II(f) by 2JI(J) is a real matrix of the following form.

[Ad··· [0] [0]

(55 )

[AI = [0]

(0)

[A,]

[0]

(01 (56)

[AI]=[ a
, PI]

-P, (I,

Let solution of the state Equation (53) be expressed as

(Z(n)} =[T]{CI»(n)}

37
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pseudo-spring-stiffitess, The plant matrix yields IUD complex conjugate paus of

eigenvalues <X, ±\~, and their corresponding eigenvectors {a,} ±l{b , } . where \ =F1,

<XI'~' are real scalars; {a,}. {b , } are real vectors ofdimension 2I/Q) by I, and , '"' 1.2..

Transformation matrix [T] is needed to transform the state equation into canonical

form [TJ is a real matrix of dimension 2JI(j) by 2JlQ). consisting of real parts {Q,} and

imaginary parts {b I} of the plant matrix's eigenvectors. and can be expressed as

(T]=[ {ad {htl ta,} {h,} (54)

Transformation matrix [T] and plant matrix [D) are related to matrix [AI.

consisting of real parts (X, and imaginary parts~, of the plant matrix's eigenvalues. as

where [A] of dimension 2Jl/Q) by 2I/Q) is a real matrix ofthe fonowing form,

(55 )

r
[Ad ,', [0]

(A] =ll~1 .•. I~,J
[0] : [OJ

(A,] = [ <X, ~,]
-~, <X,

[OJ

[0] (56)

(57)

Let solution of the state Equation (53) be expressed as

{Zen)} =(T]{cJ)(n))
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By assuming [exp([O])] is equal to an identity matrix [I) and using Taylor

polynomial expansion at [A]I equals [OJ, matrix lexp([A]tH of dimension 2/)/Q) by 21N(J)

can be approximated as

(0)[exp ([A dn]

(exp([Alt)] = [01

[01

with

[0]

[exp([A,]tl]

[0]

I
[OJ j

[exp ([AN0 It))

(65 )

[exp([A,]I)] =exP«Xlt)[ c~s(P,t) sin(P,t) J'
-sm(p,t) cos(P,I)

(66)

Applying the initial conditions in Equations (61) and (62) and utilizing trapezoidal

rule with time increment liJ. the solution Equation (M) at nib time-instant can be written as

{eJ)("at)} ~ [exp([A]nAl)]{cs.(O)} +~t[exp«A]nAl)J{no)}

In compact fonn, the solution Equation (67) can be derived as

{«J)(n)} ={mn -I)} +~ {f(n)}

39
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By assuming (exp([O))) is equal to an identity matrix [I] and using Taylor

polynomial expansion at [A]t equals [OJ. !'1atrix [exp«(A)t)] of dimension 2JlQ) by 2JlQ)

can be approximated as

[exp([A]t» =

with

[exp «(Adt)]

[0]

[0]

[0]

[exp([A,]t)]

[0)

[0]

[0]

(exp«A,wc1l]t)]

(65)

[exp([A,]I») = eXP(Q,'>[ c~s(~t) sin(~,t> ]
-sm(."t) cos(."I)

(66)

Applying the initial conditions in Equations (61) and (62) and utilizing trapezoidal

rule with time increment iJJ, the solution Equation (64) at nltl time-instant can be written as

{«!)(n.:1l)} =rexp ([A]n.:1l)]{cJ)(O)} + ~' (exp([A]niJJ)]{r(O)}

~I

=at 1: [exp ([A](n-m)at)]{nm.:1l)} + ~{nn.:1l)}
-I

In compact fonn, the solution Equation (67) can be derived as

{eIl(n)} = {n<n-l)} +~{r(n)}

39

(67)

(68)



IV. OPTIMAL CONTROL LAW

The time-continuous version of state Equations (4) for FIX-model and (38) for

SSI-model can be written in a parallel format as

with

{ztb (t)} =[A] {lib (I)} +[B]{U(I) }+ {E(t) }

{ltg(t)} =[A ](lll(t)} + [B]{V(t)}.,. {bt)}

{E-(I)} ={e-}x-b(t)

{E(t)} ={C}i{(t) + {Ro(t- &1)}

for FIX-model

for SSI-model

(71 )

(72)

(73)

(74)

where {k} and {k} of dimension 2JI(J) by I are external disturbance vectors for FIX

model and SSI-model, respectively JI(J) equals NO for FIX-model and N0+2 for SSI

model, where NO is the number of a structure's floors_ [A] and [A] of dimension 2JI(J)

by 2J{QJ are characteristic matrices for FIX-model and SSI-model, respectively {lIb}

and {lll} of dimension 2JI(J) by 1 are state vectors for FIX-model and SSI-model,

respectively_ [B] and [B] of dimension 2JI(J) by NCR are the matrices associated with a

controller's location for FIX-model and SSI-model, respectively_ NCR is the number of

active controllers_ {U} of dimension NCR by I is the vector consisting of horizontal

control forces
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IV. OPTIMAL CONTROL LAW

The time-continuous version of state Equations (4) for FIX-model and (38) for

SSI-model can be written in a parallel format as

with

{zrb(t)} =[A J{lrb(t}} + [BJ{ U(t)} + {E(t)}

{zrr(t)} =[A ]{lW(t)} + [B]{ U(t)} + {E(t)}

{E(t)} = {C}x&(t)

{E(t)} = {C}X:(l) + {Ro(t- At)}

for FIX-model

for SSI-model

(71 )

(72)

(73)

(74)

where {E} and {E} of dimension 2II(J) by 1 are external distUrbance vectors for FIX

model and SSI-model, respectively. JlQ) equals NO for FIX-model and N0+2 for SSI

model, where NO is the number of a structure's floors. [A] and [A] of dimension 2JI(J)

by 2J/(J) are characteristic matrices for FIX-model and SSI-model, respectively {l'b}

and {ZII} of dimension 2J{q) by 1 are state vectors for FIX-model and SSI-model,

respectively. [B] and [B] of dimension 2JI(J) by NCR are the matrices a.~sociated with a

controller's location for FIX-model and SSI-mode~ respectively. NCR is the number of

active controllers {ii} of dimension NCR by I is the vector consisting of horizontal

control forces.
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with

For each time interval n, the amplitude of state variables z/(/) for ;=1.2, .,V/(f) and

control forces ",(I), at time I~I. are specified from the previous time interval: those at

time I" are not This leads to the problem of minimizing a variable-end-point functional

for which the unknown amplitude of state vector {1(I)} at time '" should also be

minimized. Therefore the function of this s+..ate vector needs to be included in the

expression of performance index A new objective functional or generalized perfonnance

index. at time interval [/..-1, I,,] can be defined as

J,,( {l(/,,)}, {Z(t)}, {V(t)} ) =g({l(t,,)}) +J::/(/, {Z(/)}, {U(t)} )dI (79)

with

g({Z(/,,)}) =!{Zlt"nT[SHIU"n

1(/, {Z(t)}, {U(I)} )= !({let)} T[Q]{Z(t)} + {U(/) (lRI{ UU>} )

(80)

(81 )

To ensure a positive value for Equation (80), the weighting malnX IS) of

dimension 2JI(J) by 2JI(J) is a positive semi-definite.

1. Tr.n,v,n.lity Condition. To minimize the generalized performance index

I n in Equation (79) with a free endpoint condition and consequently the performance
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with

For each time interval n, the amplitude ofsute variables %,(t) for ;=1.2, .,2IIm and

control forces u,(t), at time 'It-I. are specified from the previous time intervaL tho§(: at

time I" are not This leads to the problem of minimizing a variable-end-point functional

for which the unknown amplitude of state vector {Z(t)} at time t n should also be

minimized. Therefore the function of this state vector needs to be included in the

expression of performance index. A new objective functional or generalized performance

index. at time interval [/""'1, tIl] can be defined as

J,,( {l(t,,)} , {Z(t)}, {U(t)} )=g({l(t,,)}) +J::
1
1(/ {1(/)}, {UU)} )dl (79)

with

g( {ZU,,)}) = ~{Z(t,,)}T[SHZ(t .. )}... (ISO)

(81 )

To ensure a positive value for Equation (80), the wl':ighting matrix \S) of

dimension 2JI(f) by 2Jl(J) is a positive semi-definite.

1. Transvenalitt Copdition. To minimize the generalized performance index

I n in Equation (79) with a free endpoint condition and consequently the perfonnance
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1
1~1-lo-(n-l)At l

G = ~{l(I,,)}T[SHZ(I,,)} +{A,{ {l(l .... l)} - {Z~d
1ft -10 -nAt

F =t({l(t)} TlQHl(I)} + {V(t)} T[RJ{ {Rt)} )

+{AI (t)} T ( {.2(1) }- [A){ Z(I)} - [B] {Vet)}- (E(I)} )

(85)

(86)

Applying the fundamental necessary condition (variation of J" = 0) to Equation

(84) with unknown endpoints leads to the transversality condition as

(87)

where the letter d represents differential of function or variable foUowing it. A comma

denotes a partial derivative with respect to the subscript foUowing it.

Since I_I, {ZU_d}, and t ft are known and fixed, their differentials dl,....\,

d{Z(t~tl} and dl.. equal zero Therefore the transversality condition in Equation (87)

can be reduced as

{{G.iZ(I.l}} + {F.fi(1) I. } ,,,} T{d {l(t .. )}} = 0 (8S)

Substituting Equations (85) and (86) in Equation (88), and knowing that

{d{l(t,,)}}:It (OJ ,leads to

[SHZ(I,,)} + O"r(t,,)} = {OJ

45

(89)



+(Af(/)} r ({i(/)} - [AJ( l(t)} - [B] {V(/)} - (E(/)} )

(&5)

(86)

Applying the fundamental necessary condition (variation of J" -- 0) to Equation

(84) with unknown endpoints leads to the transversality condition as

(87)

where the letter d represents differential of function or variable foUowi"g it. A comma

denotes a partial derivative with respect to the subscript foUowing it.

Since 1....1, (1(/....!l1, and '" are known and fixed. their differentials dt_l.

d{l(t"...l)} and dt" equal zero. Therefore the transversality condition in Equation (87)

can be reduced as

(88)

Substituting Equationfo (85) and (86) in Equation (88), and knowing that

{d {1(/1I)}} ¢ {OJ ,leads to

[SHZit ll )} + {A.j(tll)} ={O}

45

(89)



index which can be done by satisfying the Euler equations and the transversality condition

previously described

At each endpoint n (t =I,,) for n =I, 2, ., NT, the Euler Equation (92) can be

written as

(94)

Substituting transversality condition from Equation (89) in Equalion (94) leads to

(95)

By comparing Equations (9~) to (93), the feedback gain matrix at each endpoint n

can be expressed as

(96)

Gain matrix [G(I,,)] is Cl.' ..tant and neither a function oftime I nor time increment

!JJ. Therefore it is valid at every endpoint n.

Analogous to [G(I,,)], feedback gain matrices for FIX-model and SSI-model can

be expressed as

[G!'7X) ={krl~JTSJ for FIX-model

[GSSf
) =-[krlBJTs] for SSI-model

47
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index which can be done by satisfying the Euler equations and the transversality condition

previously described.

At each endpoint n (I =I") for n =1,2, .. , NT, the Euler Equation (92) can be

written as

(~4)

Substituting transversality condition from Equation (89) in Equation (94) leads to

(95)

By comparing Equations (95) to (93), the feedback gain matrix at each endpoint n

can be expressed as

(96)

Gain matrix [G(/,,)] is constant and neither a function of time I nor time increment

61. Therefore it is valid at every endpoint n.

Analogous to [G(t,,)], feedback gain matrices for FIX-model and SSI-model can

be expressed is

[GFZX] =-{RflBy[S] for FIX-model

[GSS/
] =-[RrlBf[S] for SSI-model
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,-

where [KssUKsoUMss], [Moo], [ys]and [yo] are given in Equations (14), (15), (11),

(13), (24), and (25), respectively.

A weighting matrix [S] of dimension 2JI(f) by 2JlQ) is selected as an arbitrary

row-matrix as

["J [wJ [[0] [0] ]
S = S = [SD] [Sv] (104)

where elements on the Rth row of submatrices [SD] and [Sv] of dimension JlQ) by JlQ)

equal the arbitrary constants SD and sv. respectively, which satisfy l\ positive semi-definite

assumption. For each controUer, R equals NO - ONe + 1. where ONe is one of the

controller's node numbers which does not allow any two consecutive rows of the matrix to

be filled.

To assure a positive semi-definite condition of matrix [SJ, alternately. a

symmetrical matrix can be chosen as

[S]=YD[ Pv'[Kss] [Kss] ] for fIX-model
[Kss] ~v[Kss]

W [ ~~;l[kJ [k] ][SJ =YD [k] Pv[kJ for SSI-model

with

[VJ-[ [Kssl (~so]]
K - [Ksof [Koo ]

( lOS)

(106)

(107)

where YDand Pv are a stiffness scaling factor and a damping scaling factor, respectively.
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The influence of SD, Sv and YD, pv on the total system can be demonstrated by

using a fixed-base single-story shear structure as an example. Substituting the gain matrix

of the FIX single-story structure [Equation (97)] in the plant matrix Equation (49) leads to

with

[bJ=[AJ--!-{BHB}TsJ
R

(108)

(109)

(110)

where [A]. {B}, and Rare obtained for the FIX single-story structure by using Equations

(6), (7), and (10 I), respectively. Then inserting the row and symmetrical weighting

matrices [.~J in Equations (104) and (1 OS) into Equation (l08) leads to

for row matrix [s ] (111 )

for symmetrical matrix [ SJ (I 12)
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By comparing the characteristic matrix [A] of the structure system in Equation

(109) to the plant matrices [ D] of the structure system with control (Equations (III) and

(112)], the constants J'D,'YDand Sv, Yv increase the stiffness and damping coefficients of

the new system, respectively. As the stiffiless and damping coefficients correspond to

displacement and velocity vectors, J'D, YDand J'v, yv can also be described as displacement

control and velocity control factors, respectively. The complex conjugate pairs of

eigenvalues of the plant matrices in Equations (111) and (112) can be expressed as <X ± \~,

where

and

cd 1+svlc./clmd
<X = - for Equation (lll)

2m.
(113)

(114)

for Equation (III) (lIS)

for Equation (112) (116)

For a subcritical damping system, an imaginary part of the root, ~, can be interpreted as a

damped free vibration frequency (a) and -<XI~ as a damping ratio In order to maintain the
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system in the subcritical range <P is a real number ¢ 0), SD,SVOr'YD, Pv must be selected

according to the following inequality condition.

(117)

(118)
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v. FREQUENCY-DEPENDENT COEFFICIENTS

OF SOIL SYSTEMS

A. FREE-FIELD SYSTEMS STIFFNESS MATRIX

1. Definitiop IDd ConsepL The dynamic-stiffiless matrix [S~((jJ) ] of the

continuous free-field system with rigid interface is represented in Figure 14. It specifies

the amplitude of forces F{, M~, F{ due to unit amplitude of displacements r~, 9~, :~

applied at node 0 of the rigid interface for harmonic motion with excitation frequency was

(119)

Soil II

Soil I

2Jl

<- -Rigid Interface- ._-

t---T::l!:---- ---------- ---..,
---

M

D=I.d,
.-1

Figure 14. Forces and Displacements ofFree-field System with Rigid Interface
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~

The concept of the indirect boundary element method, a special case of

weighted-residual technique. can be applied to the free-field system even though the rigid

interface is not a boundary. Assume that loading patterns acting along the rigid interface

do exist and that these loads result, along the same interface, in the prescribed

displacements of unit nodal values r~. e~, z~. This can be achieved by adjusting load

intensities to satisfy this condition. Integrating loading patterns with prescribed

displacements will lead to the dynamic-stiffitess matrix. Since only a finite number of load

intensities can be chosen, an approximate solution results.

In Figure 15, the rigid interface consists of two vertical interfaces for length D and

a horizontal interface for length 2B. As additional horizontal interfaces are introduced into

the system, the former is divided intn ~~ements of length d,. for i=I,2•.. ,M. on each of the

vertical interfaces The latter is equally divided into 2L elements, each of length b. The

elements are numbered from 1 to 2 (M+L). Element 1 is started from the top element of

the left venical interface to the bottom one, element M Elements M+ 1, .. , M+2L define the

elements of the horizontal interface from the left element to the right one On the right

vertical interface, elements M+2L+l •..•2(M+L) are used to describe the elements from top

to bottom.

Rigid body kinematics relate the prescribed displacement amplitudes u("). w(">

along the rigid interface (see Figure 15) to the rigid body degrees of freedom associated

with the dynamic-stiffiless's definition as

{
u(~) } = [N(~)]{ ;} ]
w(~) J

54
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where " denotes symbolically a point on the assumed line which subsequently forms the

rigid interface A bold letter in the matrix used in Subsection A indicates the

corresponding matrix is in the space domain.

On the continuous system in Figure 16, load ampUtudes P("). 1"(") along the

assumed line are related to the initially unknown intensities P" r, on node, as

(121)

Soil III

Soiln

Soil I

?e- ~,----,-,

-----,----. •--------=-..
--~II(")

w(") e- _

-----Ie. fi" ~+L.___01 .;ft 0 fl-xf,~~.
EeJ- Qf#t;[ 0 ~

M

D=!.d,
,.1

Figure IS. Prescribed Displacements along Rigid Interface
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2B=2L*b

Sotl III

Sotl II

Soli I

I
---"'T"""-----{I .---------

P x'
E=t~-----

'J ~P(ll)
,(ll) :

'----1.1-+-';-~-l-l-~-'-IP-l~-ll-)-P-'''-I.-.,.X-'-".5....:.2(M+L) .. 3

....... .\1+ 2 '1-¥1"'~~~ ~)

N -I :'+ : r(ll) " .. I

Figure 16. Linearly Distributed Loads along Assumed Line

[L(") ] represents a selected interpolation function (for example, a linearly

distributed function) Nodes are numbered from I to NN, where NN is a number of the

nodes along the assumed line and equals 2(M+L)+3 as the discontinuities of load patterns

are introduced at the comers of the assumed line. Node 1 goes from the top node of the

left venical interface to the bottom one. node M+l. Nodes M+2., M+2L+2 define the

nodes of the horizontal interface from the left node to the right one. On the right vertical

interface. nodesM+2L+3, ..•2(M+L)+3 are used to describe the nodes from top to bottom

Green's influence functions relate the amplitudes of displacements upr("). l4'p,(")

along the assumed line to initially unknown intensities P.• " on node i as
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PI
rJ'

{ "pr(") } =[UWpr(")]
p,

(122)
wp,(") r,

PJ','N

TNN

Since only a finite number of load intensities P" T, can be introduced, the

displacement-boundary condition on the interface cannot be satisfied exactly but is

expressed in an average sense as

f [W(,,)]T({ up,(") } - { u(") }) d" ={OJ
., wpr(") w(")

(123)

In order to guarantee the symmetry of the dynamic-stiffiless matrix, for indirect

boundary element method, the weighting matrix [W(")] is chosen to be equal to [L<")].

Substituting Equations (120) and (122) in Equation (123), the load intensitiesp,. T,

which satisfy the condition in Equation (123) can be detennined as

P,
T,

(124)

where
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(125)

(126)

The flexibility matrix [F] of a dimension 2(NN) by 2(NN), where NN=2(M+L)+3,

is synunetric. The generalized strain-displacement matrix [T] has a dimension of 2(NN)

by 3.

As is weD known from virtual work consideration, amplitudes of the concentrated

loads F{, M{, F{ can be obtained by integrating loading patterns with prescribed

displacements as

{~ ]=j [N(,,)f{ pet)~ }d"
}" r(t)

Fz

(127)

Using Equations (121) and (124) in Equation (127) leads to the dynamic-stiffitess

matrix offree-field system with rigid interface as

(128)

where

(129)

58



2. Gepcraijud StrJip;lYP'ltcment Matris. Integration in Equation (126) is

performed, along the rigid interface, on each clement based on its local coordinates Origin

of the local coordinates is located at the top node for the venical element and at the left

node for the horizontal element.

By using the geometric configuration shown in Figure 15. the rigid body

kinematics in Equation (120) can be broken down into one of each element as

[N(z)], =[ 1-(~d~) +Z 0] for elementi, i =1, ..,M
OBI

[

1 0 0 ]
[N(x)1= 0 (! b) -x 1 for clementi, i =M+l,., M+L

(130)

(131)

[N(x)l=[~ _( ± °b)+b_X ~] for element I, i=M+L+l, .. ,M+2L (132)

.........L.'

[
( AI) ]- 1 - d ft +Z 0[N(z>], = ~-u. for elementi,

o -B 1

i =M+2L+l, .. , 2(M+L) (133)

where a horizontal bar on top of a letter denotes that the given matrix is element matrix

As an example, the determination of the terms on the first row and second column of the

AI

matrix in Equation (130) is described as follows. The tenn I d" represents the distance
-.

from the top node of 1'Ih element to the level of point o. Subtracting: (distance from the

M M
top node of ,1h element to a considering point) from I d ft results in I. d" - = which-
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represent the distance from a considering point to the level of point 0 Multiplying

M

1:. dff - z by e{; (rotation at point 0) leads to a negative horizontal displacement at a-
considering point. The expression on the first row and second column of this matrix

relates to the horizontal displacement at a considering point, u(z), to the rotation at point

Ai

C\ e{;, therefore it equals -I. d ff +Z-
For linearly distributed loads in Figure 16, a two-node element is employed Since

only the nodal values on these two corresponding nodes dictate loading patterns on the

clcmc:1t, the interpolation matrix in Equation (121) can be written as

[L(z)], =[ 1-
0
:101, 0 'lId, °d] for element i on vertical interface

l-z/d, 0 z/ I

[L-(x)J, -_ [ I -OXlb 0 x/b 0 ] &', I . h' tal·--r.
b xJb

lor e ernent I on onzon lDtlE:"llaCe
I-xl 0

(134)

(135)

Using Equations (130) to (135), the element strain-displacement rnatrix [T], can

be obtained as

[T], = J:' [1.(z)JTN(Z)], dz, for element i on vertical interfaces (136)

[T], = J: [L(x)f[N(x)], cit, for element i on horizontal interface (137)
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represent the distance from a considering point to the level of point 0 Multiplying

M

~d" -z by e{; (rotation at point 0) leads to a negative horizontal displacement at a-
considering point. The expression on the first row and second column of this matrix

relates to the horizontal displacement at a considering point, II(Z), to the rOlation at point

AI

0, ~, therefore it equals -~d" +z .-
For linearly distributed loads in Figure 16, a two-node element is employed Since

only the nodal values on these two corresponding nodes dictate loading patterns on the

element, the interpolation matrix in Equation (121) can be written as

[L-(z)], -_ [1-OZld, 0 z/d, 0 1 ~ I . al' J.

d Jlor e ement I on vertIc JRtellace
l-zld, 0 z~,

[L-(x)], _- [1-oXlb 0 vb 0 ] ~ I . h' tal' erfaI-xlb 0 xlb lor e ement Ion onzon JRt ce

(134)

(135)

Using Equations (130) to (135), the element strain-displacement matrix [1'], can

be obtained as

[1'], =J:' [i.{z)]TN(z)],dz, for element; on vertical interfaces (136)

[1'], =f: [L(r)Y[N(x)], dt, for element i on horizontal interface (137)
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Completing the integration in Equations (136) and (137) results, for element i, in

f1'] =- ,

[1'],=

(M )
d,/2 -l~ d N d,/2 +d,2/6 0

o Bd,/2 d,/2

d,12 -(~dN )d./2 +d,2/3 0

o Bd,/2 d,/2

bl2 0 0

o (~b}/2-b 2/6 bl2

b/2 0 0

o (! b }12- b 2/3 b/2

i =l, ..,M,

i =M+l, .. , M+L,

(138)

(139)

[TJ,=

bl2 0 0

o ._( ± b)bl2 +b 2/3 bl2
-W+L+l

bl2 0 0

o -( ± b)bl2 + b 2/6 bl2
-W+L+l

i =M+L+l •..• M+2L, (140)

[1'],=

d,12 -( f d,,)d,/2+d,2/6 0
.--U-11.

o -Bd,/2 d,/2

d,/2 -( f d,,)d,/2+d,2/3 0
--U-11.

o -Bd,12 d,/2

; =M+2L+l, ..,2(M....L). (141)

Therefore the generalized strain-displacement matrix [T] of a dimension of 2(N]+.,)

by 3 can be obtained by assembling the element strain-displacement matrices. In the
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assembling process, the element matrices of two adjacent elements are overlapped on the

rows corresponding to the same node. This overlapping does not apply to the nodes

corresponding to the comers of the assumed line since discontinuities in loading patterns

were introduced.

3. FlqibQity M.triI. Integration in Eqw..tion (125) is performed in the same

manner as that of Equation (126) for generalized strain-displacement matrix

As noted in Appendix A. Green's influence function relates amplitudes of

displacements u".. w,.. in layer i to initially unknown intensities of linearly distributed loads

on the venical assumed line in layer j (see Figure 16) as

{
upr(x',z) }' = [UWPr(x',Z»);{ ~~ }
wpr(x',z) PJ+I

)

r.J+1

with

[uwpr(x',z)); =:r.. [uwpr(k,z));exp(-tA:r')dk

where
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(143)
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(145)

(146)

[uwpr(k =0,:));"" =[UWprl{z)];-O - [uwAB(Z)];C:[[uwAB.]~rl

(147)

Details offonnulation and nomenclature ofEqultiOns (142) to (147) can be found

in Equations (419), (420), (358), (360), (412), and (41~.), respectively

As for linearly distributed loads on the horizontal element with node 1 and node

1+1, which are on the horizontal interface undemt~:t layer M (see Figure 16), Green's

influence function in layer i can be obtained as

{ u,..(r',Z)}' = [UWPr(r":)]~J{ ~: }
w,..(r,z) MJ Pl+l

'1+1

with

[uwpr(r,z)l~J =f .. [uwpr(k.z)J~Jexp(-lk%')dk
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where

[uwpr(k,z)]~.J =

[uwAB(k, z)),[uwAB.(k)}~' SIIbrM([S~-sv(k)r' )[PRpr. (k)).\.I,I (ISO)

[uwpr(k = O,Z)]~.l =

W[ PeJ-' ([[ T ]PeJ-l) k-()[uwABc:)] , [uwAB.], sublM Sp-sv [PRpr.]M.I (I S1)

Equations (148) to (151) are duplicated from Equations (421), (422). (369), and

(418), respectively. Since the horizontal interface is evenly divided, identical Green's

influence functions for loads on the horizontal element arise.

The z-axes in Equations (142) to (1 S1) are based on that of layer;. But the x'-axes

are based on that of distributed loads, as shown in Figure 16, on that of layer j for loads

on venica1 interface, and on that of element I for loads on ho:izontal interface. By using

axis transfonnation and Equations (142) and (148), Green's influence function b8Se\l on

the local coordinates of element; due to the linearly distributed loads on element ii can be

obtained as iollows.

Element;; on vertiQlI.et\ interface. for ii =1.". M

[UWPr(Z):,] = [uwpr(O,=n:, ,I ""I,.., M OS:!)

[UWPr(X);,] =[uwpr({;-M-l}b+x,dM)]~ ,; =M+l, .. , M+2L (1S3)

[.wpr(:):,J =[.wpr(2B,:)]:;U-u ,i =M+2L+l, .. ,2(M+L) (154)
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Element ;; on horizontal interface. for;; =M+1.." M+u'

[Uwpr(Z):,] = [uwpr({M+ l-Ii}b.z)]~~r .; :::1 •..• M (155)

[uwpr(X):,] = [uwpr({i -;i}b +X,dM)]~.1I • i =M+I, ..• M+7L (156)

[uwpr(:):,] = [uwpr({M-2L + 1 - i;}b,z)]~-2L .; :::M+u'+I.,2(M+L) (157)

Element ;i on vertical naN interface. for ji =M+2L+1,.. ,2CM+L)

[owpr(:):,] = [uwpr(-2B,z)J:,-M_U ' j =1, .. , M (158)

[uwPr(x):,] =[uwpr({i -M+2L - I}b+x,dM)J~_2L • i =M+l, ., M+2L (159)

[uwpr(z):,] = [uwpr(O,z»:;::~ , i :::M+2L+I, .. ,2(M+L) (160)

In the Green's influence matrices on the left side of Equations (152) to (160),

superscript j denotes displacements on the element i and subscript ;; indicates that the

displacements on element ; are due to the distributed loads on element ;;. The coordinates

used in these matrices are based on those of element i. Taking Equation (155) as an

example, element j oft-IUs equation is on the venicalleft interface and element ij is Ort the

horizontal interface. Therefore. Green's influence matrix of layer; (superscript i of the

matrix on the right side of the equation) due to the distributed loads on the horizontal

element having node i; and i;+1, which is on the horizontal interface underneath layer M,

is used. Since the t-axis used in this matrix is based on that of layer i (element i). no

transformation is needed. However, the x'·axis is referred to that of element ii on the

horizontal interface (see Figure 16). To obtain the displacement of element i, the distance
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from the left node of element ;; (origin of x'-axis) to the vertical left interface is

substituted into x'·ordinate. M+ I is the element number of the element having its left

node aligned with the vertical left interface (see Figure 15) Therefore, ii-M-l is equal to a

number of elements between the vertical left interface and the left node of element II

Then {M+ 1 - ii}b is determined as the negative distance from the left node of element II

to the vertical left interface

Substituting the interpolation matrices in Equations (134). (13 5) and Green's

influence matrices in Equations (152) to (160) into Equation (125). the element flexibility

matrix [iT, relating nodal strains of element i to nodal stresses of element il can be

expressed as follows

Element i on vertica11eft interface. for i =-1.... M

[FT, = J:' [L(z)J:[uwPr(O.z»):,dz , it =1 •.. ,M

[-J' Jd. T ,F ,,= 0 [L(:)], [uwpr({M+ l-ii}h,z»M,J'dz .;1 =M+I ...• M+U

[FJ:. = J:' [L(:)];[uWPr(-2B.z)(-M_2L dz • Ii =M+U+I •.. ,2(M+L)

Element i on horizontal jmerface. for i =M+L ,. M+U

(161)

(162)

(163)

[F1 =S: [L(x)]:[uWpr({i-M-l}b+x.dM)]~ dx • ii =1 •..• M (164)

[FJ:, =J: [L(x)]:[uwpr({i-ii}b+x.dM)]~.lIdx • iI·M+I •..• M+U (165)
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[-J' JI> T MF ,,= 0 (L(x»), (uwpr({; -M+2L -1}b+x,dM )]u-M_u. dr

;; ..M+2L+l •..•2(M+L) (166)

Element i on vertical riibt interface. for j =M+2L+1 . 2W+Ll

[FT =Jd. [L(:)f[uwpr(2B,z)],7"'-u dz ,ii=l.... M
oJ II 0 I

(167)

[FJ' = fd. [L(z)f(uwpr({M- 2[.+ I -ii}b.z)]:"-udz ,ii "'M+l, ., M+2L (168)
II 0 ' ".JI

[F1 = f:' [L(z)f(uwpr(o.z)]~~ dz ,ii =M+2L+l, .. ,2(M+L) (169)

Thus assembling the element flexibility matrix [FJ:, ofa 4 by 4 dimension leads to

the flexibility matrix (F] of a dimension of 2(NN) by 2(NN). In the assembling process,

element matrices are overlapped on the matrix's elements corresponding to the same

nodes. Rows of the element flexibility matrix correspond to the nodal strains of element i,

and columns to the nodal stresses ofelement ii.

Since integration of the element flexibility matrix [FJ;, in Equations (161) through

(169) is intricate and time-consuming, one may take advantage of the symmetry of the

flexibility matrix [F) and interface configuration. Not all elements in the flexibility matrix

need to be determined. For examples, the flexibility matrix may be divided into nine

submatrices as shown in Figure 17; each relates strains along vertical or horizontal

interface to stresses along vertical or horizontal interface. As the flexibility matrix is

symmetrical, the submatrices [1 - 2], [3 - Il, [3 - 2] are identical to the transposed
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submatrices [2-l]T,[1-3)T, [2-3f, respectively Submatrix [3-3] is identical to

submatrix [1 - 1] due to identical vertical interfaces on the left and right .

4. IDtg:ratioD Tecbnique. To obtain the flexibility matrix [F], unlike the

generalized strain-displacement matrix [T], a numerical integration needs to be employed

This is due to rigorous mathematical fonn of Green's influence functions [see Equations

(142) to (151)] in the flexibility matrix [F], Substituting Equation (143) or (149) into

Equations (161) through (169), the element flexibility matrix [FJ:, can be expressed in a

double integration fonn as follows.

Strains on
vertical left

interface

Strains on

horizontal

interface

Strains on
vertical right

interface

Stresses on
vertical left

interface

•' ".

,.
:;0 •;
~.j

i8J:" ....~....' ~

, . ' .

[3 -I]
identical to

[l-3f

Stresses on
horizontal
interface

[1-2]
identical to

[2-lf

[3 -2]
identical to

[2 _3]T

Stresses on

vertical right
interface

E·',
,~....

.to ••,:~

..'i

~...

[3 -3]
identical to

~~.-l]'\.

Rows

2M+2

2M+3

2M+4L+4

2M+4L+5

4(M+L) +6

Columns 2M+2 2M+4L+4 4(M+L)+6
2M+3 2M+4L+S

Figure 11. Flexibility Matrix Diagram
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Element i on venicalleft joterfaq;, for i -1.. .. M

[-J' jd, j- T IF II = 0 _ [L(z)], [uwpr(k,z»)" dkd: , ii =1, .., M (170)

ii =M+l, .. , M+2L (171)

;i =M+U+I, .. ,2(M.f.L) (172)

Element i on horizontal interface. for i =M+1.... M+U

[-]' JbJ- T Iw/F .. = 0 _[L(x»),[uwpr(k,dlw/»)"exp[-Ik({i-M-I}b+x»)dkdr

ii=I, .. , M

[-]' JbJ- T Iw/F ,,= 0 _ [L(x»),[uwpr(k,dlw/»)M,lIexP[-\k({I-ii}b+x)}dkdr

(173)

ii =M+I, .. , M+2L (174)

ii =M+2l.+1•..•2(M+L) (175)

Element i on vertical OW interface. for; =M+2l.+1.. ..2(M+L)
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i; =M+l •..• M+2L

[ -1' fd, f- T I-M-UF = (L{z)l,(uwpr(le,z)]/I-N_u died: • ii =M+2L+l •..•2(M+L)
~" 0 ....

(177)

(178)

To optimize accuracy and computational time for integration in Equations (170) to

(178), the adaptive quadrature numerical integration [3urden and Faires, 1988] is applied

along Ie-axis due to the fluctuated nature and variation of functions along this axis (see

Figures 18. 19. 20, and 21). This efficient technique can distinguish the amount of

functional variation and adapt step size to varying requirements. Therefore the

approximation error is uniformly distributed.

Also along Ie-axis, the functions diminish in both positive and negative directions

when the absolute value of Ie increases. Thus certain values of Ie are used as upper and

lower limits. Note the case of an interval corresponding to a large absolute value of Ie.

Here. if percentage of the area under the interval to the area under the whole range is

equal to or less than the desired value, the corresponding Ie defines the limits.

Since the contours ofthe functions along x- and z-axis are quite smooth. Simpson's

method is adequately employed.

B. EXCAVAIEDPARrSSTUfNESSNVUlUX

1. Denajtio. a,d eOactPL For hannonic motion with excitation frequency w,

the dynamjc-stifthess matrix [S-oo(m)] of the bounded excavated pan of the system with
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Figure 18. Diagonal Integrand of Submatrix [I-I) vs. Wave-number (k)
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Figure 19. OfI"-diagonallntegrand ofSubmatrix [I-I] vs. Wave-number (k)
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Diagonal Integrand of Submatrix [1-3) vs. Wave-number (k)
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rigid interface is demonstrated in Figure 22. It defines amplitude of forces ~. M;. F: due

to unit amplitude of displacements x~. 60•Zo applied at node 0 of the rigid interface as

(179)

with

(180)

where [K6] and [M'] are the stiffness matrix and the mass matrix of the excavated part of

the system. respectively. Symbols ~ and t represent the linear hysteretic damping ratio and

Fl. respectively

As the excavated part of the system represents a bounded domain, the concept of

the finite element method can be applied. First. the domain is discretized into elements

COMeeted to each other at nodal points. Determining and assembling the element

dynamic-stiffiless matrix leads to the dynamic-stiffness matrix corresponding to the

degrees of freedom of all nodal points. Then the condensation process is needed to

28

M

D=Ld,
..I

Rigid Interface

Fi8'JJ'e 22. Forces and Displacements ofExcavated Part of System with Rigid Interface
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eliminate the degrees of freedom of the nodes not lying on the rigid interface. Finally.

relating the degrees of freedom of the nodes along the interface to the rigid-body degrees

of freedom at point 0 yields the desired dynamic-stiffness matrix.

As shown in Figure 23, depth D of the excavated domain is equally divided into

Me ponions, each of length d•. And the domain's width at length 2B is evenly divided into

2Le portions, each of length h,. This results in 2LeMe rectangular elements of dimension

d, by h•. each having four nodal points.

Shown in the same figure, rectangular elements are numbered from 1 to ~Me

starting from left to right and top to bottom. The nodes are categorized into two groups:

nodes along the interfaces (subscript B) and nodes in the domain's interior, including those

along the top boundary (subscript l). The former are numbered from I to Me+ I. going

from top to bottom of the vertical left interface, from Me+ 1to Me+2Le+ I going from left

D=Me*d,

cg.+LI+y
2B=2Le' h,

UM....U-!
W.\t....:u-I

cEi+~
I

Figure 23. Discretization ofExcavated Pan ofSystem
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to right of the horizontal interface. and from Me+2Le+l to 2(Me+Le)+1 going from

bottom to top of the venical right interface. The latter are numbered from 2(Me+u)+2 to

(Me+ 1)(2Le+1) going from top to bottom and left to right for the interior

The 8 x 8 dynamic-stiffness matrix [S-(CJ) J) ofelement). where) =1 •..•2LeMe. can

be obtained as

(181 )

where [k- ]J and [M-]J are the stiftDess matrix and mass matrix of element). They are

discussed in the next two subsections (2 and 3)

In the standard assembling process, the element dynamic-stiffitess matrices

[S-(O)] of adjacent discretizing elements are overlapped on the matrix's elements

corresponding to the same nodes. The resulting matrix can be expressed as

{
{PRs } } = [S-(O)] { {UWB} }
{PR/} {WI}

with

PI PzlM..u)+z
Rl RZlM..u)+2

{PRs] = P,
and {PR,} = P,

R, R,

PZIMfflA)+! PW....I)(2U+1I

RzIM..u)+1 RlM....1)(2U+1l
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(184)

II,

W,

II,

W,

II IM I )(U-l)

w(M IKU-I)

(l8S)

where P, and R, are the horizontal and vertical forces at node i, respectively. ", and w, are

the horizontal and vertical displacements at node i, respectively. The d~'lWDic-stiffuess

matrix [S·(w») of dimension 2(Me+I)(2Le+I) by 2(Me+I)(2Le+I) consists of four

submatrices, each corresponding to the degrees of freedom of subscripts' nodes. Subscript

B indicates the nodes along the interfaces. Subscript I stands for the interior nodes,

including those along the top boundary. Superscript e de':lotes the excavated part system.

Since no external forces act on the nodes in the interior ({PRJ} =0), Equation

(182) can be condensed and expressed as

{PRs} =[S"U«J)]{UWB}

with

where [58B(W») has a dimension of4(Me+Le)+2 by 4(Me+Le)+2.
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Since the interface is rigid. as shown in Figure 24, the degrees of freedom of the

nodes along the interface relate to the rigic'l body degrees of freedom at point 0 as

with

where

( 188)

(189)

[Ad = for node i. ; =1 •..• Me (190)

OJ
[A l ] = 0 MI...u b for node i. i =Me+l•..• Me+Le

•-
(19])

1 0 0

[A3] = (' )o - I b. +b.
~~I
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[A..1 = l " l'
- 1: d_)· 0

....u..+-2

o -B I

for node i, i =Me+2Le+2, .. ,2(Me+Le)+1 (193)

Matrix [AJ of dimension 4(Me+Le)+2 by 3 consists of 4 submatrices, [A d, [.4 2],

[A)], and [A.]. Matrix [A 1], having a dimension of 2Me by 3, corresponds to the degrees

of freedom along the vertical left interface. Matrix [A 1], having a dimension of 2Le by 3.

corresponds to the degrees of freedom along the left portion of the horizontal interface

Matrix [A3], having a dimension of 2Le+2 by 3, corresponds to the degrees of freedom

along the right portion of the horizontal intertace. Matrix LA.], having a dimension of 2Me

by 3, corresponds to the degrees of freedom along the vertical right interface. These

submatrices can be determined by using geometric consideration in Figure 24. For

,
example, the term - 1: d, in Equation (193) relates a horizontal displacement at node

M....u..+-2

D=Me*d,

Figure 24. Rigid Body Degrees ofFreedom ofExcavated Part of System
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'-

i of the vertical right interface. u" to the rotation at point 0, e~. This term represents the

negative distance from node i to the level of point 0 as the positive rotation results in the

negative horizontal displacemr-nt at node i. The summation of d. from Me+2U+2 to I

leads to the distance from the level ofpoint 0 to the node i.

Using matrix [A] in Equation (188) and its transposed form in Equation (186), the

dynamic-stiffitess matrix of the excavated pan of the system with rigid interface can be

expressed as

{
F: } { x~ }
~ =[S~«(J))] ~;

where

and

{S. }= [A)'IPR,}

(194)

(195)

(196)

1. De_cpt Stifl'gm Matrjl. The local coordinate and node numbering system

of a four-node rectangular element is shown in Figure 2S. The element has lengths

b. and d. along x- and z-axis, respectively. For a plane elastic problem, the element has

eight degrees of freedom, two degrees of freedom on each node.
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Figure 25 Four-node Rectangular Element

Therefore the displacement pattern can be represented by eight unknown

coefficients of the polynomial as

( 197)

(198)

Substituting the values of nodal coordinates in Equations (197), (198) and then

solving for {(l). displacement shape functions can be expressed in terms of nodal

displacements as

J u(x.:) } =[lj(r,:)] u,
l ~1r.=) W,
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with

where

[N(%,z) ] =[NO.1) _
0

o N(2.21

N(1:J)

o
o Nu.7) _ 0 ]

N(2.61 0 N(2.1)
(200)

- - % : xz
Ncl.1) =N(2.21 =1- -- -+-

h. d. b.d.

- - : x:
No,)) =N fl.4) =- --

d. bed.

- - % %Z
No.5) = N(2.61 =b. - bed.

- - XZ
NO•7) =N(2.1) =bed.

The strain-displacement relationship can be expressed as

Ez =w.:(%,:)

YIt: =YZIl = U,:(%,:) +w,x(%.:)

(20 l)

(202)

(203)

(204)

(205)

(206)

(207)

where the normal strain and sheu strain amplitudes are denoted by £ and y, respectively.

The first subscript denotes the direction of the strain component. The second denotes the

direction of the infinitesimal area's normal where the strain component is. A conuna

denotes a partial derivative with respect to the subscript foUowing it.

Using Equation (199), the strains in Equations (205) through (207) can be

expressed in terms ofnodal displacements as
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with

where

{

£,.(X,z) )
£z(X,z) =[B(x,z)] II,

'WI
y:(x,z)

- - - - -1 Z
BO.ll =B(3.21 =-B(1.5) =-B i3,5) =b• .. b.d.

(208)

(209)

(210)

(211)

(212)

(213)

Nonna! stress and shear stress amplitudes <1, t can be obtained in terms of normal

strain and shear strain amplitudes £, y in matrix form as

(214)
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with

where

[

21 +A. A. 0 1
[D] = A. 2T + A. 0 J

o 0 1

the shear modulus ofelasticity 1 = 2(1-:u)

uE
the Lame constant A. = 0";' u)( 1_ 2u)

(215)

(216)

(217)

and the letter E represents Young's modulus of elasticity. The symbol u represents

Poisson's ratio.

By using Equations (208) and (214) and applying the principle of virtual work,

nodal forces relate to the nodal displacements in terms of the symmetrical element stiffness

matrix as

PI Ii \ 1
RI WI

P, =[K"l ", (218)
R, W,

PI, ".
R4 w.

with
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where

=

~1.1I ~1.2) ~1.31 ~1.4) ~U) K(l.6) K(1.7) K(I.I)

Kiu, K('l.31 Ki'l.4) K('l.$) K('l.6) K('l.7) Kia)
K(3.31 K(3.4) ~3.,) K(3.6) ~3.7) ~3.1l

K(•.4) K(•.,) 1y4.6) ~••7) K(•.I)

K(,.'l 1y,.61 K('.7) k('.11
K(6.6) K(6.7) K(6.l1

K(7.7) K(7.11
Kil.11

(219)

- - - - 1
Kil.'ll =Xl3.6) =Ki4.') = 1:(7.1) = :i(Y} +A})

K-, K-' 1[ r '1 b. r d,]
('l.6)= (4.1)=6 (2 }+fI.})d, -2 }b.
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Vc Vc -1[ T "I d. T b.]
AU,') =A (3,7) ="'6 2(2 }+1Io}) b. - Jd.

~2.•) =Kf•.61 = ~1 r(21"} +A}):: +1}:: ]

(228)

(229)

(230)

(231 )

3. lie-cpt MN! Matris. Instead of using lu~ mass at each node,

consistent mass is considered. The mass ofelementj distributed to each degree of freedom

can be defined as

(232)

Inserting Equation (200) into Equation (232) results in the symmetrical element

mass matrix as

1/9 0 1118 0 1/18 0 1/36 0
1/9 0 1/18 0 1/18 0 1/36

1/9 0 1/36 0 1/18 0
1/9 0 1/36 0 1118

1/9 0 1/18 0
1/9 0 1/18

1/9 0
1/9
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C. GROUND SYSTEMS STIFFNESS AND FLEXlBILITY MATRICES

I. Dynamic Stiffness MatriJ. In Figure 26, the dynamic-stiffness matrix

[~o(oo)] of the unbounded ground system with rigid interface is depicted It specifies the

amplitude of forces F!, M:, Ff due to unit amplitude of displacements x~, 9~,;~ applied

at node o. These forces, for hannonic motion with excitation frequency co, are expressed

as

with

{
Ff } {~ }~: = [S'oo(oo}] ~i

[ ~ ~ 0 ]
[S'oo((0)] = s'8Ir s'ee 0

o 0 ~

(234)

(23S)

where ground system coefficients~,~. S'•. s'98. and Sf: are forces corresponding to the

first subscript's degree of freedom due to a unit displacement excitation corresponding to

the second subscript's degree of freedom. Since the soil domain is assumed to be a linear

system, the law of superposition is valid. Thus the dynamic.-stiffness matrix of the ground

system can be obtained by subtracting that of the excavated part of the system (195) from

that of the free-field system (129) as

(236)
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1- -

Rigid Interface

o Ff,~

M:,e~ ~.-Z,-O-_...---

Soil I

Soil II

SOil III

Figure 26. Forces and Displacements of Ground System with Rigid Interface

Near the natural frequency of the system's excavated part, that system's

dynamic-stiffhess coefficients as weD as the free-field system's will be large. Since the

dynamic-stiffhess coefficients of the ground system involve two large numbers obtained

from twO different methods. a number of discretizing dements must be chosen carefully in

this vicinity_

2. Time-dqivatiYc Dynamic FJuibpjty Ham Since hannonic motion is

represented as exp(lCa)t). the ground system's force-displacement relationship in Equation

(234) can also be written as

fF!) l~lexp(lCllt) M! = exp(ullt)[.s1o(w)] e~

I F. ~

where \ and t represent H and time variable, respectively.
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Dynamic-flexibility matrix is the inverse fonn of dynamic-stiffness matrix In the

case of a ground system with rigid interface (see Figure 26), the dynamic-flexibility matrix

specifies amplitude of displacements~.et.{ due to unit amplitude offorces F!.M.!. F!

applied at node 0 of the rigid interface for harmonic motion with excitation frequency w

This relationship can be expressed as

(238)

with

(239)

where [F:O(w)] of dimension 3 by 3 is dynamic-flexibility matrilt of ground system with

rigid interface for harmonic motion with exciwion frequency (Il

Differentiating the displacement-force Equation (238) with respect to time, and

omitting term exp(lCJlt), results in 11 velocity-force relationship of ground system in

hannonic motion as

J~ I JF! I1~i =[F~(m)Jl~: (240)

where [i1o(m)] is a symbolic fonn, not a derivative. representing the so-called time-

derivative dynamic flexibility matrix ofground system as shown later in Equation (242)
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{ ~l' {~l~ =lOO ~

[

F~ F:' 0 ]
= FLc F:' ,0

o 0 F!:

(241)

(242)

where [F~(CJ) ] of dimension 3 by 3 specifies amplitude ofvelcx:ities~, e~, ~ due to unit

amplitude of forces Ff,Mt.Ff applied at node 0 of the rigid interface for hannonic

motion with excitation frequency w.

3. Imp. Velocity Matril. At node 0 of the rigid interface, the amplitude of

velcx:ities ~, e~~ at time t and a series of amplitudes of impulse forces F!,M: .F! are

related to impulse velocity matrix of ground system with rigid interface by convolution

integral as

(243)

with

(244)

where [i'~ ] is impulse velocity matrix ofground system \\ith rigid interface. Coet1i\,ients

i'~,F:', FL, Fl., and F1: are velocities, at time t, corresponding to the first subscript's
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degree of freedom due to a unit impulse force. at time equal to zero, corresponding to the

second subscript's degree of freedom. Clearly, these coefficients are time-dependent causal

functions.

This impulse velocity matrix ["~(t)] can be obtained by the inverse Fourier

transformation of the ground system's time-derivative dynamic flexibility matrix

[F~«I) ] in Equation (242) as

(245)

where l and 1t equal to R ad pi number, respectively

Sinc'! the soil system's dynamic-stiffness matrices and thus the time-derivative

dynamic flexibility matrix used in Equation (245) are obtained in discrete-frequency

domain, the discrete version ofinverse Fourier transfonn applies as

NS
[ j:~(nl1l) ] =4

2
(1) 1: [P:O(m4C1l) ]exP(l m4C1lnl1l)
1t _I-NS

(246)

where 4t and n are time increment ad time-instant number, respectively. 4(1) and m are

frequency increment and frequency number. respectively NS is a number of sampling

steps where (NS)4CJJ ad (NS)11I equal a truncated frequency Or and time range TF of

impulse velocity function, respectively.

In the discrete version, the time-derivative dynamic flexibility functions F!x(CJJ),

F:'(CA),F:a:(CA),F:e(CI.»,F~(CA) in Equation (242), non-periodic ones, are truncated at an

arbitrary frequency. This trunwed frequency Or must include all predominant
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frequencies of total dynamic system. ground system, and incident waves. As a result of the

truncation, band-limited functions, having a frequency range from -0r to Or, are formed

Then ~odic extensions of these band-limited functions, required by the form of

Equation (246), are usee:! in the transformation. Therefore. only within time range

[-TT. TTl. is the discrete version in Equation (246) similar to the continuous version in

Equation (245)

Truncated frequency Or dictates a size of time increment t:J. Size of frequency

increment 4C1l depends upon a number of sampling steps. NS Their relationship can be

expressed as

t:J =..1L = 1t
Or (NS)4C1l

and

Or 1t 1t4CJ.>=-=--=-
NS (NS)l1t T,

(247)

(248)

According to Equation (247). if truncated frequency Or is too small (not including

all predominant frequencies). time increment t:J will be too large f'lr discrete

representation of the continuous functions of the entire dynamic system's response,

impulse velocity. and eanhquake excitation. Since impulse velocity functions attenuate as

time goes on and the discrete version's precision is only within a time range [-TT' TTl

where TT=(NS)41. this time range must cover all significant ranges of impulse velocity

functions and beyond (From a practical point of view, TF should double the significant

limit of impulse velocity functions to guarantee causality condition). Therefore the
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number of sampling steps, NS. needs to be large enough to cover these ranges

According to Equation (248), NS must also be large enough to make frequency increment

~W small enough for discrete representation of the continuous band-limited functions of

time-derivative flexibility functions P:e(w),p:e(ro), P.t,(lIl),F:e(ro),F;(lIl

Band-limited sequence of the time-derivative Oelcibility matrix [F~(mol1Cl))]. from

frequency -(NS-l)~w to (NS)~w, is used for the transformation in Equation (246)

Knowing that the time-derivative flexibility pair corresponding to a positive-negative

frequency pair is complex conjugate, the band-limited sequence can be constructed from a

given sequence along the positive half of the frequency range. This complex conjugate

relationship can be proved by substituting a positive-negative frequency pair in the discrete

Fourier transform formula for a causal function. This formula describes time-derivative

flexibility matrix as

NS
[P~ (m~ro)J= tJ 1: [F~(n~) Jexp(-\ m~rontJ)

....0

SubSlitutina m =I

• NS
[F~(l~w)J=~ 1: [F~ (n~) Jexp{-lI~wn~)

....0

NS
= cos (/Aron~)tJ1: [F!Jo(ntJ)J

...0

NS
-\ sin (1~CJ)n~)~ 1: [F~(n~t) ]

...0
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Substitutina m = -/

NS
[F~(-/~(I)) J= tJ 1: [F&(ntJ)Jexp{l /~(I)ntJ)

11I'O

NS

=cos (/~(fJn~)~ 1: [;-:O(n~) ]
...0

NS
+\ sin (1~(I)n~)tJ I. [F:C (n~l) ]

....0
(251 )

Equations (250) and (251) always form a complex conjugate pair because signs of their

imaginary part are opposite for any integer I.

Phase angle of impulse velocity responses is assumed to be either O· or 180·

Impulse velocity functions Ffz(t), ;-:'(1), 1':Z(I), £:"(1),;-1:(1) are then assumed to be real

number. Therefore the foUowing properties are applied.

1. Impulse velocity function F(t) can be expressed as the sum of an even part

£.(t) and an odd part F()(t).

(252)

:. The even pan 1'.(1), or conjugate-symmetric one, can be obtained by inverse

Fourier transform of the real part oftime-derivative flexibility F(CI). lfthe even

part is defined as

£.(1) =£.(-1) and 1.(0) =£(0)

then
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(254)

3 The odd pan T0(1), or conjugate-antisymmetric one, can be obtained by inverse

Fourier transform of the imaginary part of time-derivative flexibility F(w) If the

odd pan is defined u

(255 )

then

(256)

Impulse velocity function T(I) is causal (amplitude offunetion equals zero for time

1< 0). Therefore, for I < 0, the summation of even and odd pans must be zero Their

relationship can be expressed u

T.{/) = -FoCt) for time I < 0 (257)

Using Equations (252), (253), and (255) and the causality condition in Equation

(2~7), impulse velocity function can be expressed in terms of either an even part or an odd

pan as

and

T(/) =2F.(t)U(/) - T,(O)O(/)

F(l) = 2Fa(/)U(I) +FCO)O(I)
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where U(t) is a unit step function in the interval of time I greater than or equal to zero

S(/) is the Dirac-delta function equal to 1 at time I equal to zero It should be noted that

impulse velocity function F(/), for I =0, cannot be determined by using the odd part alone

[see Equation (259»).

Therefore, by using Equations (254) and (258), impulse velocity function F(t) can

be determined by using only the real part of F((a)) as

F(O) = 21ft J:' Real(F«(.O) ) c/o) for time I "" 0

and

F(/) =*J:' Rea{F«a) )eXP(UIlI)c/o) for time I > 0

(260)

(261 )

For a ground system with rigid interface, discrete impulse velocity matrix can be

obtained by applying the discrete version of transformation [Equation (246)] and its

complex conjugate property [demonstrated in Equations (250) and (251)] to Equations

(260) and (261) as

(262)

and
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[F~(MI)] =¥ i: Re-'[F:O(m~ro) ])exp(\n'~(j)MI)
_I-NS .... \

for n = 1,2, .. , NS (263)

Note that the static components of the ground system's time-derivative flexibility

matrix [F~«(j) = 0)] always equal zero [see Equation (242)]. Therefore those of ground

system's stiffness matrix need not to be determined. OnJy the dynamic-stiffitess matrices on

the positive half of frequency range are nee<:~ due to their complex conjugate property.

To minimize computins time, Fast FI·urier Transfonn (FIT). an efficient technique of

calculating discrete Fourier transform, is employed.
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VI. INVESTIGATION OF DYNAMIC STIFFNESS

COEFFICIENTS OF SOIL SYSTEMS

A. SCOPE OF INVESTIGATION

l. Study r'QPleJen 'Dd Actu.1 Site D.y. To investigate the influence of

soil hysteretic damping, foundation embedment D, and the depth of a soil layer on the

rock bed on the dynamic-stiffitess matrix, a half-plane and a homogeneous layer with

depth H built on the rock are examined by using Poisson's ratio of 0.33. The undamped

case and the cases of 0.03, 005, and 0.07 damping ratio ~ are investigated. The ratio of

embedment to foundation half-width, DIB. and the ratio of layer's depth to foundation

half-width, RB, are varied parametrically

In addition to the parametric study, the actual site of Takenaka Experimental

Building (TEBS) is investigated. The ratio of embedment to half-width, DIB, is chosen to

be 0.5 The testing data and calculating data of this site are listed in Table I. P- and

S-wave v~locities, Cp and Cs. are obtained from the field test. Soil mass density p is

evaluated from the lab test of soil samples Soil hysteretic damping ratio ~ is estimated

based on the soil type. Shear modulus r. Young's modulus E, and Poisson's ratio \) are

determined by using the foUowing Connulae.

r=pc~
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£-2Y
U=-

2Y
(266)

Soil layers and their properties are simplified as presented in the last COIUMIl of

Table 1 The soil of the first three metc.rs depth is treated as 4-layered homogeneous soil,

each layer beinp n ";'S m. The physical properties of this homogeneous medium are

obtained by takh~~ the weighting average of the first three soil layers' propenies (results

shown in the last column orTable I). The soil profile from a depth of 300 m to 61.80 m is

divided into 62 homogeneous layers as detailed in the last column. The average shear

modulus and S-wave velocity of all simplified layers are 94.20 MN/sq.m and 224 m'sec.

respectively. Soil underneath 61.8Orn depth is considered as a half-plane Again the

weighting average is used to detennine the properties of this assumed homogeneous

domain (results shown in the last column of Table I). Only the soil propenies listed in the

highlighted columns noted by [1],[2], .. ,[5] are used as data in the code for detennining the

dynamic-stiffiless matrices.

Z. Nopdi.cp.ioAaIjzed Sprig. 'Ad Da.Djg, Cocftjdcgu. The various

dynamic-stifthess matrices [Soo] in Equations (129), (195), and (236) are decomposed as

with

[
I 00]

[Koo] =xY 0 B2 0
001

99

(267)

(268)



I [ Kx KxyB 0 ]
[L(..o)] = Kxy/B Ky 0

o 0 Kz

[

Cx CxyB 0 ]
[{,("o)l = Cxy/B Cy 0

o 0 Cz

(269)

(270)

where [Koo ] is the arbitrary diagonal static-stifihess matrix. l' is the average of the soil

shear moduli of the calculating system. B is the foundation half-width. [L] and [q are

the matrices containing nondimensionalized spring and damping coefficients. respectively

Small letters x and z denote the coefficients in the horizontal and vertical directions; y is

used for rotation (rocking) with respect to point 0 of the rigid foundation, and xy

represents the coupling between the horizontal directaon and rocking. The dimensionless

frequency "0 is equal to (J)/J/Cs, where Cs is the average of the soil shear wave velocities

of the determining domain. The symboll represents H .

B. INVESTIGATION OF EXCAVATED PARTS COEFFICIENTS

The dynamic-stiffness matrix of the system's excavated pan in Equation (195) can

be written in the form of a 3 by 3 matrix as

(271)

where the first and second subscripts denote the force and unit displacement degrees of

freedom. respectively.
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Using Equations (267) to (270), the nondimensionalizcd spring and damping

coefficients ofthe system's excavated part can be obtained as

Kx
_ Real(S:Z)
- 1tT

Kz
_Real(~)

- 1tT

C
_Imag(S~)

z - 1tT~o

(272)

(273)

(274)

(275)

(276)

(277)

(278)

(279)

For DIB =0.5, 1.0, and 2.0, the excavated part of system is finely discretized into

400, 450, and 400 elements, respectively. To create the square elements, the vertical side

and the horizontal side of this domain are equally divided into 10 and 40 portions for

DIB =0.5, 15 and 30 portions for DIB .. 1.0, and 10 and 20 portions for DIB = 2.0 The

4-node element is employed in the finite element procedure.
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1. Elects of By"tmic DampiDI. As described in Equation (180), the

hysteretic damping ~ relates to the dynamic-stiffiless coefficients of the system's

excavated pan as

[S-oo(oo)] = [K']( 1+ 2~\) - 002[M-] (280)

For the system's bounded excavated pan, the dimensionless natural frequencies

associated with various modes can be detennined. In Table II, the natural frequencies in

the range of interest (less than 4.0) are presented for the excavated part of the undamped

system with DIB =2.0. The antisymrnetric mode applies to the horizontal (x) and rocking

(y) degrees of freedom. The symmetric mode refers to the vertical (z) degree of freeecm

The zero values ofKx, Ky, and Kz correspond to the 1imensionless natural frequencies of

the system's excavated part having rigid-body constraint with the released degrees of

freedom in the horizontal direction, rocking. and vertical directi'Jn, respectively.

Table II. Dimensionless Natural Frequencies ofUndamped

Bounded Domain with DIB -2.0

2.86

3.04

3.94

207

•

•

o

2.97

3.48

o

2.92

3.75

o

304

•

• out ofthe interested range
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At the frequencies corresponding to the antisymmetric mode (2.86,3.04, and 394

in Figures 27 to 32), the spring and damping coefficients approach infinity The first two

frequencies of this undamped medium are very close. Coefficients approaching infinity are

also applied, at frequency 207 in Figures 33 and 34, for the symmetric mode. At the

frequencies 0, 2.97, and 3.48 in Figure 27, the frequencies 0, 2.92, and 3 75 in Figure 31.

and the frequencies 0 and 3.04 in Figure 33, the "pring coefficients are equal to zero

These frequencies are the natural frequencies of the medium having a rigid constraint with

the released degree. of freedom, the horizontal direction (Figure 27), the rocking (Figure

31), and the vertical direction (Figure 33), respectively. It should be noted that the

frequencies corresponding to the second mode of the horizontal and rocking released

degrees of freedom (2.97 in Figure 27 and 2.92 in Figure 31, respectively) occur between

the two close frequencies corresponding to the antisymmetric mode (2.86 and 304)

Figures 27 to 34 also show the influence of various hyster.~ic damping ratios on

the nondimensionalized spring and damping coefficients of the S)stem's excavated part

The damping coefficients of the undamped medium (see Figures :!8, 30, 32, and 34) are

equal to zero due to no radiation of energy in the bounded domain. For the damping case,

all damping coefficients arise as the result of a frictional loss of energy. As the damping

ratio increases, the spring coefficients have no significant change except in the vicinity of

the natural frequencies (see Figures 27, 29, 31, and 33). In this zone, both spring and

damping coefficients are reduce<i The damping ratio can cause considerable change in the

vibrational mode. Taking the antisymmetric mode as an example, only one natural

frequency of the damping medium develops in the narrow frequency range where the two
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natural frequencies of the undamped medium (286 and 3.04 in Figures 27 to 32) OCcur

Consequently, the natural frequencies corresponding to the released degrees of freedom

between the two (2.97 in Figure 27 and 2.92 in Figure 31) disappear Also the frequency

corresponding to the rocking released degree of freedom in the vicinity of frequency 3 75

in Figure 31 will not occur for the damping case studied.

2. EWes" or (,undid" Embechpept. As shown in Figure 23, the foundation

embedment D can be expressed as D =Me • d_ The dynamic-stiffitess coefficients of the

system's excavated part are influenced by the discretized element's length d, through the

element stiflhess matrix [K'l in Equation (219), the element mass matrix [M<1 In

Equation (233), and the transfonnation matrix [A] in Equations ( 189), (190), and (193)

In Table I, the hysteretic damping ratio of the aetuaI site ranges from 030 to 0 07

Therefore the hysteretic damping ratio of 0.05 is selected for the systems with the

foundation embedment to half·width ratios, DIB, equal to 0 S, I 0, and 20 Their

nondimensionalized spring and damping coefficients of the systems' excavated part are

demonstrated in Figures 35 to 42 In the same set of figures, the coefficients of the actual

site (TEBS) are also included At a particular frequency in the low frequency range (less

than the first mode natural frequency), the bigger DIE leads to the larger spring and

damping coefficients as the result of the bigger medium. Also in this range. the spring and

damping coefficients corresponding to the coupling between the horizontal translation and

rocking (see Figures 37 and 38) have the sign opposite to the translational and rocking

coefficients (see Figures 35, 36, 39, 40,41, and 42). The spring coefficients cooven to

zero when the dimensionless frequency approaches zero (see Figures 35, 37, 39, and 41)
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The damping coefficients in the iow frequency range are flatly zero (see Figures 36, 38,

40, and 42) As a point of an almost vertical line in the spring coefficient plot crossing the

frequency axis suggests a natural frequency of the system's excavated part, Figures 35,37,

39, and 41 shew that the bigger DIB results in the lower first mode natural frequency. The

first mode natural frequencies of the TEBS system's excavated pan and the system's

excavated pan with DIB := 0.5 are greater than 4.0; therefore they do not show in the:.e

figures. Comparing the horizontal spring and damping coefficients in the low frequency

range (see Figures 35 and 36) to the vertical spring and damping coefficients (see Figures

41 and 42), the former are bigger for DIB := 0.5, about the same for DIB := 1.0, and smaller

for DIS = 2.0.

As for the actual site (TEBS), all coefficients are very ::Iose to those of the DIB =

0.5 since the excavated part of the actual site is assumed to be the homogeneous medium

having DIB := O. 5_The smaller coefficients of the actual site are caused by the difference in

the hysteretic damping and Poisson's ratios

C. INVESTIGAnON OF FREE-FIELD SYSTEM COEFFICIENTS

Analogous to the system's excavated part, the dynamic-stiftitess matrix of a

free-field system in Equation (129) can be expressed as

[
s:X s~ 0 ]

[S~«J))] = s~ S~ 0
o 0 s~

(281 )

where the first and second subscripts denote the force and unit displacement degrees of

freedom, respectively.
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Therefore the nondim~nsionalized spring and damping coefficients of the free-field

system can be detennined as

Kx =Rea/(Sk)
7t1'

Ie" = lmag(S:tt)
7(1'''0

Kxy =0 Rea/(S;') = Real(~)
7tl'B nTB

K _ Real(S~)
y - feTB2

Kz = ReaJ(Sb)
nT

(282)

(283)

(284)

(285)

(286)

(287)

(288)

(289)

Two extreme cases of a free-field system, the half-plane and the homogeneous

layer witr depth H built on a rock, are considered. The rock is defined as the medium

having its shear wave velocity ten times faster than that of the topping soU layer. On the

vertical and horizontal assumed lines of the boundary element technique (which coincide

with the rigid structure-soil interface), 4 by 16 elements, 6 by 12 elements, and 8 by 8
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elements are selected for DIB = 05, 1.0, and 2.0, respectively The distributed loads vary

linearly along the elements with continuity generally enforced at all nodes except the

comer one This leads to a total of 54 nodal forces for all cases, as each element contains

four nodal forces.

I. Effects of Fougdation Embedment. The foundation embedment is equal to

Mr d, as shown in Figure 14 The depth d, of soil layer, where i = 1,. M, effects the
,.1

dynamic-stiffness coefficients of the free-field system [see Equation (129)] through the

element strain-displacement matrix [T] r in Equations (138) and (141) and the element

flexibility matrix [j:J:. in Equations (170) to (178).

Presented in Figures 43 to 50 are the nondimensionalized spring and damping

coefficients of the free-field systems comprising the half-plane with the 5% damping ratio

and indicated DIB Those of the free-field system consisting of the TEBS with DIB = 0.5

are contained as well. The natural frequencies of the free-field system (see Figure 43, 45,

47 and 49) appear at the same frequencies as those of the system's excavaLed (see Figures

35,37,39, and 41). Tn contrast to the system's excavated part. the spring coefficients (see

Figures 43. 45, 47 and 49) do not transform to zero as the frequency reaches zero This is

an indication of the free-field system's non-zer~ static stiffuess coefficients In the lower-

frequency range (less than 10). an increase of the DlB hE.s no significant effect on the

horizontal and vertical spring coefficients (see Figures 43 and 49). On the contrary, the

rocking spring coefficients increase while the DIB increases (see Figure 47)

In the low frequency range, the damping ccefficients (see Figures 44. 46. 48, and

50) are not equal to zero like those of the system's excavated part due to the free-field
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system's radiation of energy toward infinity. The increase of the horizontal and venical

damping coefficients is proponional to the DIB (see Figures 44 and 50) A

nonproportionaJ but more remarkable increase can be seen in the rocking damping

coefficients, especially for DIB ::: 20 (see Figure 48) Comparing the horizontal damping

coefficients (see Figure 44) to the vertical damping coefficients (see Figure 50), the former

are greater for DIB = 2.0 and about the same for DIB ::: 05 and 10. Despite the rising

value of the damping coefficients in the very low and narrow frequency range (0 - 0 2), the

imaginary pan of the dynamic-stiffiless coefficients (dimensionless frequency times

damping coefficients, also see Equation 64) maintains a small value

2. EaUg of Layer', Depth. Prior to the discussion of the free-field system

consisting of the TEBS with DIB = 0.5 (nonhomogeneous soil), the influence of the layer's

depth on a rock should be understood. As shown in Figure 14, this depth can be expresseJ

N-\
as 1: d, The depth d" where; ::: I,.N-l, has an effect on the layer's dynamic-stiffiless

,.\

matrix [S~_sV<k)] in Equations (446) and (489) and the total dynamic-stifthess matrix

[S~_sl{k)] in Equation (352) The latter is part of the Green's influence function's

formulation as shown in Equations (143) to (147) and (149) to (151). Through these

Green's functions, [uwpr(x',:»); and [uwpr(x'.z)J.~J' the layer's depth on rock affects the

element flexibility matrix [iT, in equations (170) to (178) and the dynamic-stiffiless

coefficients of the free·field system in Equation (129)

Shown in Figures 51 to 58 are the nondimensionalized spring and damping

coefficients of the free-field systems comprising the layer on rock with the 5% damping

ratio and indicated HIB As the layer's depth to half-width ratio. HIB, decreases (the rock
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Indicated HIB, 018=0.5, with 5% Damping Ratio
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base comes closer to the surface), the spring coefficients in the lower-frequency range (see

Figures 51, 53. 55. and 57) increase Thill effect is more noticeable in the venica! direction

(see Figure 57) In the same range, all spring coefficients of the layer on a rock are greater

than those of the half-plane. As the frequency increases, the spring coefficients

corresponding to HIB = 2.0 and 3.0 oscillate around those corresponding to the

half-plane This implies a stronger frequency dependence of the former. The smoother

spring coefficients are exhibited in a case of the very shallow layer, HIB = lOIn contrast

to the half-pla'le, a layer on the rock demonstrates a cutoff frequency below which only

small amO\Ant of energy can be radiated toward infinity This leads to a small damping

coefficient As shown in Figures 52, 56, and 58, the small damping coefficients can be

found below these cutoff frequencies. The corresponding damping coefficients are less

than those of the half-plane. In the cases of HIB = 2.0 and 3.0, the damping coefficients

corresponding to the horizontal direction and rocking (see Figures 52 and 56) suddenly

increase. above the cutoff frequencies. to the levels of those corresponding to half-plane

Gradual increase is found in the coefficient corresponding to the vertical direction The

more shallow layer (smaller HIB) leads to the higher cutoff frequency, especially in the

Cbe of HIB = 10 The latter means a system's energy is trapped within the layer in the

wider frequency range.

Turning back to the free-field system consisting of the TEBS with DIB = 0.5 in

Figures 43 to 50, this system's coefficients are similar to those corresponding to half-plane

with DIB = 05. But stronger frequency dependence of the former is noticeable due to its

nonhomogeneous domain. As the average shear wave velocity of the TEBS's half-plane is
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about two times faster than that of the thick TEBS's layer (61.8m). the amplitudes of the

TEBS's vertical and rocking coefficients are affected and therefore' differ from the

corresponding amplitudes of the homogeneous half-plane. The cutoff frequencies are quite

low and the energy trap range is then barely noticeable.

D. INVESTIGATION OF GROUND SYSTEM COEFFICIENTS

Four parametric cases and one actual site are examined. They are as follows the

5% damping ratio systems consisting of the half-plane with DIB = 0.5 (05), the half-plane

with DIB = 10 (010), the layer on a rock having DIB =0.5 and HIB = 1.0 (05HIO). the

layer on a rock having DIB :: 0.5 and HIB:: 2.0 (05820), and the actual site with DIB =

0.5 (TEBS).

1. Dynamic Stifl'ng. Coetlicieats. The spring and damping coefficients of a

ground system can directly be determined by using an indirect boundary element method

(mEM). But the method requires two Green's influence functions relating to the

displacement and surfaC'~ traction along a structure-soil interface. Since the calculation of

the free-field system's coefficients needs only the displacement Green's influence function,

it can be simpler to determine the coefficients of system's excavated pan by the finite

element method (FEM) and then subtract them from those of the free-field system to yield

the ground system's coefficients.

Close to the natural frequencies of the system's excavated part, the spring and

damping coefficients of both system's excavated part and free-field system are very large

Since the errors inherent in the two different methods (IBEM and FEM) are not

consistent, the difference between these two large numbers may yield a problematic result
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No problem is found in the cases ofD5, D5HI0, DSH20, and TEBS since their systems'

fundamental frequency is beyond the range of interest (0 - 4.0). For the 010, the problem

arises in the frequency range of 3.0 - 4.0 (see Figures 59 to 66). This problem can he

minimized but not eliminated by an increase in a number of the discretizing elements As

an example, for this particular case, the 6 elements on the vertical interface and 12

elements on the horizontal interface in the IBEM increase to 11 and 22 elements.

respectively The D lO's coefficients, shown in Figures S9 to 66, are the result of these

increasing elements. The remaining problem (the unexpectedly non-smooth coefficients)

may be tackled by the function interpolation using values before and after the natural

frequency Since the lower damping ratio produces larger stiffiJess coefficients, in the

vicinity of a natural frequency, of a system's excavated part and a free-field, and the larger

D/B tends lower the first natural frequency (as discussed in Subsection B), the subtraction

technique is not recommended for such a case because an unacceptable error may arise at

the relatively-important low range of frequency.

In the very low frequency range (0 - 0.2), it should be emphasized that the

imaginary part of the dynarnic-stiffiJess coefficients (dimensionless frequency times

damping coefficients) maintains a small value regardless of the increasing value of the

nondimensionalized damping coefficients.

a. Effects ofFoundation Embedment Comparing the coefficients ofDS to those

of D I0, the foundation embedment barely has an effect on both translational spring

coefficients (see Figures 59 and 65). On the contrary, the deeper embedment (D10) leads

to a greater rocking spring coefficient (see Figure 63). In both translation directions and
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rocking. the larger damping coefficients of 010 appear (see Figures 60, 64, and 66) A

bigger increase is found in the rocking This phenomenon seems to be consistent with that

of the free-field system in the low and lower ranges of frequency because the ground

system's coefficients are the difference between the coefficients of the free-field system

and the system's excavated part, ,md the latter conven to zero in these ranges Of D1O's

ground system, the horizontal and {erticaJ coefficients are about the same (see Figures 59.

60, 65, and 66) for which the identical behavior is also found in the free-field and the

system's ex.cavated part. In the case of the 05's ground system, the horizontal damping

coefficient is slightly smaller than the venical damping coefficient (see Figures 60 and 66)

since both coefficients of the free-field system are about the same but the horizontal

damping coefficient of the system's ex.cavated part is slightly bigger than the venical

damping coefficients.

b. Effects of Laye(s Du!tb. For 05HIO, OSH20, and TESS, the same tendency

of the free-field system in the low and lower frequency range is also applied The 05HIO's

spring coefficients are greater than those of OSH20, especially in the vertical direction

The former's smaller frequency-dependence is shown. The spring coefficients of both

systems are greater than those of 05 (half-plane). The cutoff frequencies exist at the same

points as those in the free-fieid system. Below these frequencies, the damping coefficients

of 05HIO and D5H20 are less than those of half-plane. Then beyond the cutoff

frequencies, they increase to the level of the half-plane For D5H20 and TEBS, both

spnng and damping coefficients display a strong dependence of frequency In the high
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frequency range of OSH20, the large oscillation is clearly demonstrated The negative

spring coefficients occur in the three cases

2. Time-derivltive tluibUity Coemden». The investigation so far leads to the

conclusion that the deeper foundation embedment results in the greater rocking

dynamic-stifthess coefficients. To clearly demonstrate the influence of the rocking

component in the structure-soil interaction, only the cases of shallow embedment (05,

DSHl 0, and OSH20) will be explored hereafter Since the vertical degree of freedom of a

shear structure investigated in Section VII is neglected, the corresponding degree of

freedom of ground system is omitted as welL

Using the shear modulus r of 3200 MN/sq.rn, shear wave velocity Cs of 4000

m/sec, and foundation half-width B of 3.0 rn, the dynamic stifthess coefficients of ground

system can be determined from their nondimensionalized coefficients (see Equations 267

to 270). In Figures 67 to 72, the ground system's dynamic stifthess coefficients of 05,

05HI0, and 05H20 are illustrated in the range of their system frequency (a) equal 0 to 80

Hz This 80 Hz frequency corresponds to the dimensionless frequency.to of 3.77 as

"0 = oo/JICs . The shape of the dynamic-stiffn.:ss coefficients' real part (see Figures 67,69,

and 71) is similar to that of nondimensionalized spring coefficients in the frequency range

below 3.77 (see Figures 59, 61, and 63). On the contrary, that of the dynamic-stiffness

coefficients' imaginary part (see Figures 68, 70, and 72) is different from that of

nondimensionalized damping coefficients (see Figures 60, 62, and 64). Since the imaginary

part is the product of system's frequency and damping c.oefficient, it then increases as a

function of frequency. In the case ofD5HIO and D5H20 (layer on a rock), the imaginary
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part maintains its small value up to their cutoff frequency and then increases as the

system's frequency rises.

Time-derivative flexibility coefficients can be obtained as described in Equation

(242). First, the inversion of the ground system's dynamic stiffitess matrices corresponding

to discrete frequencies ranging from 0 to 80 Hz is detennined Then, multiplying the

fonner by their corresponding frequencies and imaginary number results in the desired

coefficients. These coefficients of OS, OsH10, and OSH20 are displayed in Figures 73 to

78. All coefficients are equal to zero where their systems' frequencies are also equal to

zero Similar to the ground system's dynamic-stiffiless coefficients, the more frequency

dependent coefficients are noticeable in the cases of OSH2O. In both OsHIO and OSH20,

the small coefficients' real part in the range of low frequency is shown.

3. Imp. Yclocjn CoefClSjepb. An impulse velocity coefficient of time t is a

velocity at time t due to impulse force ac time equal to O. To obtain the coefficients, the

inverse discrete Fourier transfonn is applied to the real parts of time-derivative flexibility

coefficients in Figures 73, 75, and 77 [Equations (262) and (263)]. The coefficients on the

negative side of frequency axis are constructed by fonning their complex conjugate pairs

Using the truncated frequency aT of80 Hz and the sampling step number ."IS of 160 leads

to the frequency increment ~CA) of 0.5 Hz, the time increment ~ of 0 00625 sec and then

the time range TF of 1.0 sec [Equations (247) and (248»).

In Figures 79 to 81, the resultant coefficients of D5, D5HlO, and 05H20 are

shown in the time range of 0 to 0.1 sec. The horizontal impulse velocity coefficients of all

three soil conditions, at time t - 0, are about the same since the same foundation
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embedment and soil type are used. But the rocking coefficient ofD5HIO is less than those

of D5 and DSH20, The rock base in DSHIO but not in OSH20 has an influence on the

rocking component by increasing its stifIiless b : '", fonner's rock base level is closer to

the surface, The coefficients of 05 \htlf.plane) attenuate faster than OSH10 and 05820

since more energy in the former propagates toward infinity,
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VII. INVESTIGATION OF TOTAL DYNAMIC SYSTEMS

WITH AND WITHOUT CONTROL

A. SCOPE OF INVESTIGATION

I. 'ouem;" PaADlctm. In the analysis and design of a dynamic structure

soil interaction system, structure and foundation failure are the primary concern The

former may be categorized into two types; a global failure and a local failure. The local

failure will not be discussed here.

Two parameters concerning the structure system's global failure are investigated.

First. the failure governed by the system's strain energy is induced by the floor relative

displacement excluding rigid motion effect due to foundation rotation. Ds represents the

corresponding displacement as the letter s stands for the structure system's strain energy.

As depicted in Figure 12. the corresponding displacement (Os) of a single- story shear

structure can be expressed as

(290)

where x~,x~, and 9~ arc floor translation, foundation translation, and foundation rotation,

respectively. Superscript tg indicates the corresponding responses which are of the total

dynamic system and relative to those of the ground system. hal is accumulated height

from rotational point 0 to the centroid of floor lumped mass. For a multistory structure,

the corresponding displacement (Os) of the ,~ floor. where i = 2,. NO, can be obtained as
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· " I' h etll
OS(I) =X, -X"'I + I 0 (291)

where h, is the t!' floor height. Secondly, the floor displacement relative to ground system

(x:' or Og) is related to the failure due to a structure collision with adjacent structures,

especially for a high slenderness ratio structure The small letter g of Og stands for a

ground system.

As for a foundation failure, a horizontal interaction force Rx and an interaction

moment Re as the measurement of the maximum stresses along a structure-soil interface

are examined. By extending the free-body diagram in Figure 12 for a multistory shear

structure, these forces can be obtained as

NO ( ) ( .r,).. " -, -IJ-'Rx =-; "', x, +xo -mo Xo +xo -haO eo

NO.II'"NO ( ) ( .. " )Re=-!,l,90 -1080 .J-I,m,h,., X~+i~ +mohaO i~+x~-ha09o
,.1 ,.1

(292)

(293)

'ere m, and I, are the ,-tb floor lumped mass and mass moment of inenia with respect to

point o. mo and 10 are foundation mass and mass moment of inertia with respect to point

O. ha, and haO are accumulated height from rotational point 0 to the centroid of loU. floor

lumped mass and foundation mass, respectively. i~ and i~ are the,-tb floor and foundation

horizontal accelerations, respectively. 8: is foundation rotational acceleration. Superscript

Ig indicates all responses are of the total dynamic system and relative to those of the

ground system. ~ is the horizontal acceleration., at point 0, of the ground system with
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rigid interface. AJso the interaction forces can be obtained from the ground system's

impulse velocity matrix as described in Section III.

FTX F1XIn a FIX-model, a horizontal base shear ShIm and base mu.~ent M"DU are

determined and compared with the corresponding forces of an S5!'s model, ~~ and

M~;c. evaluated at the cOMection between a superstructure and foundation. Using the

fte.. body diagrams analogous to that of Figure 12, these forces can be expressed as

NO ( )F7X ··rb "hSoa" = -~ml x, +1'

NO ( )J." .. gs;:.• =-1: m, X, +1'0
,.1

(294)

(295)

(296)

(297)

where :::" and xb are the I'" floor acceleration and the horizontal acceleration of the

structure-base, respectivf;ly. Superscript tb indicates the corresponding responses are of

the total dynamic system and relative to that of the structure-base. hbl is the accumulated

height from the structure-base to the centroid of the l
odJ floor lumped mass ho is the depth

of foundation.

To understand a change in the behavior of a dynamic system, the system's

propenies such as frequency ratio and damping ratio are also explored. The frequency
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ratio i~ determined by the first translational mode's natural frequency of an SSI-model

divided by that of a FIX-model. The plant matrix WI of a dynamic system (discussed in

Section ill) yields lJJ(J) complex conjugate pairs of eigenvalues ex, ±l~, and their

corresponding eigenvectors lO,} ±1{h I}, where 1=R. Therefore, the ,-v. mode's

natural frequency (in radian) and its corresponding damping ratio of the system can be

obtained as ~, and -a.,/~" respectively.

2. Governing Parametfa. Soil condition including embedment to foundation

half-width ratio, structure property, type of ex.citation input, and state weighting matrix

[~1 (a control parameter) are the governing parameters. The structure properties consist

of a fixed-base natural frequency, the I'" floor mass ratio Wi I, a footing mass ratio mo, and

a structure slenderness ratio h The corresponding ratios are defined as follows.

- m,m-,- pBl

- momo=-pB3

- hh=
B

(298)

(299)

(300)

where m I, mo, and h are the I'" floor mass. foundation mass. and structure height.

respectively. p is soil mass density ofthe study soil condition B is foundation half-width

The lito floor and foundation mass moments of inertia, I, and 10 • with respect to point 0 are

also a substantial structural mass-dependent property and can be expressed as

I (
W} 2 ),=m, "'i2"+hQ ,
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(302)

where Ws and Wf are structure and foundation ~dth. The latter equals to 2B In Equation

(302), the centrcid of a rectangular foundation is assumed to be at the midpoint of

foundation depth.

As for excitation input, 1940 EI Centro earthquake acceleration record, north-

south component and 1985 Mexico earthquake acceleration record, east-west component

are used as horizontal acceleration inputs of a FIX-model (xb
) and an SSI-model (ig) By

assuming a vertically incident shear wave and a shallow embedded foundation in an

SSI-model, the rotational acceleration, at point 0 of a ground system's rigid interface, is

neglected. The first 20 seconds ofEI Centro earthquake record and the 50-70 seconds of

Mexico earthquake record are shown in Figure 82. Their characteristics (see in Figure 83)

are specified by the maximum response of a one-degree-of-freedom FIX-model system

with 2% damping ratio excited by their time history records.

In a control system, the weighting matrix [51 (discussed in Section IV) is selected

as an arbitrary row-matrix where both SD and Sv on the Rill row are equal to s I. The sI is

any real number and varied in order to obtain the optimal perfonnance index For each

controller, R equals NO-ONC+I, where ONe is one of the controller's node number which

does not allow any two consecutive rows of the matrix to be filled.

B. INVESTIGATION OF SINGLE STORY WITHOUT CONTROL

A shear wave velocity of 400 m1sec and shear modulus of 320 MN/sq.m are used

for three types of soil condition, OS, 05HIO, and 05H20 (discussc=d in Section VI) which
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are designated as SO-, S1-, and S2-soiJ condition, respectively. These three soil conditions

are described as a half-plane, a 3.0-meter depth layer on rock, and a 6.0-meter depth layer

on rock, respectively The foundation embedment and half-width of the named soil

conditions are 1.5 m and 3.0 m. respectively

The FIX-models and SSI-models are considered with 2% damping ratio and

natural frequencies of 0.7 Hz, 1.25 Hz, and 30 Hz of a fixed-base frame When the

FIX-models of 1.25 Hz and 30 Hz are subjected to El Centro earthquake, the maximum

displacements of 0.173 m and 0.022 m are produced, respectively (see Figure 83) In the

same figure, the maximum responses of 0.224 m and 0.050 m can be obtained for the

FIX-models of 0.7 Hz and 1.25 Hz subjected to Mexico earthquake Therefore the

structures with the fixed-base frequency of 30 Hz and 1.~5 Hz are considered to be stiff

structures corresponding to El Centro and Mexico earthquakes, respectively Those with a

frequency of 1.25 Hz and 0.7 Hz are regarded as flexible structures corresponding to the

~e earthquakes.

Floor mass ratios vary from 1 to 20 whi!e the footing mass ratio is equal to 2 The

floor mass ratios of I and 20 represent the lightest and heaviest (massive) structure,

respectively For a foundation width of 60 m, foundation depth of 1.5 m. and soil mass

density of 2.0 gmlcucm. the specified footing mass ratio yields the foundation mass of

o 108 Kton and the foundation mass moment of inertia of OA05 Kton-sq.m. Floor masses

and mass moments of inertia with respect to point 0, for the floor width of 5.0 m and the

indicated structure slenderness ratios, are listed in Table III. Three structure slenderness

ratios of 1, 3, and 5, which represent a low-rise, medium-rise, and high-rise structure, are
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Table ID. Floor Mass and Mass Moment of Inertia

Floor Floor Mass Floor Mass Moment of Inertia (Kton-sqrn)
Mass Ratio ()(ton) hI ! h3 i h5

~! 0.054 1.206 6.066 14814

2 0.108 2412 i 12132 I 29628

3 0162 3.618 I 18.198 44442

4 0216 4.824 \ 24.264 59256

5 0270 6.030 30.330 74070

6 0324 7236 i 36.396 ,
88.884

7 0.378 8.442 42462 I 103698

8 0432 9.648 48.528 118512

9 0.486 10.854 I 54.594 I 133.326

~JO 0.540 12.060 I 60.660 148.140

11 0.594 13.266 . 66.726 162954

12 0648 14.472
I

72.792 177.768
13 0.702 15678 78858 192582

14 0756 16.884 84924 207.396
15 0.810 18.090 90.990

I

222.210
16 0.864 19.296 I 97.056

,
237.024I

17 0918 20.502 ! 103.122 I 251838

18 0.972 21.708 l 109188 266.652
19 1.026 22.914 I 115.254 281466
20 1.080 24.120 ! 121.320 \ 296.280

studied These ratios are named as hI, h3, and h5, respectively. For the study foundation

half-width, they correspond to the Ooor height of 3.0 m., 9.0 m, and 15.0 m, respectively

1. Strustuql _ponse VI. Tim. The responses of the FIX-model and SSI-

model subjected to EI Centro eanhquake are shown in Figures 84 and 85 The

displacement responses Os and Dg of a SSI-model are compared to the response of a

FIX-modeL The fixed-base natural frequencies of both models are equal to 1.25 Hz In

SSI-model, the structure having the floor mass ratio of 10 and the slenderness ratio of 5

(hS) sits on a rigid rectangular foundation. The foundation has its mass ratio equal to 2
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and is embedded in the SO-soil The maximum of Os in Figure 84 (0 146 m at time equal

to 5.81 sec) is less than that of the FIX-model's displacement (0173 m at time equal to

642 sec) In Figure 85, the maximum ofOg (0.338 m at time equal to 5.86 sec) is greater

than that of the FIX-model's displacement. In both figures, a longer period of response in

the SSI-model is noticeable as a result of the system becoming more flexible (system's

fundamental frequency reduces from 1.25 Hz in the FIX-model to 1.04 Hz in the

SSI-model)

Figures 86 and 87 show the same comparison for the 0.7 Hz fixed-base natural

frequency's models subjected to Mexico eanhquake. Other structure properties and soil

conditions are the same. The maximum of Os in Figure 86 (0.257 m at time equal to 7.99

sec) and the maximum ofOg in Figure 87 (0.349 m at time equal to 8.01 sec) are greater

than that afFIX-madel's displacement (0.224 m at time equal to 7.875 sec). The system's

fundamental frequency drops from 0.7 Hz in tht: FIX-model to 066 Hz in the SSI-model.

This leads to the conclusion that a dynamic system becomes more flexible when

considering structure-soil interaction. Furthermore, the maximum of Og is greater than

that of the FIX-madel's displacement as a result of footing tran$lation and rotation. But

the maximum ofOs is not necessary greater than that ofthe FIX-model's displacement

1. Effec" of floor Mg. aDd Slsndemm Ratios. In Figures 88 to 91. the

floor mass ratio of SSI-model varies from 1 to 20 but the fixed-base natural frequency is

kept constant of 1.25 Hz by adjusting the structural stiffness with the varying masses

Structure slenderness ratios are selected to be hi, h3, and h5. The rigid foundation of

mass ratio equal to 2 is embedded in the SO-soil. This system is subjected to EI Centro
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eanhquake. As the floor mass ratio increases, frequency ratio and damping ratio decrease

(see Figure &8.). The effect is more prominent for higher slenderness ratio. Thi!\ implie:l

that, for an SSI-model, greater floor mass and height lead to a more flexible system with

less damping

As a single-story SSI-modcl has three degrees of iieedom, its three normal modes

include a rigid translational mode, a relative transla&ional mode, and a rigid rocking mode.

The rigid translational and rocking modes involve a horizontal translation and rotation of

the system's rigid-body The former reflects a foundation's horizontal translation and then

a horizontal interaction force The latter contributes to a foundation's rotation and then a

whole system's rotation. An interaction moment as well as a base moment can be used to

describe this rocking component. The relative translational mode involves relative

displacement between floor and foundation excluding a rigid-body rotational effect. This

relati\'e displacement is equal to Os and proportional to a base shear. While Os is only

influenced by the relative translational mode, Og (which is the floor d!siJlacement relative

to a ground system) is affected by all three modes, the rigid translational, relative

translational, and rigid rocking modes.

In Figure 89, the increasing of the maximum Og but decreasing of the maximum

Ds occurs as the floor mass ratio increases. A greater effect is noticeable in the structure

with higher slenderness ratio (h3 and hS). The maximum Os of the massive structure (floor

mass ratio = 10 to 20) is less than the maximum FIX-model's displacement. Therefore. for

the cases studied, greater floor mass and height results in less importance of the relative

translational mode but more importance of the rigid rocking mode. The change of the
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maximum Dg in the structure with hS is less in the floor mass ratio range of 10 to 20 than

that of 0 to 10. This phenomena also OCCUI"S in its maximum base moment and interaction

moment (see Figure 91) since they are the effect of the same cause, foundation rocking

The maximum Os of the structure with higher slenderness ratio is smaller as is its

maximum base shear shown in Figure 90. Therefore, the higher floor height leads to the

lesser maximum base shear and horizontal interaction force. The difference between the

maximum base shears and horizontal interaction forces is the result of foundation's

translations. These maximum base shears and horizontal interaction forces of the

SSI-model are less than the maximum base shear of the FIX-model. In contrast, the higher

floor height results in the greater maximum base moment and interaction moment as

shown in Figure 91. Especially for hS-slendemess ratio, the maximum base moment and

interaction moment of the SSI-model are greater than the maximum base moment of the

FIX-model.

In Figures 92 to 94, the same investigation is also made for 0.7 Hz fixed-base

natural frequency's system subjected to Mexico earthquake In the range of a massive

structure (floor mass ratio = 10 to 20) with hS-sienderness ratio, a large increase of both

maximum Og and Os occurs and the maximum Os is greater than the maximum

FIX-model's displacement (see Figure 92). This is due to the dominance of the system's

relative translational and rigid rocking mode. As shown in Figure 93, the maximum base

shear of the corresponding system is very high which implies the relative translational

mode's dominance and thus results in the large maximum Os It should be noted that this

increase of maximum Os is inconsistent with the previous cases studied. In the massive
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structure range of Figure 94, the larger maximum base moment and interaction moment

imply the larger contribution of the rocking mode.

The behavior of a dynamic system depends upon the combination of the system's

dominant modes. The influence of floor mass ratio and structure slenderness ratio on these

dominant modes is different for various systems. !n general. the larger floor mass and

slenderness ratios lead to the larger maximum Og, base moment, and interaction moment

as the result of the more foundation rocking. Dominance of the relative translation mode

as factors of the floor mass and slenderness ratio is not certain. Therefore, as the ratios

rise, the maximum Os decreases in some cases but increases in others. In most cases. the

maximum base shear and horizontal interaction force increa~ as the slenderness ratio

decreases.
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3. ElTects of Fiud-base Frequency. Figures 95 to 98 demonstrate the effects

of fixed-base frequency (I.25Hz and 30Hz) for a high-rise structure (hS- slenderness

ratio) The similar demonstration for a low-rise structure (h I-slenderness ratio) is shown

in Figures 99 to 102 The SO-soil condition and EI Centro earthquake are used Other

structure propenies are not changed. Figures 95 and 99 indicate the higher fixed-base

frequency (n 0) and the higher slenderness ratio (h5) lead to greater changes in the

frequency ratio and damping ratio. The lower frequency ratio is a result of the system

becoming more flexible.

In Figure 96, the maximum Dg of the high-rise structures having 125 Hz

fixed-base frequency (flexible structure) and 3.0 Hz fixed-base frequency (stiff structure)

increases as the floor mass ratio rises The increase in the stiff structure is greater than that

in the flexible structure These increases are roundly proportional to the differences

between the FIX-model's and SSI-model's maximum base moments (see Figure 98) This

implies that the increases in the maximum of Og are predominantly a contribution of

foundation rocking. For the massive stiff structure (floor mass ratio=15-20 and flO), the

rigid translational mode is also part of the increase of the maximum Dg. In Figure 97, the

corresponding system's horizontal interaction force's sharp increase and 1:lrger value than

the system's base shear hints at the dominance of a rigid translational mode. As the floor

mass ratio increases in Figure 96, the decrease of the nwwnum Os in the flexible structure

(fl25) is more obvious than that in the stiff structure (0.0). Also in Figure 97, the

difference between the FIX-model's and SSI-model's maximum base shears of the flexible

structure system (fl.25) is greater than that of the stiff structure system (0.0). This
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implies the greater importance of a relative translational mode in the stiff structure system

Both the maximum Os's and base shears of the SSI-models are less than those of the

FIX-models.

In the low-rise structure (see Figure 100), the increase in the max::num Og as a

function of the floor mass ratio is not as great as that of the high-rise structure since the

importance of its rigid rocking mode decreases. This lesser importance of the rocking

mode is evidenced by the small values of the maximum base moment and interaction

moment in Figure 102. The large increase of the maximum Og in the massive stiff low-rise

structure (see floor mass ratio=I8-20. hi. and fl.O in Figure 100) is a result of the rigid

translational mode's dominance. This occurrence is indicated by the corresponding

system's horizontal interaction force's sharp increase and larger value than the system's

base shear in Figure 100. The importance of the low-rise structure's relative translational

mode increases since the decrease of the maximum Os as a function ofthe floor mass ratio

is small (see Figure 100). The maximum Os of the stifflow-rise structure (flO and hI) is

even slightly larger than that ofthe FIX-model's displacement. Also the difference between

the FIX-model's anti SSI-model's maximum base shears of the low-rise structure (see

Figure 101) is smaller than that of the high-rise structure (see Figure 97) Of the stiff

low-rise struet'Jre (see 0.0 and hI in Figure 101). the maximum base shear in the

SSI-model is even greater than that in the FIX-model.

The stiffer structure (higher fixed-base frequency) results in the smaller responses

Also stiffer structure leads to the greater importance of all modes Therefore the behavior

(Og) of a flexible high-rise structure is dominated by its rigid rocking mode, a stiff
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high-rise structure by its rigid rocking and translational mode, and a massive stiff low- rise

structure by its rigid translational mode.

4. Effects of Soil's Layer Depth. In Figures 103 to 106, the influence of

different soil conditions (SO, 5I, and 52) is demonstrated for the flexible high-rise

structure (fl.25 and hS) The structure propenies and input motion are the same as in the

previous study. As the floor mass ratio increases, the change in the frequency ratio and

damping ratio of the system embedded in 5 I-soil is less than that of the system embedded

in SO-soil and 52-soil (see Figure 103) The change in the ratios of the system embedded

in SO-soil and 52-soil is almost the same. This implies that the effect of the rock base in

SI-soil condition (shallow soil layer) is important and results in a stiffer system The same

behavior of the system embedded in SO-soil and S2-soil is due to negligible influence of

the rock base in S2-soil condition (deeper soil layer) on the system studied.

As a function ofthe floor mass ratio, the change in the maximum Os and Og of the

system embedded in !) I-soil is less than that ofthe other two cases (see Figure 104) Since

a rigid rocking mode dominates in a flexible high-rise structure, this mode is the main

contribution to Og. Therefore the sm.iller change in the maximum Og of the system

embedded in SI-soil is due to its smaller foundation rocking. The latter is supported by its

smaller maximum base moment and interaction moment in Figure 106. The smaller change

in the maximum Os cf the system embedded in SI-soil indicates the greater imponance of

its system's relative translational mode. Also the smaller difference between the

FIX-model's and SSI-model's maximum base shears of the corresponding system is found

in Figure lOS In the same figure, the maximum base shear and horizontal interaction force
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of the system embedded in SI-soil are closer than those of the other two cases due to the

former's less rigid translational motion.

Therefore the system embedded in SI-soil (shallow so;llayer) \\nich is considered

as the stiffer soil systcm results in the lesser importance of the rigid translational and

rocking mode but the greater importance of the relative translational mode.

C. INVESTIGATION OF to-STORY STRUCTURE WITH CONTROL

In Figure 107. a dynamic system which is used to demonstrate the influence of

structure-soil interaction and control consists of a 10-story shear structure equipped with

an active tcndon system attached to its foundation and second floor (node no. 1). The

structure sits on a 6.0 x 6.0 m rigid square foundation having its 30-meter depth

embedded into a half-plane (018=1.0). Structural properties are: each floor mass (m,) ...

10 ton; each floor mass moment of inertia (I, -m,h",) ... 20.83 ton-sq.m; foundation mass

(mo) = 2875 ton; foundation mass moment of inertia (/0 ) = 172.5 ton-sq.m; floor

translational stiffness (k,) =1244 MN/m; proportional damping ratios (1'hand 1'h) ... 0.02

for the first mode and 0.10 for the second mode; and floor height (h,) ., 3.00 m for every

floor. Half-plane properties are: shear modulus of elasticity en = 7.2 MNfsq.m; soil

density (p) =2.0 gramlcu.cm; Poisson's ratio (u) ... 0.33; and hysteretic damping ratio (e)

... 0.04. The shear wave velocity (Cs) is 60 m/sec. The first 20-second 1940 EI Centro

eanhquake acceleration record, north-south component, is selected as the horizontal

acceleration at point 0 of the ground system's rigid interface. Since vertically incident

shear wave is assumed, the rotational component of the ground system is omined. As for a
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one-controller system, the control weighting matrix [R] consists of only one element r. To

obtain an optimal performance ofthe system, s1Ir ratio is varied parametrically.

The fundamental system frequency is 2.65 Hz for the FIX-model and 1.15 Hz for

the SSI-model. The smaller frequency in the SSI-model is a result of its greater flexibility

In a system with control, its frequency and damping ratio are incr:ased as s Ilr ratio

reaches an optimal point (the minimum point of performance index), For the FIX-model

(see Figure 108), the fundamental system frequency and damping ratio are increased. at

the optimal point (sl/r=O.6), to 2.85 Hz and 0.36, respectively. For the SSI-model (Figure

109), at the optun..l point (sl/r=O.6), the fundamental system frequency and damping

ratio are increased to 1 19 Hz and 0 IS, respectively. This is because control force. which

is related to the system's displacement and velocity vector by a gain matrix [G). helps to

increase stiffness and damping of the system. It should be noted that this effect is smaller

in the SSI-mode1. Displacement ('ontrol and velocity control are manipulated by SD and Sl'

in the state weighting matrix [S] and therefore in the gain matrix [GJ, which are chosen

to be equal to an arbitrary real number s1.

In a system withQut control, the maximum of the top floor displacement relative

to footing is equal to 0.053 m (X~bO) for the FIX-model and 1219 rn (x~~ -x:) for the

SSI-model. The larger displacement in the SSI-model may be a result of foundation

rotation 8: since the rigid rocking mode trends to dominate in a flexible high.rise

structure. Comparison of the top floor displacement relative to footing (X~bo) in the

FIX-model and the top floor displacement relative to footing excluding rigid motion

effect due to foundation rotation (x~ -x~ +h"I08:) in the SSI-model is shown in Figure
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110. Without the rotational effect. the envelope of both responses is quite similar

Therefore the larger displacement in the SSI-model as the result of foundation rot,uion is

verified. The FIX-model's period of response is shaner than that of the SSI-model due to

its more rigid model.

Figure III shows the same comparison for a system with control. The smaller

displacement in the FIX-model implies that the study system's control force is more

effective in reducing the fTX-model's translational displacement than the SSI-model's

relative displacement excluding rotational effect. For the FIX-model with control (see

Figure! 12), an increase of sllr ratio results in an increase of the maximum of control

force and then a decrease of the maximum of the top floor displacement relative to

footing ( x~~ ). At the optimal point, the maximum displacement is reduced from 0.053 m

(without control) to 0.016 m with the maximum control force of8.68 MN.

For the SSI-model with control (see Figure 113), an increase of sllr ratio also

results in the same manner as the case of the FIX-model. But the change in the maximum

of the top floor displacement relative to footing excluding rotational effect (DlSP W/0

ROT) as a function of sllr ratio is very smaU. This indicates that the decrease of

displacement relative to footing is mainly the result of the decrease of footing rotation. At

the optimal point, the maximum displacement is reduced from 1.219 m (without control)

to 0.735 m with the maximum control force of68.54 MN. The footing rotation is reduced

from 0.035 radian (without control) to 0.022 radian as shown in Figure 114 The

maximum of relative displacement excluding rotational effect is slightly changed from

0.052 m (without control) to 0058 m as shown in Figures 110 and III for the case ofthe
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SSI-model. Since interaction moment and footing rotation are related to the impulse

velocity coefficients of ground system by the convolution integral, the former is reduced,

as expected, from 6613 MN-m (without control) to 39) 1 MN-m at the optimal point as

shown in Figure 115. Also in the same figure, the horizontal interaction force is reduced

from 1.51 MN (without control) to 137 MN

Therefore the active tendon system, attached to the foundation a.,d second floor of

a structure embedded in a soft soil, limits structural responses by mean of reducing

foundation rotation. Its control force also reduces a horizontal interaction force and

interaction moment. This active system is not so effective in reducing relative floor

translation. To limit structUral responses even more, the second active system on the upper

floor is recommend.:d.

Since the foundation degrees of freedom in an SSI-model distinguish this model's

behavior from a fiX-model's, the responses of these two models are different and thus

require different control forces The control force required in the SSI-model is greater

than that in the FIX-model as a result of the former's larger response. Furthennore, an

additional amount of control force is needed to limit the movement of foundation Even in

a c1osl'Ci-loop control, the structural responses are directly measured by response sensors.

the control force determined by a FIX-model's gain matrix may not be large enough to

limit the foundation movement and thus the structural responses Moreover, the control

force set by the FIX-model's gain matrix is dictated only by floor translations. By using the

SSI-model's gain matrix, a suitable control force is detennined as the functions of both

floor and foundation responses.
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VIII. CONCLUSIONS

A. MATHEMATICAL MODELS

Four mathematical models of a multistory seismic shear structure were presented

First. a fixed-base model (FIX) is valid where the structure is placed on rock. If the

stNcture is founded on soft soil, a second model, so-called structure-soil interaction

model (551), may appropriately be employed. An integrated active tendon control to limit

dynamic system's response results in other two models, a FIX-model with control and

SSI-model with control.

The SSI-model can be applied to a seismic structure with a rigid rectangular mat

foundation embedded in an unbounded soil. The unbounded soil domain is modeled as

unbounded horizontal layers stacked on a half-space (layered half-space). An isotropic

viscoelastic property of soil may vay with depth but remain constant within the individual

layers The indirect boundary element method is applied to unbounded part of soil

(free-field system), while the finite element method with 4-node rectangUlar element is

employed to bounded part (system's excavated part). In the indirect boundary element

me1hod, an adaptive quadrature integration technique is used in a Green's influence

function's transformation from the k wave-number domain to space domain For the

integration along a boundary (foundation-soil interface), Simpson's method is employed.

The frequency-dependent time-derivative flexibility coefficient of sround system is

determined and then, by using the discrete Fourier transfonnation (or fast Fourier

transform) with causality condition, an impulse velocity coefficient is obtained. By virtue
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of the soil coefficient's time derivative, its static component is not required In a discrete

time fashion, a structure-soil interaction force is computed through the convolution

integral of the impulse velocity coefficient. This coefficient relates the difference of the

ground system's and foundation's responses to the interaction force Since venically

incident shear wave and shallow foundation are assumed, the rotational component of the

ground system's response is neglected.

In the integrated control systems, the concept of a generalized optimal active

control is applied. The optimal control rules of both FIX-model and SSI-model are

developed based on the generalized perfonnance indexes (objective functional) in which

an endpoint state ....ectol is iuduuc:d. Euler's equation and transversality condition are

enforced to obtain an optimal solution. This results in the constant feedback gain matrices

(.::ontrol laws) which are neither a function of time nor time increment. The weighting

matrix [S] associated with the endpoint state vector is chosen to be either a row matrix or

a symmetrical matrix Since this weighting matrix is integrated into the gain matrix, the

displacement control and velocity control are manipulated by the weighting elements

(SD, 'YDand Sv, yv) corresponding to a system's displacement vector and velocity vector,

respectively. In the SSI-model with control, foundation responses (translation and

rocking) are included in the state vector and then dictate control force. Therefore, in a

closed-loop control, not only a response sensor on each floor but also an innovative sensor

for a foundation is needed. The foundation sensor may detect the pressure (or stress or

strain) at a foundation-soil interface and then convert to the foundation's response relative

to the ground system.
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To obtain a system's response, the state equation is transformed into its canonical

form and the first-order differential equation is then solved by applying the trapezoidal

rule. For all cases (FIX-model and SSI-model with or without control), this technique is

implemented on the basis of time domain.

B. STIJDY OF SOn.. SYSTEMS

In the indirect boundary element method (mEM), the calculation of the

frequency-dependent dynamic stiffitess coefficients in the free-field system needs only the

displacement Green's influence function. Unlike the finite element method (FEM), this

melhod does not require the fictitious boundary and interior nodes for an unbounded soil

Therefore it is simpler to determine the coefficients of system's excavated part (bounded

domain) by the finite element method and then subtract them from those of the free-field

system to yield the corresponding coefficients of the ground system. Since the errors

inherent in the two different methods (mEM and FEM) are not consistent, this subtraction

technique may yield problematic results in the vicinity of the natural frequency. Therefore

the technique is not recommended in cases of small damping and high foundation

embedment to half-width ratio (D/B). In such cases, the indirect boundary element

method, which requires Green's influence functions for both displacement and surface

traction., should directly be applied to the ground system.

ParlIt1':tric studies of dynamic stifthess coefficients were made on various soil

systems to investigate the influence of soil hysteretic damping ~. foundation embedment

D, and the depth H of a soil layer on rock. An investigation of the aetuaI site (Takenaka
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Experimental Building Site or TEDS) was also presented. These results can be

summarized as follows.

1. Syst,m'. ElC,v'tw P,rt. Since there is no radiation of energy in a bounded

domain, the damping coefficient of undamped medium is zero. For a damping case. the

damping coefficient arises as the result of frictional loss The spring coefficient has no

significant change as the hysteretic damping ratio increases. In the vicinity of the natural

frequency, both spring and damping coefficients change as the reverse function of the

damping ratio. The damping ratio can cause considerable change in the vibratIonal mode

The spring and damping coefficients convert to zero where their dimensionless frequency

approaches zero Thus their static component (CJr=O) of the system's excavated part is

equal to zero. The bigger DIB results in a lower first mode natural frequency

For the actual site (TEBS), its coefficients are very close to those of the

homogeneous system having DIB = O.S, since the excavated part of thf: actual site is

assumed to be the homogeneous medium having DIB =OS. The difference is due to the

hysteretic damping and Poisson's ratio used in aetuaI site and homogeneous medium

1. FlJS:field SYst,m. Two types of free-field systems were investigated. The

influence of foundation embedment D was based on a free-field system with a

homogeneous half-plane Then the effect oflayer's depth was studied in a free-field system

comprising a homogeneous layer with depth H built on rock base.

The natural frequencies of the free-field system are the same as those of the

system's excavated part. In contrast to the system's excavated part, the spring I:ld damping

coefficients do not transform to zero as their frequen(..'Y reaches zero. This indicates the
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non-zero static stiffhess coefficient of the free-field system. The increase of DIB has no

significant effect on the horizontal and vertical spring coefficients On the contrary, in the

low frequency range (less than the first mode's natural frequency) the rocking spring

coefficients increase wt-iJe DIB increases. Due to the free-field system's radiation of energy

toward infinity, the damping coefficient is not equal to zero. The increase of the horizontal

and vertical damping coefficients is proportional to DIE. More remarkable increase can be

seen in the rocking damping coefficient, especially for DIB = 2.0.

As depth H of the layer decreases, the spring coefficients in the low frequency

range increase. The effect is more noticeable in the vertical direction The spring

coefficients of the system with a layer on rock are greater than those of the system with a

half-plane. For RIB =2.0 and 3.0 (H = layer's depth and B = foundation half-width), the

spring coefficients have a stronger frequency-dependence. A smoother spring coefficient is

found in the case of a very shallow layer (HIB=I.O). In contrast to the system with

half-plane, the one with a layer on rock demonstrates a cutoff frequency below which only

a small amount of energy can be radiated toward infinity. This leads to small damping

coefficients below that frequency The corresponding coefficients are less than those of the

half-plane medium. A bigger HIB leads to a smaller cutoffftequency.

For the actual site (TEBS), the strongly frequency-dependent coefficients of this

nonhomogeneous domain are expected. Amplitudes of the coefficients are close to those

of the homogeneous half-plane having the same DIB, except in the vertical direc.tion and

rocking as a result of the TEBS's half-plane. The level of TEBS's half-plane. in which
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average shear wave velocity is about 2 times faster than that of topping layers. is quite

deep (61.8m). Therefore the cutoff frequency is very low.

3. Groupd System. The behavior of this system's coefficients tends to be the

same liS that of the free-field coefficients in the low frequency range. The foundation

embedment barely has any effect on both horizontal and vertical spring coefficients On the

contrary, the deeper embedment leads to stronger rocking spring coefficients. For both

translation directions and rocking, the larger damping coefficients are founr. in the deeper

foundation embedment. A greater effect appears in the rocking. As for depth of soil layer

on rock base. spring coefficients of the more shallow layer system are greater, especially in

a vertical direction Spring coefficients of the system comprising a layer on rock base are

larger than those of the system with a half-plane. But the system's damping coefficients are

smaller below a cutoff frequency and then increase to the level of those corresponding to a

half-plane medium. The cutoff frequency exists at the same point as that in the free-field

system. Both spring and damping coefficients display a strong dependence of frequency,

except in the case of a very shallow layer. In a high frequency range, a large oscillation is

demonstrated and the negative spring coefficients occur to a greater extent. For the actual

site (TEBS), the same conclusion in the free-field system is applied here

Therefore. for an embedded foundation, the assumptit'n of a sulface foundation is

too conservative. This is because foundation embedment does increase damping

coefficients and rocking spring coefficient. As for impulse velocity coefficients. the

coefficients of the system with a half-plane attenuate faster than those corresponding to a

layer on rock medium since more energy in the half-plane propagates toward infinity. The
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rock base of a very shallow layer has an effect on a rocking impulse velocity coefficient as

its dynamic-stiffi1ess coefficient is stronger

C. BEHAVIOR OF TOTAi DYNAMIC SYSTEMS

1. System without COntrol. In an SSI-model, two types of displacement

concerning structural failure were illvesti~ated Ds is defined as floor relative displacement

excluding rigid motion effect due to foundation rotation. Og is floor displacement relative

to ground system. The former is related to a structure system's strain energy The latter

concerns the structure coUision with an adjacent system. Regardin& foundation failure, a

horizontal interaction force and interaction moment as the measurement of maximum

stresses along a structure-soil interface were examined. In a single-story SSI-model, three

normal modes include a rigid translational mode, relative translational mode, and rigid

rocking mode. A base shear and Os are directly effected by the dominance of a relative

translational mode while Og is influenced by the dominance of every mode. A base

moment and interaction moment are dominated by the rigid rocking mode much as a

horizontal interaction force is controDed by the rigid and relative translational modes. In a

FIX-model, a floor relative displacement, base ~hear, and base moment were compared to

the corre~ponding responses of the SSI-model.

The longer period of response in the SSI-model is noticeable as a result of the

system becoming more flexible. The maximum of Og is always bigger than that of the

FIX-model's floor reiative displacement due to foundation translation and rotation. The

maximum of Os and base shear may be larger or smaller than that of the FIX-model's floor
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relative displacement and base shear. respectively. The fonner are larger in the case of a

relative translational mode's dominance.

In the SSI-model, its greater floor mass and/or height result in a more flexible

system as well as the more importance of a rigid rocking mode. The latter leads to the

larger maximum for Dg, base moment, and interaction mome"lt. In the case of a high-rise

structure. tJus maximum base moment is larger than that of a FIX-model On the contralj,

the translational modes tend to dominate in a low-rise structure, which leads to the greater

maximum of Os, base shear, and horizontal interaction force. Therefore, both translational

and rocking modes potentially dominate in a massive low-rise structure such as a nuclear

reactor, and then produce a large response The dominant mode of a similar dynamic

system subjected to different seismic excitation could also be different. This leads to a

distinct structural responses.

The fixed-base natural frequency ofa dynamic system is used as a relative indicator

whether a structure is stiff or flexible. In general, a stiff structure leads to a smaller

response but greater importance of every mode, especially a rigid translation mode

Therefore, in a stiff high-rise structure, a large response is caused by the dominance of

both rigid rocking and translational modes. The dominance of a rigid translational mode is

found in a massive stiff low-rise structure. Also a stiffer structure results in a bigger

change in the total dynamic systtm's frequency.

To some extent, the level of rock 'lase has an influence on a flexible high-rise

structure. The rigid rocking mode is nOrr'.a1ly important for the flexible high-rise structure

embedded in soil (half-plane). This importance is reduced in the case of a shallow soil
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layer on rock as the result of its smaller rocking impulse velocity coefficient In tum, this

leads to the smaller maximum of Dg. base moment, and interaction mORlent. For a stiffer

soil system, the greater importance of a relative translational mode but lesser importance

of a rigid translational mode is described. In contrast to a stiff structure system mentioned

in the previous paragraph, a stiff soil system leads to a smaller change in the total system's

frequency

1. System witb Control. A flexible high-rise structure with an active tendon

system attached to its foundation and second floor was investigated. As the structure

(without control) interacts with soil, the total dynamic system predictably becomes more

flexible (smaller system's frequency). Dominance of its rigid rocking mode leads to a large

foundation rotation and thus greater floor translation than that of a FIX-model. In a

closed-loop control, its control force (which is the function of displacement and velocity)

strengthens the system's stiffiJess and damping. Therefore the frequency and damping ratio

of an integrated control system are increased. A lesser impact is noticeable in the

SSI-model. For the control system used in this study, structural response is limited by

means of reducing foundation rocking rather than relative floor translation as done in the

FIX-model. Consequently, this control system's interaction moment is greatly reduced as

is its honzontal interaction force to a lesser extent. In order to reduce the floor translation

without rowional eftect, a second active tendon control on an upper floor is

recommended. The larger control force in an SSI-model is required to limit its larger

response and foundation movement. Even this larger response is directly detected by

response sensors in a closed-loop control. A control force calculated by a FIX-model's
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gain matrix may not be large enough to limit the response of a struc.ture on soft soil.

Proper control force as a function of floor translation, foundation translation and

foundation rotation can be detennined by using an SSJ-model's gain matrix
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APPENDIX A

GREEN'S INFLUENCE FUNCTION



In the indirect boundary element method, a so-called fundamental solution is

needed for an applied load acting on a continuous system. In order to determine the

dynamic stiffiless of the free-field system in Subsection A of Section V, displacements

up,(x,:) and wp,(x,z), on the assumed line which subsequently forms the structure-soil

interface, are needed for the applied distributed loads acting on the same line of a

continuous soil system.

I . Displacements in k-domain for Loads on Vertical Line.

As shown in Figure 116, the horizontal linearly distributed load p(x.:). with ncdal

values ofP; and Prl' and the vertical linearly distributed load r(x.:), with nodal values of r:

and rr I' act on part of the vertical assumed Iilae between node J and node j+ 1 in x- and

:-direetion, respectively. The procedure to determine the displacements is divided into

two parts In part I (superscript l) as shown in Figure 117, an additional horizontal

interface needs to be introduced through node j The introduced layer j on which the

distributed loads aet is fixed at the interfaces. Corresponding reaction forces, pJ(Ie).

P~l (Ie) and R;(Ie), R;+I (Ie) in x- and z-direetion, are calculated to achieve this condition

whereby local displacements IIfw</c,z) and wfw(/c,z), between the nodes, are determined. In

part II (superscript II) as shown in Figure 118, unplitudes of the reaction forces are :hen

applied at the nodes of the total soil system with the opposite direction; displ~ements

uJ[,(ic,:) and w;!r<k,z) along the vertical assumed line are calculated. To find global

displacements up,(Ic,z) and w,,(/c,z), local displacements (part I) have to be superimposed

on them (part II). Subscript pr indicates that displacements u and w in x- and :-direction

are the result of both applied distributed loadsp and r.
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Figure 116. Linearly Distributed Loads on Vertical Assumed Line
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Figure 117. Loaded Layer with Reaction Forces (pan I)
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Figure 118. Total Soil System with External Forces (part II)

.. Fiud Layer (Pan n. For harmonic excitation with frequency CJJ, the

dynamic-equilibrium equations of loaded layer j (see Figure 116) in Cartesian coordinates

x and z can be written as

G.r"r(X, z) + 't.c.z(x,z) =-p<a>%II(X,Z) -p(x,z) (303)

(304)

Normal stress and shear stress amplitudes are denoted as (J and 'to respectively.

The first subscript denotes the direction of the stress component. The second one denotes

the direction of the infinitesimal area's normal that the stress component acts on. A comma

denotes a partial derivative with respect to the subscript following it The letter p

represents the mass density. Displacement amplitudes u(x,z) and w(x,z) are in x- and

z-direction, respectively. Line1rly distributed lolds p(x,z) and r(x,z) can be expressed as
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(305)

(306)

where the letter d represents the depth ofthe loaded layerJ and 8(x) represents the Dirac-

delta function equal to 1 at x =0 and 0 where x ~ 0 .

By using the stress-strain relationship (Hook's law) and strain-displacement

relationship, the Ronnal 3tress and shear stress amplitudes can be expressed as

<Jx(X,z) =[2T" + A:)U,.r(X,z) +I.:w.: (r, z)

't.\:(x, z) ='t::t(x,:) =r{u.z(x,z) +w,.r(x, z)l

(301)

(308)

(309)

where the complex shear mtldulus r and the complex Lame constant A' [Equations

(512), (519), and (535») can be expressed as the functions of Young's modulus of

elasticity E, Poisson's ratio \), and the ratio ofthe linear hysteretic damping ~ as foUows

and ",_ = '\>(1 +2l~) E
(I +\)(1-2\»

(310)

As discussed in Equations (568) to (571), the x-: plane displacement equations of

layer can be derived and expressed as follows

U(X,:) = u(k, z)exp (-th)

w(x,z) =w(k,z)exp (-\A%)
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with

u(k,z) =/..[Apexp (lkft) +Bpexp (-tkft)]

-m..s [Asvexp (tk.s:) - Bsvexp(-tksz))

w(k z) =-1..f[Apexp (tAft) -Bpexp (-tkft))

-m..[Asvexp (tksz) +Bsvexp(-tks:»

(313)

(314)

where I"ICp =m"ICs needs to be enforced.

The symbol l represents H. The scalar Ie represents the wave number which is

equal to CiJlc. The letter C st:mds for phase velocity which is equal to Cpl/.. and Cs/m"

Cp and Cs represent P- and S-wave velocities, and are equal to J(21'" +A.•)!p and

Jr·Ip , respectively. Scalars Ix and m" may be considered propagating directional cosines

to the x-axis (=cos '1'1' and =cos 'I'.J ofthe P- and S-wave, respectively. Algebraically, they

are equal to IcCp!w and IcCs!w. respectively, which can be real, imaginary, or complex

numbers. Therefore this interpretation holds only for real vllues smaller than or equal to

1. Scalars f and s are J11/; - 1 and JI/m~ - 1 ,respectively. AI' and Asv are the

amplitudes of the P- and SV-wave traveling in the negative z-direction (incident waves).

Bp and Bsv are the unplitudes of the P- and SV-wave traveling ill the positive redirection

(reflected waves).

Substituting the stresses in Equations (307) through (309) and the displ';'~f!I1Ients in

Equations (311) and (312) into the dynamic-equilibrium Equations (303) and (304) results

In
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-p(l)2 11(k,z)exp(-w} -p(x, z}

-p~2w(k, ;)exp(-oo) - r(x, z}

(315 )

(316)

Distributed loads p(x,z) and r(x,z). defined in Equations (305) and (306), are th~n

expanded in tne x-direction into Fourier integrals, with term exp(-tJa), as

I f- I [ zJp(k, z) =2n: _ p(x, z',exp (th)dr =2n: PI + (P,+! -PI)d (317)

(318)

Thus, using Equations (315) to (318) and omitting term exp(-tJa), tht: equilibrium

equations of loaded layer, for harmonic motion in k-domain, can be written as

By inspection, the particular solutions (superscript P) of Eq'Jations (319) and

(320) can be obtained and written in matrix form as
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with

~

{

PJ luP(k,z) rJ
{ -..p(k )} = [uwpr"(k,z)]

W" ,Z j J Pr+1 j
'rJ

(lIWpr"(k,z)]J =

(321 )

where

I [ -(1 -zld)A(k) B(k) -(zld)A(k) -B(k) ]
2Jt B(k) -(I -zld)C(k) -8(k) -(zld)C(k) (322)

- I - q
C(k) = k~rs2 ,D =C; (323)

and the j subscription for vectors or matrices denotes that they are associated with

distributed loads on and/or physical properties oflayerI

At the top (node j, z==O) and the bottom (node j+ I, z=d) of loaded layer J, the

panicular parts ofcorresponding displacements can be obtained as

with

19';
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[

-A(k) B(l) ° -B(l)]
[uw ~(k}) = _I B(k) ~(k) -~(k) _0

'P J 21t 0 B(k) -A(k) -B(k)

B(k) 0 -B(k) -C(k)

where the subscript • denotes that the given matrix yields nodal values.

(325)

Based on Equations (308), (309), (311), (312), and (321), on any :-planes

(:-=constant) the particular parts in k-domain of the nonnal stress in z-direction and of the

shear stress in r-directi 'l can be obtained as

=~ [ lkA(k)(D - :)(d-z) -tkdB(k)(D - 2} +C(k)D

lkA(k)(D-2)z lkdiJ(k)(D-2)-C(k)D l{ ~; ) (326)
Pj+1

rj+l

~fr(k,z)=r-[u~(ktz) - t,kwP(k,z)]

=i~[A(k) - wiB(k) lkC(k)(d - z)

-A(k) + \kdB(k} (327)

The particular parts of reactions at the top and bottom of the loaded layer are

By using Equations (326) and (327), they can be obtained in matrix form as
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with

where

[

P';(Ic) I {P }P!;(Ic) =[PRpr.'{Ic)) ~
~I{k) J Pj+1

~I(k) rj+1

[
p ,;:, ] _ [ -A(k) + lkd1J{k) -lkdC(lc) ]

'Rp (1,1) - -tkd4{k)(D-2) tJrdB(k)(D-2)-C(k)D

[p ,;:, ] _ [p ,J:. ] _ [ A(k) -1kdB(k) 0 ]
'Rp 0.11 - 'Rp (2,1) - 0 -lkd8(k){D - 2) +C{Ic)D

[pRprf: ] _[ -A(k) + lAd8(k) 1lrdC{k) ]
(1.1) - tkd4(Ic)(D-2) tkdB{Ie){D-2) -C(k)D

(328)

(329)

(330)

(331)

(332)

To complete the first pan of the prcx:edure, the homogeneous pans (superscript

H) of the displacements and reactions will be determined and superimposed on the

particular ones. Boundary conditions at node j and node j+1 of the homogeneous

Equations (313) and (314) must be equal to the negative values of u;(Ie). W;(Ic). U~I (Ie),

and Mo'~1 (Ie) in order to fix those two interfaces of the loaded layer. The homogeneous

Equations (3 13) and (314) ean be rewritten into matrix fonn in terms of the unknowns AP'

201



with

{ u(k,:) } = [uIIIAB(k,z)) { ~: I
w(k,:) I Asv

I BSJ,' J

[uwAB(k, :»)/ =

(333)

[
Irexp( t.ifz) Irexp(-tkft) -mrS exp(W:) m..s exp(-\ks:) ] (334)

-Irfexp(tkft) I..jexp(-tkft) -mrexp(l.b:) -m..exp( -11:s:)

By using Equation (333), the unknowns AI" Bp. Ano and BIII , can be expressed in

tenns of four boundary conditions at the top and bottom of the layer as

(335)

with

(336)

where

[
-s s ]

[uwABI1 .2d =m. -1 -1
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[uwA.B 1=I [ exp(lkfd) eXP(-lkfd )]
(2.11 If -jexp(tkfd) jexp<-tkjd)

[
,.AI D ] _ [-sexp(tksd) sexp<-lKsd) ]

UWnu(22) - mlf
. -elCp(tksd) -elCp(-lKsd)

(339)

(340)

Knowing the boundary conditions and then using Equations (324), (333) and

(335), the homogeneous parts ofthe displacements can be obtained as

{
uH(k, z) } ; I"",pr"(k,zl) J ~; 1
wHek. z) J ) lPt'"1

rJ+1

with

(341 )

(342)

local displacements (part I) are the summation of the particular parts in Equation

(321) and the homogeneous parts in Equation (341) which can be expressed as

with

(343)
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Homogeneous parts of the reaction forces can be determined by using the dynamic

stiffitess of the horizontal layer in k-domain. As shown in Equation (445), external forces

and nodal displacements of layer j are related to its stiffness matrix as

(345)

By substituting negative values of the particular parts of the nodal displacements

into Equation (345). homogeneous parts ofthe reactions can be obtained as

f pJj(k) { p) }
J ~(k) = [PRp~(k)] r)

l~I (k) ) P,..I

~I(k) rJ+1

with

(346)

(347)

For loaded layer J. the reaction forces (see Figure 11 7) to counterbalance the

linearly distributed loads and fix the interfaces can be obtained by combining Equations

(328) and (346) as

f J>;<k) {P) }

t
RJ(k) =[PRpr:(k)] r)

pi,..1 (k) J P,..I

R:"1(k) r,..1

204

(348)



with

(349)

b. fres Lanr (Part m. The dynamic-stifihess matrix [S;_SI" (k) ] of the total

soil system which consists of N-l layers and a half-space (see Figure 119) is first

assembled by using the direct stiffiless approach. In the assembling process, the stiffness

matrices of two adjacent layers and half-space are overlapped on the matrix's elements

corresponding to the same node Superscript T stands for the total soil system.

In Equations (445) and (488). the dynamic-stifthess matric~s [S~-sl·(k)l of any

horizontal layer i, for i=I,2, .. ,N-l, relate displacement amplitudes u and w at 'lode I and

node i+ 1 to load amplitudes P and R at the same nodes. The force-displacement

Soil III

Soil II

Soil I

1 PI

----.:.2ILar
er

I ::~P'

i+a~i R.t:~"':~-I-.-----
R,.I+ p..._1

N - 1t-L-a-y-er-N-_-I----R-N-I t+....::..~-----
N ~-------R-NrP

zl

Figure 119. Total Soil System in k-dorr.ain
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,

relationship of the half-space can be obtained by the dynamic-stifthess matrices [ ~-sv (k) ]

in Equations (460), (468), and (501). Both relationships can be expressed as foUows

{
Po(k) } =[~ (k)J{ uo(k) }
Ro(k) P-STI wo(k)

(350)

(351 )

As shown in Equations (311) and (312). the variation of displacement amplitudes

II(X,Z) and w(x,z) in the x-direction is determined by wave number k and is thus constant

with depth for the layer. Boundary conditions at the interface of two adjacent layers and

half-!lpace force the value of k to be constant for the total soil system. For a given

frequency Cd. phase velocity C has to be constant (C-fJJIk) for alIlayen and half-space.

After determining [st.-sv(k)1and [s",o-sv(k)] by taking this into consideration. the total

dynamic-stiffiless matrix in k-domain [S~.,w (k)] can be assembled and expressed as

r PI(k) u\(k)

RI(k) wiCk)

P,(k)
=[S~(k)J

fI,(k)
(352)

R,(k) w,Ck)

PN(k) uN(k)

RN(k) l wN(k)

For the distributed low aettng on the vertical usumed line c,fany layer j between

node j and node j+ I, radians at the corresponclina nodes were detennined in pan I u
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shown in Equation (348). Applying these forces in the opposite direction at the same

nodes to the total soil system (see Figure 118), nodal displar.ements at any nodE: 1 and

node ;+1 can be calculated. Using Equation (348) and (352), they can be expressed as

(353 )

with

l'[ T ,]-1)=-SUB:, Sp-sv(k)

(354)

where SUB,,([S~(k)rl) is the submatrix of dimension 4 by 4, comprising the

coefficients in the matrix [S~-sv(k)r l
from row 4i-3* to row 41* and column 4j_3 th to

column 4/' and [PRpr!(k)]j is shown in Equation (349). The i superscription for vectors

or matrices indicates that they are associated with layer "s displacements.

Displacements u::'(k, z) and w:f,(k, z) between node i and nodt i+ 1 are determined

by using nodal displacements in Equation (353) as the boundary conditions of

homogeneous Equations (313) and (314) Using Equations (333), (335) and (353), the

displacement vector in part II can be obtained as
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with

·
r P III I I I

{
u~(k,;.) } = [UWprll(k,z»)'t rJ

wpr(k, z) J P1+1
J

r1+1

(355 )

(356)

~. Global Disp"~cpaepU. Along the vertical line in any layer i. for i=I,2•.. , M

where M = number of layers along the vertical assumed line, on which no distributed

loads act (i • j), global displacements u,,(lc.z) and WI,,(lc.z) are equal to the displacements

determined in pan n (355) and can be written u

with

(lIWpr(k,z»;"'lJ == -[IIWAB(k,z)J,[IIWAB.(k)]~1 SUBv([S~(k)r l
)
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Along the vertical line in any layer i on which the distributed loads act (I ;j), global

displacelll.:nts "",(k,z) and w,..(k.z) are the combination of displacements obtained in pan 1

(343) and part n (355), and can be expressed as

{
IIp,(k,z) r;aJ

= { "~,(k,z) } +~ "~(k,z) }' = [UWPr(k,Z>J 1"*'Jl ~;) (359)
wp,(k,z) J wp,(k,z) l wp,(k,z) ; p;....

; . ; ,,....

with

[uwp,.(k, z)]"~ =[uwprP(k, z)] - [vwAB(k, z)],[uwAB.(k)],-1 [uwpr!'(k)]
J' ;

-[uwAB(k, z)l,[uwAB. (k)r1SUBy([ S~-sv(k)r )
(360)

2. Displacements in k-dnmain for Load, on Horizontal Line.

As shown in Figure 120, the horizontal linearly distributed load p(x), with nodal

values ofPI and PI+I in x-direction, and the vertical linearly distributed load rex), wit" nodal

values of'l and,1+\ in z-direction, act on pan of the horizontal assumed line between node

I and node /+ 1. which i:.:s underneath layer M. Since the distributed loads act on the

horizontal interface, not between the interfaces, the first part of the procedure mentioned

in the previous subsection is not required.
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assumed lines

I. p(r) pt+1 \I 1 x
J~~E.~l~-1--+

r(x) r/+I

Soil I

Soil II

SOIl HI

Figure 120. Linearly Distributed Loads on Horizontal Assumed Line

Linearly distributed loads p(x) and 1'(x) can be expressed in matrix form as

{
p(x) } = [ (I-r/b) 0 xlb 0 ]{ ~: }
r(x) 0 (I - xlb) 0 xlb Pl+l

rl+l

(361)

where the letter b is the length between node / and node /+1. Then the distributed loads

are expanded in the x-direction into Fourier integrals. with tenn exp(-\h). as

{
PM+l(k) } = _1r{P(X) }exp(\h)dr
RM+l (k) 21t 0 r(r)

=[pRpr.(k)]MJ{ ~: }
PI+1

'1+1
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with

where

[PD--r.(k)] = _I[PPI 0 PPI+\ 0 ]
"y .V.I 2ft 0 Rrl 0 Rrl+\

IPPI+\ =Rrl+\ =k2b[exp(tkb)(1-tkb)- n

(363)

(364)

(365)

The M. / subscription for vectors and matrices denotes that they are associated with

distributed loads on the horizontal element between node / and node /+ 1 which are on the

horizontal interface underneath layer M

These external loads are then applied to the total soil system at node M+ 1

corresponding to the horizontal assumed line (see Figure 120). By using the total

dynamic-stiffness matrix [S~-sv(k)] mentioned in Equation (352) and the external loads in

Equation (362), nodal displacements at any node; and node ;+ I on vertical line can be

obtained as

{

u,(k) } { Pi }
w,Ck) =[uwpr.(k)J.~,1 r/

u ,-.1 (k) Pl+l

wl+l(k) M,I rl+\

with
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where SIlhlM( [ S~-$l{k)r') is the submatrix of dimension 4 by 2 This dimension

comprises elements in the matrix [S~-.w<k)r l
from row 4i_3 lti to row 4i'" and column

4M_1 1ll to column ~. [PRpr.(k)) can be obtained from Equation (363) The i

superscription for vectors or matrices indicates that they are associated with layer ls

displacements.

Analogous to part IT of displacements for lollds on the vertical assumed line in the

previous subsection, displacements "/W(k,z) and ....".(k,z) between node I and node 1+ I are

calculated by using nodal displacements in Equation (366) as the boundary conditions of

displacement Equations (313) and (314) Using Equations (333), (335) and (366), the

displacement vector can be obtained as

{ Upr(k,Z)}' = [1IWpr(k'Z)]~(J{~; }
wpr(k, z) J,fJ Pt.1

Tt.l

with

[uwpr(k,z)]~(J = [uwAB(k,z»,[uwAB.(k)rl
[vwpr.(k)]~.l

= ruwAB(k, Z)], [uwAB. (k>rl
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3. Displacements for Vertically Incident Wave.

L Load, 9' Vertiql Liae. A procedure is analogous to Subsection I. For the

venically incident waves which correspond to a zero wave number k, displacement

equations [see Equations (572) and (573) of Appendix C] can be expressed as

u(x, z)k>oO = -A ~'exp (~:) +Bsvexp (- ~: ) (370)

(371 )

Using stress Equations (308) and (309) and displacement Equations (370) and

(371), the dynamic-equilibrium Equations (303) and (304) for loaded layer J can be

refonnulated as

(372)

(373)

Displacements in Equations (372) and (373) are uncoupled. By inspection.. the

panicular solutions of these equations can be obtained in matrix fonn as

(374)

with
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[uw r(:))boO = -C~ [1 -:Id 0 rid 0 ]
'P J 21tCJ)~r 0 I -zld 0 rId (75)

At the top (node ).l ::: 0) and bottom (node j+ I,l = d) of the loaded layer, the

particular parts of corresponding displacements can be obtained as

with

[

1000]rl: boO __ -C~ 0 I 0 0
[uwp .), - 21tCJ)2r 0 0 I 0

000 I

(376)

(377)

Bast.-d on Equations (308), (309), and (374), on any z-pianes (:=constant) the

particular pans of the nonnal stress in z-direction and the shear stress in x-direction can be

obtained as

c~

t~(z) =r u~(:) = 2ru:,~d(P' - PJ+I)

(378)

(379)

By using Equations (378) and (379), the particular pans of reactions at the top and

bottom of the loaded layer can be obtained in matrix fonn as
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with

(380)

(381 )

Homogeneous Equations (370) and (371) can be rewritten in matrix form in terms

of the unknOMlS A,.. B,.. AoW' and Bsv as

{ i!(z) } =[UWAB(Z)]W{ ~:I
we:) J Asv

J
Bsv

with

[uwAB(z));-c' =

(382)

[
0 0 -exp(uIlZ'/Cs) exp(-tWZ'/Cs) ] (383)

-exp{\Cllf/Cp) exp(-tCllZ'lCp) 0 0

By usins Equation (382), the unknowns A,.. B,.. AD" and Bsv can be elCpressed in

terms offour boundary conditions at the top and bottom ofthe liiyer as
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(384)

with

[uwAB.I~ =

[
~ ~ ~ ~ 1] (385)o 0 ~p(\oodICs) exp(-loodlCs)

~xp(lCoriICp) exp(-lClldICp) 0 0

Knowing the boundary conditions which equal the negative values of u;, w;, U;I ,

w':;', and then using Equations (376), (382), and (384), the homogeneous pans of the

displacements can be obtained as

{ u~(z) } =(UWpr'l(z)]tooa{ ~~ }
W'l'(z) J P}+I

J

'}+I

with

(386)

_ C~ [uwprf.'l1 0 uwp"~L)) 0] (387)
- 2nw2r 0 UW~.2) 0 UWP'~.4)

where
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._..It _sin [co(d-z)/Csl
""'F(I.lI - sin (CAkUCs)

____..H sin (C*'ICs)
.....prCU) =sm(CIXiICs)

._..H _ sin [co(d-z)/CpJ
UWpr CU) - sin (CIJdICp)

(388)

(389)

(390)

(391)

Local displacements for Jr-:O are the summation of the particular parts in Equation

(374) and the homogeneous parts in Equation (387) which can be expressed as

{
u~(z) } = [uw r'(Z»)POj ~; }
w~(z) 'P I PJ+I

J
t rJ+1

with

[uwpr'(Z)I~ = [uwpr"(z»);-" +[uwprH(z)]~

(392)

where

.--1 sin [(a)(d-z)/Cs] z
uwF(I,11 = sin (ClJdICs) +d- I

.-1 sin (ClJ:/Cs) :
UWprCI.3) =sin (CIXiICs) -d
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____..I =sin{<I)(d-z)/Cp)+~_1

""'1"1%,%1 sin (CddlCp ) d (396)

(397)

As shown in Equation (488), extemal forces and nodal displacements of layer J.

for k = 0, are related to its stiftbess matrix as

(398)

By substituting negative values ofthe particular parts of nodal displacements (376)

into Equation (398), the homogeneous parts oCtile reactions can be obtained as

!Z1= [PRpr1!JP4{~; I~l J P~l

~l 'r1

with

[

P~.I) 0 p~;J) 0 ]
Cs 0 PRpl{fUI 0 P~.4)

=21ttO P~.l) 0 P~.l) 0

o PRpI(..2) 0 PRpr1...41

where

2L8
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PRF'tt.!1 =PRpr'J.31 =cot (~)

P~,J1 =PRp~.\) = sin(~CS)

PRp~.l) =PRpI(..41 = (g: )cot(~)

(401 )

(402)

(403)

(404)

For loaded layer j, the reaction forces for k=O (see Figure 11 7) to counterbalance

linearly distributed loads and fix the interfaces can be obtained by combining Equations

(380) and (399) as

= [PRpr! lPO{ ~; }
J PJ+t

rJ+\

(405)

with

PRpr[l.l) 0 PRpr(1,J) 0 ]
Cs 0 PRp";2.l1 0 PRpr!2.41

=- I !
2lto) PRprlJ.1l 0 PRpr(J.J) 0

o PRprf4.2) 0 PRpr{4.4)

where
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P'D" I pD".' -1 Cs"""0 J) = ,..,,' () n = . + -
. . SlO(ClldICs) w

. r! (Cp) -I C~
PRp,",,2.4) =PRp (4.21 = Cs sin(ClldICp) + Csw

(408)

(409)

(410)

Analogous to the derivation of Equation (357), global displacements u (k~O.:)
pr

and w,,(k=O.:) along the venical line in any layer t, on which no distributed loads act

(I ~J), can be e"pres~ as

(411 )

with

(412)

where [PRpr'.I~ can be obtained from Equation (406).

And similar to the derivation of Equation (359), global displacements u,,(k"'O,:)

and W,,(k-O.:) alons the vertical line in any layer i, on which the distributed loads act

(I "'J). can be expressed as
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with

{
UP"~k=O,Z) }'"" & [""'f"(k=O.,)]J ~; 'II

w,,(k=O,z) / / lp,o+,
'.,....,

[uwp'.(k= O,z)lt' =[uwpr'(z)]~ - [UWAB(z»~[[uwAB.]~rl

(413)

(414)

where [UWp""(Z»~ and [PRp":'I~ can be obtained from Equations (393) and (406),

respectively.

b. Lold' og Horizogtal Lipe. Analogous to Subsection 2. external loads

P(k=O) and R(PO) can be formulated as

{
PM+I(k=O) } = _1r{P(X) }dx
RM+I (k =0) 21t 0 r(x)

with

PO b[lOlO]
[PRpr.I."J = 4it 0 1 0 1
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Similar to the derivation of Equation (368), displacements u,.,(k-=O.:) and

w,.,(k-O.z) between node; and node ;+1. for loads on horizontal element I underneath

layer M. can be expressed as

{ upr(k:O.Z)}' =[UWPr(k=o.zn:W/l~: }
wpr(k =0,;) M.I . PI+\

rl+\

with

[uwpr(k = 0, :)]~.I =

k-o[ k-oJ-l ([[ T Jk-oJ-I) kooO[uwAB(z»), [uwAB.), sub rM Sp-sv [PRpr.I M.:

4. Green's T:illuence Functions in Space Domain.

(417)

(418)

In the previous subsections, displacements were determined in k-domain.fhe

inverse Fowier transform needs to be Connulated in order to obtain Green's influence

functions in the space domain. The z-axis is based on the local I-axis oflayer i. The x'-axis

is based on the local x-axis of layer J fur distributed loads on vertical interface. and of

element I for distributed loads on horizontal interface.

Green's influence function in any layer i on x'-z plane. for the linearly distributed

loads on the vertical assumed line in any layerJ, can be expressed as

{ upr(x',:) }' = [UWPr(x',Z»);{ ~ 1
Wpr(x',:) p,.a

J
r,.a
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with

[Uwpr(x',z)); =roo [uwpr(k,z));exp(-ikx')dk (420)

where [uwpr(k,z»): can be obtained from Equation (358) or (360) for non-zero wave

numbers Ie and from Equation (412) or (414) for a zero wave number k Bold letters in the

matrix indicate that the corresponding matrix is in the space domain.

As for linearly distributed loads on the horizontal element with any node / and

node /+1, which are on the horizontal interface underneath layer M. Green's influence

function in any layer ion x'-z plane can be expressed as

{ Up,(xl,:)}' =[UWPr(x"Z»)~.Jl~: Jl

wp,(x',z) M' PI+I t
.. l r/+l

with

[Uwpr(x',z»~.J = roo (uwpr(Ie'Z»):WJexp(-ikr')d1c

(421)

(422)

where [uwpr(k,z»~.1 can be obtained from Equation (369) for non-zero wave numbers k

and from Equation (418) for a zero wave number k.
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APPENDIXB

STIFFNESS MATRICES OF LAYER AND HALF-PLANE



In order to fonnulate Green's influence function described in Appendix A, the

dynamic-stifihess matrices of individual components, a horizontal layer and a half-plane.

are needed. Ir.. this appendix, the force-displacement relationship in k-domain for harmonic

excitation ofboth basic components is derived.

1. Dynamic-stiffness Coefficients of Horizontal Layer.

In Figure 121, the horizontal layer i of depth d, extending to infinity in both

x-directions, has constant material properties. Origin of the local coordinate system with

the z-axis pointing downward is located at the top of the layer. As discussed in Equations

(568) to (571), the in-plane displacement equations ofa layer can be expressed as

with

U(x,z) =u(k, z)exp(-w)

w(x, z) =w(k, z)exp(-,Ax)

u(k,z) = 1%(Apexp (lkft) +Bpexp(-1kft)]

-m..,s [Asvexp (Wz) - Bsvexp(-\bz)]

w(k,:) = -/x/[Apexp (1kf;) - Bpexp (-Ufz)]

-m%[A svexp (1.ksz) +Bsvexp(-1.ks:)}

(423)

(424)

(425)

(426)

where /x/Cp =mxlCs needs to be enforced.

The symbol \ represents H The scalar k represents the wave number which is

equal to role. The letter C stands for phase velocity which is equal to Cpi/% and Cslm:c
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nodei+l

-Ap
............... ~

Incident
d P-wave

_......_,. G_a;'l p
UUIKi • U, I x
=~---------/w "'~-:-P-------'~ ----.

+Ap~ /R'. ~ -Bp

~/' ·~ilcd
+A~ ~Bsv P·wave

/
-A~ 1 ~Bsv\

Retlec:ted
Incident Z S-wave
S-wave

Figure 121. Displacements, Stresses, and External Forces on Layer i

c,. and Cs represent p. and S-wave velocities and are equal to b2r + A.. )/p and

Jr /p, respectively. r and A.' are the complex shear modulus and the complex Lame

constant, respectively. p represents the mass density. Scalars I" and m" may be considered

propagating directional cosines to the x-axis (-cos VI,. and ~o~ VIs) oftheo P- and S-wave,

respectively. Algebraically, they are equal to IcCp/oo and kCs/oo, respectively, which can be

real, imaginary, or complex numbers. Therefore this interpretation holds only for real

values that are smaller than or equal to 1. Scalars f and s are J11r; - 1 and J11m; - 1.

respectively. A... and ASI' are amplitudes of the P- and SV-wave traveling in the negative

z·direction (incident waves). B,. and Bsv are amplitudes of the p. and SV-wave traveling in

tr.e positive :-direction (reflected waves).
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By using the stress-strain relationship (Hook's law) and strain-displacement

relationship. nonnal stress and shear stress amplitudes on the horizontal interface can be

obtained as follows

a:(r.z) = [2r· + ).:]w,z(r. z) + )... II ....(X. z}

t.c:(x,z) =r[u,:(x.z)+w ...(x,z))

(427)

(428)

Normal stress and shear stress amplitudes are denoted as (J and 'to respectively

The first subscript denotes the direction of the stress component. The second one denotes

the direction of the infinitesimal area's nonnal that the stress component acts on A comma

denotes a partial de:ivative with respect to the subscript following it

Substituting the displacements in Equations (423). (424), (425) and (426) into

Equations (427) and (428) and omitting tem cxp(-lla). normal ~ress and shear stress

amplitudes in k-domain can be expressed as

+mrS [A svcxp (tksz) -Bsvexp(-Uc~.'~)l}

-lkA.. {Is [A ,eKp (tkft) +BpCxp (-tkft,1

-mrs[Asvcxp(lh'z) -Bsvexp(-tksz»}
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-2mrs [Asvcxp (1.ksz) - Bsvexp(-00:)] }

'tdk,;) =r[ll,:(k.z)-tkw(k,z)]

+m..[Asvexp(Wz) + Bsvexp(-tksz)] }

=tkr {2/.rffApeKp (tkft) - Bpexp (-tkft»)

(429)

(430)

By using Equations (425), (426), (429), and (430). displacements and stresses at

the top (node i,z-O) of layer i can be expressed in m,trix form in tenns of wave

amplitudes A", B", A$I" and B!IV as
r

(43')

with

(432)
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where

[ uwtaABI2
•1l ] = ikl r[ 2f -2f ]

/ x l-s2 1-s.

(433)

(434)

(435)

(436)

At the bottom (node i+l, z=d) of layer i, displacements and stresses can be

expressed in terms of the wave unplitudes A,.. B,.. A$V' and Bsv as

(437)

with

where

[ OABI1·ll] =I [exP(Lifd) exP(-Lifd)]
IIWt :+1 x -fexP<Lifd) jexp<-tlcfd)
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[ '''BIU)' _ [-sexp(lksd) sexp<-lksd) ]
U1Vt<Jn 1+1 J- m ll

~xp(tIcsd ) ~xp( -tlcsd j
(440)

(441)

(442)

Using Equations (431) and (437), displacement and stress amplitudes at node 1"'1

are expressed as a function of those at node i by the transfer matrix as

(443)

with

(444)

When assembling the stiftitess matrix, applied loads are defined in the

global-coordinate system. The local system used to defin~ the stresses is opposite to it on

the negalive side of a layer. Therefore. as shown in Figure 121, introducing external load

amplitudes P, = -'t.a(,). R, = -c1~")' P,.\ '" t.a(r+I)' and R"l '" a:(,.I) into Equation (444) and

performing a partial inversion leads to the dynamic-stiftitess matrix ofa horizontal layer as

{

P,Ck) I {u,(k) I
R,(k) = [S~_sv(k)JbO w,Ck)

p,•• (k) I U :.1 (k)

R,+. (k) W,•• (k)
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with

where

(I +s1.)kY·
Co/= ------~...........:-..:..------

2( 1- cos(Ajd)cos(ksd)] +(js+ lifs)sin(kfd)sin(ksd)

5\1 =533 = ~cos(kfd)sin(ksd)+/sin(Ajd)cos(ksd}

(3 -S1.)1
5 12 =-521 = -534 =54] = 1. [I - cos(Ajd)cos(ksd)]

(l +s )

5 13 =5)\ =-/sin(kjd)-tsin(ksd)

S\4 =-54 \ =5n = -5]2 = l[cos(kfd) -cos(ksd))

51.2 =5.... = }sinCkjd)cOS(h'd)+s(COs(k/d)SinCksd))

S1.4 =541. =75in(kfd) - s(sin(ksd)]

(446)

(447)

(448)

(449)

(450)

(451)

(452)

(453)

Superscript L stands for horizontal layer i and subscript P-SV indicates the

corresponding stiffness matrix associated with P- and SV-wave
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2. Dynamic-stiffness Coefficients of Half-plane.

A half-plane can be regarded as a horizontal layer with depth approaching infinity

Applying an external load at the free surface of a half-plane. only waves traveling in the

positive :-direction (outgoing waves) are developed as shown in Figure 122 The radiation

condition states that no energy can propagate from infinity toward the free surface

Therefore the incoming waves with amplitudes Ap and Asv in Equations (425) and (426)

are excluded.

a. Positive Wive Nymber t. The in-plane displacement equations for a

positive wave number k can be expressed as

(454)

w(k,:) = Ix!Bpe'K.p( -tlcft) - mllBsvexp(-tJcsz) (455)

+Bsv

-BSl' ?
~ .\

OutgolD8
S-wave (+Ie)

+BV
~

Outgoing -Bsv
P-waveH:) "

az(~)-;=:;;..;;---------f>:eOl uo4.::,o --:)o)o%__

wo'f s~
Ro. ~-Bp

~

~p
........

Outgoing
P-wave(+Ie)

Figure 122 Displacements. Stresses, and External Forces on Half-pllile
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Substituting displacement Equations (423), (424), (454), and (455) into stress

Equations (427) and (428), and omitting term exp(-lkr), the stress amplitudes in k-domain

can be expressed as

(456)

t.c(k,:) = re[u.z(k,z)-tkw(k,:)]

(457)

At node 0 (:=0) on the surface of a half-plane. displacements and external forces

(Po=-tr(O).Ro=-ar(oJ in Figure 122 can be expressed in terms of wave amplitudes Bp and

{
uoCk) } =[ I~ mrS]{ Bp }
wo(k) 1..1 -m~ Bsv

(458)

(459)

Eliminating B,.. Bn- in Equations (458) and (459), the dynamic-stifthess matrix of a

half-plane, for a positive non-zero k , can be expressed as

{
PoCk) } =[SR (k)JbO{ uo(k) }
Ro(k) P-SV wo(k)

with
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=lkj.[ /(1+S2)/(1+/S) 2-[(1 +5
2
)/(1 +/S)] ] (461)

-2+[(1 +s:)/O +ls») sO +S2)/(1 +/5)

As the half-plane is used mainly to represent rock bed. a s:Jperscript R is

introduced. Subscript P-SV indicates that the corresponding stiffiless matrix is associated

with P- and SV-wave.

b. Neutive Wave Nymber t. The displacement equations having the outgoing

waves (propagating in the positive z-direction and the negative x-direction as shown in

Figure 122) with amplitudes B, and Bn' can be expressed as

(462)

(463)

Substituting displacement Equations (423), (424), (462), ..-:d (463) into stress

Equations (427) and (428), and omitting term exp(-th). nonnal stress and shear stress

amplitudes can be expressed IS

(464)

(465)

At node 0 (zzO) on the surface of a half-plane. the displacements and external

forces (Po=-t.a(O).Ro=-<J-:o) shown in Figure 122 can be expressed as
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{
uoek) } = [ Ir -mrs]{ Bp }

wo(k) -IJ -nfr Bsv
(466)

(467)

Eliminating B,.. Bf!' in Equations (466) and (467). the dynamic-stiffi1ess matrix of

half-plane. for a negative k, can be expressed as

{
PoCk) } = [SR Ck)y<o{uo(k) }
RoCk) P-SV woCk)

with

(468)

-lkr[ -1(1 +S2)/(I+/5) 2-[(l+5~)/(1+/s») ] (469)
- -2+[(1 +S2)/(1 +/5)] -s(1 +S2)/(1 +/s)

3. Dynamic-stiffness Coefficients for VerticaUy Incident Wave.

L Borizpltal WYU. This special case corresponds to a zero wave number k

The derivation is analogous to Subsection I, except the in-plane displacement equations of

a layer [Equations (572) and (573)] can be expressed as

(470)

(471)
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Using the displacements in Equations (470) and (47l) and the stresses in

Equations (427) and (428), nonnaJ stress and shear stress amplitudes can be expressed as

<7:(Z) =[2r +)"O]w,:{.r,z)

(472)

(47J)

Using Equations (470) to (473), the displacements and the stresses at node 1(.:=0)

can be expressed as

(474)

with

(475)

where

(476)

(477)
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·
[ uwt<rABC1.11] = \CI)('Pl'"[ 0 0 ] (478), C~ 1 1

[ uwtaAB~1.2) ] =~r.f 1 1 ] (479)Cs L00

At node i+ 1 (Fd) the displacements and the stresses can be expressed as

{ U.., } r}W'+l =(uwtaAB,.d boO B,D (480)
t.t:(l+ll Asv
a Zll+ll Bsv

with

[ ["""<s.ui"I)] ["""aAB""] ]kooO 1+1 ,+1
(481)[uwt<rAB,.d = [uwtaAB~11)] [uwtaAB::j:Zl]

where

[ uwtaAB(l. 11 ] _ [0 0] (482)
1+1 - -exp(u.odlCp) exp(-u.odlCp)

[ aABU,2I]-=[ -exp(lcorUCs) eqx-\corUCs) ] (483)uwt 1+1 0 0

ruwtaAB(2. 11 ] = lmcpro[ 0 0 (484)
'- ,.1 c} exp{lod'Cp) exp(-\mcUCp)

[ ~(:z.:zIJ = -l!!!ro[ exp(lmcUCs) exp(-undICs) J (485)uwto: 1+1 Cs 0 0

237



Using Equations (474) and (480), the displacement and stress amplitudes at node

i+1 are expressed as a function of those at node i by the transfer matri~ as

(486)

with

(487)

Introducing external load amplitudes P, = -'t.a(,), R, = -0,,'1>' P,..1 = 't.clr-lj' and R,_I =

<1:("'1) into Equation (486), and performing a partial inversion leads to the dynamic-

Stiffnf"IlS matrix ofa layer (k=O) as

with

(488)

where

r511

[S~-svJ~ : Co!I S~1
l 0

Co!: .!H..y
. Cs

o 513 0 ]
522 0 524

o SJ3 0
542 0 5..
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..
5 11 =533 = cot(~)

( Cp) (CJ>d~512 =5.. = Cs cot Cp)

(
Cp) -I

51.4 =5 41. = Cs sin(CJldJCp )

(491 )

(492)

(493)

(494)

b. Halr-pl.pe. Analogous to Subsection 2, only the outgoing waves with

amplitudes Bp and Bs.- are developed. Therefore the displacements in Equations (470) and

(471) are reduced to

U(%,Z)boO =Bsvexp (-~~Z)

W(.r,Z)boO ~ Bpexp ( ~~Z)

(495)

(496)

Using thz displacements in Equations (495) and (496) and the stresses in

Equations (427) and (428), the normal stress and shear stress amplitudes can be expressed

as

lwC'Pr. ( lm )<1:(z) =--cr Bpexp - Cp:

tOO • ( tOO )tdz) = Csr Bsvexp - C/
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At node 0 (::0) on the surface of a half-plane. the displacements and external

forces (Po=-tr;:(O)~=-<1:(o) can be expressed as

{
Po } _ ~r.[ 0 I]{ Bp }
Ro - Cs CplCs 0 Bsv

(499)

(500)

Using Equations (499) and (500). the dynamic-stiftitess matrix of a half-plane, for

k=O, can be expressed as

with

[S~-sv]k-O = ~l'"[ 1 0 ]
Cs 0 CplCs
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APPENDIXC

WAVE EQUATIONS IN CARTESIAN COORDINATES



The fundamental equations of elastodynamics relevant to the establishment of the

formulations related to soi~ system are crucial and are summarized in this appendix.

1. Dvnamic-eguilibrium Equation.

The inrinitesir.ul cube, shown in Figure 123, is assumed to be an isotropic

homoge:teous elastic medium with hysteretic damping For harmonic excitation with

frequency ro, the dynamic-equilibrium equations without body forces can be expressed as

(503)

(504)

(50S)

Normal stress and shear stress amplitudes are denoted as cr and 'to respectively

The first subscript denotes the direction of the stress component. The second one denotes

z

dz

-;;f-~ ..JT

dy

y

Figure 123. Infinitesimal Cube in Harmonic Motion
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the direction of the infinitesimal area's normal on which the stress component acts A

comma denotes a partial derivative with respect to the subscript following it The letter p

represents the mass density. Displacements u, v, and w are in X-, y-, and z·direction,

respectively. All amplitudes are a function ofx, y. and:.

Hook's law, the constitutive equation, is specified as

E: = I( -\lOx - \lOy + ('1':)

't.G' 'ta
Y;rz =Yo:% =Y =Y

(506)

(507)

(508)

(509)

(510)

(511 )

where the nonnal strain and shear strain amplitudes are denoted by E and y, respectively.

Shear modulus r can be expressed as a function of Young's modulus of elasticity £ ano

Poisson's ratio \) as

f= E
2(1 +\l)

(512)

Stress amplitudes in Equations (506) to (511) can be written in terms of strain

amplitudes as
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Oy = (2l" +A)£y +A(Ex +Ez)

'tJl% =tzy =TYJI% =Tyzy

where the Lame constant Ais expressed as

A= uE
(1 + u)(1 - 2u)

Strain-displacement equations are fonnulated as

Ex ="..r(x.y.:)

Ey = v..,(x.y,:)

E: =w.:(x,y,:)

Yxy = Yyz = u..,(x,y.:) +v..r(x.y.:)

YIC =Y::x =u,:<x,y.:) +w..r(x,y.:)

Yye = Yzy = vz(x,Y. z) +w ..,(x,y, z)
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(513)

(514)

(SIS)

(516)

(SI7}

(518)

(519)

(520)

(521)

(522)

(523)

(524)

(525)



Substituting the stress-strain relationship in Equations (513) to (518) and the

strain-displacement relationship in Equations (520) to (525) into the equilibrium Equations

(503). (504), and (505) leads to

(526)

(52"')

(528)

In order to uncouple the displacements in Equations (526), (527). and (528) and to

identify the different types of waves. the volumetric strain with amplitude e and the

rotational-strain vector {O} with amplitude.! 'l., ny, ~nd n. are introduced as

e(:c,y.z) =u... +v", +W;

Note that

Ox,x +OJ'''' + Oz,z = 0

(529)

(530)

(531 )

By usina Equations (529), (530), and (531), dynamic-equilibrium Equations (526).

(527), and (528) can be rewritter- ~

(21' + ).)e~ + 21'(0z", - nz,z) = -p<o2v
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(534)

The material camping occurring in a soil system involves fiietionalloss of energy

or linear hysteretic damping. The effect of material damping. which may differ for various

types of waves, is assumed to be the same. This frequency-independent property can b.:

incorporated by replacing the elastic material constants with the corresponding complex

ones Complex shear modulus yo and complex Lame constant ,,: can be expressed as

yo =(I +21~rr and A· =(l + 21~)A. (535)

where symbols ~ and \ represent the ratio of linear hysteretic damping and M,

respectively Replacing the elastic m.t'!rial constants in Equations (532), (533), and (534)

with the complex ones leads to

(536)

(537)

(538)

Eliminating rotational strains Or' 0,. and Q: by differentiating Equation (536) with

respect to x, Equation (537) with respect to y, and Equation (538) with respect to :, and

then adding these three relationships leads to

(539)
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where the dilatational wave velocity is specified as

(540)

Eliminating volumetric strain e by differentiating Equation (537) with respect to z

and Equation (538) with respect to y, subtracting these two expressions, and noting that

the derivative ofEquation (531) with respect to x aiso vanishes, results in

where the shear wave velocity is defined as

ffCs=VP

Analogously, two other expressions can result as

Putting Equations (541), (543), md (544) together becomes
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(546)

Therefore. for harmonic excitation, the equations of motion are specified in

Equations (5j9) and (545) with the unknown amplitudes ofthe volumttric strain e and the

rotational-strain vector {Q}. respectively. These wave equations are linear partial

differential equations of second order

2. Primary-wave Equation.

As the P-wave (primary wave or dilatational wave) travels. it alternately

compresses and dilates the medium (see Figure 124). The volumetric strain e defined in

Equation (529) can be used to describe this behavior To find the unknown amplitude of

the volumetric strain for Equation (539), the following trial function is assumed

e{x.y,z) = ~~ApexP[ -~:(lxr+1yY+lrZ)]

The trial function (546) satisfies the wave Equation (539) only if r; +/; +/; =I

These three scalars lit' Iyt and I, may be considered the direction cosines of the wave

propagation's direction. The trial function [Equation (546)] is multiplied by ~ +r: +P:

which is equal to I. Usina Equation (529), the former are then expanded and grouped

into 0,0, $ corresponding to u~. v,y. and W.z. respectively. Integrating each group

(0.~, ED). leads to displacements 'I,., v,., and wp (see Figure 125) corresponding to X-. y-,

and z- direction, respectively.

If =u~ + v,y +w.: =-~~ (Ii + t; +1;)Apexp[ ~~(/.rX+/"y+/::)] =

=. JI~ = - ~~f;Apexp [ - ~: (Ixx+ I,y+ /:z)] ~ 0
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«(45)

(C46)

(C47)

At x '2 y == z - 0, the amplitude of P-wave equal to Ap is defined an initial

condition. Therefore, in X-, y-, and z-direction, amplitudes of the wave at the same

location are equal to I"Ap, lyAp, and I:Ap , respectively. By enforcing these cJnditions. the

integration constants in Equations (C.45), (C.46), and «(47) are equal to zero Subscript

P indicates that the corresponding displacements are associated with P-wave. Equations

(C.45), (C.46), and (C.47) also show the P-wave amplitude is constant over a plane

perpendicular to the direction of propagation. The velocity of propagation C~ is constant

and depends on material properties only.

d 10

comprtllionlPweve r
11

uncllStu m. um

I
v

L ilatat nl -1

--------~
Figure 124. Cross Section of Incident P-wave
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Dtrcctaon of
PropagahOO

+Ap/
-Ap?
•".

Iy
~---....:;-.-~~y, lip

Figure 125. Displacements Associated with Incident P-wave

3. Secondaty-wave Egyation.

As the S-wave (secondary wave or distortional wave) propagates, it shears the

medium sideways at right .ngIes to the direction of propagation (see Figure 126). The

rotational-S1:l'ain vector to} defined in Equation (530) can be used to interpret this

behavior. To find the unkno'"m amplitudes of the rotational-strain vector for Equation

(545), the trial vector is assume:1 as

(550)

The trial vector in Eqwuion (5S0) satisfies equilibrium Equation (545), only if

mi +m; +m~ = 1 and m"Cx+myCy+m:C: =() where Cit' (,I and C: are components of

vector {C}. Direction cosines "'It' "'Y' and "', in the fonner specifY the direction of

250



propagation. Since the scalar prod\Act in the latter vanishes. vector {C} and thus (n I are

perpendicular to the direction of propagation. Applying m; +m; +m; =I . mJCCJC +mYc.,
+m:C: =0 and Equation (530) to the trial vector [Equation (550)]. each row of the trial

vector is expanded and separated into groups These groups correspond to u,y. u.:(0),

V JC •\i=(~). and W.JC. W ,yC$) , respectively Then. integrating each group (0,~. ED) :lnd setting

its integration constant to zero results in displacements US' VS' and Ws corresponding to X-.

y-. and :-direetion, respectively.

First row multiplied b) 2

Second rQw multiplied by 2
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Third row multiplied by 2

Displacements

(551)

(552)

(553)

Subscript S indicates that the corresponding displacements are associated with

S-wave. Equations (55 I), (552), and (553) show that the displacement amplitudes are

proportional to the components of the vector product of {C} and the direction of

propagation. It foUows that the particle motion of S-wave lies in the plane perpendicular

to the direction of propagation and is constlUlt over this plane. The l!l8terial-dependent

velocity of propagation Cs is constant.

By using geometric consideration in Figure 127, the displacement vector can be

further decomposed into a horizontal component with amplitude ASH' lying in the plane
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Swava

Figure 126 Cross Section of Incident S-wave
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:{A"
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Figure 127 Displacements Associated with Incident S-wave
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which is parallel to x-:y plane, and into a component with amplitude A$V , lyins in the plane

which contains the vertical z-axis and direction of propagation

(554)

(555 )

where ASH and As!' are the amplitudes of SR- and SV-wave at the point where x'" y =: =

0, respectively The displacements (see Figure 127) can be reformulated in tems of these

amplitudes as

-nt)'ASH+m"mzAsv [\0) 1
Us =USH +us!' = exp -c(m"x +myY +m:z)

Jm~+m2 s j
" y

(556)

(557)

(558)

As described in Equations (540) and (542), p. and S-wave velocities are equal to

J(2r +A.-)/p and Jl'-/p , respectively The always larger numerator ofthe fonner leads

to P-wave velocity being faster than S-wave velocity. Therefore, at an observation point

on the surf~~, amplitude of P-wave is first recorded and then that of S-wave as shown in

Figure 128
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Figure 128. Typical Earthquake Record

4. In-plane Displacement Egyation for Horizontal Laver.

The origin of the local coordinate system with the :-axis pointing downwar~ is

located at the top of the horizontal layer as shown in Figure 129. Assuming the directions

of propagation of the P- and S-wave lie in the same vertical plane, say the x-; plane, leads

to 1,= my= o. Adding the displacements caused by P-wave (C45) and (C 47) and S-wave

(C.54) and (C. 56) in x- and z-direction, the total motion can be expressed as

(C57)

(C58)

In-plane displacements with amplitudes u and w depend only on the P- and

SV-wave. The out-of-plane displacement with amplitude" (perpendicular to x-: plane),

caused by the SH-wave, is independent of u, w and not mentioned here. The fonn of

Equations (C57) and (C58) compels the boundary conditions at the top and bottom of

the layer to vary as exp(-lCll/xxICp) and as exp(-uDmxxICs}. To acltieve the same

variation with x. the fonowing condition nuda to be iapo..".
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1561 )

As a total of four boundary conditions has to be satisfied (displacements with

amplitudes u and w at top and bottom of layer), a second P- and SV-wave with the same

variation in x is introduced (see Figure 129). Since 1)1 = 0, for any value of f•• f: can be

selected as ±j1- l'; . The value f. equals cos \liP' whereby \lip is the angle of incidence of

the P-wave measured from x-axis. This interpretation holds only for a real value which is

smaller than or equal to l. Analogously. m: can be chosen as ±Jl-m; with m.=cos \liS'

whereby \lis is the angle of incidence of the S-wave measured from x-axis Substituting /,

and m: into Equations (559) and (560) leads to

[ ( .Fir ) (~)] ( f ) ~u(x,z) =/r Apexp to> C
p

r z +Bpexp -to> C
p
r: exp -to>C

p
x -" I-m;

[ (
jI _m2

) (Jl-m2
)] ( m )Asvexp t(l) Cs r Z I -Bsvexp -t(l) Cs r: exp -t~x (562)

[ (
/1 -m

2
) (Jl _m

2
)] ( m)mr Asvexp to>" Cs r z +Bsvexp -t(l) Cs r: exp -tOOc;x (563)

where A,... Asv and B,... Bsv are amplitudes of waves traveling in the negative and positive

z-direction. respectively (see Figure 129) Definitions of A,... and Asv here differ from

Equations (559) and (560) where they are defined as the amplitudes of general waves. For

convenience. the following notation is introduced.
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Figure 129. In-plane Displacements for a Horizontal Layer

Phase velocity: C = Cp = Cs
1:" m"

Wave number: k= ~

Scalarf: f= If: -I

Scalars: s=J \-1
m"

(564)

(565)

(566)

(567)

Usins Equations (564) through (567), the in-plane displacements in Equations

(562) and (S63) can be rewritten as

u(X,:) =u(k.z)cxP(-th)

14'(X. z) =14'(k, z)exp(-\h)
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with

u(k,:) = l:r[Apexp(\Aft) +Bpexp(-#)]

-mrS[Asvexp(wz) -Bsvexp(-Iks:)]

w(k, z) = -lxfIA pexp(t.ifz) - Bpexp(-\Aft))

-m.r[Asvexp(lksz) + Bsvexp(-Iks:)]

(570)

(571)

where 1.rICp =mIICs needs to be enforced. Displacements u(k,z) and w(k,z) in Equations

(568) and (569) can be interpreted as the amplitudes of waves propagating in the positive

x-direction (for a positive wave number k) with phase velocity C.

For the vertically incident wave, the angle of incident 'liP ='lis =90' (I, == m.r =0)

Therefcre the phase velocity C equals infinity and k=O. Since I. = m.r =0, the in-plane

displacements in EquatiollS (562) and (563) can be refonnulated as

e-J \<.1) \00
u(x,z) =-Asvexp(C/)+Bsvexp( C/) (572)

(573)

In this special case, it should be noted that the displacements have no variation in

x-direc:tion.
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