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ABSTRACT

The objective of this research project is to investigate the inelastic behavior and
hysteresis rules of low-rise RC perforated shear walls through a series of experimental
and analytical studies based on various types of monotonic and earthquake loads. The
results derived are then applied to seismic response analysis of box type structures as well
as typical low-rise shear wall buildings. The studies also involve development of
backbone curves of load-displacement relationship of individual walls, equivalent viscous
damping of the walls, and sensitivity analysis of design parameters for building systems.

By observing the failure of cracked shear wall experimentally, a set of semi-
empirical equations for backbone curve of perforated shear wall is obtained. Comparison
between experimental results and calculated curves is favorable. Concept of energy
dissipation is used to establish hysteresis rules which are based on dissipated energy
envelopes calculated from experimental data for different loading states.

Analytical formulation for a perforated shear wall element model is developed by
using three springs: one nonlinear equivalent shear spring; two nonlinear axial springs.
Total lateral displacement of a shear wall is a result of both flexure and shear.

A four-story industrial building of box type consisting of solid shear walls without
boundary columns and a three-story cotnmercial building consisting of isolated columns
as well as walls with boundary columns are studied for evaluating various design
parameters in building code by using monotonic static analysis. The three-story building
is also studied on the basis of dynamic analysis with Loma Prieta earthquake (1989) and
six simulated earthquakes.

The sensitivity study of design parameters includes ductility reduction factor,
force reduction factor, overstrength factor, and ratio of displacement amplification to

force reduction factor. Results are recommended for future building code development.
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I. INTRODUCTION

A. OBJECTIVES

Reinforced concrete shear walls are effective in seismic resistance for civil
engineering buildings and industrial structures, such as hospital and nuclear power plants.
For shear walls with openings of doors and windows, strong ground motion can
significantly affect load capacity and displacement [1-10].

Current building codes use the design parameters such as force reduction factor and
displacement amplification factor in modifying elastic response to inelastic response. These
parameters vary for different types of buildings, but not in terms of whether the walls are
solid or perforated.

This report is to show analytical and experimental studies of solid and perforated
low-rise shear walls as well as elastic and inelastic response behavior of building systems.
Design pbarameters of force reduction factor and displacement amplification factor as well as

equivalent viscous damping are evaluated and assessed.

B. QVERVIEW

Sections of this report are outlined here. Section II illustrates some observations
from test results. A comparison of load and displacement for solid shear walls and
perforated shear walls is made. Total lateral displacement is a combination of shear
displacement and flexural displacement. The role of flexure in lateral displacement is then
depicted from the relationship between bending displacement and shear displacement.
Finally, failure ductility is calculated for all the perforated shear walls.

Section III develops semi-empirical equations of backbone curves for perforated
shear walls. Equations for load and displacement at four loading stages of cracking,
yielding, ultimate, and failure are established. Curves for predicted and experimental

results are then compared.



Section IV observes hysteresis response based on experimental results under
seismic loading and develops a possible energy envelope for the loading process when
shear walls enter the inelastic range. This dissipated envelope is called a reference curve
which provides the shear wall's potential loading path. The hysteresis loop defines
loading, unloading, reversal loading, reloading after unloading, and unloading after
reversal loading. Calculated and experimental results are compared.

Hysteresis response for perforated shear walls clearly shows the existence of
hysteretic damping. By modeling damping effect with hysteresis energy loss,
characteristics of the damping coefficient are explored based on the concept of viscous
damping. Formulation of equivalent viscous damping fpr perforated shear wall is
established in Section V.

Design parameters used in building codes are in terms of force reduction factor and
displacement amplification factor. Section VI discusses the aforementioned factors and
their physical aspects, relationships between ductility reduction factor and overstrength
factor, and maximum base shear ratio and overstrength factor as well as displacement
amplification factor/force reduction factor ratio and overstrength factor.

Section VII derives analytical formulations for perforated shear walls. Element
stiffness matrix is introduced. Also, the free-body diagram concept is applied to perforated
shear walls.

| Section VII studies the response of a four-story industrial building. Monotonic
static analysis is applied on the basis of UBC design code. Response analysis uses load-
displacement relationships of shear walls with ductility range from 4.0 to 8.0. Failure
story drift and failure story base shear are considered for cases of different ductilities.
Cases where the building fails in (1) flexural mode, and (2) both shear and flexural mode

are investigated.



Sensitivity of design parameters based on ductility is discussed. A comparison of
design parameters includes ductility reduction factor, overstrength factor, system ductility
factor, force reduction factor, and displacement amplification factor.

Section IX studies the response of three-story buildings, including an existing
three-story commercial building with solid shear walls in California and other modified
three-story buildings with some perforated shear walls. These structures are subjected to
monotonic static loading. There are eighty-four columns in the existing building, twenty
eight for each floor. The load-displacement relationships of RC columns are examined;
load-displacement relationship for solid and perforated shear walls are calculated as well.

Monotonic static load is applied to the building. Effects of shear and rotational
springs of shear walls along the force direction are discussed. Total displacement response
at different stories in the buildings is demonstrated. An explanation of base shear vs.
critical story drift relationship is given. A comparison of failure base shear and failure
displacement is made.

Ductility reduction factor, overstrength factor, system ductility factor, force
reduction factor, displacement amplification factor, and the ratio of displacement
amplification factor to force reduction factor are discussed with respect to the sensitivity of
design parameters.

Section X studies the response of three-story buildings under dynamic loading, one
an existing three-story commercial building in California, the other a modified three-story
building. The 1989 Loma Prieta Earthquake and six simulated earthquakes are imposed on
the former and six simulated earthquakes on the latter. Responses of shear and rotational
springs of shear walls at the critical story are studied. Details of shear ratio and
displacement ratio by shear springs of shear walls at the critical story are illustrated.
Ductility reduction factor, system ductility factor, overstrength factor, force reduction
factor, and displacement amplification factor/force reduction factor ratio are also discussed.

Section XI includes summary, conclusions, and recommendations.



C. LITERATURE REVIEW

This research is focused on the study of isolated low-rise perforated RC shear walls
without boundary columns. Main work involves the development of 1) load-displacement
relationship, 2) hysteresis rules, and 3) assessment of building code design parameters for
both monotonic loading and earthquake excitations. The literature review presented
herein pertains to this research work.

Recent work in Japan by Watabe et al. [11], among others, has focused on
quantitative evaluation of load-deflection characteristics on heavily reinforced RC low-rise
shear walls normally used in nuclear power plant structures. These specimens have
boundary columns which are mainly subjected to monotonically increasing loading.

Recent work on RC squat shear walls in France has been carried out at the Centre
Experimental de Recherches et d'Etudes du Batiment et des Travous Pulic. The primary
objective is to determine stiffness degrading behavior for walls having differenf
reinforcement ratios, varying from almost zero to 0.5%, in both horizontal and vertical
directions. Results show that the stiffness is constant until cracking, and declines severely
after cracking. Stiffness begins to slowly decrease before the first diagonal shear crack
appears [12].

The French Commissariat a 1'Energie Atomique-Centre d'Etudes Nucleaires also
has a strong research interest in the seismic behavior of RC low-rise shear walls [13].
Results indicate that the dynamic behavior of shear walls depends strongly on the
nonlinearity and time-history of the input force; the inelastic spectrum method
underestimates the margin given by ductility for narrow band excitation centered on a
wall's natural frequency. No experimental work was carried out, and the time-history
analyses were performed with the modified Takeda model which has mainly bending
deformation.

In the U.S., recent work on RC low-rise shear walls has been undertaken at the

Los Alamos National Laboratory (LANL). Bennett, Anderson, Endebrock et al. [14-19]



tested a series of small scale shear walls and box-type structures subjected to both static and
earthquake loadings. The purpose of these tests was to find the stiffness reduction and its
effect on the natural frequency. They studied walls with height-to-width ratios varying
from 1 to 0.25 and steel ratios from 0.25% to 0.6%. Tests showed a 75% stiffness
reduction during a 0.75g peak acceleration earthquake signal; fundamental natural
frequencies were reduced by factors of 2 or more over those calculated based on an
uncracked cross-section strength-of-materials approach. This stiffness reduction caused
the natural frequency to shift into the frequency range for which the earthquake's energy
content is significant. It is apparent that this shift may lead to increased amplification in
floor response spectra at lower frequencies, and will have significant impact on the
equipment and piping design response spectra and their margins of safety. More
experimental work must be undertaken to verify the early results {20].

As shown by the above literature review, low-rise shear walls have been the subject
of extensive research. However, the thrust of the work has been to determine the ultimate
capacity of walls, stiffness reduction, and behavior under cyclic loading. This work,
including the latest information from Japan, France, and LANL (U.S.) does not provide
adequate information with which to develop hysteresis rules for isolated low-rise walls
because: 1) most of the walls subjected to either monotonic loading or cyclic loading had
boundary elements; 2) shear and bending deformations were not separated; and 3) cyclic
loading patterns used in the tests did not provide sufficient information with which to
develop large and small amplitude loops for earthquake response studies.

Low-rise buildings actually constitute a large percentage of total construction.
Many of these buildings are braced by shear walls without boundary columns. Therefore
ongoing research is urgently needed here. Results will have a significant impact on
structural design by improving safety and reducing seismic damage.

Under a joint research project between the National Cheng Kung University

(NCKU) and the University of Missouri-Rolla (UMR),low-rise buildings were studi;:d.



Sheu [21] at NCKU tested a series of isolated low-rise shear walls subjected to various
static monotonic, cyclic, and earthquake-type loadings while Cheng at UMR incorporated
experimental data from NCKU and LANL to develop hysteresis rules and to investigate
inelastic response behavior of individual walls as well as systems. Note that these load-
deflection relationships and hysteresis rules, as developed by Cheng, have two important
features: 1) bending and shear deformations are separated; and 2) the deformations due to
bending, shear, and bond slip are coupled. The importance of these two features in low-
rise shear walls has long been recognized. This is because (1) shear deformation can
dominate total deflections, and (2) the Takeda model, commonly used in RC shear wall
analysis, is based only on bending deformation which cannot accurately predict the seismic
response of low-rise shear wall structures.

In actual engineering practice, walls have openings, such as doors and windows,
and low-rise buildings have walls with or without boundary columns. For instance,
nuclear auxiliary buildings are built mainly of walls without boundary columns and civil
structures are built of walls with or without boundary columns. Yamada et al. (1974)
performed lateral monotonic load tests for low-rise RC shear walls with boundary columns
and beams at the top and bottom of shear walls. Walls with openings are included in the
study. Main focus of the research was to establishan RC load-displacement relationship at
the elastic as well as the plastic stage [22]. Chita et al. tested low-rise heavily reinforced
concrete shear walls with openings [23-25]. Walls having girders on top as well as
boundary columns on both sides were tested under lateral and axial loads. The maximum
shear strength of shear walls was then established.

Sotomura et al. (1985) studied ultimate shear strength of low-rise shear walls with
numerous small openings for a nuclear power plant. Horizontal cyclic loads were applied
to a beam mounted on top of walls which have boundary columns [26].

For design, ACI code [27] has special provisions for shear walls in Section 11.10.

Shear strength of a wall must satisfy governing equations (11-32) or (11-33) in the code.



For a wall with height-to-width ratio less than 0.5, equation (11-32) may be used but does
not reflect the influence of height-to-width ratio on shear strength. Opening in a shear wall,
although it can significantly affect a wall's shear strength and deformation, is not addressed
by the code. Consequently, ACI code has limited application to low-rise perforated shear
walls.

For seismic structural design, design parameters are empirical, such as force
reduction factor and displacement amplification factor. Recently, Uang (1993) studied both
factors and proposed a ratio of displacement amplification factor vs. force reduction factor
(DAF/FRF) on the basis of different definitions of DAF and FRF. His studies are mainly
for frame structures, not for low-rise shear wall buildings [28].

In summary, some research work has been done on low-rise shear walls with
boundary columns. Cheng and Mertz [29] and Cheng and Volger [30] studied seismic
response behavior of low-rise shear walls without boundary columns, and shear wall
systems without openings. Cheng and associates developed bending and shear load-
displacement relationships as well as bending and shear hysteresis rules for such solid
walls. To continue their work, Cheng at UMR and Sheu at NCKU have focused on
development of load-displacement relationship, hysteresis rules, inelastic response, and
design parameter assessment of low-rise RC perforated shear walls and systems as

presented in this report.






II. INVESTIGATION OF TEST RESULTS

A. TEST SCHEDULE

This project joined National Cheng Kung University (NCKU) in Taiwan and
University of Missouri-Rolla (UMR) in cooperative research. Experimental work was
conducted by M. S. Sheu at NCKU and theoretical research was developed under F. Y.
Cheng at UMR. The investigation herein of RC shear walls involves shear walls with
openings, or perforated shear walls. Types of openings in the experimental program
include single windows, double windows, doors and single slits. Also some solid shear
walls were tested in order to distinguish the differences between them.

Test apparatus is shown in Figure 1. A large frame is fixed at ground level to
provide a stable test environment. Specimens are imbedded in the steel beam on the
ground. A steel beam attached to the top of a shear wall is used to transfer lateral force to the
specimen. Two jacks on both sides of the specimen constitute the force system. The top
of the specimen ié not fixed. A test program is scheduled for both solid and perforated
shear walls, with single cyclic loading and earthquake type loading applied to each
specimen. There are two groups of shear walls studied in this program. One group has a
height/width ratio of 0.5. The other has a height/width ratio of 0.75. Two kinds of steel
bars are used, which have yielding strengths of 4617 and 5005 Kg/cm?, respectively.
Steel bars arranged in a diagonal direction within specimens are only employed for
perforated shear walls. It should be noted that the opening rate for shear walls in Group I
is 16.35%, but 21.8% in Group II. Compressive strength of concrete is between 254 and
345 Kg/cm2. A summary of the test schedule is shown in Table L.

As shown in Figure 2(c), all specimens go through four stages under either a cyclic
loading or a earthquake type loading. These four stages are distinguished as elastic,
cracking, yielding and failure stages. Note the case of a single cyclic loading test in Figure

2(a). When loading is applied at a load increment of 0.5~1 tons up to yielding stage, the
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Figure 1 Experimental apparatus for NCKU shear walls

rigidity of specimens decreases and causes more displacement at the same load increment.
Thus, to prevent extensive cracks in a specimen, displacement control (at an increment of
~ 0.5~1.0 mm) dominates the rest of the test. Earthquake type loading follows the same
procedure as the single cyclic loading case. The first three cycles are controlled by load
increment and subsequent cycles by displacement increment (see Figure 2(b)).

Diagonal steel bars are commonly used in RC walls with openings. Among these
specimens, shear walls with single windows or with double windows have more diagonal

steel bars around the openings. Solid shear walls contain no diagonal steel bars. Figure 3
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shows the arrangement of steel bars. Three types of measurements are used for
displacement during loading process. Clip-on gauges are applied in the vertical direction to
measure vertical deformation while potential meters and dial gauges are used to detect
displacement in the horizontal direction. Figure 4 shows the detailed setup. Properties of

steel bars D10 and D13 are shown in Figure 5.

B. LOAD AND DISP C N BETWEEN SOLID AND
PERFORATED S WALLS

Table II shows experimental load and displacement at cracking, yielding and
ultimate stages for NCKU shear walls. This table demonstrates that the cracking load,
which has a range of 4-6 tons or s0,is stable for either solid or perforated shear walls.
The key factor in the cracking load is compressive strength of the concrete. In the test
program, concrete has a compressive strength of 254 to 345 tons/ mm?®. Concrete strength
among test specimens is close for the most part, around 300~330 tons/ mm?.

Solid shear walls have a higher yielding load than perforated shear walls. The

former range from 27 to 28 tons while the latter range from 12 to 22 tons with
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Figure 3 Configuration of steel bars for NCKU shear walls

height/width ratio of 0.5 and from 7 to 18 tons with height/width ratio of 0.75. Average
yielding load for all perforated shear walls is 15.43 tons, about 56% of that for solid shear

walls. Yielding loads for solid shear walls are stable with an average of 27.64 tons.
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Figure 3 (continued) Configuration of steel bars for NCKU shear walls

Ultimate loads for solid shear walls are likewise stable, from 32 to 34 tons, and

higher than those for perforated shear walls. The latter have ultimate loads of 16 to 25
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Figure 4 Locations of load cell and strain gauge for NCKU shear walls

tons, an average of 21.22 tons with a height/width ratio of 0.5, and 9 to 20 tons, an
average of 14.87 tons, with height/width ratio of 0.75. Overall average of ultimate loads

for perforated shear walls is 18.04 tons, less than that for solid shear walls. The ratio of
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Figure 4 (continued) Locations of load cell and strain gauge for NCKU shear walls

average ultimate load between perforated (18.04 tons) and solid (33.13 tons) is 0.54, about

the same ratio as average yielding load.

Displacement at the cracking stage has a wide range for either solid or perforated

shear walls,0.2-0.7 mm. Cracking displacement is not as stable as cracking load. The
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Table I Experimental load and displacement at cracking, yielding and ultimate stage for
NCKU shear walls

Group Type Pc Py Pu Ac Ay Ay
(ton) | (ton) | (ton) | (mm) | (mm) | (mm)

SW-0E 531 2668 | 3209 | 040 3.68 9.16

SW-1E 621 27.87 | 33.00 | 0.31 257 8.45

g‘ SWO-3E | 494 | 2091 | 22.62 | 0.134 | 248 | 469
© | swo-se | 447 | 2150 | 2465 | 037 | 243 | 352
SWO-TE | 363 | 1217 | 1639 | 023 | 140 | 3.14
SW9E | 455 | 2837 | 3431 | 024 | 381 | 1126
= | SWO-LIE| 501 | 1846 | 2023 | 0267 | 575 | 103
g SWO-13E| 494 | 1247 | 1499 | 067 | 280 | 390

SWO-15E| 4.54 7.06 938 0.62 1.60 331
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reason for this difference may be the manufacturing process and nonuniformity of concrete.
Displacement of solid shear walls is stable at the yielding stage, with a range of 2.6-3.7
mm, an average of 3.35 mm. For perforated shear walls, except SWO-11E, yielding
displacements average 2.10 and 2.20 mm for Groups I and II, respectively. Generally,
these displacements for perforated shear walls are stable except for those walls with a
single slit (SWO-11E). Yielding displacement of perforated shear walls is about two-thirds
that of solid shear walls. Displacement is also stable at the ultimate stage, with an average
of 9.62 mm for solid shear walls, and 3.79 mm for perforated shear-walls. Thus ultimate
displacement of the latter is about two-fifths that of the former. Note that yielding and
ultimate displacements for perforated shear walls in Groups I and II have almost the same
range.

It can be concluded that openings in shear walls play an important role in load
capacity and maximum displacement of those walls. Generally, cracking loads for both
solid and perforated shear walls are stable and remain in a narrow range of 4 to 6 tons. But
cracking displacement for both types of walls has a wide range of 0.1 to 0.7 mm.
Compared to yielding and ultimate displacement, cracking displacement is small. Yielding
and ultimate loads for perforated shear walls are slightly more than half those for solid
shear walls. Yielding and ultimate displacement for perforated shear walls are two-thirds
and two-fifths, respectively, of those for solid shear walls. Thus openings in a shear wall
reduce load capacity by an average of 0.5 times decay, and decrease maximum

displacement by 33% up to 60%.

C. CURVATURE DISTRIBUTION
Analytic study indicates that curvature starts from zero at the top of the wall and
increases proportionally in relation to square of depth. Finally, curvature reaches its

highest value at the bottom of the wall. This progression can be expressed as

17



o= f %xdx
0

(1)
Here x starts from the top of the wall and increases downwards; W is the wall's width, and
AL is the difference in vertical deformation at each side of the wall. In Figure 6, solid
shear wall SW-OE has curves 1, 2, 3 and 4, which represent locations from top to bottom
of the shear wall. Curves 1, 2, 3,4, 5 and 6 do likewise in solid shear wall SW-9E. These
locations indicate curvature is small at the top and large at the bottom of the wall, which
matches the theoretical derivation very well. Perforated shear walls, except SWO-11E
(with single slit), SWO-3E (with single door) and SWO-15E (with single window)
respond in a manner like solid shear walls here. Note that SWO-5E and SWO-11E (with
double window) and SWO-7E (with single window) have a different curvature distribution
throughout the height of these walls. For shear walls SWO-5E, SWO-7E and SWO-11E,
the relationship between curvature in the middle part (the section with opening) and
curvature at the lower part of shear wall is similar. Thus the middle part of shear walls may
occupy a crucial position in the failure mechanism of shear walls, vis-a-vis load capacity
and maximum displacement.

It is interesting to note that the top portion of perforated shear walls has negative
curvature, quite different from curvature response at the top of solid shear walls. Negative
curvature means that the top portion rotates opposite to the normal direction, as shown by
the lower portion of shear wall. This phenomenon indicates that different mechanics may
prevail at the top of shear wall.

Compare curvature response between perforated and solid shear walls more
closely. It can be seen that solid shear walls have a larger curvature capacity than
perforated shear walls. Physically, curvature implies the effect of flexural behavior on
shear walls. If curvature capacity is larger, then more bending response will occur in a
shear wall. Larger curvature capacity also allows more lateral external load to act on a

shear wall. Shear walls may then hold a larger load capacity. Due to their bending action,
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Figure 6 Relationship of load vs. curvature for NCKU shear walls
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solid shear walls have a larger load capacity and maximum displacement than perforated

shear walls.

D. BENDING, SHEAR AND TOTAL LATERAL DISPLACEMENT

Figure 7 shows three load-displacement curves for each NCKU shear wall. The
curve for total displacement is the combination of bending and shear load-displacement
curves. Bending load-displacement curve reflects the flexural characteristics of a shear
wall, which are caused mainly by deformation of vertical steel bars in the shear wall. Shear
load-displacement curve is likewise related to horizontal steel bars. Concrete is also
important in the behavior of shear walls in either vertical or horizontal direction. For solid
shear walls SW-0E, SW-1E and SW-9E, bending displacement is about 13%~40% of total
lateral displacement. For perforated shear walls in Group 1, approximately 10% of total
displacement is induced by flexure (i.e., bending effect). Bending (or flexural) lateral
displacement of perforated shear walls in Group II accounts for 10%~45% of the total,
slightly more than in Group I. Here the calculation of bending and shear displacements
follows Cheng and Mertz [29].

In general, bending displacement ranges from 10%~40% of the total at ultimate
state. Based on Cheng and Mertz's study, the bending displacement/total displacement
ratio is about 40 to 60%, an average of 50%, at ultimate state. But shear displacement
comprises a larger percentage of the total than bending displacement. If more shear
capacity for shear walls is designed by increasing the ratio of horizontal steel bars, then
stiffness in relation to horizontal shear also increases. Less shear displacement and more
bending displacement could result. Optimal design with consideration of bending and

shear thus has great importance.

E. FAILURED ILITY
Failure ductility is another important factor in controlling the behavior of shear

walls and, consequently, the entire structure. For solid shear walls, Cheng and Mertz
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observed that 4.0 is the failure ductility. Table III outlines yielding and failure
displacement for ‘perforated shear walls. Failure ductility equals the ratio of failure
displacement, Dy, to yielding displacement, D,. This table shows that perforated shear
walls in both cases have a similar range of failure ductility. Ranging from 2.12 to 5.75, the
average is 3.75. Thus 4.0 is recommended as the failure ductility of perforated shear

walls.

Table I Summary of failure ductility
for NCKU shear walls

Wall Dy(mm)| Df (mm)| K¢

SWO-3E [ 2.480 5259 2.12

SWO-5E | 2.430 10083 | 4.15

SWO-7E | 1400 8.053 575

SWO-11E| 5.750 15071 | 2.62

SWO-13E| 2.800 8.944 3.19

SWO-15E| 1.600 7.485 4.68
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. SEMI-EMPIRICAL EQUATIONS OF BACKBONE CURVE FOR SHEAR WALLS

A. DEVELOPMENT OF CRACKS

When RC walls undergo external loads, cracks in the concrete are a sign of more
strength decay in the wall. As cracks develop further, the wall exhibits more complicated
behavior due to coupled flexure and shear. If the applied 'load continues, the wall
approaches its failure mechanism. As shown in Figure 8, many apparent diagonal cracks
and broad crush of concrete on the compression side occur overall in solid shear walls such
as SW-0E, SW-1E and SW-9E. Also shown in Figure 8, perforated shear walls display
major diagonal cracks and crushing area (concrete crush) on both sides of and between
openings. Size and frequency of cracks for perforated shear walls are generally smaller
than for solid shear walls.

Again comparing perforated and solid shear walls, the length and width of major
diagonal cracks is smaller in the former. As discussed later, the role of diagonal cracks is
important in controlling the behavior of shear walls.

1. Initial Cracks These cracks begin at the earliest stage of the loading period.
They may thus have enough duration to develop extensive width and length. Initial cracks
can significantly affect steel bars. In a shear wall, decrease of strength capacity and
increase of lateral displacement are strongly influenced by these cracks. Walls remain in
the elastic range without these cracks.

Figure 9(a) shows a possible configuration of initial cracks in the shear wall, three
on the tension side and two on the compression side. Those on the tension side usually
occur first since cracks are initiated by concrete which has less tensile strength than steel
bars. Also, compressive strength is greater than tensile strength in the concrete itself.
Thus, cracks on the tension side happen sooner than crushing of concrete. Initial cracks
can be in the diagonal or horizontal direction. Diagonal cracks may start at the corners of

openings either on the tension or the compression side.
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Three kinds of initial cracks are most likely to exist in shear walls at the early stage
of loading history. Location, size and shape of openings determine which crack is first.
Mechanical characteristics differ among the three kinds as follows. Diagonal cracks usually
occur at the corners of openings due to stress concentration. They show the combined
action of normal and shear stresses, i.e., coupling effect of bending and shear. Second,
horizontal cracks beside an opening are caused by the shear mechanism. Shear failure
within concete in the horizontal direction induces this kind of initial crack. Third, another
horizontal crack comes from the bending effect. Flexural behavior on the tension side of a
shear wall makes tensile stress of this wall more dominant than tensile strength of the
concrete. Tensile cracks occur in the concrete, unlike the previous horizontal crack which
is the crack-shift type. Other initial cracks on the compression side come from
compression failure. Here the mechanism is that the wall's compressive stress is larger
than the concrete's coinpressive strength. Another mechanism begins at the corner due to
stress concentration.

Concerning the whole shear wall, the initial cracks will separate the integrated shear
wall into several small wall elements. These cracks decrease workability of the whole
shear wall. The development of subsequent cracks is then limited, and the region and scale
of subsequent cracks:is restricted under the initial cracks. Thus, failure mechanism

occurs in one of the small wall blocks (elements). As shown in Figure 8, the critical failure
block will most likely happen in the regions between openings and at both sides of
openings.

As observed in many NCKU shear walls, an initial diagonal crack on the tension
side induces another crack going upward on the compression side. A wedge-shaped block
is then formed (see Figure 9(b)). This wedge-shaped region acts like a transition zone to
transfer force from the tension to the compression side. Since no major cracks exist in this
region, its integrity is assured. Both concrete and steel have the same deflection in either

vertical or horizontal direction. Figure 9(c) shows that the top and bottom of openings are
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free ends which do not take any load and stress. For this reason, the effect of vertical steel
bars is neglected here. In general, initial diagonal cracks separate a block on top from the
rest of the shear wall. This top block, or wedge-shaped region, is elastic and force-free.

Lateral displacement caused by this region thus equals summation of both elastic
deformation and rotation at a given point on the shear wall's compression side. It can also
be observed that subsequent cracks occur below this region and extend downward. Then
the shear wall reaches the failure state. Figure 10 shows the failure region of a perforated
shear wall. With rotation of the wedge-shaped region, vertical bars can yield along the
crack underneath both sides of this region. Vertical bars are therefore examined on both
sides of the opening along the overall .height of the shear wall.

2. Diagonal Cracks These cracks influence a shear wall's resistance to external
load, particularly initial diagonal cracks. Corresponding lateral displacement results.
Figure 11(a) shows that when diagonal cracks occur in a shear wall, relative lateral
displacement Ay develops, with a pseudo rotating center at PRCC1. Lateral displacement
A, at this point equals the product of arc angle 6, and crack length of development L.; (see
Figure 11(c)). As the external lateral load increases, this crack extends further to rotating
center PRCC2 with corresponding lateral displacement A,, expressed as A;=L.,6 (see
Figure 11(b) and (c)). Since the crack length L, is larger than L., displacement A; is
larger than A;. These initial diagonal cracks form the major cracks which significantly
control the behavior of any shear wall. As they extend, these cracks become larger and
wider. Figure 8 shows this phenomenon. Yielding and failure stages of these shear walls
exhibit many large diagonal cracks in failure regions. Comparing perforated and solid
shear walls, it can be seen that the latter has larger diagonal cracks than the former. As
noted above, lateral displacement may result from diagonal cracks. Thus solid shear walls
potentially have larger maximum displacement than perforated shear walls when subjected

to external load.
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3. Hinging Region In the study of solid shear walls, Cheng and Mertz state that
the hinging region is the solid shear wall itself [29]. This region exists where the effect of

bending and shear are coupled. A solid shear wall displays this coupling behavior across
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its height. Prior to the failure mechanism, all cracks in the concrete and possible yielding of
steel have developed. Figure 8 shows that the hinging region for solid shear walls SW-0E,
SW-1E and SW-9E encompasses all the wall elements. In perforated shear walls, hinging
regions are located at both sides of and between openings, sometimes extending slightly
downward.

For simplicity, a major coupling influence line is introduced here to explore how
combined bending and shear works within the shear wall. Figure 12(a) shows that a major
coupling influence line covers all the wall elements. This influence line shows the area
affected by diagonal cracks. In general, connecting the diagonal corners of the solid shear
wall constitutes the major coupling influence line and forms the square or rectangle wherein
this influence line is diagonal. This square or rectangle is the hinging region. As shown in
Figure 12(b), a value of 8 = 45" is used for the angle between the major coupling influence
line and the horizontal line. Also shown is that the hinging regions, as determined by
major coupling influence lines for perforated shear walls, meet the experimental results in
Figure 8. Comparing Figure 12(a) and (b), it can be seen that the hinging region is smaller
for a perforated than a solid shear wall. Load capacity and maximum displacement of
perforated shear walls is therefore less.

Next to be investigated is the effect of horizontal steel bars on perforated shear
walls. Stress distribution in different sections of perforated shear walls is shown in Figure
13. Section A-A's normal stress is small, caused by bending effect. Its shear stress
distribution shape is somewhat uniform, due to shear effect. Section B-B displays stress
redistribution on normal and shear stress. Because this section is narrower, its normal and
* shear stress is larger than section A-A's. Section C-C's moment is larger but its shear is
the same as both A-A's and B-B's. Normal stress in this region is very high, but shear
stress is less than section B-B's. For a perforated shear wall, sections B-B and C-C

generally have a potentially large crack region due to high normal stress or shear stress
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throughout these sections. Regions containing section B-B and C-C are critical in terms of
failure. Horizontal steel bars below the level of openings are thus considered in the

computation of critical loads and displacements of backbone curve.

B. BEHAVIOR OF DIAGONAL BARS

Compare displacement from different strain gauges on vertical and diagonal bars in
Figure 14(a). It can be seen that strain gauge SG34 for a diagonal bar has a large
elongation (7.136 mm) while the strain gauge reading SG35 on the other side of the
opening is 0.000 mm. Hence the latter diagonal bar has little compression or tension; the
same phenomenon can be observed in other tests.

Due to this pattern of displacement, only diagonal bars on the tension side are
considered. Lower diagonal bars on that side are also considered because they are kept in a
state of tension. Lower diagonal bars on the other side of opening are neglected due to
compression. As shown in Figure 14(b), -0.723 mm for this bar means that the bar has

been compressed that amount.

C. DEFINITION OF BACKBONE CURVE
By using analytical derivation coupled with a curve-fitting approach from
experimental results, a set of equations is presented to caculate forces and displacements at
different loading stages. Figure 15 shows the force-displacement relationship or backbone
curve. In this figure, four critical loading points describe the characteristics of a shear wall.
Cracking point indicates the loading point when concrete reaches the moment of cracking,
~and initial cracks first appear. Yielding point represents the stage when the outermost steel
bars attain yielding stress. When the external load cannot be increased, it is called the
ultimate point. After this point, the curve degrades. This demonstrates that the shear wall
cannot reach the previous ultimate state again. If the load continues to increase, the curve

goes downward proportionally until the failure reference point.
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Figure 15 Critical points of defined backbone curve for perforated shear wall

1. Force at Four Loading Stages Various effects are expressed here. They include
shear span length ratio MQD (= M/QD where M is the moment at the bottom of the wall, Q

is external load, D is width of whole wall), height ratio of opening g (= Lo/L), width ratio
of opening Bg (:%), horizontal location factor of opening ; (:WWJ-) and vertical location

factor of opening LWP(=L'/W1). Units employed here are cm, Kg and Kg/cm?2.

Let

PWH=(Z(pwsfy))(L/W) (2)
PWH 1=(Z(pwhfy/5000))(L/W) 3)
PWV=(Z(pwfy))(W/L)™ (4)
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PWV I=(Z(pwyfy/5000))(W/L)% (5)

where a;=4.7663; pwh and pyy represent the steel ratios of horizontal and vertical bars,
respectively. Derivation of PWH and PWYV is discussed later. Equations of loading

capacities at four critical stages are

Cracking point

Pc=[A1+A2 {%) (0o By )WZW t (6)

or
—=—=A+A L) (cto-B1) @
\/—_W t
in which
A1=0.0212+0.2762 (MQD) ®
A,=1.1531-1.2215 (MQD) )

Figure 16 shows the relationship with P..
Yielding point

P,.:[A3+A4-log1({(%) (ao~B1)ﬂ P, (10)
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Figure 16 Relationship between cracking load and opening factors of perforated shear

wall

’

P_1=A3+A4.10g1({(%)(a0-[31)}

o

in which
As=1.2657-0.3188 (MQD)
\¢=0.2702-0.1362 (MQD)

This is also shown in Figure 17.
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Figure 17 Relationship between ratio of yielding load/ultimate load and opening factors of

perforated shear wall
imate point
Py=1,W-t | (14)
1u=[U1+U2(—%)(ao-BJ}‘/E+U3-PWH+U4-PWV (15)
where
U,=0.9320-1.1690 (MQD) (16)
U,=-1.1741+1.5588 (MQD) (17)
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perforated shear wall
U3=0.3128-0.3249 (MQD) (18)
U4=0.1759+0.3079 (MQD) (19)

Here a; in PWV is 4.7663.

Failure reference point

’

Pt is assumed to be half the sum of cracking load and yielding load, which is expressed as

Pf=%(Pc+Py) (20)

Now return to the derivations of PWH and PWV. As shown in Figure 18, a general

rotation system is used. Region 1 represents both sides of the opening and region 2 the
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area below the level of opening. The load taken by vertical steel bars, horizontal stee] bars
and diagonal bars is denoted as Py in the horizontal direction and P, in the vertical
direction.

Before deriving P, and P,, three factors need to be defined: length reduction,
sectional-area reduction and modification of diagonal bars. They are expressed as follows.

From Figure 19, length reduction factor of horizontal bars is

flhh=(LHB 1 1+LHB 12)/Lh (2 1)

Length reduction factor of horizontal bars in region 2 is

finh=La/Lp=1 (22)
diagonal bar
P __: _
50 { — ——
LHB, LHB,,
(@]
=
L
)
("4

Figure 19 Length reduction factor for steel bars of perforated shear wall
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Length reduction factor for diagonal steel bars in horizontal direction is

fign=HLpp/Lp (23)

and in the vertical direction is

flav=VLpp/L (24)

Cross section area reduction factor is demonstrated in Figure 20. Here the

projection of a steel bar's normal force in the horizontal and vertical directions is P-COS#6

and P-SINO formulated as

HLpp

P.COSO=f, (A,.COSB)S, A, (25)
‘ ’ ’ ~/(HLpg 2+ VLps)?
P-COS8
v P-SING
P \e

Figure 20 Projection of cross section of diagonal steel bar
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VLpg
~/(HLpg Y+ VLpg)?

P-SINO=f,- (A, SINB)=f, A (26)

where
HLpp =f,an (i.e., cross section area reduction factor of diagonal bars
~(HLpp)+(VLps)?
in relation to horizontal projection) (27)
Vipp =faqv (i.€., Cross section area reduction factor of diagonal bars
V(HLpgP+VLpg)
in relation to vertical projection) (28)

Figure 21 shows two cases of NCKU shear walls. Bar 1 indicates the lower end is
not fixed which is called a semi-rigid joint. Bar 2 has a fixed joint at the lower end which
is called a rigid point. Bar 3 is the same as Bar 2 but it is in a state of tension due to
stretching of the wall's tension side. Since it is difficult to calculate modification factors for
basic development length of diagonal bars, it is assumed as 0.5 (denoted as f;) for the semi-
rigid point (Bar 1); fr=1.0 is assigned to the rigid points (Bars 2 and 3). A summary of f;
is shown in Table IV where numbers for effective diagonal steel bars NDB are also given.

From Figure 18, P, and Py, are

Pn=A1'(fy)1'L

BB vov A IR cAL bt 4 A (i

+An+l'(f)’)n+l' HLpg ‘HII:DB : (fr)
- +/(HLpp)*+(VLpp)??  Ln

n+1

Y (pi-(Eyk- (Faank- (Frank- (EX)| (29)

i=n+l

(Z (p i (£y)- (tu,h)‘)) Lt (

i=1
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Figure 21 Modification factor for diagonal bars of perforated shear wall
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{A1.(fY)l+m+Am'(fymAnH‘(fy)"“' V(HL V)gf?VL Y VLLD : (fr)}(%a
" DB DB
c n+l
{ (mzl y)‘ )*W t (l_n+1 ( y)l ( adv)1 (fldv)| ( r)l))} (%/_)
(30)

in which a is constant.

Figure 22 shows horizontal and vertical cross sections of a shear wall. Horizontal

shear stress T, on the horizontal cross section can be easily defined as ‘cFL. Vertical
Wt

shear stress T, can likewise be defined as 1:,,=—l?l‘—. Therefore

Lt
n n+1 .
rh-w L(Z (o i-(tk- (Emak) et 3 (o 1-(6yk- (Famk- (Franh- (r)i))
i=1 1-n+l
=(z(pwh.fy)vaV PWH 31)

n n+1
retrak (2 (pi.(fy)a-(flhhx))*v% (iz (P i-(Fyk - (Faowh - (fiak - (5 )i))

= (Zlpwe £y ¥ f'=PWV (32)

Here al in PWV is 4.7663. Effects of horizontal steel bars }:(pwh-fy) on PWH (or
PWHI1) and vertical steel bars Z(pwvfy) on PWV (or PWV1) are discussed later.
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Figure 22 Schematic diagram of vertical and horizontal cross sections
in perforated shear wall

In Egs. (2) to (5), Z(pwnfy) and Z(pwvfy) are defined as

Z(pwhfy)=—L{EHB}+—1{EDBH) (33)
L-t L-t

2(pwviy)=—L{EVBH—L(EDBV) (34)
Wt Wt

where effect of horizontal bar is

NHB \ NHB
EH-B=§ ((Auk-(fy)i- ((HLI:;)')}ZI ((Auk- (£} (Frnk) (39

Effect of diagonal bar in horizontal direction is

NDB

(HLpg); (HLpB)
EDBH=Y [(Ad)-(£,}- . £,
Z{ (( ' (W/(HLDB)3+(VLDB)12 ) ( Ly } )
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NDB v
=) {(Ack- (Ey k- (Faank - (Frank-fr) (36)
i=1

Effect of vertical bar is

NVB
EVB=Y, (A (fy}) | (37)

I=1

Effect of diagonal direction is

NDB

EDBV=Y, (A} (fy)- (Faavk- (Fiavk- (£:)) (38)
I=1

2. stm_agmj_ﬂfgm_mmmm Corresponding displacement at four

critical points are now formulated. From Figure 23(a), shear deformation based on

theoretical derivation is

=qPL 9
D=0 GA 39)
or
D ¢ ;a= 40
EL_) o ; o=constant (40)
GA

where G is shear modulus.

Equations of displacement at critical points are similarly formulated. Some
modifications are considered, such as compressive strength of concrete fc', effect of
opening F;; (and Fyy, Fyy), effect of vertical steel bars and diagonal steel bars on vertical

projection F; (and Fy,, Fy3), and effect of horizontal steel bars and diagonal steel bars on
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horizontal projection F¢3 (and Fy3, Fy3). Shear span length ratio MQD arising from the
factor C1,Y1 and Ul is also involved. All these factors are constants. Thus the form of

critical displacements is

o/ o
cracking displacement 280 | (F +Fcp+Fc3) (41)

P.L
G'Aog

(¢]

Dy' f
yielding displacement 280 _y(F,,+F y2+Fy3) (42)
P y * L

G’Aog

P-ﬁ\

C

280 _J,(Fy +Fuz+Fu3) (43)
Pu 'L

G'Aog

&

ultimate displacement

where Aog is the transformed cross sectional area in the section with an opening. Aog is
described later in this section.

Displacements corresponding to the four loading stages are formulated as follows.

Cracking point
Dc=C1(Fc1+Fc2+Fc3XPcL/GAOgy% (44)
in which
C1=5.007-3.941MQD (45)
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F.,=0.1775-9.6 {L /LYW ,/WYctoBo)
F.,=1903(PWV1)
F.3=-1092(PWH1)

and

[Fci+Fcd>Fcq

NVB
Aog=(W-Wokt+ Y (ni-1 Ak

i=1

Ay is'the cross sectional area of the vertical steel bar (A, in Figure23(b))

and

E,_ Oy&sy _ Oy

ni=-—s-

E 1s000ve 37.5V

where €y is assumed to be 0.0025.

Yielding point
Dy=Y1(Fy1+Fy2+Fy3XPyL/GA0g)/‘/_fZJ_28_O

in which

Y =-1.878+3.773MQD
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Fy1=7.697+229. 2AL/LYW /W )ctoBo)
Fy,=2622(PWV1)
Fy3=-6691(PWH1)

and

[Fy1+Fy2fFy4
Here a; in PWV1 is 0.6751.
Ultimate point
Du=U1(Fu1+Fu2+Fu3XPuUGAogy%
in which
U,=-0.7435+2.4MQD
Fu1=13.05+488.6[L/LYW/WY0toBo)
Fu,=2214PWV1)

F,3=-7685(PWH]1)
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and

[Fui+Fuo2Fy3 (63)

Here a; in PWV1 is 0.2997.

Failure reference point

D(Cri +CrLWP)Dy (64)
in which

Cg1=2.2349-3.4173MQD (65)

Cp=1.5608-0.4736MQD (66)

LWP=L/W, (67)
D. COMPARISON OF CALCULATED AND EXPERIMENTAL RESULTS

Figure 24 shows that caculated and experimental curves compare favorably.
Perforated shear wall SW-11E has a slightly larger deviation at yielding and ultimate stage,

but this error (8%) is acceptable.
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IV. HYSTERESIS RULES FOR PERFORATED SHEAR WALLS

Seismic response due to such external excitation as earthquakes, machine vibration
and unexpected explosion may put stfuctures at risk, particularly in the seismic zone.
Buildings subjected to seismic oscillation deform from elastic to inelastic stages and
possibly collapse through various hysteresis loops at members and structural joints.
Structures absorb energy to some extent associated with hysteretic behavior. Ductile
buildings are more likely to behave hysteretically. This section focuses on the development
of hysteresis loops for shear walls and comparison between analytical and experimental

results.

A. DEFINITION OF DISSIPATED ENVELOPE

For developing hysteresis loops of perforated shear walls, two kinds of curve exist
as shown in Figure 25. One is the backbone curve; the other is the reference curve. The
latter is a type of "dissipated envelope" relating to the most likely response of a wall after
some degree of energy dissipation. This reference curve is set up in a manner similar to the
backbone curve consisting of segments representing four distinct loading stages. In Figure
25, the shaded area enclosed by the backbone and reference curves is due to cracking or

yielding of the shear wall.

B. ESTABLISHMENT OF RENCE CURVE

The process of curve development is based on three empirical equations concerning
the effect of energy dissipation. Figure 26 shows behavior of perforated shear wall from
point A; which is located at zero loading. Here the path will not pass through the origin.
This is due to energy dissipation from nonlinear behavior of the shear wall. Some near-
linear segments are identified in Figure 26. A tangent line is drawn for each segment and

some intersection points are decided, R;, R; and R3. Note that the reference curve has
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three critical points to be detected and that it resembles the corresponding three points in the
backbone curve. These straight lines are connected to form a reference curve which
provides three critical points called equivalent cracking, yielding and ultimate points.

Recall that the backbone curve of a perforated shear wall developed earlier. This
curve's critical points are not on the tangent line, as shown in Figure 27. The backbone
curve is based on experimental results under monotonic static loading while the reference
curve is based on the experimental results under earthquake type loading. The latter's
critical points lie on the tangent line of experimental response. For convenience, reference
curve and backbone curve use the same notation: "C" represents cracking point, "Y"
yielding point, and "U" ultimate point.

An additional critical point R4, representing the failure point, remains to be defined.
The formula for locating point R4's load in the reference curve is assumed to be the same
as in the backbone curve.

1. Equivalent Cracking Point Of primary concemn in the reference curve is
establishment of a reversal slope, if available. This slope is used to locate the equivalent
cracking point, as shown in Figure 28. The relationship between reversal slope ratio
(SR/OSOC) and energy dissipation ratio (ZE4/PyoDyo) is illustrated in Figure 29 while
Figure 30 shows the notation of a perforated shear wall's backbone curve. Reversal slope
ratio is the ratio of reversal stiffness to original (initial) stiffness (from origin to cracking
point on the backbone curve), expressed by SR/OSOC. Stiffness OSOC is constant in the
case of a shear wall. The energy dissipation ratio is defined as ZEyP,,,D,,, (see Figure 31).
As that ratio decreases so does the SR ratio (see Figure 29). Reversal slope near the
equivalent cracking point demonstrates the pinching phenomenon, a characteristic of shear

behavior. Procedures to determine the equivalent cracking point are

1. When 0 < ZE4/PyoDyo £ 0.3,
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Figure 27 Expected critical points of backbone curve on monotonically experimental

curve
P U
T
PU Y
rw
PY F
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PC ‘ C ~
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b R ) » D
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N ) ¢
—_— DU «—
—» DF

Figure 28 Schematic diagram of equivalent critical points of reference curve
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P
A

U (Duo, Puo)

Figure 30 Notation of backbone curve of perforated shear wall

_equivalent cracking displacement DC = D, (68)

equivalent cracking load P = P, (69)

2. When 0.3 £ ZE4/PyoDyo

reversal slope SR = [0.2780><1o‘°'25 47{3%—)] (0SOC) (70)
and

equivalent cracking displacement DC =|SDP{/ 4 > ODC (71)

equivalent cracking load PC = (SR)[ |SDP| + DC] = %ISDH (SR) (72)
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Figure 31 Definition of energy dissipation and energy dissipation ratio

where SDP (see Figure 32) is the deviation between point A (at loading = 0) and origin. It
shows the current degree of inelasticity.

Data in the region of the equivalent cracking point are scant and sensitive. Thus it is
difficult to decide the appropriate location for this point. At various times this point is close
to the original cracking point (as it was with the backbone curve), particularly when energy

dissipation is slight. Due to this, option (1) (OSZ Ed/PuoDmSO.3) assumes the original

cracking point (the first critical point on backbone curve) as the equivalent cracking point.
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Reversal loading path

Figure 32 Schematic diagram of reversal loading path

Fortunately, when energy dissipation is slight, this assumption is accurate enough. The
effect of this assumption on determination of subsequent critical points can be neglected.
Figure 33 compares calculated and experimental hysteretic responses. The
response of perforated shear wall SWO-14E is shown in Figure 33(a) while that of
perforated shear wall SWO-6E is shown in Figure 33(b). (SR), and (SR). stand for the
reversal slope in experimental and calculated cases, respectively. Generally, the slope
comparisons for these two figures are good. Corresponding equivalent éracking point R,
ends the reversal slope. Experimental and calculated cracking points are represented by
(R))e and (R,), respectively. Upper critical points (R). and (R,); are close together in
Figure 33(a) where displacement is slight (i.e., smaller than 1 mm). Critical points on the
upper portion in Figure 33(b) are also in close proximity. In terms of equivalent critical

oint Ry, the above cases are in good agreement. But equivalent critical points
p 1 g g q
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(a) Displacement (mm)

Figure 33 Comparison between expected and experimental hysteresis loop with respect to
reversal slope for perforated shear wall (a) SWO-14E (b) SWO-6E
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Figure 33 (continued) Comparison between expected and experimental hysteresis loop
= with respect to reversal slope for perforated shear wall (a) SWO-14E

.(b) SWO-6E
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(Ry)e and (R1)c on the lower part are not close, particularly for shear wall SWO-6E (see
Figure 33(b)).

2. Equivalent Yielding Point As_ shown in Figure 28, this point is determined after
the equivalent cracking point. Either of two approaches may be used to decide equivalent
yielding point. Load and corresponding displacement may be determined directly by
empirical equations, or the slope between the equivalent cracking point and equivalent
yielding point may be found and displacement (or load) obtained. The second approach is
adopted here because it is more stable in searching for the slope.

Figure 34 represents slope ratio (SCY/OSCY) with respect to energy dissipation
ratio (ZEd/PuoDuo). SCY is the slope subsequent to the cracking point, shown in Figure
28. OSCY is the slope of the second segment in the backbone curve of perforated shear
wall, shown in Figure 30. The slope ratio declines to a stabilized level as energy
dissipation accumulates. Note that in Figure 34 slope SCY already exists when energy
dissipation occurs. Slope SCY is defined as the stiffness of the second segment on the
dissipated envelope. This stiffness cannot exceed the stiffness in the same segment of the
backbone curve because energy dissipated in the shear wall decreases the wall's load
capacity and stiffness. In Figure 34 when energy dissipation ratio is smaller than 0.319,
the corresponding second segment slope ratio is assumed to be 1.0. The equation for this

slope is expressed as
SCY = BB-OSCY (73)

where the coefficient BB is in terms of

LE4

BB = (1.1578)-10-0-20154) < 1 (74)
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As shown in Figure 35(a) and (b), the prediction for the second segment slope is
good for all the half cycles in these figures. (SCY). and (SCY), are almost parallel, quite
close for this dissipated envelope reflected by the perforated shear wall. Even though an
actual shear wall cracks or yields, it displays stability in decay of stiffness at this stage,
identical to the cracking-to-yielding stage on the backbone curve of the perforated shear
wall. Similar to determining  the second segment slope, equivalent yielding displacement
DY follows empirical equations and tends to increase in many experimental hysteresis
loops (see Figure 36). Equivalent yielding displacement ratio is the ratio of equivalent
yielding displacement (DY) to original yielding displacement (ODY); DY and ODY are
shown in Figure 28 and 30. Lack of data and instability when energy dissipation is small
limit results. When energy dissipation ratio equals 0.13, it reveals less yielding
displacement on the plot, generally 60% of the original yielding displacement assumed. As
shown in Figure 36, when energy diésipation ratio is smaller than 0.3, equivalent yielding
displacement will be smaller than original yielding displacement. Thus the equivalent
yielding displacement ratio is less than 1.0. When the energy dissipation ratio increases,
equivalent yielding displacement quickly does likewise. Until energy dissipation
approaches 2 and more, the equivalent yielding displacement ratio gradually reaches a more
stable level and stays above 2. Equations for prediction of equivalent yielding displacement

are written as follows.

DY =0DY (75)

DY =0ODY (76)
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Figure 35 Comparison between expected and experimental hysteresis loop with respect
to slope from cracking point to yielding point for perforated shear wall

(a) SWO-14E (b) SWO-6E
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Figure 35 (continued) Comparison between expected and experimental hysteresis loop

with respect to slope from cracking point to yielding point for perforated shear
wall (a) SWO-14E (b) SWO-6E
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DY 1 5299+0.4546 loge( 2E, )
ODY

DY/ODY

YEd/PuoDuo

Figure 36 Relationship between yielding displacement ratio and energy dissipation ratio

2E
3. When 0.13 < d_
PUODUO
DY =|1.5299 + 0.4546 x Ln( ZEq ” (ODY) a7
PyoDuo

3. Eguivalent Ultimate Point Data for deciding the slope between equivalent
yielding point and equivalent ultimate point are insufficient but some data can be compared
at this stage. Assume that the ratio of SYU (slope between equivalent yielding point and

equivalent ultimate point for reference curve) vs. OSYU (original slope between yielding
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point and ultimate point for backbone curve) is equal to the ratio of SCY (slope between
equivalent cracking point and equivalent yielding point for reference curve) vs. OSCY
(slope between cracking point and yielding point for backbone curve). This relationship is

expressed as

=%
Since
OSYU =((-g:f)—:l‘;y;‘% (79)
and
0SCY = (%’ifg—z% (80)

Thus the slope between equivalent yielding point and equivalent ultimate point SYU can be

written as

l:’uo‘l)yo ) (Pyo‘Pco )
SYU SCY 81
=(Duo‘Dyo Dyo‘Dco ( ) ( )

In the same manner, the determination of equivalent ultimate displacement DU can

. be summarized as follows

ZE4

1) when
(1) when 5

=0, i.e., stays in the elastic range, then

DU =DU (82)
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(2) When energy dissipation exists in a shear wall, then

DU _ DY
ODU — ODY (83)
or
_ DY
pu = DX (opU) (84)

where DY is equivalent yielding displacement for reference curve; ODY is yielding
displacement for backbone curve; ODU is ultimate displacement for backbone curve (see
Figure 30).

4. Equivalent Reference Failure Point To determine this point, a procedure similar

to determination of the reference failure point for the backbone curve in Section II is used.
After the ultimate point in the backbone curve, the slope declines to the reference failure
point. After the equivalent ultimate point, the slope also declines. Experimental data,
which show a stable situation, yield the degrading straight line. Generally, the degrading

slope is close to some constant and is expressed as

SUF = -0.5(SCY) (85)

in which SUF and SCY are the degrading slope between equivalent ultimate point and
equivalent reference failure point and the slope between equivalent cracking point and
equivalent yielding point on the reference curve, respectively. The load at equivalent
reference failure point is assumed to be half of summation of equivalent cracking and

equivalent yielding loads, as shown in Figure 37.
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Figure 37 Schematic diagram of loading process on (a) backbone curve (b) reference
curve
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So far, all critical points on the reference curve are established. Then the load at
different stages on this curve can be determined as follows.
(i) Force at equivalent cracking point, PC, is described in Egs. (69) and (72).

(ii) Force at equivalent yielding point, PY, is expressed as
PY = PC+(DY-DC)-SCY (86)
(iii) Force at equivalent ultimate point, FU, is expressed as
PU = PY+(DU-DY)-SYU (87)

(iv) Force at equivalent reference failure point, PF, is assumed to be (PC + PY)/2,

as stated above.
Furthermore, the displacement at equivalent reference failure point, DF, reduces to
DF = DU+(PF-PU)/SUF (88)

NCE CURVE AND BA NE CURVE

A major focus of this section is that hysteresis loops starting from zero force must
follow either backbone curve or reference curve (see Figure 37). If the entire shear wall is
integrated, or has no cracks, this shear wall follows a path defined by the backbone curve.
If any cracks occur in the shear wall, then this wall has initiated a hysteresis response.
Hysteresis response involves constant energy dissipation. In this situation the reference
curve, established with regard to energy dissipation, is used.

Figure 37(a) illustrates the loading process (via the path arrow) on the backbone

curve. Here the curve is shown on the positive force side; its path is identical on the
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negative force side. The backbone curve, as stated in Section II, consists of four
segments, each having distinct behavior. This is depicted in Figure 37(a). Likewise the
reference curve consists of four segments, each having distinct behavior. This is depicted
in Figure 37(b). These two curves diffef in that the reference curve does not pass through
the origin. This is because the reference curve is based on the curve set up for shear wall
with some energy dissipation.

The symbol Dp,x 1S used to determine the current path and its hysteresis rules.
Dpax is taken as an absolute value even though the current path is located on the side of
negative force. Positive or negative force refers to force in one direction or the opposite

direction. Three stages thus occur with respect to current maximum displacement, Dy,ay, as

follows
(i) Elastic stage: [Dmay > [DQ (89)
(ii) Cracking stage: [DQ] < [Dpa < [DY] (90)
(iii) Yielding and failure stage: [DY] < |Dmax, < [DH 91)

In Figure 37(a), loading process is considered and current point JP has maximum

displacement Dpy,x on its half cycle. If

(i) current point JP is between origin and cracking point JC*, then

Dmad <IDA  (elastic stage) -(92)

(ii) current point JP is between yielding point JC* and yielding point JY*, then
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IDC| < |Dmad <[DY]  (cracking stage) (93)

(iii) current point JP is between yielding point JY* and failure point JE*, then

IDY | <|Dmad £DH  (yielding and failure stage) (94)

Similar to Figure 37(a), current point JP in the reference curve (see Figure 37(b))
has maximum displacement D5« on its half cycle. If

(i) current point JP is between reversal loading point A and equivalent cracking
point JC, then JP is in reversal loading stage.

(i1) current point JP is between equivalent cracking point JC and equivalent yielding
point JY, then

IDC| < |Dmad <[DY] (equivalent cracking stage) (95)

(iii) current point JP is between equivalent yielding point JY and equivalent failure

point JF, then

DY | <|Dmad £|DH  (equivalent yielding and failure stage) (96)

From the above discussion of loading process, differences between backbone curve

and reference curve are highlighted:
» Backbone curve involves load vs. displacement in which the mechanical characteristics of
RC shear walls are shown before any lateral load is applied. This curve is unique for a

given shear wall.
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Reference curve involves load vs. displacement in which a wall element has energy
dissipation. This curve is determined every half cycle. Thus the reference curve is
highly related to energy dissipation and is formed when the path crosses zero force.

» Backbone curve exists for the shear wall regardless of external lateral load, but reference

curve may change since energy dissipation changes with external excitation.

Backbone curve of RC shear wall defines four loading stages as stated in Section III
which are related to material properties, such as compressive strength of concrete,
yielding strength of vertical and horizontal steel bars as well as location and dimension
of openings, dimension and thickness of wall element. Each loading stage has its

distinct behavior.

Reference curve has four equivalent loading stages which are based on experimental
observation and defined in a manner similar to backbone curve of perforated shear wall.
These equivalent loading stages reflect hysteresis behavior rather than distinct physical
phenomena caused by the material itself.

* If the wall follows the backbone curve, then the concrete in the RC shear wall does not

crack and the wall remains in the elastic range. If the shear wall follows the reference

curve, then cracks have already begun and the wall manifests nonlinear response.

In cases of reference curve, shear walls cannot develop a path through the origin. Since
energy dissipation has occurred, a hysteresis loop is developed instead of backbone
curve. Shear walls do not have stiffness from origin to first critical point (cracking
point) JC. These walls must follow the route from reversal loading point A to first

equivalent critical point JC, which has reversal stiffness SR (see Figure 37).

D. HYSTERESIS MODEL

Overall hysteresis response reflects such aspects as loading process, unloading
process, reversal loading process, reloading after unloading process and unloading after

reversal loading process. First, the path related to these processes must be defined. Figure
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38 presents a diagram of hysteresis rules for load vs. lateral displacement relationship in a
perforated shear wall. This figure includes loading, unloading, reversal loading, reloading
after unloading and unloading after reversal loading. Table V contains a summary of
hysteresis rules and descriptions. Hysteresis rules in Figure 38 are the summation of
combined bending and shear lateral displacement, which is so-called total lateral
displacement. Figure 38(b) shows rules on the hysteretic diagram.

Before discussing the above processes, one controlling factor, as shown in Figure
39 should be introduced. This controlling factor is expressed as KL and numerically
represents each individual process. From the value of KL, the program can reveal the
current loading situation and the applicable hysteresis rule.

KL of 1 shows the current path is involved in the loading process if the applied
force is positive. If the applied force is negative, KL is 3 for this process. As the
unloading process begins, external force decreases. KL is 2 for the unloading process on
the positive force side, and 4 for the unloading process on the negative force side. KL
equals 5 and 6 for reversal loading process. KL of 5 indicates the reversal loading point
(zero force point) on the positive force side and a shift from positive to negative. KL of 6
indicates the point on the negative force side and a shift from negative to positive. KL of 8
denotes reloading after unloading on the positive force side while KL of 7 denotes the same
process on the negative force side. KL of 10 and 9 express conditions of reloading after
reversal process, 10 for the positive force side after KL of 5, and 9 is for negative force side
after KL of 6. Numerals from 1 to 10 for controlling factor KL designate all the individual
processes.

Table V shows the five groups of rules for five hysteresis paths: loading,
unloading, reversal loading, reloading after unloading and unloading after reversal loading.
In the first group only one rule can be applied to the loading process on the backbone curve
or reference curve. Corresponding controlling factors KL are 1 and 3. In the second

group rules SB 2.1, SB 2.2, SB 2.3, SB 2.4, SB 2.5 and SB 2.6 represent unloading at
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Table V Summary of hysteresis rules and descriptions for perforated shear wall

Rule | Suffness | Description KL
SB1.0 *1 Loading on backbone curve or reference curve 1,3
SB 2.1 .SOC Unloading _ 2,4
SB2.2 SOC Unloading 2,4
SB23 Kb Unloading 2,4
SB24 Kc Unloading 2,4

" SB2.5 SOB Unloading . 2,4
SB26 | SX3Y'*2 | Unloading - 2,4
SB 3.1 SOC' *3 Reversal loading 5.6
SB 3.2 SR Reversal loading 5,6
SB4.1 | SOC*s4 Reloading after unloading 7,8
SB 4.2 Ke Reloading after unloading 7,8
SB 5.1 *s Unloading after reversal loading 9. 10
SBS.2 K4 Unloading after reversal loading 9,10
SB53 | SCY *¢ Unloading after reversal loading 9,10
SBS54 Ka Unloading after reversal loading 9. 10

*1 depending on current stage
*2 or SX3C'

*3 or SXoC'

*1 or Kd

*s idealized vertical line

*¢ or Kf
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Figure 39 Definition of controlling factor used in hysteresis rules of perforated shear wall
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different stages. Corresponding controlling factors KL are 2 and 4. In the third group two
rules indicate reversal loading process. Corresponding controlling factors KL are 5 and 6.
In the fourth group of rules two segments constitute the complete reloading process, the
first with more slope than the second. Corresponding controlling factors KL are 7 and 8.
In the fifth group four rules express the unloading after reversal loading process.
Corresponding controlling factors KL are 9 and 10.

1. Loading Process During this process the external load increases. In Figure 40
an arrow shows the direction of this path. If the shear wall has no cracks, then it conforms
to the path on the backbone curve. When the external load increases, the current path
follows the backbone curve through cracking point, yielding point and ultimate point. As
the current point approaches ultimate state, the shear wall's load capacity is reached.
External force cannot exceed the load capacity of the shear wall. Thus external force
decreases after ultimate point and more displacement occurs. Then on the backbone curve,
the shear wall goes from ultimate point to reference failure point. As shown in Figure
40(b), the current hysteresis path on the negative force side has the same response. Similar
to the loading process on the backbone curve, the reference curve has its equivalent ultimate
state at the third critical point. Before reaching equivalent ultimate load, the external load
acting on the shear wall goes from the equivalent cracking point through the yielding point.
After the equivalent ultimate point, external load decreases until the shear wall fails (under
loading process only). As shown in Figure 40(c) and (d), the path develops in the
direction of the arrow.

As the current path follows the backbone curve or reference curve, the stiffness
changes according to the slope of the curve. Here, the controlling factor KL is 1 (see
Figure 40(a) and (c)) or 3 (see Figure 40(b) and (d)). A summary of loading processes and

mathematical expressions for stiffness is shown in Table VI.
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Table VI Summary of loading process

Loading process

Rule SB 1.0

(1) KL =1 (on positive force side)
KL = 2 (on negative force side)

(2) stffness K = [ P(i+1)-P(i)] / [D(i+1)-D(i)]

For example, DP represents the shear wall's current displacement. If DC<DP<DY,
the current loading point is between cracking point and yielding point. The expressions of

D(i+1), D(@), PG+1), P(i) are

D(i+1) =DY ©7)
D@) =DC (98)
P(i+1) =PY (99)
P() = PC (100)
Therefore
stiffness K = g{%& (101)
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Note the presence of the elastic response on the first segment of backbone curve, as
shown in Figure 40(a) or (b). This indicates the absence of shear wall cracks between
origin and cracking point on the backbone curve.

2. Unloading Process During the unloading process, the applied load is released
from shear wall in stages. Two main responses exist for the unloading process, one within
the elastic range, the other beyond the elastic range. The latter illustrates the phenomenon
of energy dissipation. An unloading paf.h 1s illustrated in the following cases.

(i) Figure 41 shows the unloading process under elastic response. Maximum
displacement is smaller than cracking displacement. Another factor DM is now considered
as maximum displacement from the beginning of force history. It is different from Dy,
as noted earlier, which refers to maximum displacement during current half hysteresis
cycle. Since force history is still in the elastic range, maximum displacement DM or Dy«
is less than original cracking displacement (on the backbone curve) and maximum force
Pyo(i) is smaller than original cracking force (on the backbone curve). Py(i) refers to the
point where the unloading process starts. Maximum force Py(i) is thus the maximum value
during the current loading process in which corresponding maximum displacement is
Dyoli). Stiffness for this case is the same as initial elastic stiffness on the backbone curve.
The applicable hysteresis rule is SB 2.1.

(i) Two cases here show the unloading process under energy dissipation within
the wall.

(a) When maximum force Pyfi) (at the turning point where unloading starts) is
smaller than equivalent cracking load, the unloading path is shown in Figure 42. This
figure applies to positive force side or negative force side. Stiffness for this case is

K=——FPP__ _g_ (102)

~ DPP . ppp
3

where (DPP, FPP) is the turning point which is the same as (Dyg(i) , Pyofi))-
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When unloading extends to the horizontal axis where external force equals zero, the
shear wall returns to a presumed distance of DPP/3. The shear wall exhibits energy
dissipation and deviates from the origin by a displacement of DPP/3. The applicable
hysteresis rule is SB 5.4, same rule for the case of unloading after reversal loading.

(b) In the other unloading case with some shear wall energy dissipation, the
current loading point goes beyond equivalent cracking point but remains below the yielding
point. Thus two segments exist during the unloading process. The first goes from the
turning point (at the end of the loading process) to the unloading force and equals a load
one-third of equivalent cracking load, i.e., F/3. The applicable hysteresis rule is SB 2.2.
The second is more flat and points to the opposite equivalent cracking point (C') but stops
at zero force. The applicable rule is SB 2.3. To elaborate, the first segment moves
downward from turning point X4 to break point X5 where the load equals F/3 and the
second segment moves downward from break point X5 to zero force point X¢. The area
enclosed by points O, C, X4, X5 and X contains energy dissipation for the current half
cycle. This half cycle constitutes part of the hysteresis loops and is shown in Figure 43.

Stiffness for the first segment is the same as initial elastic stiffness of the original

backbone curve

K =080C (103)

where OSOC (see Figure 30) is initial elastic stiffness of the backbone curve. Stiffness for

the second segment is calculated as the slope between break point and equivalent cracking

point on the opposite side
= FCP-FPP _ 104
K= bcpopp = X (109
in which DCP = SIGN (DC, -DPP) (105)
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FCP = SIGN (FC, DCP) (106)

(c) When the current loading point exceeds 70 percents of equivalent yielding

point (Y) but remains below equivalent ultimate point (U), this unloading case occurs. It is

shown as path or in Figure 44(a) and (b). Three segments exist for the entire
process. Path is illustrated for this case.

i) Assume the stiffness of the first segment goes downward vertically until

the load decreases to 0.85 of maximum load Py{i). Stiffness is expressed as
K = SX3X, = K¢ (idealized vertical line) (107)

where SX3X is the slope of line segment from X3 to X,. The applicable rule is SB 2.4.
i1) When the force moves downward from break point X, to X, the force is
assumed to be one-sixth of maximum load Pyi), i.e.,Pyo(iy6. Stiffness for this segment is

written as
K =SOB (108)

where SOB is the slope of segment OB , which is from the origin O to point B. Point B is
midway between points A and Y. Points A, B and Y are in line horizontally. As shown in
Figure 44(c) and (d), point A is on the initial slope's extended line from origin O to
~ cracking point C (or equivalent cracking point). The applicable hysteresis rule is SB 2.5.
iii) In the third segment of the unloading process, the path slope connects
break point X; and the opposite critical point. If maximum displacement Dp,x for the
current half cycle is less than 1.6 times original ultimate displacement (on the backbone
curve), the opposite critical point is assumed to be the yielding point. Unloading stiffness

for the third segment can thus be written as
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Figure 44 Unloading process as current path between yielding point and ultimate point
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Figure 44 (continued) Unloading process as current path between yielding point and
ultimate point
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in which FYP = SIGN(FY, -FPP) and DYP = SIGN(DY, FYP).

If maximum displacement Dy, is more than 1.6 times original ultimate
displacement (on the backbone curve), the opposite critical point is set to the cracking
point. Unloading then becomes

_ » _ FCP-FPP
K = $X,C' = ESE-EEE (110)

in which FCP = SIGN (FC, -FPP) and DCP = SIGN (DC, FCP). This process is shown
in Figure 44(c) and (d). The applicable hysteresis rule is SB 2.6. A summary of these
unloading cases appears in Table VIL.

3. Reversal Loading Process This process is associated with loading from positive
force side to negative force side and vice versa. When the shear wall experiences
unloading until force equals zero and continues vibrating to the other side, the behavior of
shear wall is known as reversal loading stage. Cheng and Mertz [29] observed that this
loading range for shear has a highly pinching effect. The corresponding energy dissipation
for shear is much less than that for flexure.

(i) When displacement for the entire history (DM) is less than original cracking
displacement (ODC), as shown in Figure 45, the shear wall remains in the elastic range.
This wall's reversal stiffness is the same as the backbone curve's initial elastic stiffness and

is written as
K = SOC (= 0SOC) (111)

The applicable rule is SB 3.1.
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Table VI Summary of unloading process

Unloading process: (KL =2 or 4)
(1) If DM < ODC and P, (i)< DC,
rule SB 2.1
stiffness K= SOC
(2)
(A)P, (1) <DC,
rule SB 5.4
K= -FPP/[DPP/3-DPP]=Ka

(B) FC <P, (1)< 0.7 FY,

1) If IFPI 2 FC/3,

rule SB 2.2
stiffness K = SOC
(ii) If IFP| < FC/3,
rule SB 2.3
stiffness K = [ FCP-FPP ] / [ DCP-DPP ]
= Kb
in which DCP = SIGN(DC,-DPP)
FCP = SIGN(FC,DCP)

()P, (i) 2 0.7 FY,

(i) If10.85P (D) < IFPI < [P, (i),

rule SB 2.4
K= SX3X2 = Kc (idealized vertically line)

(ii) If PP, (1)/6l < IFPI < 10.85 P, ()1,
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Table VI (continued) Summary of unloading process

in which FYP = SIGN(FY,-FPP)
DYP = SIGN(DY.FYP)
K = SOB
(iif) If IFPl < P, (i)/6l,
(a) If IDmax! < 1.6(0ODU),

rule SB 2.6
K = SXIY' = [ FYP-FPP ]/ [ DYP-DPP |
() If IDmaxl > 1.6(ODU),
rule SB 2.6
K = SXiC' =[ FCP-FPP ]/ [ DCP-DPP ]
in which FCP = SIGN(FC,-FPP)
~ DCP = SIGN(DC,FCP)

(ii) When maximum displacement for the entire history (DM) is more than or
equal to original cracking displacement (ODC), there are two options for reversal loading
process (see Figure 46). If the energy dissipation ratio (=2Ed/PuoDuo) is less than 0.3 or
maximum force at turning point X3 is less than 70 percent of original yielding load, then
the stiffness of the reversal loading path is along the segment between zero force point Xg

and opposite equivalent cracking point C. This is formulated as
K = SXoC’ (112)

The applicable hysteresis rule is SB 3.1. By this rule, the opposite equivalent cracking

point C” is symmetric at its origin to cracking point C of the backbone curve.
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Figure 45 Reversal loading within elastic range

If the energy dissipation ratio (:EEd/PuoDuo) is greater than or equal to 0.3, the
reversal stiffness is assumed to be SR which is obtained from an empirical equation (see
Figure 29). When displacement of the shear wall at zero force point X is defined as DPP
(see Figure 46), the opposite cracking point C’ can be determined by using one-fourth of
DPP from the above case of SB 3.1. The applicable rule is SB 3.2. Reversal stiffness is

expressed as
K=SR (113)

Table VIII summarizes all cases for the reversal loading process.

4. Reloading after Unloading Process When the shear wall is subjected to a
seismic load with small amplitude, its response remains in the elastic range (shown in
Figure 47). If maximum displacement for the entire response (DM) is less than original
cracking displacement (ODC), reloading stiffness is the same as initial elastic stiffness and

becomes
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Figure 46 Reversal loading for cracked shear wall
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Table VIII Summary of reversal process

Reversal process (KL =5 or 6)
(1) If DM < ODC,

rule SB 3.1
stiffness K = SOC' (= OS0OC'")

(2) DM 2 ODC,

(A) If ZEd/PuoDuo < 0.3 or IFPI < 0.7 FY,

rule SB 3.1
stiffness K= SX ,C' (C'=C)
(B) If ZEd/PuoDuo 2 0.3,

rule SB 3.2
stiffness K = SR

K = SOC(=0S0C)

that they have the same stiffness formulation.

(114)

The applicable hysteresis rule is SB 1.0. Both cases exhibit the same loading process in

If maximum displacement for the entire response (DM) is greater than or equals

original cracking displacement (ODC), then two segments exist for the reloading process.

(i) Turning point Xg and point Xg mark the beginning and end of the first

reloading is defined as
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segment (see Figure 48). Its load is 90 percent of maximum force Pyi), and stiffness of
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Figure 47 Reloading after unloading within elastic range

_ _0.9P,,(i)-FPP _
K = SXpXs =5 rrr=Ka (115)

where Xs = (Dyofi), Puo{i}*0.9) .
(ii) This segment satisfies |DPZiDuc,(i] | Point Xs, which is same as unloading

maximum displacement Dy (i), marks the beginning of the second segment and the
backbone curve or reference curve marks its end (see Figure 48). The applicable hysteresis

rule is SB 4.2. Its stiffness is expressed as
K = 0.5(SXrXs) = K. =(0.5K4) (116)

Table IX summarizes the reloading after unloading process.

5. Unloading after Reversal Loading Process Here unloading is followed by

loading in the opposite direction. In this process, a small loop is often formed during
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Figure 48 Reloading after unloading for cracked shear wall
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seismic motion. The following discusses two situations: (i) elastic response (ii) inelastic
response.

(1) When maximum displacement for the entire response (DM) is less than
original cracking displacement (ODC), the shear wall behaves elastically. Figure 49
illustrates this. Stiffness is the same as initial elastic stiffness of the backbone curve, which

can be expressed as
K = SOC(=0S0C) (117)

Also stiffness is the same as the loading process within the elastic range. The applicable
hysteresis rule is SB 1.0. It can be seen in Figure 49.

(i) When maximum d_isplacement for the entire response (DM) is more than
original cracking displacement (ODC), the shear wall enters into inelastic response. After
reversal loading, the path in a hysteresis loop is composed of three segments. The first
segment meets the requirements that (1) current load P is negative and the corresponding
current displacement is positive and (2) current load P is positive and the cdrresponding
current displacement is negative. The applicable hysteresis rule is SB 5.1. For simplicity,
the slope for this segment is assumed to be an idealized vertical line.

The second and third segments are similar to reloading after unloading process as
shown in Figure 50. If the current path goes only from break point Xro to Xs where load

is 90 percent of maximum load Py(i), stiffness is

0.9P,(j)-FPP _

= = = 118
K = SXRroXs Dyy(j)-DPP K4 (118)

The applicable hysteresis rule is SB 5.2.
After break point X3, if energy dissipation ratio (=2Ed/PuoDuo) is less than 0.3,

stiffness is defined as
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Table IX Summary of reloading after unloading process

Reloading after unloading process (KL = 7 or 8)
(1) DM < ODC,

Rule SB 1.0

stiffness K = SOC

(2) If DM 2 ODC,

(A) If IDP! < [Duo(i)l,

rule SB 4.1

stiffness K = SXRXs

=[ 0.9 Fuo(i)-FPP ] / [ Duo(i)-DPP ] = Kd
in which XS = (Duo(i), Fuo(i) * 0.9)

(B) If IDP! > IDuo(i)!,
rule SB 4.2
K =0.5(SXRrXSs) = Ke ( = 0.5 Kd)

> U

-t D

Figure 49 Unloading after reversal loading within elastic range
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K=SCY (119)
If energy dissipation ratio (=2Ed/PuoDu0) is greater than or equal to 0.3, stiffness becomes
K = 0.4 (SXgroXs) = K¢ (120)

Both cases are shown in Figure 50. The applicable hysteresis rule is SB 5.3.

Unloading after reversal loading also occurs when the path of reversal loading
proceeds to the opposite displacement side and does not reach the first critical point (i.e.,
cracking point or equivalent cracking point). This case is shown in Figure 51. The
applicable hysteresis rule is SB 5.4. Note that controlling factor KL is 2 on the positive
force side or 4 on the negative force side. Associated stiffness K has the form of

- ___-FPP _ _
K =5X3Xo = 5pp/3.ppp - X2 121y

Unloading after reversal loading is summarized in Table X.

E. CO N D E NTAL RESULTS
In Figures 52 through 57, calculated and experimental results for NCKU wall tests

under earthquake type loading are compared. Some findings are discussed below.

As shown in Figure 52, calculated stiffness matches experimental initial stiffness
quite well. The former is provided by the slope of the first segment on the backbone curve.
Experimental maximum load for the second cycle is larger than calculated load. For the
third cycle, calculated maximum load is less than experimental maximum load but the slope
of the calculated path (i.e., between equivalent cracking point and equivalent yielding point)

is close to the experimental slope on the same segment. Slopes for the loading process in
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Figure 50 Unloading after reversal loading for cracked shear wall
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Figure 51 Unloading after reversal loading process as current path below cracking point

the fourth and fifth cycles are compatible vis-a-vis calculated and experimental loops.
Deviation of the path in these two comes from uncertainty of the equivalent cracking point.
In this regard, cycle 6 is similar to the fourth and fifth cycles. Cycles 4, 5, 6 and A have
good agreement for the unloading process in terms of calculated path and experimental
path. Cycle A is a small loop with some deviation in the reloading after unloading path
between calculated and experimental results. In cycle 7 calculated and experimental curves
match well. On the negative force side, B and C show large displacement. Deviation in this
range is more than for previous loops, but the comparison is still good. As shown in
Figure 53, shear wall SWO-6E yields a similar comparison. Maximum load for cycles 3,
4, 5 and 6 of calculated and experimental loops in the loading and unloading process
matches well. Cycle 7 is in the range of high energy dissipation, which involves large

displacement. For this cycle, calculated maximum load is below that of the experimental
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Table X Summary of unloading after reversal process

Unloading after reversal process (KL =9 or 10)
(1) If DM < ODC,

rule SB 1.1
stiffness K = SOC (= OSOC)
(2) If DM 2 0ODC,
(A) IfDPP *FPP <0,
Previous KL =50r6
rule SB 5.1
K = SX3XRO = Kc (idealized vertical line)
(B) If IDPI < ID (i)
stiffﬁess K = SXR0Xs
=[09P_(i)-FPP]/[D,(1)-DPP ] =Kd
(C) If IDP! > IDuc(i)l,
rule SB 5.3

If ZEd/PuoDuo< 0.3 , K=SCY

If ZEd/PuoDuo > 0.3 , K = 0.4(SXR0X5S) = Kf

(D) If Duo(i)| < DC,
KL=2or4
rule SB 5.4
K = SX3Xo = -FPP /[ DPP/3-DPP ] =Ka
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path. On the reversal loading path, shear walls SWO-1E, SWO-6E and SWO-8E exhibit
good comparison between experimental and calculated resulits.

For shear walls with a height/width ratio of 0.65, such as SWO-12, SWO-14E and
SWO-16E, the slopes of loading, unloading, reloading and reversal loading compare well
between calculated and experimental response. The calculated load capacities are generally
smaller than experimental load capacities for some cycles, as shown in Figure 55 through
57.

In summary, calculated hysteresis output and experimental hysteresis results
indicate good agreement when compared. All the shear walls herein display a pinching
effect when force vibrates from one side to the other side. Hysteresis response of RC

perforated shear wall is thus strongly controlled by shear.
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Figure 52 Comparison between calculated and experimental hysteresis response for
perforated shear wall SWO-4E
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Figure 53 Comparison between calculated and experimental hysteresis response for
perforated shear wall SWO-6E
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Figure 54 Comparison between calculated and experimental hysteresis response for
perforated shear wall SWO-8E
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Figure 55 Comparison between calculated and experimental hysteresis response for
perforated shear wall SWO-12E
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Figure 56 Comparison between calculated and experimental hysteresis response for
perforated shear wall SWO-14E
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Figure 57 Comparison between calculated and experimental hysteresis respohse for
perforated shear wall SWO-16E
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V. EQUIVALENT VISCOUS DAMPING OF RC SHEAR WALL

Damping is the action of energy removal from a system subjected to excitation.
Energy loss occurs in the vibration system by dissipation or transmission to protect the
structure itself from failure. Researchers have established many types of damping models
[31-39]. As far back as 1927, Kimball and Lovell found that many engineering materials,
unlike behavior of viscous damping, exhibit energy dissipation with respect to square of
displacement but independent of frequency of motion. Later this phenomenon was named
hysteretic damping by Bishop and Johnson [39]. In fact, hysteresis loops are produced not
only by hysteretic damping but also by a variety of damping mechanisms in a real structural
system. Bishop [40] also noted that if a simple oscillator undergoes steady forced
vibration, it experiences damping effects which are neither truly viscous nor truly hysteretic
in character. Theories based on viscous or hysteretic damping give an approximate
solution for actual behavior. These two are close to each other when damping is light;
hysteretic damping becomes more evident when damping is heavier. Lancaster derived an
equation of motion by combining viscous and hysteretic damping [41].

Strictly speaking, hysteretic damping is defined only for harmonic motion. In this
respect, Crandall [42] emphasized that the non-physical phenomenon of this model still
exists. To solve certain problems, it is often necessary to sacrifice accuracy in representing
physical behavior [39], particularly for applications such as instability in steady state
oscillation or stationary random vibration.

In this section the concept of viscous damping is applied to hysteretic damping.
Characteristics of hysteretic damping of RC shear walls are explored in the context of

NCKU experiments which involved quasi-static excitation.
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A. EO ATION

1. Harmonic Motion When a steady harmonic excitation is imposed, a system will
oscillate with some degree of energy absorption. By means of viscous damping action,
this process of absorption serves to dissipate the input energy. An equation of motion
reveals that applied force P consists of three forces: inertia force Fy, spring force Fg and
viscous damping force Fp. Equilibrium of force is shown in Figure 58 and expressed in

the following equation
P=F;+Fs+Fp (122)
Also, steady harmonic excitation provides
applied force P = po-sin{2t (123)
arbitrary displacement u = uo-sin(Qt-CD) (124)

where @ is phase angle; u, is maximum amplitude; p, is maximum applied load and Q is

frequency of motion.

Thus.
inertial force F; =ma = mii ; ais acceleration , m is mass (125)
spring force Fgs = ku ; k is spring constant (126)
damping force Fp = cu ; c is damping coefficient, u is velocity (127)

Rewrite the above as
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Figure 58 Schematic diagram of forces for a body subjected to external force

Fi=mii=- muoﬂzsin(Qt-d))
Fs = ku = k u,sin(Qt-®)
Fp=ci=c uOQcos{Qt-d))

Combining Eq. (124) and (130) yields

Fp
cQu,

KAk

Figure 59 demonstrates Eq. (131).

(128)

(129)

(130)

(131)

Equations (128) and (129) are illustrated in Figures 60 and 61. All the effects of

P = F; +Fs + Fp can be seen in Figure 62.

The area bounded by inertia force-amplitude in Figure 61 is denoted by

(Ws) and (Ws), which can be expressed as

W1 =Wsz = %kuo2

123

(132)
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Figure 59 Damping force vs. amplitude relationship under harmonic motion

CQu,

Figure 60 Inertia force vs. amplitude relationship under harmonic motion

-» U

Figure 61 Spring force vs. amplitude relationship under harmonic motion
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Figure 62 Hysteresis loop with respect to viscous damping for a body subjected to
applied force

2. Damping Ratio The area bounded by damping force and amplitude in Figure 59

is denoted as Wp which can be written as
Wp = cnQu,? (133)

From Eq. (133), damping coefficient ¢ can be expressed in terms of

c=_Wp (134)
Qdu,2

Damping ratio § is defined as
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or

(135)

(136)

where ®, = undamped natural frequency of structure. From Eq. (132), it can be seen that

spring constant k is
k= 2Wg; = 2Wso
ug? u,?

Thus substitute Egs. (134) and (137) into Eq. (136),

£ = con . Wp | _ o
2k TEQUOZ 2WSI)
Uo2
= Wp . @qug?
mQu,2  4Wsi
=@ _Wp
Q 41I:W51

(137)

(138)

3. Equivalent Damping Ratio Now, apply the viscous damping concept to

hysteretic damping (i.e., equivalent viscous damping). Use equivalent viscous damping in

one full cycle which has a different peak amplitude at each half cycle (see Figure 63). If

equivalent viscous damping vs. amplitude and equivalent spring vs. amplitude can be set

up and shown in Figure 64 ( these are derived later ), then the work caused by damping

force is
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(b) a cracked element

Figure 63' Irregular load-displacement relationship and equivalent damping force vs.
amplitude relationship for (a) uncracked element, (b) cracked element
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Figure 64 Damping force and spring force based on equivalent viscous damping
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From Eq. (139), equivalent damping coefficient ce, and amplitude up is

= Wp

EQUDZ

and

up2 =D

CegN2

Equivalent amplitude from spring force is expressed as

Wsi =-;—ll1(2k

Spring constant k and amplitude UK can be written from Eq. (142) as

UKz
ug? = Vsl
k
Therefore
) ) W ®
damping ratio £ = <%0 - _WD . 0
ping raio § = Qup? 2w31)
UK2
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(141)

(142)

(143)

(144)
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Since hysteretic damping is related to displacement, it is independent of frequency of

motion. Here assume one critical point and let ®,/€2 = 1. Damping ratio & then becomes

__Wp | ug?
§_4TEW51 e (146)

As noted above, hysteretic damping is independent of frequency of motion. The

equation of motion under hysteretic damping is formulated
mii + fy{u) = P (147)

where fy(u) is nonlinear function of displacement.
For simplicity, total spring force fy(u) may consist of two components: equivalent
spring force f; = ku, (k is average spring constant) and equivalent damping force fp. In

view of the fact that hysteretic damping is not related to force frequency €2, assume
CegQ = MK (148)

Then equivalent damping coefficient c.g can be expressed as

k
Cog = = (149)
Q

Therefore, if ug = up = u is assumed, the ratio of dissipated energy Wp to energy by spring

WSl 1S

Wp _enQu? _ 5 .¢Q . = 25 (150)
WSI lkuz k
)
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and

constantﬂ:%}vi—1 _ (151)

From Eq. (146), equivalent damping ratio & becomes

- Wp u?_ 1| Jug? M ug?
v e i i e el (152)
if
B 1
UK = up, then & = -2— (153)

‘4. Near-Harmonic Motion Near-harmonic motion is now explored. In Figure
63(a) and (b), the former's half cycle has amplitude u; and latter's half cycle has amplitude

u2. In a manner similar to the analysis of viscous damping, Figure 65(a) shows the
relationship between equivalent damping force Fp and amplitude. If amplitude u; is
assumed to be larger than amplitude u,, then Figure 65(a) represents a larger half ellipse on
the right side. Figure 65(b) shows idealized ellipse which has amplitude u] and u;. From

this, two eQuadons for dissipated energy can be derived as

Wp, = %— CegMQu}> (154)
Wp, = %cegnﬂugz - (155)

As noted, the dissipation loop is a smooth skew ellipse. It is shown as curves A and B in

Figure 63¢a) and (b). From a practical viewpoint, a solid skew ellipse-like curve (i.e.,
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(a) Irregular damping force
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(b) Irregular equivalent damping force
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(c) Equivalent damping force

Figure 65 Irregular damping force and equivalent damping force vs. amplitude
relationship
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curve C and D in Figure 63(a) and (b)) is a possible response and does occur in the
experimental results for NCKU RC shear walls. In an attempt to obtain another equivalent
ellipse (see Figure 65(b)), an irregular ellipse is formed (Figure 65(b)); up is assumed to be
a new amplitude for both sides of the ellipse. Note that total dissipated energy in Figure

65(b) is equal to total dissipated energy in Figure 65(c). The formulation is

L cegnQfu"f + 1 cegn@fu"f = cegnQup? (156)

and equivalent amplitude up can be obtained as

up = '71_2_—‘\/ (ul‘)2+(u2‘)2 (157)

Concerning the relationship between equivalent spring force and amplitude (see Figure 66),

energy Ws; and Wgj can be given by

Wi » asp
Wi, = L’ (159)

Total energy by spring force is

Ws = W;l + W‘SIZ = %{klu22+k1u§2)

= 2WS4 = kaK2 (160)

Ifke= k_liz'k_z_ is assumed, then
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Figure 66 Equivalent spring force vs.

134

displacement relationship

» 1



%(kl + kaJug? = %‘(klul‘z*'kIUZ‘z)

2 k1U1‘2+k2112.2

K k1+k2

(161)

(162)

By using Equation (146) (corresponding Wg; shown in Figure 60) and substituting Wgy4

into Wy, equivalent damping ratio for irregular load-displacement can thus be obtained as

g __Wp ,UK2
%7 4nWs;  up2
k1U1‘2+k2112‘2
WD k1+k2

- 4TCWs4 . %_ultZ_'_é_uth

W | ko w? K w? (163)
41!Ws4 k1+k2 u1t2+u2t2 k1+k2 U1t2+u2*2
Rewrite Egs. (158) and (159) as
2We 2We
k=Sl k= 2 (164)
oy U
Then
- 2Ws, __2_"!8_1_?
kl - uiz - %—CegQul
itk owyg oWy, 2wy W5,
u}z uzz %cegQu‘Iz %cegﬂuzz
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Ws,
W
Wi, Vs
Wp1 Wp

Since ¢ = 1k, and c€2 = 1k, are assumed

* -Lk 2
Wog_ 2% 1k 1.1
Whi deegmQui? T oceQ T M
In the same manner
Voo 1
Wp, ™2
Equation (5.44) becomes
.
ki = i = N2
kitko _1_, 1 m+m
L | B (11 b
Similarly
ko - N1
ki+k; mi+m2
Furthermore
*2
op? %ﬂggn‘h __ Wp _Wp

«2 «2 - *2 -2 - * x W,
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(165)

(166)

(167)

(168)

(169)

(170)



and

*2 * *
uo W _Wp

x *
uj+uy? Wp+Wp, Wp

(171)

Using Egs. (166) through (171) in Eq. (163), equivalent damping ratio &eg thus reduces to

Eeg = Wp li M2 .WBI+ 13! WSz}
€T 2tWss m+M2 Wp M2 Wp

[112W;>1+T1 1W1*>2}

_ 1
2Ws4(n14+12)

= 1 {mem + WDIWDZjl
{Ws+Wso) (Mi+n2) | W5, W,

iy VoW e e ]
TN +n2) Wi +Ws, [Ws; Ws,

C (W Wiy —] {

- WEI"'W;Z}
ni(n+12) Wsi+Ws,

ook
WSIWSZ

- 1 W;>1W52= mnimz _ 2 172)
nin+ng) Wy Wg,  minp+mg) Ti+m2

in which

.1, =L VD2 (173)

as already given in Egs. (166) and (167), and
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0<n;,m<1l/n (174)

Substitution of Eq.(173) into Eq.(172), another form of equivalent damping ratio, &eg ,is

_ 1 WpWpn
E—'eg - 2 * *
TM1+M2) W, Wy,

- 1 WpiWho
nz(l Wp, +_1_W02) W51 Wso
* X
Tws TWwg

* *
WpiWno
* * 3 3
W Wp+WsoWp,

=1
= (175)

For harmonic motion (see Figure 67(a)) damping ratio & (Eq. (153)) is

=1
&= > (176)

For near-harmonic motion (see Figure 67(b)), equivalent damping ratio is

gol_ WpiWp _Mima (177)
n * * *x * +
W5 WpptWs,Wp, Ttz

B. RIC ERVATION BASED ON EXPERIMENTAL RESULTS

Two perforated shear walls and one solid shear wall are represented in this section.
SWO-4E and SWO-6E , the former, are described in Section II. SWS5 , the latter; is from
Mertz's study [44]. All three walls are subjected to earthquake loading.
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Figure 67 Harmonic motion and near-harmonic motion
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Based on previous derivations, the amplitude(u), dissipated energy (WBl and WBZ),
energy of spring force (ng and W;z) and corresponding damping ratio & for all cycles of
the three shear walls are summarized in Tables XI, XII and XTII. From these tables, it can
be seen that damping ratio generally increases with maximum amplitude(u), ductility,
dissipated energy (WBI and WBZ) and energy of spring force (W;l and Wgz) in the NCKU
shear wall experiments. Figure 68 fur;her shows the relationship between damping ratio
and ductility of shear walls while Figure 69 presents the definition of ductility p as u
=0/ 8y. The trend of damping ratio is depicted in Figure 68. Bert [43] stated that there is
no hysteresis damping unless displacement amplitude exceeds a certain threshold value.
For RC shear walls, it can be assumed that there is no hysteretic damping before the
cracking point. As shown in Figure 68, damping ratio gradually increases with maximum
ductility of a shear wall. This ratio goes as high as 15.7%. Furthermore, it can be
observed that the initial damping ratio for hysteretic damping is in the range of 5 to 6, a

good agreement with practical design.
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Table XI Summary of amplitude, dissipated energy, energy by spring, and damping ratio
for all cycles of shear wall SWO-4E

Dmax 0.268 | 0.938 | 2.68 3.819 | 5.527 | 13.668| 7.437
Ductility | 0.109 | 0.382 | 1.090 | 1.554 | 2.249 | 5.561 | 3.026
WD1 0 2.207 | 19.868| 28.86 | 45.70 | 54.9 80
WD2 0 2975 | 23.74 | 3405 | 57.6 66.247| 0.4
Wsi1 0.5853| 5.146 | 26.958| 4891 | 70.4 66.3 104.3
Ws2 0.3292] 6.057 | 36.63 | 57.35 | 82 70.2 0.5
£ - 7.28 10.98 | 9.42 IQ.74 14.04 | 12.46

Table XII Summary of amplitude, dissipated energy, energy by spring, and damping
ratio for all cycles of shear wall SWO-6E

Dmax 1.306 | 2.680 | 3.517 | 4355 | 8.274 | 17.65

Ductility | 0.564 | 1.157 | 1.518 | 1.880 | 3.571 | 7.619

Wb1 2.396 | 21.00 | 27.97 | 3476 | 83.8 1233
WD2 2.948 | 18.57 | 22.36 | 0.1 58.3 77.3
Ws1 8.507 | 28.356| 50.59 | 60.86 | 111.6 | 125.4
Ws2 7.054 | 34.07 | 4582 | 0.2 80.5 78.1

£-(%) 5.36 9.99 8.25 8.49 11.73 | 15.70
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VI. SOME OBSERVATIONS ON DESIGN PARAMETERS

When a structure is subjected to earthquake excitation, the system may deform into
the inelastic range. Building codes use design parameters to include inelastic response in
elastic design. Force reduction factor and displacement amplification factor are two key
parameters. Response modification factor R is related to force reduction factor. It is used
in the National Earthquake Hazards Reduction Program (NEHRP) recommended
provisions [46] as is displacement amplification factor C4. Ry is the force reduction factor
used in Uniform Building Code (UBC) [47]. UBC code’also uses the displacement
amplification factor to compute an actual structure's drift. Force reduction factor,
expressed as R or Ry, generally serves to reduce linear elastic design response spectra.

Story response on the critical story of a building is shown in Figure 70. Here the
critical story exhibits stability vis-a-vis energy dissipation until it fails. Elastic response is
also illustrated in Figure 70. For simplicity in obtaining design parameters, the actual
response is idealized as a linearly elastic-perfectly plastic curve. On this idealized curve,
the point where critical story enters the inelastic range is defined as yielding point which
has load capacity, (Vi), and associated yielding story drift, 8,. Since load capacity
encompasses the failure point (point D at the end of the plastic range on this response
curve), load capacity (Vi) at yielding strength refers to the structural collapse level.
Maximum inelastic displacement at the end of the response curve refers to failure story drift
which is maximum story drift, 8ax. Failure (or ultimate) load capacity, (Vi), means the
maximum ultimate base shear taken by the structure equals (V).

For design purposes, actual maximum load level is reduced to the level where
global structural response significantly initiates deviation from previous elastic response.
First significant yield level is the usual term for this level. Prior to it, inelastic response is
the same as elastic response. Being consistent with strength design approach for building

codes, this level is adopted by NEHRP provisions. Base shear corresponding to this load
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Figure 70 General story response of a structure

level is denoted as (V;); which has corresponding story drift, 8. UBC code further
reduces this value from significant yield to seﬁiceable load level. The latter is basically
compatible with allowable (or working) stress design approach. Allowable base shear,
(Vi)a, represents this load level. Related allowable story drift is expressed as 8,.

UBC design code has summarized formulae to estimate maximum design force
based on extensive earthquake data with statistical analysis. When desirable seismic
strength is determined and a simulated earthquake is applied to a structure, an elastic
response is then obtained. Elastic response is shown in Figure 70, which has maximum
elastic base shear, V,,. UBC design code also provides a chart of normalized acceleration
response spectrum. If the natural period of a structure is given, maximum design intensity can
be applied. Here the idealized design response spectrum is called smooth linear elastic
design response spectrum.

Based on Figure 70, some pertinent factors can be defined as follows.

(1) Ductility reduction factor, Ry, represents the capacity to dissipate hysteretic energy

by ductility characteristics of material. It is defined as
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Ry = (178)

(2) System ductility factor, W, is based on the idealized linearly elastic-perfectly plastic
curve. It 1s expressed as the ratio of maximum story drift to yield story drift and

has the form of

pg = Smax - (179)

The relationship between i and R, was established for single degree-of-freedom by
Newmark and Hall [48]. They stated that the ratio of R,/ is smaller than or equal to 1.0.
(3) Overstrength factor, €2, is the reserve load capacity existing between the actual
structural collapse level and first significant yield level. If this range is larger, the
overstrength factor increases. Larger overstrength factor offers more protection to

structures subjected to seismic motion. This factor is expressed as

o= Yik (180)

(4) Load factor, Y, reflects the difference between strength design approach and
allowable stress approach. This factor is 1.4 for reinforced concrete structures [49].
Formulations by Uang [50] elaborate on these factors and can be summarized as

follows

(i) NEHRP force reduction tactor (NEHRP called response modification factor)

R =R,0Q (181)

(i) UBC force reduction factor Ry, = R,QY (182)
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(iii) NEHRP displacement amplification factor Cy4 = Omax - UsQ (183)

(iv) R/ICq=Ry/ig (184)

where the ratio of Ry, to U is equal to or smaller than 1.0 as cited earlier in Newmark and
Hall's study [48].

These derivations as observed by Uang [50] illustrate that both force reduction
factor R (or Ry,) and displacement amplification factor Cy4 are functions of overstrength
factor, system ductility tactor, and damping (the effect of damping is involved in ductility
reduction factor(Ru)). Equations (181) through (183) show that the overstrength factor
plays an important role in controlling structural response. An overstrength factor of
2.4~2 8 is observed in a six-story braced steel frame [45, 51].

Some researchers [495, 50, 51] note that the current UBC design procedure does not
explicitly take the overstrength factor into account. This factor may be influenced by
redundancy (internal stress redistribution), higher material strength, multiple loading
conditions, strain hardening, and so forth. Also, displacement amplification factor/force
reduction factor (DAF/FRF) ratio has a further advantage. Ditferent design algorithms
used in many countries make this ratio a more rational approach to the appropriate range for
displacement amplification factor. Based on Uang's study [28], a DAF/FREF ratio of 1.0 is
adequate for design purposes.

Some relationships discussed below shed light on the overstrength and related
factors. The work herein attemnpts to explore a rational range for factors and their physical

application.
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A. RELATIONSHIP BETWEEN DUCTILITY REDUCTION FACTOR AND
OVERSTRENGTH FACTOR
Recall Eq. (182)

Ry = R, QY

It can be rewritten as
-t

where load factor, Y, is assumed to be 1.4 [50].

From Eq. (182), ductility reduction factor, Ry, is inversely proportional to
overstrength factor, €2, if UBC-specified force reduction factor, Ry, is given. Figlire 71
shows this relationship for some presumed UBC-specified force reduction factor of
interest. Overstrength factor, €2, is defined as the ratio of actual base shear at collapse level
to NEHRP design base shear at first significant yield level, and actual base shear at collapse
level should be greater than (or equal to) design base shear at first significant yield level.
Thus the overstrength ratio, €2, has a minimum value of 1.0. In the chart the overstrength
factor of interest ranges from 1.0 to 2.5. UBC design force reduction factor, Ry, ranges
from 2 to 15. It can be seen that ductility reduction factor becomes stable when |
overstrength factor is close to 2.5. Further observations from this chart appear in the next
figure.

Turning to Figure 72(a), a reinforced concrete shear wall is examined. UBC-
specified force reduction factor, Ry, is specified as 6 and overstrength factors, €2, of 1.0,
1.5, 2.0, and 2.5 are selected. As shown in Figure 72(a), when overstrength factor is 1.0,
ductility reduction factor is 4.28. Actual base shear at collapse level is the same as base

shear at first significant yield level. There is no evidence of a gradual change in elastic
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range with inelastic range of higher ductility. The building's critical story displays a

linearly elastic-pertectly plastic response. Duectility reduction factor (Ry) does not appear to
correlate with system ductility factor Ms). In Figure 72(a), the response of higher ductility
remains unknown.

When the overstrength factor increases to 1.5, an obvious change in the load
capacity of the structure's system can be observed. A gradual trend toward high inelasticity
can be expected. In this case, a slight increment of overstrength tactor at a low level can

provide more load resistance for the structure against external excitation. When the
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Ry =6
R, =4.28
Q=10

Figure 72 Structural response on critical story with respect to R, of 6 for overstrength
factor equal to (a) 1.0; (b) 1.5; (c) 2.0; (d) 2.5
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overstrength factor goes up to 2.0, it provides more load capacity for the system but not as
much as in the previous case. Similarly, when overstrength factor goes up to 2.5, load
capacity of the structure increases to some extent. Generally, a higher overstrength factor
can give enough reserve strength capacity for a structure to develop more material ductility
and absorb more hysteretic energy. A higher overstrength factor also ensures that the
structure can sustain higher base shear capacity.

Recall Eq. (185)
—(Rw
Ry (1.4 Q

Overstrength factor is defined for the critical story. For a sound existing building
or one under design, the overstrength factor can be approximately determined. The above

formulation can be rewritten as

= (LR, (186)
Re=(maR
or
R, = CiRw (187)

where C| = 1/(1.4(2) is constant.
Ductility reduction factor, Ry, is defined in Eq. (178) as

= Ve
R“-(Vi)f
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R, in the above formulation is strongly affected by the seismic intensity of an earthquake.

From Equation (187)
R, = Sk
w = a—l (188)

UBC-specified force reduction factor (Ry) is also influenced by seismic intensity.
Smoothed linear elastic design response spectrum, as mentioned earlier, is
proposed by UBC design code. It is shown as curve SLEDRS in Figure 73. UBC

provides the following formula for design force, based on allowable stress design approach

v = ZCw ‘ (189)
Ry

where Z is seismic zone factor; I is importance factor; C is function of both site coefficient
and structure's fundamental period;and W is active weight of the system. It is also shown
as curve IDRS, which considers the nonlinear behavior of a system, in Figure 73. Here a
general form of Eq. (189) is expressed as
v=4Cw (190)
R,

where Ry is a factor to assess base shear for a different design approach. It is noteworthy

that if Ry is assumed to be unity, Eq. (190) becomes
V =(ZIC)W (191)

or
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* Period

Figure 73 Schematic diagram of design response spectrum

A
W ZIC (192)
Equation (192) is physically the same as the maximum normalized design earthquake on
the smoothed linear elastic design response spectrum (SLEDRS). If force reduction factor

(Rg) is not considered in Eq. (190), this factor represents the elastic response which is

identical to UBC's definition of SLEDRS curve. Eq. (192) can thus be expressed as

= (SLEDRS) (193)

where (SLEDRS) is maximum intensity of normalized design earthquake for elastic
“analysis in accordance with the natural frequency of the structure's system.

Now Eq. (193) can be reformulated as

Ve

o = (SLEDRS) = fey (194)

where fq, is constant.

153



If the most severe earthquake is chosen, f, becomes

fo, =ZIC = 1.1 | (195)

where Z=04;1=1.0; C=2.75.

From Eqgs. (194) and (195), maximum Vg, is obtained as Vg,=f,,W=1.1W and V. ,=f,,W.

Ductility reduction factor then becomes

feu‘ W 1.1W
< —- 1.1 ¥V 9

If a smaller seismic region is considered, and f.,s = ZIC is defined for Z < 0.4,

ductility reduction factor becomes

(197)

B. RE NSHIP BE EN BASE AR RA

OVERSTREN F
Comparing Eq. (186) with (178), it yields

Ru:Lan::(_Rl)L (198)

Vg = ((L)Ll_{l 1_ (Q’ﬁ) (R_w) (199)
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For the most severe earthquake, Vg, equals 1.1 W (i.e., fe, = 1.1) (see Egs. (194)

and (195)) and is the maximum elastic base shear. Eq. (199) then becomes

vw=(%)‘)(%)s LIW

Equation (200) can be rewritten as

(%)és 1.1%

or
WS (&v_)i

(Vi \1.54/

and further (Vi) is normalized and defined as

o—

Vik _
w -

where Cs is called failure (or collapse) base shear ratio. From Eq.(199), (Vi)=

(1.4)ZICW
Ry

Then C; becomes

1.4ZIC
Ce= R, Q

_Ldfe,
. RW Q

Furthermore, Eq. (203) then reduces to
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(200)
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(202)

(203)

A Verry

Ry
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1.5

Cfs(—li—w—

)Q (206)

For the most severe earthquake (i.e.,Z=04;1=1.0; C =2.75)

—(1.54
Ct _( = )Q | (207)
Figure 74 shows relationship between C¢ and Q2 for some UBC-specified force reduction
factors while Figure 75 is the same except Z = 0.3 (i.e., Z=0.3, I=1.0, C=2.75), C; is
written as

Ce=L133 0 (208)
Ry

If UBC-specified force reduction factor (Ry,) is equal to 6.0 in Figure 74, then C¢

will be less than or equal to 0.26, 0.51, and 0.64 for overstrength factors of 1.0, 2.0, and
Veu _ 1.1IW _ 1.1
(Vik CW  C;

= icel), is less than 4.23, 2.16, and 1.72, respectively. For an overstrength factor of 2.5
f

2.5, respectively. In these cases, ductility reduction factor, Ry, (i.e., =

with Z=0.4, C; is 0.64. From Eq. (203), base shear for a structure's system is
(Vi)= CW = 0.64W (209)

In Eq. (209) the total base shear resisted by the structure's system at collapse level is 64
percent of structural active weight.
Also, Figure 74 is based on severe seismic situation with fs, = 1.1 for a short

period. For a structure's system with a long period, point A in Figure 76 illustrates design
base shear ratio (fey),. From Eq. (205), Cs is 1—'4(R—f"’“—)a§2. In Figure 74 Cs is l—‘g—fﬂﬂ and
W

W
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Figure 74 Relationship between failure base shear ratio and overstrength factor for severe
earthquake with Z=0.4

f., equals 1.1. If Figure 74 is applied to the structure's system with a long fundamental

period (let Cf,=1'—‘:({f—°“)—aﬂ), then Cg, in relation to C¢ becomes
W

_L4{feu)a _1-4feu44(feu)a)=c (few)a ,
=R, TR, At LI (210)

It means that with the chart in Figure 74 failure base shear (Vi is

(Vie=Cr ‘—ﬁ—%-w (211)
where C; is obtained from Figure 74.
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C. RELATI@ISHTP BETWEEN DAF/FRF RATIO AND OQVERSTRENGTH FACTOR

DAF/FREF ratio is defined as the ratio of displacement amplification factor (DAF) to
force reduction factor (FRF) for a structure subjected to external excitation. In Figure
77(a), (b), and (c) the relationship between DAF/FRF and overstrength factor for system

ductility factor, [, equals 1.5, 2.0, and 2.5, respectively. Comparison and derivation in

this section use NEHRP recommended provisions.
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Figure 77 Relationship between DAF/FRF ratio with overstrength factor for system
ductility factor equal to (a) 1.5; (b) 2.0; (c) 2.5
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Figure 77 (continued) Relationship between DAF/FRF ratio with overstrength factor for
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As stated before, NEHRP defines force reduction factor, FRF, as
FRF =R (212)

Since all comparisons in this section use UBC-specified force reduction factor, Ry, R is

expressed in terms of Ry, which is written as

R=RyY (213)
Also, NEHRP defines displacement amplification factor, DAF? as

DAF =Cy (214)

Substitution of Eq. (183) into Eq. (214) reduces this factor to

DAF = (215)
DAF/FREF ratio thus becomes

DAF _Cq_ (Es_‘_f')

FRF R Ry Q (216)

For structure ductility factor, s, of 1.5, 2.0, and 2.5, and Y=1.4, DAF equals (2 I)Q

Rw
(%8) Q, and (:1315) Q, respectively.
w w

From Figure 77(a), if UBC-specified force reduction factor (R,,) is 6.0, then
DAF/FRF is less than 1.0. For pg of 2.0 and 2.5, (Ry) of 6.0 has a DAF/FREF ratio greater

than 1.0 when the overstrength factor is close to 2.5. To obtain a minimum value of 1.0

161



for DAF/FREF ratio, as recommended by Uang {28], requires a lower force reduction factor
{Rw or R), higher system ductility factor (W), and higher overstrength factor (Q)

From above discussion, relationships between maximum base shear ratio and
overstrength factor as well as between DAF/FRF ratio and overstrength factor provide
the following information:

1) if ranges of reduction factor and overstrength factor are known from analysis, the
maximum base shear of a structure's system can be predicted from Egs. (204) and (209).

ii) if force reduction factor and maximum base shear are estimated, overstrength

factor for a structure's system can also be found from Eqgs. (204) and (209).
Some correlations between the above factors are obvious in the structure's system. Later
these correlations are checked with results for the RC shear-wall buildings which were

analyzed by both monotonic and dynamic loading cases.

162



VII. ANALYTICAL FORMULATION FOR PERFORATED SHEAR WALL ELEMENT
MODEL

Matrix formulation for analyzing 3-D structural systems is established and coded in
the computer program, INRESB-3D-SUP, developed at UMR. This program can analyze
elastic and inelastic building systems subjected to static loading, multi-component
earthquake motion, and pseudo-static cyclic loading. It is also capable of calculating
elastic natural frequency and buckling load [52-58].

Among major features of reinforced concrete and stee! members of plane and 3-D
buildings are elastic, inelastic, dynamic and stability analysis as well as various hysteresis
rules of elasto-plastic, bilinear, Ramberg-Osgood, Takeda, and Cheng-Mertz. Other
attributes of this computer program are listed as follows [29, 59,60]:

1) joint based degrees of freedom

2) rigid body and planar constraints

3) incremental nonlinear static solution

4) unbalanced load correction for overshooting

5) incremental nonlinear dynamic solution

6) mass and stiffness proportional damping

7) condensation to reduce size of dynamic problem

8) damage index

9) energy balance

10) ductility and excursion ratio for various definitions of displacement, constant
‘strain energy, and variable strain energy

The RC perforated shear wall element consists of a panel with a joint at each corner.
As shown in Figure 78, nonlinear equivalent shear spring and nonlinear axial spring
account for nonlinear total lateral displacement and nonlinear axial displacement,

respectively. Lumped nonlinear springs connect two bodies with two corner joints for each
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Figure 78 Perforated shear wall element model

body. Joints J1 and J2 are on the top corners of the upper body which has a height of c.

Joint J3 and J4 are on the bottom corners of the lower body which has a height of B. Total

height of the wall is the sum of the respective heights and can be written as

L =o+B (217)

Out of plane (i.e., perpendicular to the plane of the wall) stiffness is not considered. A

lumped parameter formulation of geometric stiffness with consideration of both in-plane

and out-of-plane P-A effect was also developed.

164



A. ELEMENT COORDINATE SYSTEM AND DEGREES OF FREEDOM

As shown in Figure 78, the perforated shear wall element has ten transitional
degrees of freedom. Degrees of freedom 1 and 8 represent in-plane total lateral
deformation. Note that total lateral deformation is the sum of shear deformation and
flexural deformation with consideration of shear and bending effects. Degrees of freedom
2, 4, 6, and 9 represent axial deformation. In matrix form,.these local forces and

displacements in the element's coordinate system (ECS) are

[Fe] =[F1 F2 F3 F4 Fs Fg F; Fg Fg Fo]" (218)

T

[A) = A A A3 Ay As Ag Ay Ag Ag Ao (219)

Figure 79 shows a perforated shear wall coordinate system. In this system, global
coordinates for all four joints, J1, J2, J3, and J4, are denoted as (Xgl, Ygi1, Zgl),
(Xg2, Yg2, Zg2), (Xg3, Yg3, Zg3), (Xg4» Yga, Zga) , respectively. Vectors )—(: and 5(?, stand
for orientation in the X direction from joint J2 to J1 and from joint J3 to J4 at the top and
bottom of the wall expressed as

Xi = (Xg1-Xg2) i + (Ya1-Yg2)j + (Zg1-Zg2) K (220)

Xp = (Xga-Xg3) 1+ (Yga-Yg3)j +(Zga-Zg3) K (221)

A vector \7;, assumed along the mid-width of the wall in the longitudinal axis of the wall,

is defined as

\—]' - Xg1+Xg2 ) Xg3+Xg4] I 4‘{Yg1+Yg2 ) Yg3+Yg4} . + [Zg1+Zg2 i Zg3+Zg4 E
y 2 2 2 2 2 2

(222)

165



(X2, Yg2, Zg2) (Xg1 Yg1, Zg1)

- >
2 TR
Vyea\7;
I3 Vo J4 Vxes Vx
| o ——P < g
(Xg37 Yg3s ZgB) (Xg4’ Yg4’ 284)
VZC,VZ

Figure 79 Perforated shear wall coordinate system

Vector V;, is oriented from mid-width at the bottom of the wall to mid-width at the top of

the wall. Thus the span of vector \7; is the height of the wall, formulated as
L =V} (223)

Normalized V; becomes

<

——

vy = (224)

T

where normalized V, is a unit vector along the horizontal axis of the wall.

Vector \_’; , perpendicular to the wall, is defined as
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Vo =Vpx vy (225)

Unit vector v, calculated by normalized \_’; can be expressed as

=Y (226)
v

where |V] is the length of vector \_/;
Unit vectors vy and v, are established above. Unit vector vy, perpendicular to both

unit vectors vy and v, yields
Vx = Vy XV (227)

Unit vectors Vx, Vy, and v; form the basis of the element's coordinate system

(ECS). This system with origin midway between joints J3 and J4 has three scalars denoted

DY Vxe, Vye, Vze. The three unit vectors that define ECS orientation are expressed in matrix

form as

Vx i i
U Ci1 G2 €13 || | .
[vel=| v, ={ C21 €22 €23 } i |=ICe] (228)
— C3; €32 € - -
7 31 €32 Ca3 ) g
where [C,]4s the direction cosine matrix for the ECS.
B. ELEMENT STIFFNESS MATRIX IN THE ELEMENT COORDINATE SYSTEM

Stiffness derived here for perforated shear walls includes equivalent shear stiffness

of the entire wall as well as axial stiffness of a unit height wall (in the computer program
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noted earlier). Shear backbone curve and hysteresis model that determine shear stiffness
are derived in terms of shear and shear displacement, but the axial hysteresis model is
expressed as axial load vs. axial strain. The force deformation relationship for each of the

springs is shown in Figure 80 and can be written as

V, =K, = %& (Va-ve) = -Vi (229)
and
. K
P, = Ksu, = "I:'(ua'uc) =-P; (230)
. K. _
P, = Kau; = 3 (up-uq) = -Py (231)
where
K = 521 (232)

K is stiffness of the entire wall, shown in the shear hysteresis model in Section IV,
K, is the axial stiffness on both the right and left sides of a unit height wall,

K. is shown in the axial hysteresis model in Appendix B,

Va, Vp are shear deformations at the top and bottom of the shear spring,

U,, U, are axial deformations at the top and bottom of the axial spring on the right
side,

Up, Uy are axial deformations at the top and bottom of the axial spring on the left
side,

Va, V,, are shears at the top and bottom of the shear spring,

P,, Py, are axial forces at the top and bottom of the axial spring on the right side,
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Figure 80 Shear wall forces and deformations

169



P, P4 are axial forces at the top and bottom of the axial spring on the left side,
v, is relative unit shear deformation,

u, is relative unit axial deformation on the right side, and

y, is relative unit axial deformation on the left side.

Combining Eqs. (229) through (231) into the matrix form reduces them to

(V.) 1 0 0
P 0 1 0 Va Vs
< 3 r = P‘ =[A1] P. (233)
P |0 0 1|, >
P, |0 -1 0| " b
Pd ) | O 0 _1_

Va vl’ Vb
u
P, b =[SIKu, } =[SIJ[A,]'; N (234)
P, U, ut:
(Ua)
where [S1] is the stiffness matrix
K 0 0 ]
[sn=1 o ki o© (235)
0 Ki |
K 0 O
=1 Ka 236)
i 0 3 0 (
K,
00 5]
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Applying the equilibrium of forces in Figure 80, some relationships between the

spring and element forces can be determined.

Upper body becomes

2F, =0, Fi-V,=0 (237)
ZFy =0, F3+F4-Ps-Pp =0 (238)
IMp =0, F-a+P, W-F,-W =0 (239)

These equations can be written as
Fi =V, (240)

Fp=(Vaoo + PpW)/W

=% V, +P, (241)

f=4=l>a+1>.,-{;1‘;-va-1>a=1>.,-{,‘!;va (242)
Lower body becomes

IF;=0, Fg-Vp=0 (243)

TF, =0, Fg+Fy-P.-Pg=0 (244)

IM. =0, F¢W - P4W - Fg:f =0 (245)
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These equations can be rewritten as

Fg=Vy (246)
Fe = EVb + Py (247)
w
F9=P +Pd-P—Vb-Pd=P -—B—Vb (248)
c W CTW

Equations (240) through (242) and (246) through (248) can be rewritten in matrix form

1
]

(F) [1 0 0000
el |2 0 1000
2l | W
F, 0 0 00 0 0|V,
F4 W 0O 01 0O Vb
F, 0 0 0 0 0 O||P,
Fl={gt=| o B ot
F, 0 = 000 1P,
F, 0 0 00 0 O||P,
F, 0 0 0 0 0 0Py
F, 0o B ooi1o
W
Fo) {0 0 00 0 O
v
Vb
PaL
= 249
(a2l p, (249)
PC
[ Pa )

Combining Egs. (233) and (249) reduces them to
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v

a

{F.}=[AJA ]3P, (250)
P,

The perforated shear wall's ECS stiffness is formulated as

[Ke] = [A[Al[SO T A AT (251)

C. ELEMENT STIFENESS MATRIX IN GLOBAL DEGREES OF FREEDOM

Two steps occur in the transformation of degrees of freedom from the element
coordinate system to global degree of freedom. First, rotate the degrees of freedom ateach
of the four ECS joints to their four counterparts in the joint coordinate system (JCS) at
joints J1 through J4. Second, move degrees of freedom from each of the 'slave’ joints to
the 'master’ joints for the constraint transformation. Global degree of freedom is defined at
the master joints. Further discussion on the constraint transformation from the 'slave’
joints to the 'master’ joints can be found in Ref. 29.

Next the transformation explicitly focuses on the perforated shear wall. Element

force of this wall is rotated to the four joints on an ECS basis and expressed as
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(F,,] [1 00000000 0]
F,,| [0 1 0000000 OF)
F.,| [0 01000000 O0|lF,
F,.| [0 00 000O0O0GOO O|F,
F,] [F,| |0 00100000 O|F,
Fo| _JFa|_[0000 10000 O4F5>=[A]{F}
F,[ |F.[ [0 00 00O0O0GO OO OfF, I
F.,] |F,| [0 00001000 O|F,
F.| [0 000007100 0|F (252)
F..l |00 0000010 0||F
Fo,| |00 000000 1 0|F,]
F.. 0000000001

where the wall does not have transitional DOF along the ECS X axis. Some dummy

degrees of freedom are included in the matrix form. {Fd} = [Feix F,, F. ]T represents

y
forces on the joints according to ECS and variable i can be 1, 2, 3 or 4. Then the forces at
the four joints of the shear wall are rotated from ECS to JCS. Since both systems are the

same in this case, the formulation becomes

/M o M M

o
~
-

V
il
N

e3x

(253)

o
—
M T T ' ' N7
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where [Fji =[Fjix Fjiy Fjiz]? represents forces acting on joint i along X, Y, and Z direction.
Based on JCS, i can be 1, 2, 3 or 4. An aspect of constraint transformation should be
noted. If slave joints have the same coordinate system as master joints, then translational
degrees of freedom for this perforated shear wall are found as follows. The transformation

matrix is a unit matrix which can be written as

~

N

Fjlxm Fjlx

Fjlym Fjly

Fjlzm Fjlz

F j2xm Fij
FJIM Fj2ym FJZY Fn
FIZM - Fszm <Fj22L=[A ] FIz
1::13M W Fj3xrn Fj3x . PJs
FI4M Fjsym 0 1 l':1‘3y Fu

Fiam| | 1| (254)

F j4xm Fj4x

Fj4ym Fj4y

LFjllm) \Fj4z

where [Fjim] =[Fjixm Fiiym Fjizm]T is translational degrees of freedom at joint i and i can be

1, 2, 3 or 4. Combining Egs. (252), (253) and (254) yields

Com = (A JAAE) @59
F

Substitution of Eq. (250) into (255) reduces them to
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=[A|KP, - (256)

where [A] =[As] [A4] [A3] [Ag] [A4].

Stiffness matrix is thus transformed from spring stiffness to global degrees of freedom by
[Keg] = [Al[STI[A]T (257)

In the case of this perforated shear wall, computer results for [ch] are as follows

K, 0 0]
2k, K 0
W
0o 0 0
o 0 0
22K, 0 KT
s o 031%00%00%,@0—1%0
[A][SI][A]T=0 o o0 1 00000000 -10
B o g |® 000 1 00-100 00
ws a L
0o 0 0
K, 0 0
Bx x o0
W
|0 o o]
(258)
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[ALST[A] =

] o sl B -K [E )
K (WK) 00 (WK) 00 (WK) 0 : W 0
(;K) (;ZKS+K,) 00 (‘—O‘-K) 00 (%BK) 0 (;;K) [;—EKS—K;) 0
0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0
(;—NOEK) [—%VQ—ZK) 0 0 [aZKS+K:) 00 (;—%K K) 0 (% ) (%‘?K) 0
0 0 00 0 0 0 0 0 o 0 0
0 0 0 0 0 00 0 0 0 : 0
(%VQK) (%@Kj 00 (g‘v—%K—K) 00 (%;K,+K,) 0 (%K) (:-B—K] 0
0 0 0 0 0 00 Bo 0 0 ; 0
pre's o -
_ - 2k 00 [(=k| 0 K —Ks) 0
RN RN SR
) (w00 (B8] o (o) o () (B
(WKS) (VK—K) 0 0 (wz K) 00 (wz ) 0 [Tk K,+K.| 0
0 0 0 0 0 0 0 0 0 0 0]
(259)

The relationship between external force and external displacement with degrees of freedom

based on the perforated shear wall's springs is

P, X,
(P} ={P,  =[AISTAT{X, f=[K,](X} (260
P, X4

Equation (259) can be reduced to

o -
K, —K, ==K,
P, ) K W1 X,
o o X -a°
11:2 = WK’ W2 K:+—2- 7W2 K, ;(2 (261)
JoRg, 2k, Lk e
LW W w 2 |

This corresponds to Figure 81.

177



P4, X4 Py, X2

81, 82, 84 refer to Fig.81.

Figure 81 Unrestrained global degrees of freedom considered in the isolated system

RAM-BASED FORMULATION
In this case, three unit forces are applied to the perforated shear wall in relation to
three kinds of springs. Formulations are then observed and established. To begin, unit
force is applied at degree of freedom 1; the associated free-body diagram is shown in
Figure 82. The bottom of the shear wall is fixed, and degree of freedom 1 is allowed one
unit displacement. Degrees of freedom 2 and 5 are assumed to be fixed. Displacement

matrix [X] becomes

X,) [1
{X}={X,t=40 (262)
X, o

This is shown in Figure 82(a).
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Figure 82(b) depicts internal shear V which is equal to external force P,. Note that
a moment is induced within the upper free-body diagram. Internal shear is provided by the

shear spring with stiffness of K. Force P; is thus

P =K¢X) =K1 = K (263)

Two forces, resisted by axial springs on both ends of the shear wall, balance the moment.

As shown in Figure 82(c), these forces can be determined by equilibrium of moment and

force as
IMp=0,P1aa-P;W=0 (264)
XFy=0,-P4+ P2 =0 (265)

Forces P; and P4 then become

X1=1 P1 -
— >
J2 J1 ’l UB
/ -—
y \ Vv
13 J4 vy
M
P4 P2
-y w t :Pl
) o
UB: Upper body 1_ UB
B 8) A

Figure 82 Free body diagram for unit force applied to degree of freedom 1
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P, = %pl =K. (266)

Py = 2K, (267)

External force can be rewritten as

p
P, K,
o
P}=4P,r=¢—K 268
{ } P2 W sr ( )
4 E_.Ks
(W)

If a unit force is applied to degree of freedom 2, as shown in Figure 83(a), degrees of

freedom 1 and 4 are not allowed to move. The displacement matrix is thus written as

x,] (o
X}={x,}t={1 (269)
X,] (0

In Figure 83(b), X, is allowed to move one unit length upwards. Joint J1 (where degree
of freedom 1 is located) then displaces AX to the left. Joint J2 rotates 86 and, with slight

displacement of X; upwards, can be expressed by

W56 = 1 (270)
or
36 = % (271)
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Figure 83 Free body diagram for unit force applied to degree of freedom 2

Lateral displacement of AX at joint J1 becomes

AX=a-96 =-% (272)

Thus external force P; becomes

P =K, - AX = &K, (273)

External force P,, caused by one unit displacement upwards at joint J1, reduces to

P2=K;-x2=K;-1=% (274)
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which is shown in Figure 83(c). Figure 83(d) illustrates associated external forces P, and
P4 due to the existence of external force P, which is obtained from equilibrium of

moment. External force P; is formulated as

P, = \%Ks + 521 275)

where —Kia— results from the action of axial spring (see Eg. (274)).

External force P4 is written as

P,=—K,({)= WZ—KS(T) | (276)

277)

v

P,
{P}=<P, =J—K +—=2
P,

2 s
. W )

Similarly, when a unit force is applied to degree of freedom 4 (see Figure 84(a)), lateral

displacement AX at joint J2 (see Figure 84(b)) caused by rotation 86 is

AX = 066 (278)

Since

W0 =X=1 (279)
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then

=1
o0 W

Substituting Eq. (280) into Eq. (278) yields

=_G..
AX W

External force P, resisted by shear spring thus becomes

P, =K; - AX = %— Ks ((-—)='—\%,-- Ks (=)

Due to the existence of Py, forces P; and P4 are

X4=1
t’""\.‘
J2 J1
I3 J4

Figure 84 Free body diagram for unit force applied to degree of freedom 4
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P, = 22K, (}) =22k, (1)
w? w32

Py =K, (1)
w2

Furthermore, external force Ps due to vertical unit displacement is

. K K
- .AX=_§..1=_A
Ps=Ka 2 2

Total force P4 then becomes

oty K
P4-—W2Ks+ 2

The final matrix force due to unit displacement at joint J2 thus reduces to

iKs
p] | W
-a
{P}=1{P, = _\V—sz >
P, o’ K,
_TKs+—
(W 2 )

py=| 2k Lk K _—vs‘—K X}
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Comparing Eq. (288) with (261) shows that the stiffness matrix is the same for both

approaches with the perforated shear wall.
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VIII. RESPONSE STUDY OF FOUR-STORY INDUSTRIAL BUILDING

This section investigates the design parameters of force reduction and
displacement amplification factors for a shear wall box-type building. Results are

compared with UBC design parameters. Other parameters such as the ductility reduction

factor R, overstrength factor Q and system ductility factor y, are also studied.

A. CONFIGURATION AND MASS CENTER

The structural system studied in this section is a reinforced concrete box-type
building. The structural model is based on the building layout shown in Figure 85.
Layout is for diesel power auxiliary building of the type used in nuclear plants as shown
in Figure 86. Sixteen shear walls comprise the model for which the interior walls were
not considered as structural elements[30].Table XTIV shows the lumped mass at different
levels. Level 1 represents the floor of the second story, Level 2 represents the floor of
third story, and so on. Level 1 and Level 3 have heavier masses. At all levels, mass
centers are located near the center of rigidity which is also the center of the floor. This
means that the effect of torsion is small and can be neglected. In fact, only monotonic
loading process is performed statically. Therefore the effect of masses is disregarded.

Having a basically square shape, this building system includes many kinds of
shear walls. One set of shear walls along column lines C2-C4 has dimensions of
74'x26'x48" (SW9), 74'x12'x48"(SW10), 74'x13'x48"(SW11) and 74'x25'x48"(SW12).
One set of shear walls(SW13, SW14, SW15, SW16) along column lines C1-C3 has the
same dimensions as the previous set of shear walls along column lines C2-C4, except its
thickness is 36". Perpendicular to these two sets of shear walls, the dimensions of shear
walls along column lines C1-C2, C3-C4 are 75'x26'x30"(SW1), 75'x26'x36"(SW3),
75'x12'x36"(SW2, SW6), 75'x13'x36" (SW3, SW7), and 75'x25'x36" (SW4, SW8).
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Figure 85 Structural configuration
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It can be seen that this box-type building system has sixteen large shear walls 74'
(or 75") long and 30" to 48" thick. Shear walls denoted SW1 to SW16 above are shown in

the Figure 85. Thickness of walls and floors are shown in Table XV.

Table XIV Mass distribution and mass center

L MASS (k-sec/in) MASS CENTER
COLUMN | COLUMN | COLUMN | COLUMN
LINET | LINE2 | LINE3 |LINE 4 | TOTAL | X (in.) L. Y (in.)
1 3.43 | 3.62 | 3.43 | 3.67 |14.15 | 444.80 | 454.30
2 2.31 | 2.59 | 2.31 | 2.61 | 9.82 | 444.00 | 460.10
3 2.88 | 3.36 | 3.36 | 3.49 | 13.09 | 450.60 | 451.10
2 2.47 | 2.76 | 2.56 | 2.90 | 10.69 | 442.40 | 454.20

NOTE: The mass center is measured from the reference origin.

Table XV Thickness of walls and floors

PANEL POSITION | THICKNESS
e | eve | W | )
] 36 18
2 36 18
1-2 3 36 18
4 30 18
] 36 18
2 36 18
3-4 3 36 18
4 36 18
) 36 18
13 2 36 18
3 36 18
) 4 36 18
1 i | 18
- 2 48 18
3 48 18
4 a8 18

NOTE: Level 4 is at the top of the structure.
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B. LOAD-DISPLACEMENT RELATIONSHIP OF SHEAR WALLS

Based on the Cheng-Mertz solid shear wall model, the load-displacement
relationship of solid shear walls is strongly dependent on moment/shear ratio ( i.e., M/V).
Because the box-type building has elements of the solid shear wall type, the building, as
an indeterminate structure, has sixteen solid shear walls counteracting one another. The
interaction between walls causes moment/shear ratios to change. Therefore elastic
analysis is performed first to determine the actual moment/shear ratios for all walls in the
box-type building. Initial stiffnesses of shear walls are based on load-displacement
relationship of the isolated solid shear walls (i.e., moment/shear ratio of the wall equals
wall height). Table XVI shows moment/shear ratios based on elastic analysis as well as
the isolated wall itself for walls in force direction. From the study of Cheng-Mertz's solid
shear wall model, moment-resistant capacity increases and shear-resistant capacity
decreases when the moment/shear ratio becomes larger in a given isolated shear wall, and
vice versa.

1. Bending Backbone Curves of Shear Walls From above elastic analysis, shear
walls SW3, SW4, SW7 and SW8 in the direction perpendicular to force direction have
small moment/shear ratios. These shear walls have far less moment capacity. Figure 87
shows moment-rotation relationship for rotational spring of unit wall length of SW12 and
SW16. Rotation includes rotation of the wall itself due to flexural behavior and base
rotation due to dowel action. Unit length shear wall represents shear wall with height
equivalent to one unit. Those values are referred to as the bending backbone curves of
shear walls in the analysis.

2. Shear Backbone Curves of Shear Walls Similar to previous cases, shear
capacities of shear walls SW3, SW4, SW7, and SW8 are larger compared to other shear
walls. This is caused by low moment/shear ratios. Figure 88 shows shear-shear
displacement relationship for shear walls SW12 and SW 16. In general, shear capacities

of shear walls in the force direction are smaller than those in the direction perpendicular
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Table XVI Comparison of moment/shear ratio for solid shear walls

Wall No.| Moment/shear ratioM/V)*| Moment/shear ratio(M/V)**
9 3956.1 : 7924.8
10 2977.1 3657.6
11 2624.3 3962.4
12 5450.8 7620.0
13 1441.2 7924.8
14 2387.6 3657.6
15 4309.6 3962.4
16 5377.9 7620.0
(Unit: mm)

*results from elastic analysis
**results from isolated shear wall of the building

to force direction. Also, shear capacities of shear walls (SW12, SW16) on the first story
in the force direction are smaller than those (SW9, SW10, SW11, SW13, SW14, SW15)
elsewhere. As shown in Figure 88, those curves are referred to as the shear backbone
curves of shear wall per unit length.

3. Relationship between Bending, Shear and Total Lateral Displacement of
Backbone Curves of Shear Walls Figure 89 shows the relationship between lateral load

and lateral displacement for typical walls SW12 and SW16. Lateral displacement
includes bending displacement (A;), shear displacement (A;), and total displacement (A,).
Bending displacement Ay is derived from bending backbone curve which has the

following relationship to rotation per unit length shear wall.

Ay = rotation/unit length shear wall x height x height (289)

Rotation is referred to as bending backbone curve in the above section.
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curve of shear walls
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Shear displacement A, is derived from shear backbone curve and is expressed as
A = shear displacement/unit length shear wall x height : (290)

Total displacement A; is composed of bending displacement A, and shear

displacement A as follows
Ay = Ap + Ag (291)

Figure 89 shows the relationship of lateral load to lateral displacement in which
bending backbone curve has higher initial stiffness. With respect to lateral displacement,
it can be seen that all shear walls in this building have larger ultimate shear displacement
than ultimate bending displacement. This allows the shear wall's shear spring to displace

further than its rotational spring.

C. MONOTONIC STATIC ANALYSIS
1. Lateral Force Distribution According to UBC design code, the total external
force shall be distributed over the height of the building in the form of

n
V=F+ ) F (292)

i=1

. where V is the base shear of a building. At the top of the building, concentrated force F,

in addition to F;, (i.e., lateral force applied to level n), is derived from

F,=007TV (293)
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F, cannot exceed 0.25V and may be considered as zero when the fundamental
period T is 0.7 seconds or less. Other than force F,, the base shear is distributed over the

height of the structure, including level n, according to

V-F,)W,h,

1::x =( n (294)
2 Wih;
i=1

The force Fy, designated as x for each level, is applied over the floor of the building in
accordance with the mass distribution at that level.

For this box-type building, the fundamental period T equals 0.12 second. Thus, as
stated above, the concentrated force Ft is regarded as zero. Figure 90 shows the weight
Wi for each floor and corresponding height hi.

As shown in Figure 91, the distributed force F; is computed as follows

_V-Wih 189061344 v
Fi=— =117250043.4 - 0162V (295)
Y Wih;
i=1

Similarly, distributed forces F,, F3, F4 are calculated as 0.170 V, 0.298 V, 0.370
V, respectively.
2. Response Analysis Based on Ductility
a. Qverall response behavior To explore the response of shear walls,

particularly for either rotational spring or shear spring of shear wall, the case of ductility
equal to 4 is employed. The definition of ductility represents all shear walls having the
same ductility for lateral load vs. total displacement relationship. For monotonic loading,
the incremental loading procedure is used in which each load increment is eight tons.
From the overall response in the force direction (X direction; see Figure 92), the

rotational spring of shear wall SW12 reaches ultimate state when load is 4248 tons (=8
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Figure 90 Diagram of height h; and weight W; for each floor
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Figure 91 Lateral force distribution in force-applied direction for box-type industrial
building based on UBC design code

tons times 531 steps). This is depicted at point A in Figure 92(a). At the same time,
shear wall SW16 almost approaches ultimate state. When it goes one more step (load
being 4256 tons), the rotational spring of shear wall SW12 drops dramatically to zero.
When this happens, the rotational spring has failed already. Soon the rotational spring of
shear wall SW16 reaches the ultimate state (see Figure 92(b)). With one more
incrementa} load (load being 4264 tons), the rotational spring of shear wall SW16 fails.

Examining the behavior of shear walls SW9, SW10, SW13 and SW14 on the higher
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Figure 92 Response of rotational spring of shear walls for four-story box-type building
based on moment-strain relationship under monotonic loading

level of the building reveals that these walls are still in the elastic range. Shear walls
SW11, SWIS enter into the inelastic range slightly. It can be seen that the shear walls
(SW12, SW16) at the first story control overall response because they take much more
shear than those at other levels. Response may not be controlled by shear walls on the

first level if shear walls at higher levels are weak in resisting shear.
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When one shear wall fails under monotonic loading, the other shear wall takes
extra shear transferred from the failed shear wall. This occurs because the failed wall
cannot take any more load. Therefore the other shear wall fails almost immediately, as
shown in Figure 92(b) and, with more detail, in Figure 93. In the latter, when
incremental load is small, shear wall SW16 fails soon after reaching ultimate state (point
O).

In terms of story drift (or lateral displacement), after the first shear wall fails, that
story exhibits more displacement. In a practical sense, this building can handle more
seismic load yet exceed allowable drift. Due to its state of flexural failure, this building
can be regarded as having failed already.

Shear walls in the direction perpendicular to force direction are not strong enough
to control overall behavior. Since base shear is not exerted in this direction, shear walls
are kept in the elastic range either for rotational spring or shear spring. The shear spring
of shear walls of the building is discussed later.

b. Moment development in shear walls during monotonic loading Figure 94

shows moment development in shear walls SW12 and SW16 which have more flexural
response than those at other levels. This is mainly because internal shear accumulates
downward through the building. Increasing shear at the lower level creates more moment
effect on shear walls.

An increase in internal moment continues until the rotational spring of shear wall
reaches its ultimate capacity. At that point, the rotational spring of shear wall fails
immediately. Then stress redistribution occurs until the building reaches stability again.

c. Shear development in shear walls during monotonic loading The internal
moment occurring in the rotational spring of a shear wall is transformed into vertical
forces at the joints on each side. But the internal shear occurs in the shear spring.
Internal shear caused by external force is taken by the shear wall's shear spring. When

the shear wall's rotational spring fails first, this wall can still withstand shear caused by
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Figure 94 Moment development in shear walls during monotonic loading
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external force even though the story drift owing to failure of the rotational spring is high.
This phenomenon is shown in Figure 95.

In Figure 95, before flexural failure occurs on shear wall SW12 at load step
531(load=4248 tons), the shear response of the shear wall's shear spring proceeds
steadily. After flexural failure of shear wall SW12, internal shear stress redistribution
continues until stability is regained. Shear wall SW 16 reaches shear failure at a load of
4384 tons (see Figure 95(b)), and fails at a load of 4392 tons thereafter.

d. Comparison of base shear-story drift relationship

i. Comparison of failure story drift As stated earlier, ductility is defined as the
ductility of all shear walls of a building in accordance with the relationship between
lateral load and total displacement. In Figure 96, the base shear-story drift relationship
expresses the response of the first floor's mass center with ductility=4 and 8. For the first
floor, story responsevis strongly related to the load-displacement relationship of shear
walls at that level. In other words, the difference in maximum displacement of mass
center from story to story depends on both wall height and backbone curve of shear walls.
Since the shear walls of the first story fail first, this failure controls the behavior of the
entire building. The first story is the so-called critical story. In Figure 96, maximum
story drift Agtory,max can be computed when all the shear walls fail completely. Based on
an ideally linearly elastic-perfect plastic model, story drift Astory,yieid at yielding point
can also be calculated. Compared to the first story, the roof has considerable story drift;
second and third stories have minor story drift. This is due to wall height and load-
displacement relationship of shear walls, as noted earlier. Similar responses are also
observed in the cases of other ductilities .

Two definitions for design parameters in the relationship between base shear and
critical story drift are employed later, as shown in Figure 97. In the first definition, the
initial significant yielding point occurs as soon as a main element fails. In the second

definition, the initial significant yield point occurs when the behavior of the critical story
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Figure 95 Shear development in shear walls during monotonic loading

deviates from elastic to inelastic range. Both definitions apply to an ideally linearly
elastic-perfect plastic model.

Note maximum drift for ductility of 4.0 and 8.0 shown in Figure 96. In the
second deﬁ}xiﬁon, maximum story drift Agry,max Changes more than yielding story drift
As;ory‘yield for each case of ductility. Story drift is almost the same in the first definition.
As indicated by backbone curve of shear walls, if ductility of a shear wall is 4 or up to 8§,
this wall becomes partially inelastic and then almost fully inelastic after yielding point.

Ultimate displacement of a shear wall increases radically even with small ductility
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Figure 96 Relationship of base shear vs. story drift as critical story reaches flexural
failure

increments. The highly plastic property of shear walls impacts on the entire behavior of a
building. But ultimate lateral load does not change much due to high inelasticity. Thus,

in the second definition, yielding story drift changes slightly.
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Figure 97 Two definitions in general response of a building

Table XVII shows that the range of maximum story drift Agory,max 1S much larger
" than that of yielding story drift Agiory,yield (s€cond definition). Comparing the cases of
‘ductility=4 and ductility=8, maximum story drift .Asmry,max increases 76% (=(4.62-
2.62)/2.62) while yielding story drift Agtory,yield increases 7.8% ((0.96-0.89)/0.89). Based
on first definition, yielding story drift is close to maximum story.(Assume antecedent of it
is "yielding story drift".) The former results in the same high percentage (=7.6%) when

comparing ductility of 4 with 8. As this table further shows, with the first definition, the

corresponding allowable story drifts, A , have the same tendency as yielding story
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Table XVII Summary of Amax, Ay and A

parameter
Amax Ayl Ay2 Asl )
nmﬂiry
4.0 2.62 2.61 0.89 2.51 0.31
5.0 3.1 3.10 0.89 3.00 0.31
6.0 3.66 3.65 0.93 3.55 0.31
7.0 4.10 4.09 0.93 4.00 0.31
8.0 4.62 4,61 0.96 451 0.31

drift. With the second definition, allowable story drifts are the same due to the identical

structure.

ii. Comparison of failure story base shear From Figure 96, corresponding to

maximum story drift, maximum base shear can be obtained. Maximum base shear
corresponds to story drift at yielding point in a linearly elastic-perfect plastic model. As
these figures show, the maximum base shear for different cases of ductility is stable. As
a shear wall enters into the highly inelastic range, uniform load capacity change only
slightly. This results in fairly stable maximum story drift for the building.

iii. Comparison of flexural and shear failure Compare Figure 96 with Figure 98
for ductility=4. The former shows a building at flexural failure at the critical story while
the latter shows building response at the stage of both flexural and shear failure. In
Figure 96(a), story drift increases slowly until point A. After that point, shear walls
SW12, SW16 go into a higher inelastic range. This causes story drift to increase more

- than the previous stage until point B. At that point, the critical story reaches flexural
failure. If external force is still applied to the building, story drift shifts dramatically as
shown at point C in Figure 98. This process continues through points D, E, F until point
G is reached. During the period of story drift at points D, E, F and G, incremental story
drift becomes smaller again as stress redistribution begins at point C and ends at point G.

After point G, the shear wall's shear spring withstands the external force until the shear
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Figure 98 Relationship of base shear vs. story drift as critical story reaches both flexural
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s‘pring of those shear walls on the critical story fails. For engineering purposes, the
structure is assumed to have failed when it reaches point B.

e. Summary of observations Table XVIII shows base shear as the building
reaches either flexural failure only or both flexural failure and shear failure. Comparing

all cases, shear wall SW12 always fails earlier than shear wall SW16 in the flexural
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Table XVIII Summary of base shear

uctility
Wal

4 5 6 7 8

> (144248 | 4280 | 4328 | 4344 | 4376

(24392 | 4432 | 4432 | 4504 | 4536

16 (14256 [ 4288* | 4336% | 4352% | 4384* |

(244384 | 4424 | 4424 | 4496 | 4536

Note: (1) When rotational spring of shear wall fails
(2) When rotational and shear springs of shear wall fail
Unit: ton
*Failure base shear (=V,)

mode. Since ductility of shear walls increases, base shear also increases. But the rate of
increase is slight, such as 0.75% in comparison between cases of ductility=4 and
ductility=5.

if more load increments are applied to the building after the critical story fails in
the flexural mode, failure in the shear mode occurs quickly. Thus little difference exists
between the flexural failure mode vs. both flexural and shear failure mode. In the case of
ductulity=5, shear wall SW12 failed in flexural mode with base shear of 4280 tons and
failed in both flexural and shear modes with base shear of 4432 tons, a difference of only

3.55%. Identical results occur with shear wall SW16.

D. SENSITIVITY OF DESIGN PARAMETERS BASED ON DUCTILITY

Design parameter R, and corresponding parameters, such as ductility reduction

factor Ry, overstrength factor Q, system ductility factor {15 and displacement
amplification factor DAF are investigated under monotonic incremental loading analysis.

A summary of design parameters is shown in Table XIX.
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Table XIX Summary of design parameters

Parameter
Vs Ru Hs Q Rw DAF  DAF/FRF
240 .
40 (a4 1.80 1.004 1.004 | 2.53 1.41 0.557
1425 2.940 2987 | 7.53 12.29 1.632
272 . 5
50 (ayd 179 1.003 1.004 | 2.52 1.41 0.560
(b)1425 3.490 3.009 | 7.54 14.70 1.950
320 .
6.0 ()4 177 1.003 1.004 | 2.49 1.41 0.566
1425 3.940 3.043 | 7.54 16.79 2227
336 1. . .
70 ()4 176 002 1.004 | 2.47 1.41 0.571
(6)1425 4410 3.054 | 753 18.86 2.505
68 .
8.0 (2)43 1.69 1.002 1.004 | 2.38 1.41 0.592
(1425 4.810 3.076 | 7.28 20.71 2.845

1. Ductility Reduction FactorR,, Ductility reduction factor is defined as the ratio
of maximum base shear for an elastic analysis to yielding base shear for a nonlincar
analysis. Here maximum base shear for elastic analysis Ve is formulated as ZICW.
Based on UBC design code, Z is seismic zone factor, I is important factor and C is
numerical coefficient of 1.25S/T%3 (S being site coefficient for soil characteristics and T
being fundamental period). For analytic purposes, Z=0.4, I=1 and C=2.75. Thus elastic

maximum base shear equals 8360 tons. As shown in Table XIX, Ry, is a stable factor

with the range of 1.7~1.8. If the maximum base shear from elastic anaysis is 10,000 tons,

the actual yielding wall is 5555.6~5882.4 tons (=10,000/Ry), about 60% of elastic

(a) line based on first definition

(b) line based on second definition

maximum base shear.
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2. Qverstrength Factor Q The ratio of the building's actual failure base shear to
the base shear based on USD design is defined as overstrength factor Q. In a dominant
shear wall building, particularly with two main shear walls on the critical story, the
overstrength factor is almost equal to 1.0 in the first definition and equal to 3.0 in the
second definition.

3. System Ductility Factor p.  System ductility factor p is the function of
maximum critical story drift Asiory,max and yielding critical story drift Astory,yield Which is
represented as Agtory,max/Astory,yield- In the first definition, when yielding story drift is
close to maximum critical story drift, the constant system ductility factor is equal to 1.0.
In the second definition, the yielding critical story drifts Astory,yiela are generally stable
with a range of 0.89 to 0.96. If ductility of shear wall is changed here, maximum critical
story drift Ageory,yield 1S quite different. Therefore system ductility factor 15 has a wide
range of 2.94~4.81. » |

4. Force Reduction FactorRw Force reduction factor Ry, is the ratio of maximum

base shear for elastic analysis to base shear based on all allowable stress design. Force

reduction factor Ry, is also the function of ductility reduction factor Ry, overstrength

factor Q and load factor Y (usually 1.4). All the factors R, Q and Y are stable. Force

reduction factor Ry 1s likewise stable with a value of 2.53~2.70 based on the first
definition and 7.28~7.54 based on the second definition. It can be treated as 3 for the first
definition and 7.5 for the second definition. Compare these values with UBC-defined
force reduction factor Ry=6 for the bearing wall structural system with the main element
of concrete shear walls. The estimated force reduction factor is half the UBC design
factor for this box-type industrial building in the first definition but larger by 25% than
that of the UBC design factor in the second definition.

5. Displacement Amplification Factor DAF Displacement amplification factor is
defined as the ratio of maximum critical story drift to allowable critical story drift. This

factor is also a function of system reduction factor L, overstrength factor Q and load
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factor Y, represented as DAF=l,Q2Y. Since system reduction factor . is stable, this
parameter can be assumed to be load factor, Y, and equals 1.4, with other factors identical
to 1.0. On the basis of second definition, system reduction factor s is not stable (2.94~
4.81). Thus the displacement amplification factor DAF is not stable, and ranges between

12.29 and 20.71, depending on ductility used in the analysis.

E. SUMMARY

Concerning static analysis with monotonic incremental load for box-type RC
shear wall dominant structures, design parameter Ry, is a stable value. This value is half
the UBC-based design value(=6) in the first definition but _1.25 times the UBC design
parameter in the second definition. System reduction factor ps(=1.0) and displacement
amplification factor DAF(1.40) in the first definition are stable constants. In the second
definition a wide range occurs for system ductility factor (2.94~4.81) and displacement
amplification factor DAF(12.29~20.71). Parameter of overstrength factor {2 is almost
equal to 1.0 in the first definition and 3.0 in the second definition for a box-type RC shear
wall building. DAF/FREF in the first definition is about 0.60, less than the value of 1.0
recommended by Uang [28]. DAF/FRF is 1.6~2.8 in the second definition. Furthermore,
ductility reduction factor Ry, is stable, with a range of 1.7~1.8.

Generally, for frame type structures, occurrence of the first plastic hinge yields a
definition of design parameters identical to the second definition in Figure 97. If the
concept of the first plastic hinge applies to RC shear-wall-dominating buildings, then
design parameters will not follow Figure 97(b) but Figure 97(a). Thus the concept of the
first plastic hinge is not adequate to define design parameters for RC shear-wall-

dominating structures.
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IX. RESPONSE STUDY OF THREE-STORY COMMERCIAL BUILDING

A three-story building with RC solid shear walls and columns is studied to
investigate the characteristics of low-rise shear wall structures. This building is for
commercial use in Pleasant Hill, California [61]. Other structures with perforated shear
walls (i.e., shear wall with openings), modified from the above building, are also used to
obtain more information on design parameters based on monotonic static analysis.
Conceptually, openings on a shear wall decrease its shear capacity. Behavior of columns,

connected to shear walls in these buildings, is described later.

A. CONFIGURATION
This three-story commercial building (CSMIP Station No. 58348) in Pleasant

Hill, California consists of shear walls, columns, wood-type floors, and plywood
diaphragms on each story. Locations and corresponding directions of sensors on each
story are shown in Figure 99. In Figure 99(a), a vertical profile of the building on N-S
elevation shows that only one sensor was set up to measure vertical spectral response
while two were used for horizontal measurement in N-S direction. Ground, third floor,
and roof level have two sensors in E-W direction. The measurement near building's
center in E-W direction is applied only to third floor and roof levels. Locations and
directions of sensors are numbered as shown in Figure 99(b), (c), and (d).

Layout of the framing plan at ground level is shown in Figure 100. Shear walls
SW1 and SW2 on both sides of the building are in X direction while SW3, SW4, SW5
and SW6 on both sides of the building are in Y direction. These walls are 20" x 16' x 6".
Columns on both sides of the shear wall are 24" x 24". Others have a dimension of 18" x
18". A summary of columns is shown in Table XX. An 18" x 18" column was reduced to
12" x 18" at the joint where the floor connects to the column. This reduced column

section was adopted for the load-displacement calculation of the column's top. The
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Table XX Summary of columns on foundation plan (ground level)

Column Size Type
Cl 18" < 18" {
C2 24" x 24" 2
c3 24" x 24" 2
c4 18" ¢ 18" 1
cs 18" ¢ 18" 1
C& 24" x 24" 2
7 24" ¢ 24" 2
CR ' 18" ¢ 18" 1
C9 24" x 24" 2
C10 24" x 24" 2
il 18" ¢ |&" y
C12 18" x 18" 1
C13 24" x 24" 2

L Cl4 24 x 24" 2
C1s 18" x 18" 1
Cl16 24"y 24" 2
C17 _24" x 24" 2
C18 18" ¢ 18" 1
C19 18" x 18" 1
c20 24" x 24" ' g
c21 24" x 24" 5
22 18" 5 18" {

bottom of column thus has the material property based on an 18"x 18" section. In
between the columns, glass curtain walls were installed to form all the exterior walls at

the first story. Plywood diaphragms were used for interior walls. Six interior columns
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made of steel tubing were put in the middle of the building's short span to support the
dead load transferred from the above structural elements through beam.

Figure 101 shows the layout of the framing plan on the second floor. Shear walls
SW7 and SW8 are on both sides of the building along the X direction. Shear walls SW9,
SW10, SWI11, and SW12 are on both sides of the building in Y direction. These walls
are 18' wide, 12' high, and 6" thick. Columns on both sides of the shear wall are 24" x
24", The rest of columns are 18" x 18" . A summary of columns is listed in Table XXI.
A section of the 18" x 18" column is reduced to 12" x 18" at the connection of floor and
column. For analytic concerns, this reduced section was input as a material property at
both sides of column. Also, there are plywood diaphragms acting as interior walls.

As shown in Figure 102, the third floor framing plan has the same configuration
as the second floor except a slightly different layout of interior diaphragms and smaller
steel interior columns. Table XXII shows details of the exterior RC columns.

For the interior joint at the connection of columns and floor, the mixed design of
welded and bolted subassemblages for this connection joint is not strong enough to
transfer all the force. This is particularly true of subassemblages which are small in size.
Thus the connection joint could be regarded as hinge. It should be noted that the
connection between second and third floors is the same as that between roof and third

floor.

B. MASS CALCULATION

The building's mass is mainly composed of walls, columns and floor. Walls
include shear walls, curtain walls, and interior walls. Columns consist of exterior and
interior columns. Floor is composed of plywood, joists and glue-laminated beams.
Subassemblages such as stairs, penthouse, ceilings and precast concrete panels are also

taken into account in the mass computation. Here a precast concrete panel was designed
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Table XXI Summary of columns on second floor framing plan

Column Size Type
o3 JR" x 12" 3
C24 24" x 24" 2
o8 24" x 24" 2
LR 1R x 10" 3
27 18" x J2°" 3
7% 24" x 24" 2
29 24" x 24" 2
C30 IR" x 12" 3
C31 24" x 24" 2
C32 24" x 24" 2
(213 1R"x 12" 3
34 18" x 12" 3

_Cas . 24" x 24" 2
C36 . 24" x 24" 2
37 18" ¢ 12" 3
C38 24" x 24" 2

39 24" x 24" 2
40 JRY X 10" 3
C41 18" X 12" 3
ca2 24" x 24" 2
43 24" x 24" 2
Cag 18" X 10" 3
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Figure 102 Layout of framing plan on third floor of three-story commercial building
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Table XXII Summary of columns on third floor framing plan

Column Size Type
cas 18" ¢ 10" 3
C46 24" 24" 2
C47 24" x 24" 2
cag 12" ¢ 10" :
€49 18" x 12" :
Cs0 24" x 24 2

_Cs1 24" ¢ 24" 2
52 18" x 12" 3
csa 24" x 24" 2.
Cs4 24" x 24" 2
Css 18" x 10" 3

_cs6 18" x 12" :
cs7 24" x 24" 2
Cs8 24" % 24" 2
Cs9 1R"x 12" 3

CA0 24" x 24" 2
C61 24" x 24" 2
CR2 1R" X 12" 3
CR3 IR" X 12" 3

| Ch4 24" . 2
CR5 24" x 24" 2
a8 18X 12" 1
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for decoration of the building. Masses and locations for all the joints of the building are

shown in Table XXIII and Figure 103. The weight of each floor is

weight of second floor = 221.547 tons
weight of third floor = 200.702 tons
weight of roof = 144.982 tons
total weight =567.231 tons

and mass centers are then obtained (see Table XXIV).

C. LOAD-DISPLACEMENT RELATIONSHIP OF SHEAR WALLS

1. Solid Shear Walls Eighteen shear walls comprise this three-story commercial
building. They can be categorized as two types of shear wallé. Category 1 refers to shear
walls at the first story. Category 2 refers to shear walls at second and third story. Shear
wall height mainly differentiates Category 1 and 2. Ductility equal to 4 and 8 was used in
this building. Layout of shear walls of Category 1 and 2 is shown in Figure 104(a) and
(b). Corresponding bending and shear backbone curves are represented in the Figure 106.
Figures 105(a) and (b) indicate bending and shear backbone curves for Category 1 shear
walls. Likewise, Figures 106(a) and (b) indicate bending and shear backbone curves for
Category 2 shear walls. Because the shear walls are modified later for study of design
parameters, these walls are given another notation system for simplicity (see Figure 107).
Since shear walls SW1 to SW6 at the first story have identical load-displacement
relationship, these walls are recognized as shear wall SWA or SWC. Shear walls at the
second and third story with identical load-displacement relationship are denoted as shear
wall SWD, SWF, SWG and SWH. Figures 105 and 106 show shear walls with a ductility
of 4. Figures 108 and 109 indicate bending and shear backbone curves for shear walls
with a ductility of 8. The above configuration of shear walls is called Case 1g, part of

Group I. Two other groups with additive walls are also studied to investigate structural
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Table XXII Summary of masses and locations for all joints of three-story commercial

building

. M&s on 2nd floor] _ . Mass on 3rd floor . Mass on roof X- Y-
JointyTon*sec**2/mm)| Joint (Ton*sec**2/mm)| JOInt(Ton*sec**2mm)CoordinateCoordinatel
201 V.40 77 30T U.3348 4ul V2776 L1440 {99644
202 0.7367 302 0.6703 402 | 0.4028 F3048.0 20040.6
203 1.0120 303 0.8928 403 0.5239 048.0 0040.6
204 Q4077 304 0.354% 404 0.2776 1440 199644
205 0.4095 303 0.3548 4u> 0.2776 F9144.0  F19964.4
206 11190 306 0.9984 406 0.62735 F3048.0  +20040.6
207 1.1150 307 0.9534 407 0.6275 048.0  }20040.6
208 0.4093 308 0.3548 408 0.2776 144.0  FI19964.4
209 0.4313 309 0.5680 40y 0.2763 F11734.3 182880
210 1.1350 310 1.0780 410 0.6885 11811.0 {12192.0
211 1.1850 31l 1.0780 4]l 0.7043 118110 pU96.0
212 0.61%4 312 0.5631 412 0.4763 F11734.0 DU
213 1.1850 313 1.0730 413 0.7043 FI1811.0 F60Y6.U
214 1.1850 1 314 1.U0780 414 0.6883 -LI811.0 FI2192.0
215 0.4415 315 0.3761 415 -0.2875 F11734.8 F18283.0
) U.4586 316 0.3750 416 0.2824 117343 I8288.0
v 1.1920 317 1.0850 41y 0.6944 L1311.0 [I12192.0
els 1.1520 318 1.0850 413 0.7113 11811.0  BUYe.0
219 0.6264 319 0.5702 419 0.4853 117348 PO
220 1.1920 320 1.0850 420 0.7113 Li811.0  (6096.0
ezl 1.1920 321 1.0850 421 0.6883 L8110 F12192.0
222 04413 322 0.3761 422 0.2873 17348 Fis283.0
223 0.6054 323 0.5408 423 0.5792 11049 113288.0
224 0.75%6 324 0.729% 424 0.6236 11049 1121592.0
225 0.76%6 34 0.7336 425 0.65/9 F1104.9  6096.0
226 0.76596 326 U.7336 426 0.8613 +1104.9  D.O
227 0.7696 327 0.7336 azi 0.657Y -1104.9  1+6096.0
228 0.7396 328 0.7299 428 0.6212 F1104.9  F12192.0

Note: (1) All the masses must be multiplied by 0.001
(2) Coordinate unit: mm
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Figure 103 Location of all joints in three-story commercial building on second floor
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Table XXIV Mass center on different levels of three-story commercial building

Mass
center X direction Y direction
Floor
Second floor -160.5 61.0
Third floor -169.5 50.3
Roof -232.3 13.6
* Unit =mm

responses and design parameters. Cases 2f (part of Group II) and 3f (part of Group III)
have the same configuration (see Figure 110).

Groups II and III have two more shear walls than Group I. One, shear wall SWB,
is in the center of the ground level, parallel to shear wall SWA. Another, shear wall
SWE, is on second floor, just above shear wall SWB. Third floor walls are the same as
Group I. Shear wall SWB is assumed to have one-and-a-half times the shear capacity of
shear wall SWA, and three-fourths the maximum displacement of shear wall SWA (see
Figure 111). Similarly, shear wall SWC has twice the shear capacity of shear wall SWA
but half the maximum displacement of shear wall SW A (see Figure 112). For a ductility
of 8, backbone curves of SWB and SWC are shown in Figures 113 and 114, respectively.
On the second floor, shear walls SWE and SWD have identical load-displacement
relationship. Note that external force is applied to the building in the X direction to study

design parameters caused by different arrangement of shear walls in the same direction.
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Figure 105 Bending and shear backbone curves for shear wall of Category 1
(ductility=4.0)
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Figure 106 Bending and shear backbone curves for shear wall of Category 2
(ductility=4.0)

2. Perforated Shear Walls In practical terms, the use of perforated shear walls
might be required for some buildings. To explore the effect of a shear wall opening on

- structural response of the building, some perforated shear walls are applied to the
building. Table XXV summarizes the different cases in each group. Opening ratio of all
perforated shear walls is assumed to be 0.1, as shown in Figure 115. Corresponding
arrangement of steel as well as properties of both concrete and steel is shown in the

figure. Walls are identical to solid shear walls in Group I except for openings.
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Figuré 107 Notation sytstem of shear walls for three-story commercial building
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Figure 108 Bending and shear backbone curves of shear walls in Category 1
(ductility=8.0)
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Figure 109 Bending and shear backbone curves for shear wall of Category 2
(ductility=8.0)
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Figure 111 Bending and shear backbone curves of shear wall SWB (ductility=4.0)
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Figure 112 Bending and shear backbone curves of shear wall SWC (ductility=4.0)
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Figure 113 Bending and shear backbone curves of shear wall SWB (ductility=8.0)
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Figure 114 Bending and shear backbone curves of shear wall SWC (ductility=8.0)

Backbone curves of perforated shear walls were obtained in Figures 116 and 117.

| Figure 116(a) shows lateral load-total displacement (p-A,) relationship (i.e., backbone
curve) for a perforated shear wall, modified from shear wall SWA and called SWOA.
Similarly, backbone curves of perforated shear walls SWOB, SWOC and SWOD,
modified from solid shear walls SWB, SWC, and SWD, respectively, are shown in Figure
116(b). : :').and (d). Figures 116(b), (c) and (d) involve a ductility of 4.0. Figures 117(a),
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Table XXV Buildings for Groups I, I and Il
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1 Walls SWB, SWC Walls SWD, SWE
L l . .
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W= 18 W= 18
i ] i |
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- »| - Properties of steel and concrete refers to
W solid shear wall.

Figure 115 Schematic diagram of perforated shear wall for Groups II and III

(b), (c) and (d), with a ductility of 8.0, represent perforated shear walls SWOA, SWOB,
SWOC, and SWOD, respectively.

D. LOAD-DISPLACEMENT RELATIONSHIP OF COLUMNS

Twenty-two exterior RC columns and six interior steel tubing columns are on
each floor of the building. Sizes of the columns are 24" x 24" and 18" x 18". At the
connection, given the precast RC wall added to the column, the size of 18" x 18" is
reduced to 18" x 12". For all RC columns (18"x12" and 18"x18"), four #6 steel bars are
used for vertical steel with #3 ties at a distance of 12" apart while eight #6 bars for
24"x24" columns. Steel tubings, from 7" x 7" to 5" x 3", support dead load from the floor
only. The building is basically symmetric; its mass center is close to center of rigidity.
When external force acts on the building, the influence of action of torsion can thus be
neglected.

Due to symmetric structure and force direction along building's short span, the
effect of biaxial bending in the columns is neglected [62]. As shown in Figure 118, when

external load is applied in the X-direction, column bending occurs only at the Z axis of

229



200
160
120f

80
401

P(Tons)

SWOA

(a) Ad(mm)

9%

5 10 15 20 25

200 ]
1601
1201

P(Tons)

80 (\
40

SWOC

(©)

%

5 10 15 20 25

Ay(mm)

P(Tons)

200
1601 SWOB
120

801

o K\

0' (®)

0 5 10 15 20 25
200

160 SWOD
120]

80

i

(d)
0035 10 15 20
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Figure 118 Relationship between local coordinate system of column and global
coordinate system

the local coordinate system. Load-displacement relationship of columns in the building
are henceforth investigated.

1. Sheikh's Model Columns with confined concrete, along with other factors,
have been studied by many researchers [63-73]. Here the analytical model for
confinement mechanisms in tied columns under flexure to large inelastic deformations
while simultaneously subjected to constant axial load, proposed by Sheikh and Uzumeri
[72], is used. In practice, confining-steel design, with axial force and shear, makes the
column exhibit ductile flexural behavior. Ductility of the column section under flexure is
strongly influenced by the level of axial load. Comparison between test and analytical
results reported by Sheikh et al. is good. This model is intended mainly to propose a

complete stress-strain relationship for confined concrete.
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Based on the concept of an effectively confined concrete area within the nominal
concrete core, the strength of the confined concrete can be calculated. Area of the
effectively confined concrete is determined by tie spacing, distribution of longitudinal
steel around the core perimeter and the resulting tie configuration. The curve of confined
concrete consists of three parts. Further explanation of the curve is given to Appendix A.

Based on Sheikh's model of confined concrete, column C1 with dimensions of 24"
x 24" is studied and this column'’s load-displacement relationship is obtained. Note that
the extreme fiber concrete strain is assumed to be 0.003.

Column C1 is subjected to an axial load (i.e., dead load of 31.8 tons) typical for
columns on both sides of the shear wall. For steel properties, yielding stress of 60,000
psi (strain = 0.0017) is assumed. '

Strength design method was applied to the column's cross section with
consideration of factored load, 1.4(dead load)+ 1.7(live load). Eighty psf was assumed as
the live load. With different eccentricity, column C1 with a constant dead load of 31.8
tons results in the moment-curvature relationship shown in Figure 119. Material
- properties of confined concrete after plateau portion are not considered in Figure 119 .
Further detail about strength design method, see Wang and Salmon [62].

2. Theoretical Model Conventional strength of unconfined concrete was used in
theoretical computation of structural elements or structures. This approach uses strength
design method along with factored load acting on the specimen. Results of moment vs.
curvature for column C1 are depicted in Figure 120. Point B in the figure shows that the
strain of extreme fiber concrete reaches 0.003, maximum strain of concrete material
property.

3. Result Comparison of Sheikh and Theoretical Models Figures 119 and 120
show that below a curvature near 5.9x107° rad/mm (0.0015 rad/in), two main parts
constitute these curves. One is from origin to point a (Figure 119), the other from origin to

point A (Figure 120), indicating the steel has not yielded yet. The slight difference
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between these two parts (from origin to point a or A) arises mainly from the shape of the
concrete at an early stage. Generally, the curvature from origin to point a or A is
basically the same. When steel bars yield, the curves after point a (or A) reach a plateau

stage. Behavior at this stage is fairly uniform until point B or b is reached. Based on
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Sheikh's model, slightly higher strength capacity is predicted. One reason for this may be
that confined concrete provides somewhat more strength than plain concrete. Sheikh's
model allows confined concrete a larger ductility after concrete reaches a strain of 0.003.
Thus the progression from point b to point ¢ in Figure 119 shows that the column has
greater strength and can bend more. A comparison of Figures 119 and 120 shows the
main difference between confined and plain concrete. Before concrete reaches a strain of
0.003, both curves show little difference. When concrete strain is larger than 0.003,
column behavior with confined concrete gains much more curvature ductility and
somewhat more strength capacity. For analytic purposes, the theoretical model with plain
concrete is used.

4. Load-Displacement Relationship of Other Columns Three groups of columns
are studied based on their material and size as follows: (1) RC exterior columns with a
size of either 18" x 18" or 18" x 12"; (2) RC exterior columns with a size of 24" x 24"; (3)
interior steel columns with different sizes from floor to floor. RC columns are all exterior
columns whose load-displacement relationship is computed based on the theoretical
model just discussed. Steel columns can be checked by the design manual.

a. Columns of 18" x 12" or 18" x 18" type Figure 121 shows the layout of this
type of column on ground, second and third floors. Size of columns is the same except
the bottom of columns at the ground level. Previous studies [62-73] indicate that the
effect of axial compression, combined with flexure, on the column is important. Material
properties of the column might change to some extent. To explore the load-displacement
relationship of columns in this building, axial load on columns (i.e., factored load) is

" summarized in Table XXVI.
Column C8 subject to a dead load of 16.27 tons and a live load of 26.73 tons
would result in a total factored load of 97.47 tons (i.e., = 1.4 x 16.27 tons + 1.7 x 26.73

tons), approximately equal to 100 tons as shown in Table XXVI(f). Similar calculation is

234
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Figure 121 Layout of columns of 18" x 12" or 18" x 18" type

made for other columns. This table comprises small tables showing the same location of
columns at different levels.

A cross section of rectangular form for this type of column is shown in Figure
122. It can be seen that load-displacement relationship differs along major or minor axis.
Thus for each type of section (i.e., column under different axial load), the column could
have two moment-curvature relationships based on the central axis shown in the cross
section. This can be summarized as

(1) material properties identical to column C27: C23, C26, C41, C44, C33, C34,

C40

(2) material properties identical to column C30: C37
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Table XXVI Summary of axial load acting on columns

236

Load| P oadf P P
Column ('lpons) Column (';'lons) Column Load agom)
C45 5 C48 5 C63 5
Cc23 25 C26 25 C41 25
Cl1 50 C4 50 C19 50
(a) ®) ©

Load| P Load| Py Load| Pu
Column &om) Column Tons) Column Tons)
C66 5 C49 5 Cs2 10
C44 Al 27 25 C30 50
c22 50 Cs 50 cs 100
(CY) (®) ®
P {P P
Column (Il-lon,) Column (ﬂ-’,m) Column Loud ('Iqons)
Css 5 Csé 5 Cs9 10
C33 25 C34 25 37 50
c 50 c12 50 cis 100
® )] )
(Pu
Column ('ron‘)
Cc62 5
C40 235
C18 50
®
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Figure 122 Cross section for column of 18" x 12" type

(3) material properties identical to column C49: C45, C48, C63, C66, C55, C56,

C62

(4) material properties of column C52

Note that all sections above (except the bottom of the column connected to

" ground) are the same as those shown in Figure 122.

The section of 18" x 18" is located at the ground level to which the column is
connected (see Figure 123(a)). The connection at this spot is assumed to be a fixed point
which can be determined from the original design. Size of the section is not reduced at
this fixed connection. Two kinds of axial loads act on the same cross section of different

columns. Figure 123(b) gives a clearer view of this cross section. This figure shows that
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Figure 123 Layout of 18" x 18" column and its corresponding vertical profile

on the second and third floors as well as the roof, a reduced cross section of 18" x 12" was
designed except for an 18" x 18" column on the ground level. Thus two groups of cross
section exist with axial loads obtained as follows:

(1) material properties identical to column C1(b): C4(b), C19(b), C22(b),

C5(b),C(11(b), C12(b)

(2) material properties identical to column C8(b): C15(b)
where (b) refers to the bottom cross section of the column.

Column C1's moment-curvature relationship was described in previous section.
Column C8's moment-curvature relationship is shown in Figure 124. Comparing Figure
120 with 124 shows that the strength capacity of column C8 is 31% larger than that of
column C1. In this case, column C8 is subjected to an axial load twice that of Column C1.

As to curvature, Column C8's is 28% smaller than column Cl's.
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b. Columns of 24" x 24" type Figure 125 shows the layout of 4" x 24"

columns on different levels. In this figure, it can be seen that all the 24" x 24" columns are
the boundaries of shear walls, which provide more strength capacity to resist seismic
loads. Note that the arrangement of vertical steel bars for 24" x 24" columns is not
always the same, as shown in Figure 126 but is adjusted based on the configuration. If
seismic load acts on the building in X direction, then columns aloﬁg A-C and B-D mainly
resist. If seismic load acts on the building in Y direction, then columns along A-B and C-
D mainly resist. Since the strong axes of columns (i.e., major axis) along A-C and B-D
are parallel to Y direction, these columns provide most resistance to external force in the
X direction. Behavior of columns along A-B and C-D follows the same logic.

To investigate the load-displacement relationship of 24" x 24" columns, axial

loads are calculated for all the columns on each floor. A summary of axial loads is shown

in Table XXVTI.
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Figure 124 Relationship between moment and curvature for column C8
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Figure 125 Layout of columns of 24" x 24" type

For analytical purposes, these columns are classified into five types on the basis
of axial load (see Table XXVII). Types A, B, C, D and E refer to axial loads of 4.54
tons(=10 kips), 14.98 tons(=33 kips), 27.24 tons(=60 kips), 49.50 tons(=109 kips) and
55.84 tons(=123 kips), respectively. Corresponding moment-curvature relationship of
column C2 is shown in Figures 127. In this figure, (a) refers to bending about the strong
axis and (b) to bending about the weak axis. Other columns (Type A, B, D, E) have
similiar moment-curvature relationship of Type C and are consequently not shown here.
c. Columns of steel tubing type All the interior columns in the building consist
of steel tube, whose main purpose is to support the dead load. Material properties of these
columns can be obtained from the design manual.
As noted earlier, both ends of all interior columns are assumed to be hinges. Thus
all the internal moment cannot be transferred from one column to another. A ductility of

4.0 is proposed in this analysis.
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Figure 126 Configuration of vertical steel bars for 24" x 24" columns

E. MONOTONIC STATIC ANALYSIS

To analyze the response behavior of a three-story commercial building, some
judgements and assumptions are made. For the floor system, 82— X 25%- beams were
designed to transfer most of the dead load to exterior and interior columns for the load
also partially carried by walls. Joists were connected to the beams to stablize and evenly
distribute load from the plywood which covered the floor. The floor system was regarded

as a rigid floor, allowing rigid-body motion in horizontal and vertical direction but not
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Figure 127 Moment-curvature relationship for 24" x 24" column of type C

resistance in vertical. Buckling of columns is not considered due to the small
slenderness ratio. Columns and shear walls on the ground level are fixed except interior
columns. Interior columns are hinged to the ground level. On the third floor, the top part
of the columns is not welded to the roof. Those connectioﬁs are treated as hinges.

Note that there are only two shear walls on each floor on the short span sides of
the building as compared to four shear walls on the other sides. When subjected to

external force, the direction parallel to the short span of the building becomes the critical
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direction. As shown in Figure 128, external force is applied in the X direction. Based on
UBC code design, force distribution is proportional to multiplication of weight and
corresponding height for each floor because fundamental period T, equal to 0.22 second,

is smaller than 0.7 second. Force distribution is thus calculated for each floor as

_V-Wih,

= (296)
D Wih;
i=1

F

where the notations refer to the description in the previous section.

1. Overall Response Behavior For simplification, shear walls applied in the force
direction are denoted in Figure 129. Incremental load is 0.25 ton. Case 1b is studied .
here, as shown in Table XXV. The second floor has two perforated shear walls on each
side of the building's short span. All others in the building are solid shear walls.

Under monotonic static loading, shear wall SW1 fails first at step 739 where base
shear equals 184.75 tons, as shown at point A in Figure 130. After the first shear wall
fails, first story drift increases abruptly. Simultaneously shear wall SW2 fails at the next
step (i.e., base shear= 0.25 ton x 740 step = 185 tons) which is shown at point B in the
figure. After point B (step 740), first story drift becomes quite large. Base shear increases
slightly and more displacement occurs at the mass center of story, as point C indicates.
Thus, when base shear of 185 tons is reached (point B), all shear walls in the force
direction (SW1 and SW2) on the first story fail compleiely. After shear walls SW1 and
. SW2 fail, the columns on the first story gradually take over the stresses (bending and
shear) initially taken by shear walls and originating from increased external load. At
point D, perforated shear walls SW7 and SW8 on the second floor fail simultaneously.
At base shear of 185.5 tons, the second story fails. Note that first-story columns are
always in elastic range before shear walls fail. Also note that the failure of shear walls

occurs in the shear failure mode. This is because most of the moment is taken
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Figure 128 Vertical force distribution based on UBC code

| AV | - ledeed | SATIL)
Swi SW7 SW13

Ground level 2nd floor 3rd floor
SW2 : SW8§ Swi4
[ rrrrr.) rs77., T777A

Figure 129 Notation for shear walls along short span of three-story commercial building

by columns which means shear walls then take very little moment. After shear failure
océurs at the shear wall, the moment taken by columns increases dramatically and the
corresponding shear can no longer be taken by the failed shear wall.

Figure 130 further illustrates shear wall control occurs before step 740, when

story drift is slight. After step 740,stress redistribution occurs and columns on the first
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story control the behavior of the entire building. During stress redistribution, each
incremental load step might result in significant displacement of the second floor's mass
center (to account for first-story drift). Points C, D, E, F, G, H, |, J and K are among
these steps which exhibit large story drift. Relative story drift between D and E, E and F,
Fand G, Gand H, Hand I, I and J, J and K is defined as dpg, der, drg, dgn» dur, diy and
djk, respectively. Note that after point B story drift increases until largest relative story
drift dgg is reached. After point F, relative story drift decreases, so dgg is smaller than
dgr, dgy smaller than drg, through djx smaller than dyy. This decrease in relative story
drift shows the stresses are redistributed to other elements, mainly first-story columns.

Until point Q, first-story columns take most of the base shear. After point Q, as
more incremental loads are imposed on the building, shear walls SW13 and SW14 fail
when load step reaches 832 (base shear=0.25 x 832= 208 tons). It can be seen that all the
shear walls in the force direction fail completely. Subsequently a flat plateau curve
appearé and stress redistribution continues. Stress redistribution represents force
transition from shear walls to columns mainly on the third floor.

Figure 130 hints at further information about the capacity of shear resistance to
external lateral load. Before point A, shear wall SW1 has not yet failed and the curve has
two parts distinguished by yielding point. From origin to yielding point, where it
deviates from elastic behavior, the curve represents base shear increasing proportionally
with respect to story drift. Relative story drift is slight since the elastic material property
of the shear walls' shear spring controls first-story behavior. The slope in this part of the
curve, reflecting story stiffness by shear walls, is denoted by K1.

Before point A, the adjacent part of the curve shows first-story yield behavior in
terms of base shear and story drift. The slope in this part of the curve, reflecting the shear
walls' yielding property, is denoted by K2. At the part of curve after point Q, the same
situation arises. There, increasing base shear with respect to story drift represents story

stiffness, which reflects the shear resistance of columns on the first floor. The slope in
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this part of the curve is designated K3. From its response, story stiffness K3 is clearly
much less than K1, even K2. For this, the most plausible reason is shear walls are
designed to resist shear whereas columns are designed to resist moment and axial load.
This can be seen from the conﬁguratioh and size of columns. Figure 130 indicates an
important phenomenon. A given story's mass center displaces quickly, as shown by
comparing the curve after point Q to the curve before point A. Considering serviceability
of the structure, failure of the building can be marked at point B. Critical story failure
occurs there. After point B, story drift continues.

2. Moment Development of Columns during Loading Process Figure 131
indicates the response of moment with respect to step for columns C1 and C2 on the first
story. Both are examples of column behavior in the force direction. Column C1 is 18" x
18" at the start joint (i.e., bottom side) of the column in the force direction, and 18" x 12"
at the end joint (i.e., top side) of the column. Column C2 is 24" x 24" at the start and end
joints of the column in the force direction. A schematic diagram of the columns is
shown in Figure 132. As shown in Figure 118, external force acts on the global X
direction; local Y and Z directions correspond to global X and Y directions, respectively.
Moment vs. rotation relationships of two columns are shown in Figure 133. Points A and
D of Figure 133 are compatible with points A and D in Figure 131.

Comparing these four charts in Figure 131 and Figure 133 shows that before point
A the moment taken by the columns is relatively small. After point A, when shear walls
SW1 (739 steps), SW2 (740 steps) and then SW7 as well as SW8 (742 steps) fail, the
columns increase moment quickly. This is due to shear originally taken by shear walls
being transferred to columns. Shear thus transferred to the columns will increase
corresponding moment of columns. During stress redistribution, the moment taken by C1
and C2, increases dramatically at the force direction. For column C1 with the same cross

section but slightly different moment capacity, moment goes up to 25,000 ton-mm.
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Figure 131 Response of moment with respect to step on bottom side of column of first
story (a) column C1 (b) column C2

Similarly, moment goes as high as 75,000 tons-mm for column C2. Segment AB in these
charts (see Figure 131) is shown for the above responses. After point B, the moment
drives continuously until shear walls SW13 and SW14 on the third floor fail, shown as
point C in the figure. Segment CD, similar to segment AB, continues the stress
redistribution behavior. After point D, columns take over almost all the shear resulting
from external load. Moment resistance for columns differs, depending on material

property. For column C1, moments exceed 200,000 tons-mm at step 4000 (equivalent
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Figure 132 Schematic diagram for columns of both 18" x 18" and 24" x 24"

base shear= 0.25 ton x 4000 = 1000 tons). For column C2, ultimate moments
approximate 600,000 tons-mm at step 4000. Note that, after step 4000 in Figure 133
application of more incremental loads to the building causes the moment-rotation
relationship of columns to follow the material properties of columns and ends in column
failure.

3. Shear Development of Columns during Loading Process In Figure 134, (a)
and (b) represent shear response of columns C1 and C2 at the start joint of the column in
local Y direction. Points A, B, C and D are compatible with the points in Figure 131
where the same steps occur. Before point A, shear in these figures is quite small.
Segment AB, just after point A, has a steep curve. This curve illustrates the failure of
shear walls SW1, SW2, SW7 and SW8 around point A caused by transferral of internal
forces such as shear and moment. In this case, similar to moment development in Figure
131, shear is transferred quickly from shear walls to columns in the force direction.
When force transmission is complete, the shear taken by columns, shown as segment BC
in the figures, increases steadily. Note the similarity between moment response and shear

in Figure 131. Shear at point C for column C1, 18" x 18", is smaller than for column C2.

250



Moment(Ton-mm)xE3
(about Z axis)
3

400
301(4000) .
200 l‘ \
100/ D \\
00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Rotation(rad)
(a) Column Cl
1000
w0 i
3 = i
A . 1m0
£ 2 \
Ex . \
é § 500- (4000 \
8- x
O e
g \
=) 200-
2 100+
o0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Rotation(rad)
(b) Column C2

( ) : Incremental load step

Figure 133 Moment vs. rotation relationship at start joint of column on first story
(a) column C1 (b) column C2

Column C1 has only about five tons whereas column C2 obtains shear up to 15 tons.
Ultimate strength of the material is the most important factor there.

Point C, at which shear walls SW13 and SW14 fail on the third floor, is the
critical point in another stress redistribution. Shear walls SW13 and SW14 on the third
floor lose the capacity of shear resistence. Internal shear is shifted to columns on third
floor. At the same time, the abrupt extra shear taken by those columns directly affects

columns on the second floor and ground level. In Figure 131, the segment after C shows
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Figure 134 Response of shear with respect to step on start joint of column on first story
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the above response. The change in shear is clear. This is compensated by rotational
spring of shear walls. Moment development after point D in Figure 131 is not compatible
with shear development after point D in Figure 134. Internal moment after D in Figure
131 increases steadily while internal shear after that same point decreases slightly and
then increases steadily. In fact, the column has internal shear and moment at each end.
Due to the existence of other elements, the force equilibrium condition for a column may

not ensure that internal shear is always proportional to internal moment. In this case,
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rotational spring of a shear wall takes on more shear which causes the drop in shear after
point C in the column.

If more incremental loads are applied to the building reaching 1000 tons (4000
steps), column Cl1 resists shear to about 18 tons while column CS5 resists up to 35 tons.
Shear in columns C2 and C6 can go to 60 and 50 tons, respectively. In general, the larger
the cross section of column, the more shear resistance the column takes. Overall shear
response has another characteristic here. Before point A in the figures, shear is relatively
slight and can even be neglected. This illustrates that shear walls SW1 and SW2 take all
the shear from the external load.

4. Effect of Shear and Rotational Springs on Shear Wall As stated earlier, there
are six shear walls in the three-story building in the force direction. Shear walls SW1 and
SW2 are on ground level, SW7 and SW8 are on second floor, and SW13 and SW14 are
on third floor. Respoﬂse of the building to monotonically static incremental load exhibits
distinct behavior on each story. The shear wall itself has two types of resistance systems
based on Cheng-Mertz's element model of solid shear wall. One is shear spring; the other
is rotational spring. Under an external load, shear spring takes shear force while
rotational spring resists the moment to prevent bending.

The walls of SW1 and SW2 on the first story take shear proportionally until SW1
fails at a load of 92 tons, which is ultimate shear capacity of both these walls. Figure
135(a) shows that incremental load imposed on the building is constant for each step.
But the shear resisted by SW1 increases proportionally up to its final resistance of almost
half the total incremental load. The other half is taken by shear wall SW2. SW1 and SW2
take almost all the shear applied by external load increments. Shear walls are the main
elements to resist external load for this building. SW1, however, fails sooner than SW2.
Shear wall SW1 fails at a load of 184.75 tons and SW?2 at a load of 185.0 tons. After step
739 in Figure 136(c), slightly more external load causes significant lateral displacement

due to the shear wall's shear spring. Therefore, considerable story drift occurs.
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5. Base Shear-Story Drift Comparison of Different Stories for Buildings in
Group I Figure 136 shows that, as the shear walls fail, the behavior of the building is

dominated by columns at the first, second or third story. The figure shows the
proportional straight line at each story, representing influence of columns on the building
after 300 mm for first story and 700 mm for second and third story. Story drift, the
critical point for the column to control story behavior, is less on the first than on the
second and third story. Before the critical point is reached, shear walls, for the most part,
and columns, give resistance. Displacement of 300 mm is small enough that shear walls
on the first story take significant internal shear after a given external force. In terms of
critical point, the second story takes more shear than the third story. This causes longer
duration in the combined effect of shear walls and columns on the building.

The slope of the straight line, after the critical point is reached in each case, shows
the rigidity of columns on each story. This slope expresses the base shear vs. story drift
relationship. Figure 136 shows that the slope is largest on the first floor and smallest on
the third floor. It follows that first-floor columns have the highest rigidity and third floor
columns the lowest rigidity. Higher rigidity of a column demonstrates higher initial
stiffness. It makes the story less likely to shift. In seven cases investigated, response of
the first floor is the same after shear walls in the building totally fail because only
columns remain to take external load. For the second and third story, the relationship
between base shear and story drift after the critical point is likewise.

hear vs, Criti

a. rison of failur hear
i. Building of Group | Buildings with perforated shear walls on the ground
level and those with solid shear walls on the ground level are compared first. Cases la,
Ic, and 1d comprise the former. As shown in Table XXVIII, cases la, 1c and 1d, with
ductility of 4.0, have a base shear ranging from 139.5 to 147 tons. Cases la,lc and 1d,

with ductility of 8.0, have a base shear ranging from 197.75 tons to 218.75 tons. Case la,
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with ductility of 8.0, could attain base shear up to 218.5 tons, which is 32.7% (= (218.5-
147)/218.5) higher (147 tons) than that of case la with ductility of 4.0. Similar
comparison holds true for cases lc and 1d. Percentages of increase in base shear for
cases lc and 1d with ductility of 4.0 to 8.0 are 29.5% (i.e., (197.75-139.5)/197.75) and
29.4% (i.e., (198-139.75)/198), respectively. Average of these increases is 30.5%. A
difference of 30.5% in base shear is so large. It is caused mainly by the ductility of
perforated shear wall SWOA. The strength capacity of perforated shear wall SWOA,
with ductility of 4.0, is one-third less than that of perforated shear wall SWOA, with
ductility of 8.0. Maximum displacement less by 67%. Both influences result in a
deviation of maximum base shear as high as 30.5%.

Note that the backbone curve of solid shear wall SWA With ductility of 4.0 is 4%
less than that with ductility of 8.0 in strength capacity, but about two-thirds less for
maximum displacement. Buildings with solid shear wall SWA on the ground level range
in maximum base shear from 138 to 185.25 tons and from 183.5 to 199 tons with
ductility of 4.0 and of 8.0, respectively. In terms of strength capacity, it can be computed
that the deviation is 5.69% (=(184.5-174)/184.5) for case 1b, 5.72% (=(183.5-173)
/183.5) for case le, 6.94% for case 1f and 7.16% for case 1g. Average increase in
maximum base shear for the building with solid shear walls at ground level is about
6.8%. This is due to a difference of only 4% shear capacity of solid shear walls when
ductility is between 4.0 and 8.0.

Cases la, ic and 1d (building with perforated shear walls at ground level) are
compared with cases 1b, le, 1f and 1g (building with solid shear walls at ground level)
with ductility of 4.0. For cases 1a, 1c and 1d maximum base shear ranges from 140 to
147 tons. For cases 1b, le, 1f and 1g it ranges from 173 to 185.25 tons. The latter have a
maximum base shear 1.25 times the former. Thus a building with solid shear walls at
ground level, where ductility is 4.0, has 25 percent more base shear than a building with

perforated shear walls on ground level.
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Making the same comparison, where ductility is 8.0, shows that maximum base
shear for the building with perforated shear walls at ground level is slightly larger than
that for the building with solid shear walls at ground level. Buildings with perforated
shear walls at ground level range from 197.75 to 218.50 tons for maximum base shear.
Buildings with solid shear walls on ground level range from 183.50 to 199 tons for
maximum base shear. Comparatively, the result with ductility of 8.0 is quite different
from that with ductility of 4.0.

Mechanisms involved in the above behavior with ductility of 8.0 also differ. As
noted, the coupling effect could result from the connection of shear walls to boundary
columns at both sides. If a shear wall has larger horizontal displacement, it could induce
more rotation in the boundary columns. More rotation in the columns introduces more
internal shear. A perforated shear wall exhibits more flexible behavior in the elastic stage
since it has smaller initial stiffness than a solid shear wall. Its smaller initial stiffness
causes more lateral displacement which in turn shifts the top of the column. Increased
lateral displacement here makes the column rotate. Internal moment is then developed
due to column rotation. Simultaneously the equivalent internal shear occurs in the
column. Here internal shear gives the building more shear strength capacity against an
external load. Due to this force combination of column and shear wall, buildings with
perforated shear walls at ground level can better resist external lateral load. Supplemental
reaction from the column thus strengthens and protects the building.

Also note what happens when the backbone curve of perforated shear walls
degrades. As the backbone curve degrades, more internal shear can transfer to columns.
These columns are then able to bend more. Backbone curve and its ductility thus play an
important role in maximum base shear capacity of the building.

ii. Buildings in Group II Compared with buildings in Group I, buildings in
Group II have two additional shear walls. One is in the middle of the ground floor along

global X direction. The other is in the middle of the second floor along global X
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direction. Figure 110 shows this configuration. The wall in the middle of the ground
floor has one-and-a-half times the shear strength of shear wall SWA (see Figures 105 and
108) but three-fourths the maximum displacement of shear wall SWA. The wall in the
middle of the second floor has the same material properties as side walls SWD or SWF.
Recall that the middle walls on the ground floor and second floor are SWB and SWE,
respectively. On the opposite side of the building, the wall symmetrical to shear wall
SWA at ground level has twice the shear strength of shear wall SWA but half the
maximum displacement of shear wall SWA. Perforated shear walls corresponding to
solid shear walls SWA, SWB, SWC, SWD, SWE and SWF are denoted as SWOA,
SWOB, SWOC, SWOD, SWOE and SWOF, respectively. Alternative building
configurations in other cases of Group II and IIT use some of these perforated shear walls.
Material properties of perforated shear walls are stated earlier.

Group I and Group II differ in terms of critical story changes in building
configuration. Table XXIX shows maximum base shear at the critical story for all Group
II cases. In Group I, buildings always fail at ground level where shear walls, either
perforated or solid, reach shear failure first. Note the critical story location for Group II
buildings. Those with perforated shear walls on the second floor, including cases 2b, 2c,
2d and 2e, likewise have the critical story on the second floor. Those with perforated
shear walls at ground level (case 2a only) likewise have their critical state at ground level.
Those with perforated shear walls on the third floor (case 2f only) have their critical state
on the third floor with a ductility of 4.0, but on the first floor with a ductility of 8.0 case.
For case 2g, which has all the solid shear walls in the building, the building fails at
ground level first. These differences in behavior might be due to more stiff shear walls
are at ground level than on the second floor. Buildings in Group II could thus have more
strength capacity at ground level. In addition, the arrangement of perforated shear walls

is a controlling factor in maximum base shear.
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Maximum base shear is generally proportional to total shear strength capacity of
shear walls at the critical story. Other shear walls or columns at adjacent stories influence
maximum base shear to some extent. Table XXIX shows that the maximum base shear
ratio of Group IV Group I for cases 2a through 2e is between 1.53 and 2.13. It varies
from case to case for those buildings with perforated shear walls except case 2f. For
cases 2f and 2g, where response is controlled mainly by solid shear walls at ground level
and on the second floor, maximum base shear ratio is about 2.04 to 2.13. This range is
comparable to the shear strength capacity ratio of about 2.25 for cases 2f/1f and 2g/1g.
For cases 2b to 2e, response is weakest on the second story (or critical story ) which has a
shear strength capacity ratio of 1.5 due to additional shear resistance from shear wall
SWE (solid) or SWOE (perforated) . As noted, more shear Strength capacity could come
from adjacent columns, from other shear walls, or from columns on other stories. These
sources of resistance cause maximum base shear ratios to vary from 1.53 to 2.13. For
cases 2b through 2e, 1.53 to 2.13 is larger than 1.5 while for cases 2f and 2g, 2.04 to 2.13
is less than 2.25 .

Comparing case 2a to cases 2c¢ and 2d, with ductility of 4.0 or 8.0, shows a
significant difference. Case 2a with only perforated shear walls at ground level has a
higher maximum base shear. Cases 2c and 2d have perforated shear walls at ground level
and on second or third floors, which could decrease building's stiffness (i.e., rigidity).
Another look at maximum base shear in all three cases with ductility between 4.0 and
8.0, shows further differences. In case 2a maximum base shear of a building with
ductility of 4.0 is greater than that of a building with ductility of 8.0 by 18% (i.e.,
(383.25-312.5 )/383.25). In cases 2¢ and 2d, maximum base shear increments are 6.7%
((313.75-292.75) / 313.75) and 6.2% ((302.5-283.75) / 302.5), respectively. Thus
perforated shear walls on second floor decrease the the building's maximum base shear.

For cases 2b, 2e, 2f and 2g, with ductility of 4.0 and 8.0, comparison shows less

difference. Maximum base shear increments are small, 8.07% ((331.5-304.75)/331.5),
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7.35% ((316.25-293)/316.25), 11.18% ((422.75-375.5)/422.75) and 6.68% ((422.75-
394.5)/422.75) for cases 2b, 2e, 2f, and 2g, respectively. Less difference in maximum
base shear, particularly for cases 2b and 2e, is probably due to solid shear walls in the
middle of the second floor and other solid shear walls at ground level. These solid shear
walls in the middle restrict the resistance otherwise taken over by the active shear walls.
(See discussion of Group III buildings in next section for this phenomenon.)

With ductility of 4.0, cases 2b, 2e, 2f and 2g (293 to 394.5 tons) obtain maximum
base shear 1.03 to 1.26 times that of cases 2a, 2c and 2d, an average of 1.157. Buildings
with solid shear walls at ground level have 16% more maximum base shear than those
with perforated shear walls at ground level. With ductility of 8.0, there is about 7% more
maximum base shear for solid shear walls at ground level than for perforated shear walls
at ground level. Case 2a has more maximum base shear than cases 2b and 2e, but less
than cases 2f and 2g.

iii. Buildings in Group III A major difference between these buildings and
those of Group II and III is that all cases in Group III have perforated shear walls at
ground level and second floor in the middle. This change of configuration might increase
maximum base shear for two reasons. First, more perforated shear walls at the critical
story would provide more flexibility. Second, other elements , such as adjacent columns,
might also take some resistance. This supplemental shear strength can increase the
building's capacity for external load. At issue is the arrangement of perforated and solid
shear walls.

Table XXX represents maximum base shear at the critical story for all cases in
Group III. Critical story for Groups II and III is compared. Group III has the same
critical story in all cases except building 3c, with first critical story, and building 3d, with
both first and second critical stories. Buildings 3b and 3e are of second-critical-story type
while 3f, with ductility of 4.0, is of third-critical-story type. The rest belong to first-

critical-story type.

263



‘llem Jeays paieiogsad 10j Suds [euoneIos ou 1 AL, e
"9)elS 3unjiej saYORII JIAU Juids [euoneloy .

% \\ Jeuoneioy
SLTLE Teays vimg

- "19A pajie] 1,udAey S[[em Jeays 1eY) SIRJIPUI BIIR PIPRYS S—
. \\\\\\\\\\\\\\\ \\\ \\\\ maus | 71

ON ON ON ON ON Jeuoneioy
stosc | oszee | osive sL68€ | 00°€6T NS 8N

ON ON ON ON ON [euoneIoy
0598z | oszze | osire SL68E | 00°€6T Teays 0ZMS

ON ON ON ON ON [euoneIoy
srosz | oszze | osuwe \ \ woyg | LM

7 7

— - — ON ON ON ON ON |reuoneioy
™M
oozzy | oseee | szrew . szIee | sTivt | STeole | sLsvT ST'LST Teayg S

- — - ON ON “ON ON ON |Ieuoneoy
} ; : 6IMS

stzey | osvee | sty oszze | ostvz | os6ig | 009bT 0S'LST Jeays

-_ -_ P ON ON ON ON +«+«ON | Ieuoneioy
. - IMS

STV | STE6E | 00TTY & oszze | ostve | os61E | 009bT 0S°LST TeYS
Buudg \ e

08 oy 08 (182 08 ov 08 oy 08 oy 08 (%% 08 op [
mm J€ o€ pg o€ q¢ Bg asey

111 dnoin jo sased ay) fje 10J AI0IS [BONIID Ik Jeays Iseq WNWIXRN XXX 9qel

264



Note that 3¢ has perforated shear walls in the middle of the second floor and at
ground level along the building's short span. This contrasts with the solid shear walls in
2c. Building 3c, with its perforated shear wall in the middle of the second floor, provides
more flexibility and less shear strength capacity than building 2¢c. Here, 2¢ begins to fail
at the second story while 3c begins to fail at the first story. A decrease in shear strength
capacity of the middle shear wall on the second floor can control the building's response.
More flexibility, causing more maximum displacement, is also a factor and compensates
for the loss of shear strength capacity to some extent. Compensation for loss of shear
strength capacity means that more lateral displacement of a perforated shear wall
increases bending effect on adjacent columns and, thereafter, shear resistance is induced
in the columns as well. Note also what happens in building 3d. It fails on the first and
second floor simultaneously. Its intensive collapse shows that building 3d is not as well
designed as building 3c.

Compare maximum base shear for buildings 3a, 3c and 3d with ductility of 4.0
versus 8.0. Building 3a has 25% more maximum base shear with ductility of 8.0
than with ductility of 4.0 ((343.75-257.5) / 343.75). Building 3¢ ((319.5-246) / 319.5) and
building 3d ((322.5-247.5) / 322.5) both have 23% more maximum base shear with
ductility of 8.0. Group II buildings are similar. Building 2a has 18% more maximum
base shear with ductility of 8.0, lower than that for building 3a. But buildiﬂgs 2c and 2d
only increase 6.2% and 6.7%, respectively, in maximum base shear with ductility of 8.0.
Note the difference between 2¢ and 3c or 2d and 3d. It comes from the effect of
additional perforated shear walls on the behavior of building in Group III. Particularly
significant for Group III is the combined influence of perforated shear walls and columns.
This holds true for buildings 3b and 3e where more base shear, 24.8% ((389.75-293) /
389.75) and 24.7% ((380.75-286.75) / 380.75), respectively, is obtained with ductility of

8.0. Buildings 3f and 3g are the same as buildings 2f and 2g.
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Note the change in maximum base shear with ductility of 4.0 for buildings 3a, 3¢
and 3d. Their maximum base shear ranges from 246 to 257.5 tons as compared to
buildings 3b, 3e, 3f and 3g whose maximum base shear ranges from 286.75 to 394.5 tons.
Ratios are 1.192 to 1.230 with an average of 1.35. This represents 35% more base shear
in buildings with solid shear walls at ground level than buildings with perforated shear
walls at ground level. Note also, with ductility of 4.0, that Groﬁp I has 25% more base
shear and Group II has 16% more base shear in buildings with solid shear walls at ground
level. Solid shear walls at a building's critical story can create more resistance than the
same number of perforated shear walls at the same location.

Similarly, with ductility of 8.0, the maximum base shear ratio of buildings 3a, 3¢
and 3d (319.5~343.75 tons) to buildings 3b, 3e, 3f and 3g (380.75-422.75 tons ) is 1.192
to 1.230, an average of 1.21. Thus 21% maximum base shear can be attained by Group
III buildings which exceeds Group I and II, both having maximum base shear less than
10%. Again, perforated shear walls clearly occupy a crucial position in the building.
Some elements, such as columns, develop more shear capacity by virtue of these more
flexible perforated shear walls. The best possible arrangement for perforated shear walls
and corresponding shear strength capacities is thus an important design factor.

Recall that a shear wall's backbone curve (see earlier Figures 105-117) reveals
differences between perforated and solid shear walls. Compare the backbone curves of
solid shear walls with ductility of 4.0 and 8.0. Shear capacity increases slightly and more
displacement occurs with ductility of 8.0. For perforated shear walls, a ductility of 8.0
provides more shear capacity as well as maximum displacement. Particularly for the
degrading portion of a perforated shear wall's backbone curve, a ductility of 8.0 offers
more oppbrtunity to transfer shear resistance from perforated shear wall to column. In this
case, the column takes more shear due to the characteristics of strength decay in the
degrading portion. Here larger displacement occurs in the backbone curve of a perforated

shear wall. An observation can thus be made for Group III buildings with a perforated
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shear wall at ground level, second floor or both (except building 3a) with ductility of 8.0:
columns develop significant shear and enable the structure to attain more shear strength
capacity. It can be concluded that the characteristics of a shear wall's backbone curve
play an important role in the response of a building subjected to external load. Further
research on the degrading portion and ductility is recommended.

b. Comparison of failure displacement Table XXXI shows failure displacement
at the critical story for each group. Buildings la through le in Group I vary in this
regard. Those with perforated shear walls at ground level, such as la, Ic and 1d, range
from 9.0 to 18.0 mm (9.0 mm for ductility of 4.0 and 18.0 mm for ductility of 8.0).
Failure displacement in buildings 1b and le starts at 1.6 mm with ductility of 4.0 and
goes up to 3mm with ductility of 8.0. Group II buildings, namely 2a through 2e, range
from 3mm to 13mm and vary more widely. Group III buildings, namely 3a through 3e,
range from 5mm to 13 mm. Groups II and IIT have a similar failure displacement range
with the former slightly less. This is due to solid shear walls in the middle of the ground
level and second floor in Group II but perforated shear walls in Group III.

Compare Groups II and IIl with Group I. For buildings with perforated shear
walls at ground level, failure displacements in Group II and III are about 55% of Group I
with ductility of 4.0 and 8.0. Buildings of this type in Group I are more flexible. Groups
IT and I buildings of this type also have one more shear wall, either perforated or solid,
in the middle of the ground level or second floor. Thus their lateral displacement is more
limited. Groups IT and III buildings with perforated shear walls at ground level have
significant deviation in maximum base shear, but only a slight difference in failure

" displacement. Thus failure displacement might be controlled by perforated shear walls at
the critical story, not by the configuration change caused by the middle shear walls.

Failure displacement ratios with ductility of 4.0 and of 8.0 for buildings la
through le in Group I range from 1.574 to 1.998. These ratios (less than 2.2) are

determined by maximum displacement of a shear wall with ductility of 8.0 divided by
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that of a shear wall with ductility of 4.0. In Group II with ductility of 8.0 vs. ductility of 4.0,
failure displacement ratios range from 1.969 to 4.566 while Group III is 1.900~2.071.
Overall failure displacement ratio of the critical story in all groups, with different
ductility, is close to 2.0 except in Group II, where some cases go up to 4.6.

Buildings with all solid shear walls, such as 1g and 2g, exhibit a failure
displacement ratio around 1.5. Note the variation in failure displacement for different
groups: 2.3 to 3.3 mm for Group I; 11 and 17 mm for Group II (or III). Group II
buildings' larger displacement might be the result of more torsion effect since their
rigidity center shifts more than Group I's. Critical stories in buildings 1f, 2f and 3f are
different due to a change in ductility for shear walls. Here the range of failure
displacement ratio with ductility of 8.0 vs. 4.0 is from 1.5 to 2.2, an average of 1.8.
Figure 137 shows these relationships. For buildings of the shear-wall-dominating type,
the structure might exhibit the failure ductility close to the ductility characteristic of
individual shear walls. For more complicated shear wall buildings, displacement

response could depend on the combination of all shear walls at the critical story.

F. DESIGN PARAMETERS

By expressing the relationship of base shear vs. critical story drift in terms of
actual story response and a corresponding bilinear model, Figure 137 shows design
parameters. Response of the building under nonlinear analysis is demonstrated by the
curvilinear curve. Before point B, the structure responds within the elastic range (i.e.,
base shear is linearly proportional to story drift). After point B the structure goes through
a nonlinear process until the major resistance elements fail completely at the critical
story. Earlier research work [50, 51, 74, 75] indicates that point B occurs as soon as the
first plastic hinge develops in the structure. When this happens, the structure undergoes
displacement and consequently deviates from the previous elastic linear curve. If a

linearly elastic-perfectly plastic curve is used here, its first segment coincides with the
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actual response curve between O and B. After point B, the linearly elastic-perfect plastic
model allows the straight curve to go linearly up to point C where the model reaches the
horizontal line passing through point C. Maximum displacement, located at lines O-C-D
is then defined based on the linearly elastic-perfect plastic model.

For a structure with shear walls, as its main resistance elements, the critical floor
may consist of two, three, or more shear walls, no matter what kind of configuration
exists. Shear walls, composed of steel bars and concrete, have more steel bars in the
horizontal direction. More shear strength to resist external load and more ductility are
thus provided. Given a certain external load, first to crack is concrete in the wall. It
causes the behavior of a shear wall to go beyond the elastic range. Clearly, the elastic
segment is found in the shear wall's backbone curve. Beyond its elastic range, the shear
wall can still provide strength and ductility. Due to this material property, the shear-wall-
dominating building behaves in a similar way. Note that Group I has two shear walls at
the critical story. After both of these walls fail, too much displacement occurs. In terms
of serviceability, this building is assumed to have failed already. Recall the failure
mechanism of the building in this type is when one shear wall fails, the other immediately
fails.

One uses a ductility of 4.0, the other a ductility of 8.0, for the buildings of Groups
I, II and III. Each ductility involves seven buildings. Tables XXXII summarizes design
parameters and corresponding base shear and story drift for ductility of 4.0.

1. MMM@MRH Ductility reduction factor Ry is the ratio of
maximum base shear ,Veu (by elastic analysis) to actual failure base shear ,Vy, (by
nonlinear analysis). Elastic maximum base shear Vg, is the same with ductility of 4.0 or
8.0 in each group. Compare these ductilities in Group I: 4.0 obtains a ductility reduction
factor of 3.37 to 4.47 (an average of 3.87), which is 22% higher than that of 8.0 ((3.87-
3.17) / 3.17)(Table XXXII). In Group II, 8.0 obtains a ductility reduction factor of
1.50~2.10 (average of 1.81), which is 10% higher than that of 4.0 ((2.00-1.81)/ 1.81). In
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Table XXXIII Summary of ductility reduction factor

Grow Range Average rou Range Average
I 3.37~4.47 3.87 I 2.85~3.40 3.17
o 1.61~2.23 2.00 I 1.50~2.10 1.81
m 1.70~2.58 2.28 m 1.61~1.98 1.78
(Ductility=4.0) {Ductility=8.0)
(a) (d)

Group III, 4.0 obtains a ductility reduction factor 28% higher than that of 8.0 ((2.28-1.78)
/ 1.78). Generally, when ductility of a shear wall increases, shear capacity increases to
some extent. Thus the ductility reduction factor is smaller. If there are more shear walls
at the critical story, then shear capacity increases and the ductility reduction factor
decreases. On average, Groups II and IIT have a smaller ductility reduction factor than
Group I. The reduction factor is also smaller, as noted in the above results, with ductility
of 8.0 than 4.0.

Reviewing all cases in each group, I has an average ductility reduction factor, R,
around 3.50; IT and IIT have an average of 2.0. In physical terms, actual failure base shear
is about 1/3.5 of elastic maximum base shear for Group I while failure base shear is about
half of elastic maximum base shear for both Groups II and III. The total average ductility
reduction factor is about 2.3.

2. Qverstrength Factor Q This factor equals failure base shear divided by base
shear corresponding to the first significant yield point of the respomse curve.
Overstrength factors are based on two different definitions. Table XXXIV shows both.
By the first definition (i.e., (Q)l ) overstrength factor is almost 1.0 with either ductility of
4.0 or 8.0. By the second definition, overstrength factor is stable at about 1.8 with

ductility of 4.0 and 1.78 ~ 2.41 (an average of 2.2) with ductility of 8.0.
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An overstrength of 1.0 (first definition) cannot guarantee the safety of the
building. When the first main element fails, it has reached the first significant yielding
point. Total failure of the structure soon occurs if external force continues to increase.
An overstrength of 1.8 with ductility of 4.0 or 2.2 with ductility of 8.0 (second definition)
can provide 80% up to 120% more shear capacity to prevent failure. This reserve
capacity is an important factor in structural design. As noted, larger overstrength
provides more shear capacity for the building. Overstrength of 1.8 or 2.2 could have

significant practical value.

Table XXXIV Summary of overstrength factor

Gron Range Average Gron Range Average
I 1.40~2.55 1.85 I 1.49~3.68 241
o 1.56~2.02 1.78 I 1.45~2.19 1.78
m 1.70~-1.94 1.87 m 1.59~2.59 2.32
(Ductility=4.0) (Ductility=8.0)
(@ (b)

3. System Ductility Factor Hs Maximum story drift at the critical story divided
by story drift at the first significant yielding point is called system ductility factor, Hs.
This factor reflects the general characteristics of the building's ductility. As noted, based
on the first definition (except Group II with ductility of 8.0), the system ductility factor
equals 1.0 (see Table XXXV). No duration of inelasticity can then be detected for a
shear-wall-dominating building. Before the behavior of the building's critical story

reaches the yielding point, the critical story behaves elastically. After this point, the
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Table XXXV Summary of system ductility factor

Gron Range Average Gron Range Average
I 1.001~1.003 1.002 I [1.001~1.003 1.001
o [1.002~1.005 1.003 oI (1.002~5.80 3.060
m [1.001~1.002 1.002 m [1.001~1.053 1.011
(Ductility=4.0) (Ductility=8.0)
(@ (b)
oo Range Average Gron Range Average
I 1.74~5.38 3.38 I 2.35~7.20 483
o 2.19~6.79 3.70 o 8.50~12.15 9.76
o 3.67-6.79 4.81 m | 5.48~8.39 7.78
Average ~ 4.00 Average ~ 7.50
(Ductility=4.0) (Ductility=8.0)

© (@

critical story fails abruptly. No other element in the building forestalls the inelastic stage.
By the second definition, as noted, the system ductility factor has a wide range. Groups I,
II and IIT are 3.38 ~ 4.81 with ductility of 4.0 (an average of 4.0) but 4.83 ~ 9.76 with
ductility of 8.0 (an average of 7.5). Averages here show the building's system ductility
approximately reflect the shear wall's ductility characteristics. Since buildings with all
- solid shear walls in Groups II and III have a larger system ductility factor, they are not
taken into account here.
4. Force Reduction FactorRw This factor is defined as the ratio of elastic
maximum base shear by elastic analysis to allowable base shear based on ASD design by
nonlinear- analysis. Force reduction factor, Rw, is also the function of ductility reduction

factor Ry, overstrength factor €2, and load factor Y, expressed as Rw = RyQ2Y
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As shown in Table XXXVI, Group I with ductility of 4.0 or 8.0 has a larger force
reduction factor than Group II for both definitions. In Group I, the ductility reduction
factor is generally much larger than in Groups II and I due to Group I's smaller failure
base shear. |

Based on the first definition, the average force reduction factor with ductility of
4.0 is 3.81 but is 3.16 with ductility of 8.0. Average force reduction factor for these cases
is about 3.49. For design purposes, 4.0 can be conservatively recommended, which is
two-thirds of the UBC-based design parameter for a bearing wall system with shear walls.
Based on the second definition, the average force reduction factor with ductility of 4.0 is
about 6.05 but is 5.94 with ductility of 8.0. Average force reduction factor for these cases
is about 6.0. The calculated design parameter is exactly the.same as the UBC design
parameter. As indicated, force reduction factor is generally stable in Table XXXII.

5. Displacement Amplification Factor DAF In order to obtain actual nonlinear
story drift, this factor accounts for displacement which would somewhat amplify elastic
maximum story drift. At the building's critical story, this factor is expressed as
Amax,sD/Aail,sD.  As multiplication of system ductility factor Hs, overstrength factor €2,
and load factor Y, it is represented by DAF = 1s-Q-Y Based on the first definition, most
system ductility and overstrength factors equal 1.0. Therefore the displacement
amplification factor is almost equal to load factor Y, which is assumed to be 1.4. Except
for some buildings in Group II with ductility of 8.0, all other displacement amplification
factors range from 1.404 to 1.407, which can be considered a constant (Table XXX VII).

Based on the second definition, displacement amplification factor ranges from 3.7
to 33.42 with ductility of 4.0 as well as 8.0. Average displacement amplification factor
thus ranges widely from 4.46 to 24.94. Overall, factors of 1.4 (based on the first
definition) and 3.7 ~ 33.42 (based on the second definition) are either too large or too

small.
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Table XXXVI Summary of force reduction factor

Gron Range Average irow Range Average
I 4.72~6.27 5.43 I 4.00~4.76 4.45
I 2.26~3.13 2.80 o 2.lb~2.94 2.54
m 2.38~3.61 3.19 m 2.26~2.78 2.50
(Ductility=4.0) Average ~ 3.81 Ductility=8.0) Average ~ 3.16
(a) (®)
ron Range Average Groo Range Average
I 7.03~7.50 7.23 I 7.03~7.91 7.48
o 3.50~5.73 4.98 I 3.05~5.73 453
m 4.59~6.68 5.95 m 3.57-6.68 5.80
(Ductility=4.0) Average ~ 6.05 (Ductility=8.0) Average ~ 594
© (@

6. Displacement Amplification Factor/Force Reduction Factor Ratio (DAF/FRF)

As noted earlier, displacement amplification factor has a wide range and force reduction
factor is a stable number. The ratio of displacement amplification factor to force
reduction factor could also have a wide range of value, particularly for Groups II and III
based on the second definition. As shown in Table XXXVIII, this ratio has a range of
0.26~0.56, but an average of 1.27 for Group II, based on the first definition.

Uang [28] found a displacement amplification factor/force reduction factor ratio
equal to or greater than 1.0. Here the range is generally less than 1.0, about 0.4. As
shown in Table XXX VII(c) and (d), based on the second definition. the DAF/FREF ratio

has a wide range, averaging 1.82 with ductility of 4.0 and 3.37 with ductility of 8.0.
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Table XXXVII Summary of displacement amplification factor

Gron Range Average Gron Range Average
I 1.404~1.407 1.405 I 1.400~1.407 1.403
o 1.406~1.412 1.407 i 1.404~4.118 3.520
oI 1.403~1.404 1.404 m 1.402~1.475 1.417
(Ductility=4.0) (Ductility=8.0)
(a) ®
Gron Range Average Gron Range | Average
I B.707~5.545 4.460 I  p5.311~10.023 7.254
O K916~8.025 6.384 O [18.666~33.420 24.941
M B.723-18.329 12.68 M [17.719~30.425 24.267
(Ductility=4.0) (Ductility=8.0)
© (@)

Based on monotonic static analysis, no DAF/FRF value can be recommended as a design

parameter.

G. SUMMARY

As discussed, a shear wall's backbone curve is a key factor in determining the
response of a building under monotonic static loading analysis, particularly for the
degradiug portion and ductility of a shear wall. Perforated shear walls have smaller initial
stiffness, in general, which allows adjacent columns to take more shear vis-a-vis external
load. Also a key factor is the arrangement of perforated and solid shear walls. This
affects reserve capacity which makes a building more flexible and better able to absorb

the energy from external force.
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Table XXXVIII Summary of DAF/FRF ratio

Gron Range Average Gron Range Average
I '0.22~0.30 0.26 I 0.29~0.35 0.32
it 0.45~049 049 o 0.61~1.49 1.27
m 0.39~0.59 0.45 | m 0.51~0.65 0.56
(Ductility=4.0) (Ductility=8.0)
(@ ®)
Gron Range Average Gron Range Average
I 0.52~1.27 0.84 I 0.75~2.52 1.54
o 0.98~5.38 2.39 o 4.06~5.84 4.80
m 1.43~3.99 2.23 m 2.76~5.16 - 3.76
(Ductility=4.0) . (Ductility=8.0)

(© @

With respect to design parameters, two factors in this chapter are applicable
Generally, the force reduction factor has a stable value; 4.0 is recommended based on the
first definition and 6.0 based on second definition, which is the same as the UBC code
force reduction factor. Average ductility reduction factor is 2.3. Overstrength factor Q by
the first definition is almost 1.0, but varies from 1.8 to 2.2 by the second definition.
System ductility factor Hs is about 1.0 by the first definition while larger (4.0~7.5) by the
second definition. Displacement amplication factor is 1.4 by the first definition, but has a
wide range of 4.5~24.9 by the second definition. This factor is unsuitable for most of its
range. DAF/FREF ratio is 0.40 by the first definition which is less than 1.0, the value
suggested by other researchers. By the second definition, 1.82~3.37 for DAF/FREF is the

range. All are summarized in Table XXXIX. It can be concluded that only force
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reduction factor Rw and ductility reduction factor Ry can be reasonably adopted for
design purposes. More shear wall buildings could be tested and analyzed in the future for

further evaluation of force reduction and ductility reduction factors.

Table XXXIX Summary of design parameters based on different definitions

Approach Based on Based on
Design parameter first definition second definition
Ductility reduction factor 2.3
Overstrength factor 1.0 1.8~2.2
System ductility factor 1.0 4.0~7.5
Force reduction factor 4.0 6.0
Displacement amplification 1.4 4.5~249
factor
DAF/FREF ratio 0.40 1.82~3.37
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X. RESPONSE STUDY OF THREE-STORY COMMERCIAL BUILDING-DYNAMIC
ANALYSIS

To study the response of shear walls under seismic load, a three-story commercial
building (case 1g in Section IX) at Pleasant Hill, California, subject to the 1989 Loma
Prieta earthquake is studied. Several earthquakes are simulated and applied to a test version
of this building. Those cases which involve seismic simulation are aimed to explore the

role of shear walls and, thereafter, the recommendation of design parameters as well.

A. THREE-STORY COMMERCIAIL BUIL.DING SUBJECTED TO LOMA PRIETA
EAR UAKE

1. Description of 1989 I.oma Prieta Earthquake Records This earthquake
originated in the Loma Prieta, California, area in April of 1989 [61]. At that time, many
buildings had sensors for recording structural responses. For the three-story building
shown in Figure 99, sensors were lbcated at different levels, including horizontal and
vertical directions. Records from these sensors for the Loma Prieta earthquake in Figure
138 show the duration of the acceleration to be 20 seconds. Comparing acceleration
records between vertical and two horizontal directions, the former is small, with its peak of
about 0.025g occurring after 17.7 seconds. As to ground-level acceleration, records of
sensors 10 and 11 are assumed to be in the X direction (see coordinate system in Section
IX). These sensors, located on shear walls, have almost the same acceleration records with
their peak of 0.13g at t = 15.1 seconds. Sensors 7, 8 and 9 in X direction are on the third
floor. Sensors 3,4 and S in X direction are on the roof. Observe that sensors 7 and 9 on
the third floor as well as sensors 3 and 5 on the roof are located on shear walls. Their peak
acceleration of 0.13 g at t = 15.1 seconds matches that of sensors 10 and 11 also located on

shear walls. But sensor 8 on the third floor, not located on a shear wall, has a larger peak
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acceleration of 0.17 g. Sensor 4 on the roof, again not located on a shear wall, has an even
larger peak acceleration of 0.23 g.

Sensor 12 at ground level, sensor 6 on the third floor, and 2 on the roof are in Y
direction. Their peak accelerations, at time = 15 seconds, are 0.08 g, 0.11 g, and 0.15 g,
respectively. At each end of the building, sensors 10 and 11 represent ground acceleration
in X direction. Their sensors have close acceleration and their average is used here as input
acceleration spectrum in X direction. Also, the acceleration of sensor 12 is used as input
acceleration in Y direction. Otherwise, acceleration of sensor 1 is used as input for
acceleration in the vertical direction. For simplicity, the floor is assumed to be rigid in this
analysis. On the basis of multi-component earthquake input for this three-story commercial
building, dynamic nonlinear analysis was done. '

2. Response Analysjs Structural analytical output of accelerations at all the sensor
locations yielded the same acceleration results as actual earthquake records (shown in
Figure 139 for sensor 7). To further test the response of building, the same procedure was
implemented with elastic analysis. Results matched those of nonlinear analysis, as shown
in Figure 139(b) for sensor 7. Elastic and nonlinear analyses indicate that the entire

building behaves in the elastic range under conditions of the Loma Prieta earthquake, which

has maximum ground acceleration of 0.15 g (=«f(0. 1324+(0.08)%; 0.13 g in X direction and
0.08 g in Y direction).

As stated, peak accelerations at the centers of the third floor and roof are larger than
accelerations at each end of the building whereas analytical results indicate the mass

centers of the third floor and roof have the same response as each end of the building.
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Figure 139 Acceleration response for sensor 7 of three-story building subjected to Loma
Prieta earthquake
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B. THREE-STORY COMMERCIAL BUILDING SUBJECTED TO SIMULATED

EARTHQUAKE

1. Description of Simulated Earthquake Normalized acceleration response
spectrum adopted by UBC design code was used for simulation. Figure 140(a) shows this
spectrum. Note that soil type 2 is assumed here. Normalized acceleration response
spectrum is defined as acceleration response (with respect to period) divided by effective
peak acceleration. If previous local maximum acceleration is set at 0.4 g, then effective
peak acceleration is 0.4 g. Acceleration of the plateau portion in the acceleration response
spectrum equals 1 g (=0.4 g x 2.5 ), or 386.2 in/sec? (see Figure 140(b)). When period of
structure is small, which corresponding maximum acceleration in the acceleration response
spectrum is constant, the structure's maximum design acceleration is 1 g.

SIMQKE, used to create a simulated earthquake, was developed at MIT [76]. This
program inputs a velocity response spectrum expressing the characteristics of a simulated
earthquake. Velocity response spectrum represents the UBC design code acceleration
response spectrum. Also essential is input from the deterministic envelope function which
is shown in Figure 141. As used in the program, ‘this function confines the general shape
of earthquake with respect to time. Other factors defining the function, such as time
increment, duration of earthquake and maximum earthquake intensity, are also considered
in SIMQKE.

Six simulated earthquakes created here can be classified into three types: (1)
seismic intensity of 0.2 g, (2) seismic intensity of 0.3 g; (3) seismic intensity of 0.4 g.
respectively. Earthquakes denoted as 'A' in all three types of simulated earthquakes are
" influenced by the same deterministic envelope function. Likewise earthquakes denoted as
‘B’ share another deterministic envelope function. Simulated earthquakes 1A and 1 B are
shown in Figure 141. Major earthquake duration ranges from 1 second to 10 seconds. In

this figure, earthquake 1A has the same velocity response spectrum as earthquake 1B. But
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Figure 141 Simulated earthquakes for three-story commercial building

the difference between their acceleration histories is due to the deterministic envelope

function.

2. Response Analysis
a. Definition of failure of building For RC shear-wall-dominating buildings,

there are three types of failure structure modes as follows.

Shear failure mode If a building with RC shear walls is subjected to external

excitation, the critical story's shear walls reach shear failure first. Based on strength and

serviceability concems, the building can be assumed to fail totally: slightly more excitation
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will result in irreparable displacement. In this case, flexural displacement by a shear wall's
rotational spring and shear displacement by a shear wall's shear spring characterize shear-
wall-element behavior. Once a shear wall's shear spring reaches the ultimate state, the wall
cannot take any more load.

Flexural failure mode When a shear wall's rotational spring of shear wall
reaches the maximum moment, the wall's flexural response is highly inelastic. With slight
external excitation, the shear wall has significant story drift. In this situation, the building
fails.

Flexural and shear failure In some cases, both rotational spring and shear
spring of RC shear walls on the critical story of a building reach the ultimate state at the
same time. Then the building is on the verge of collapse. With slight external excitation,
the building collapses immediately.

b. Shear response history caused by shear spring of critical story's shear wall
As stated before, RC shear walls take the majority of shear resistance in a shear-wall
-dominating building. The process by which the shear wall's shear spring takes shear is
important for the building's behavior. If shear walls lack sufficient load capacity against
external force, these walls soon take the shear resistance and cause other elements of the
building to fail. Thereafter the entire building fails. For this investigation, the building is
subjected to simulated earthquake 1A. Intensity of the earthquake is 0.2 g. It is
demonstrated that the critical story of the building is on the ground level. Since the
building is symmetrical, shear walls SW1 and SW2 have the same shear response from the
shear wall's shear spring. Figure 142(a) shows shear response caused by shear wall SW1.
In this figure, points A and B pass the cracking point of the shear wall's backbone curve.
Thus the shear wall enters the inelastic range. Points C and D pass the yielding point of the
shear wall's backbone curve. After time = 3.3 seconds, the shear wall enters the highly
inelastic range. Subsequent to point D, shear response generally deviates from the

horizontal axis of shear = O ton. The elastic behavior ranges from 0 to 3.3 seconds. It
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Figure 142 Shear by shear spring of shear wall SW1 vs. time relationship for three-story
building under earthquake (a) 1A (b) 1B

marks shear wall displacement for the building which is small here. During this time span
of 0~3.3 seconds, energy dissipation of both shear walls and the entire building is small.
Beyond 3.3 seconds, highly inelastic behavior of shear walls on the building's cdﬁcal story
causes large energy dissipation there. If shear walls are characterized by large ductility,
then even more energy dissipation can occur. As noted earlier, the simulation involves

acceleration in a range of from 1 to 10 seconds. When subjected to simulated earthquake

(b)

291



LA, the building cannot last 10 seconds. It fails at 7.372 seconds with an intensity of 0.2 g
for this particular seismic excitation.

For the building subjected to simulated earthquake 1B, Figure 142(b) shows an
elastic behavior ranging from 0 to 1.1 seconds (point A). After point A the shear band
goes upward. It represents the shear spring of shear wall SW1 entering a higher inelastic
range. At 4.164 seconds, failure is reached. When shear wall SW1 fails, shear wall SW2
does likewise, and the whole building fails. Comparing shear responses between
earthquake 1A and 1B indicates a difference in building response to earthquakes of
different types with the same seismic intensity. In earthquake 1A, the building endures
7.372 seconds but in earthquake 1B, it fails around time = 4.164 seconds. Possibly the
distribution of high magnitude is not the same for both earthquakes. A contributing factor
could be the features of main elements in the building, particularly shear walls on the
critical story.

Shear responses caused by the shear wall's shear spring for earthquakes 2A and 2B
with seismic intensity of 0.3 g differ from those responses for simulated earthquakes of 0.2
g. In the case of simulated earthquakes with maximum intensity of 0.3 g, acceleration is
one and a half of times greater than that with maximum intensity of 0.2 g. More shear is
thus taken by the shear wall's shear spring, particularly on the critical story, and the
building could fail sooner. In this case, the building fails after 3.30 seconds for earthquake
2A and after 1.58 seconds for earthquake 2B. Similarly, the building fails very quickly for
simulated earthquakes with seismic intensity of 0.4 g, after 2.718 and 0.936 seconds for
earthquakes 3A and 3B, respectively. Shear response history indicates that the elastic
response for earthquakes of 0.3 g is smaller than that for earthquakes of 0.2 g. Elastic
response for earthquakes of 0.4 g may be even smaller.

c. Responses of shear and rotational springs of shear walls on critical story
Shear response history of shear walls was discussed previously (sections b.). Seismic

duration significantly affects degree of elasticity, as shown in Figure 143(a) and (b). The
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latter shows more ductility and energy dissipation than the former. The difference between
Figure 143(b) (subjected to earthquake 1A) and (c) (subjected to earthquake 1B) is mainly
due to the earthquake’s randomness even though 1A and 1B have a close maximum seismic
intensity of 0.2 g. Similarly, earthquakes 2A and 2B have the similar maximum intensity
of 0.3 g but shear wall response differs. Shear walls of the building subjected to
earthquake 2A have numerous hysteretic cycles (see Figure 143(d)) but shear walls of the
building subjected to earthquake 2 B have a limited hysteretic response (see Figure 143(e)).

When maximum seismic intensity increases to 0.4 g, as in earthquakes 3A and 3B,
the situation is similar. Hysteretic response of the building's shear walls when subjected to
earthquake 3A is intense ( Figure 143(e)) but involves only one cycle when subjected to
earthquake 3B (Figure 143(f)).

These cases indicate that the response of a predominantly shear wall building is
affected by earthquake duration. The response of such a building may also vary depending
on the shape of earthquakes even when magnitude is the same.

As mentioned in Section IX, a shear wall's rotational spring, taking limited shear
throughout the monotonic static process, plays an insignificant role in resisting shear from
an external load in these cases. This holds true for dynamic analysis as well. All the
responses for a shear wall's rotational springs show that these springs are generally in the
elastic range, although some exceed the cracking point of the backbone curve.

d. Shear ratio by shear springs of shear walls on critical story Figure 144 shows
the ratio of shear taken by shear walls on the critical story to total base shear for all cases.

This ratio can be expressed as shear ratio by shear springs of shear walls

_shear force taken by shear springs of shear walls in force direction
B base shear

x100% (297)

Point A in Figure 142(a) represents the shear wall as it enters the inelastic range

from the cracking point of the backbone curve. At the corresponding point in Figure
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Figure 144 Shear ratio by shear springs of shear walls on critical story for three-story
building

144(a), the shear taken by all the shear walls on the critical story fluctuates and lowers the
ratio slightly. Before this point, shear ratio for all shear walls on the critical story is about
98%. Figure 145 illustrates how an abrupt jump occurs. Compare a time interval from 1

to 2 seconds for shear ratio by the shear wall's shear springs to the time relationship in the

296



100

> i i\
R e ' o"\,;q"N«_"‘.N; 5 K,
~ W] WL
2 SIAICAIER
= 96 B’
3 |
o o4
50 1]
£ o2 C
(=N
723
= 80
2
« 88
2z
e %
g
o 84
S
£ 82

80

1 14 12 13 14 15 16 17 18 19 2

t(sec)
(a)
» 150
100 yan

N

A /A\B c /

N/
NGV

Base shear (ton)

150 \
15 152 154 1568 158 18 162 164 166 168 1.7
t(sec):
(b)

Figure 145 . Shear ratio by shear springs of shear walls vs. time for time interval of 1 to 2
seconds and base shear vs. time for time interval of 1.5 to 1.7 seconds

297



case of an earthquake of 0.2 g. It can be seen that there are jumps at points A, B, B' and C
of 1.5 to 1.7 seconds, as shown in Figure 145(a). The corresponding base shear vs. time
plot shows points A, B, B',and C' in a time interval (')f 1.5 -1.7 seconds. Points A, B, B'
and C' are located at zero base shear. When base shear approaches to zero, the ratio can be
high or low, or even negative with a small denominator (i.e., base shear). This results in
discontinuity of the curve. Except at these points, the curve shows stability for the
characteristics of shear ratio. For the sake of analysis, ratios smaller than zero or greater
than 100% are eliminated.

As noted in Section IX, three-story commercial building's configuration has two
main elements, six RC shear walls and twenty-eight columns throughout the structure.
Here a 2 % shear ratio could be taken by the columns. Since the shear wall's shear spring
becomes highly plastic after a duration of 3.3 seconds, the ductility of the shear wall
increases. This increase in ductility causes more lateral displacement of columns on the
critical story, which adds slightly to the shear resistance taken by the columns. During the
whole process, shear walls on the critical story of the building are the main resisters of
seismic force. The shear ratio taken by columns is at most 3% even though shear walls on
the critical story behave highly inelastically up to failure. Shear walls on the critical story
thus take 97% of base shear upon entering into higher inelasticity and up to collapse.

When elastic analysis is applied to the building, the shear taken by shear walls on
the critical story occupies 98% of base shear. Ductility characteristics of the shear wall
cause its strength to deteriorate (i.e., the wall's load capacity declines). Other elements of
the building then take more shear. In this situation, buildings fail more quickly due to
yielding of main elements ( i.e., shear walls).

In earthquake 1B (shown in Figure 144(b)), shear ratio of the shear walls on the
critical story begins to drop at 1.1 seconds. At this,shear walls begin to crack and
thereafter yield (see point A in Figure 142(b)). After the shear walls yield at 1.1 seconds,

the range of shear ratio taken by all shear walls on the critical story is about 96~97%.
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Similarly, shear walls take 97% of base shear for earthquake 2A and 94~96% for 2B with a
maximum intensity of 0.3 g for both. For maximum seismic intensity of 0.4 g, shear ratios
taken by shear walls on the critical story for earthquakes 3A and 3B are 96% and 93%,
respectively.

e. Displacement ratio by shear springs of shear walls on critical story

Displacement ratio by shear springs of shear walls on the critical story is defined as

Displacement ratio by shear springs of shear walls =

Lateral displacement caused by shear springs of shear walls in force direction

(298)
Total lateral displacement of mass center X 100%

where total lateral displacement here means critical story drift.

Figure 146 shows the displacement ratio by shear springs of shear walls on the
critical story vs. time relationship for earthquake cases 1A and 1B. Many jumps appear so
this phenomenon should be discussed first. The relationship of displacement ratio by shear
springs of shear walls 6n the critical story vs. time is shown in Figure 147(a). This figure
shows points A through L on the curve representing the locations of jumps for a time
interval 1 to 2 seconds with a simulated earthquake of 0.2 g. ’Corrésponding points A
through L in Figure 147(b) are identical. This figure depicts the relationship of critical
- story drift vs. time; points A through L stand for critical story drift of zero displacement.
When critical story drift is close to zero, the denominator of definition for shear ratio is
small. Shear ratio thus could change, becoming high, low, smaller than zero or greater
than 100%. These points cause unstable jumping in Figure 147(a). Analysis of the stable
section can show displacement characteristics of the shear wall on the critical story. To
analyze this, the ratio smaller than zero ( i.e., the flat portion just before point L in Figure
147(a)) or greater than 100% ( i.e., the flat portion just before points H and I) must be
neglected. From Figure 147(a), the displacement ratio by shear springs of shear walls on

the critical story is 40% or 50%.
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Figure 147 Displacement ratio by shear springs of shear walls on critical story vs. time
for time interval of 1 to 2 seconds and critical story drift vs. time relationship
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Figure 146(a) shows the ratio taken by shear springs of shear walls on the critical
story is about 40% before 1.6 seconds. Displacement is caused by rotational springs of shear
walls on the critical story. This displacement ratio range starts at 40% and goes up to 85%.’
At the final stage before the building fails, displacement induced by rotational springs of
shear walls on the critical story is about 15% of total critical story drift.

Before cracking of shear walls at a time of 1.3 seconds, displacement caused by
rotational springs of shear walls on the critical story generally occupies 60% of total critical
story drift. These rotational springs have less stiffness than the shear wall's shear spring in
the elastic range. When entering the highly inelastic range, shear springs of shear walls
exhibit a high ductility range which increases displacement ratio by shear springs of shear
walls on the critical story. A stable displacement ratio of 40%, which is the same as the
period before 1.3 seconds for nonlinear analysis, can exist throughout elastic analysis.
Other cases of earthquakes show that the same displacement ratio (i.e., 40%) due to shear
springs of shear walls on the critical story.

Displacement ratio of 40% due to shear spring of shear walls on the critical story
holds true for earthquake 1B before 1.1 seconds when the shear springs of shear walls
enter the inelastic range. After 1.1 seconds, displacement ratio caused by shear springs of
shear walls goes up drastically to more than 90%. For earthquakes 2A and 2B,
displacement ratios caused by shear springs of shear walls increase from 40 to 60% and 40
to 80%, respectively. For maximum seismic intensity of 0.4 g, the displacement ratios go
from 40 to 70% on average.

f. Investigation of design parameters Figure 148 shows the relationship of base

shear vs. critical story drift for both nonlinear and elastic analysis of all the simulated
earthquake cases 1A and 1B. This relationship is closely related to that of shear force and
shear displacement by shear springs of shear walls on the critical story. Table XXXX
summarizes all possible design parameters based on various earthquake duration for

earthquake 1A. Earthquake duration is classified as 5, 10, 15 or 20 seconds, except the
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duration of failure. Figure 148, which defines some variables, shows earthquake 1A with
a duration of 5 seconds. Maximum displacement for nonlinear analysis is defined as Ap,,,
similar to Figure 148(b) where elastic analysis is Ae,. The corresponding maximum base
shears in Figure 148(a) and (b) are failure base shear and maximum elastic base shear,
expressed as V, and Ve, respectively. Therefore, DAF/FRF is defined as the ratio of
Amax 10 Agy (see Ref. [77]). Ductility reduction factor Ry, is expressed as the ratio of
maximum elastic base shear to failure base shear , i.e., Veu/Vy. This procedure holds true
for other cases. A summary of Table XXXX shows the results from Figure 148(a) and (b).
In the table, (time); expresses when the building reaches maximum (failure) base shear for
nonlinear analysis; (time), expresses when the building reaches the maximum base shear
for elastic analysis. From this table, it can be found (with the exception of building failure)
that maximum critical story drift Apax, maximum elastic story drift A, ,maximum failure
base shear Vy and maximum elastic base shear increase with the duration of the
earthéﬁake. Table XXXXI shows the range of design parameters from all the cases. It can
be seen that the ratio of displacement amplification factor to force reduction factor
DAF/FREF is in the range of 1.0 to 1.9. Ductility reduction factor R, ranges from 1.1 to
2.3. System ductility factor s is 2.1~2.4, an average of 2.3.

To explore further information on the relationship between ductility reduction factor
and overstrength factor, the DAF/FRF ratio and overstrength factor, based on force
reduction factor Ry, (i.e., FRF), is of interest. Figures 149 and 150 are set up accordingly.
Other research shows the DAF/FRF ratio for multistory steel and RC buildings is greater
than 1.0. From Uang [77], the DAF/FREF ratio for a multistory steel frame structure is in
| the range of 1.2~2.5. In this section, the DAF/FRF ratio for a predominantly shear wall
building is determined to be 1.0 to 1.9. If a minimum value of 1.0 for DAF/FRF is used in
Figure 149, then overstrength factor Q is in the range of 1.15 to 1.70, which is based on

force reduction factor Ry, of 4.0 to 6.0. Using the second definition of design parameter

(see Seétién IX) and overlapping Figure 148(b) onto (a), it can easily be found that
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Table XXXX Summary of some design parameters for simulated earthquake 1A

Earthquake

duration 5.0 7.372% 10.0 15.0 20.0
Smax 1.700 2970 2.970 2970 2970
Seu 1.496 1.584 1.584 1.584 1.584

DAF/FRF 1.136 1.875 1.875 1.875 1.875

(time)1 - 7.372 1372 1.372 7.372

(time)2 3.284 7.080 7.080 7.080 7.080
Veu 215.38 | 225.53 | 22553 | 225.53 | 22553
Vi)t 163.50 | 197.72 197.72 197.72 197.72
Ru 1.317 1.141 1.141 1.141 1.141

Unit: mm,ton
* = Failure state

DAF/FRF = Omax / Oeu
Ru=Veu/ (Vi)f
(time)1=time when failure state occurs for nonlinear analysis

(time)2=time when max. base scear occurs for elastic analysis

overstrength factor Q is 1.6 (= 197.72/124). An identical overstrength factor Q is seen in
Figure 148(c) and (d) where 1.6 fits the range of 1.15~1.70, based on the force reduction
factor of 4.0~6.0. If an overstrength 'factor of 1.6 is used, the force reduction factor is
assumed to be 6.0. By using the first definition of design parameters (see Section IX), the

overstrength factor Q is assumed to be 1.0. Force reduction factor Ry, can then be

calculated as 3.22, assumed to be 3.5, with the formula Ry=pQY. Applying both

overstrength factor of 1.15~1.6 and force reduction factor of 4.0~6.0 into Figure 150, the
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minimum ductility reduction factor is 1.6. Combining this value with the observed range
of 1.1~2.3 for the ductility reduction factor, a more reasonable range of 1.6~2.3 is obtained
for the ductility reduction factor R,. Force reduction factor R, 3.5, based on the first
definition of general response curve in Section IX|is kind of lower while a value of 6.0 is
based on the second definition of the general response curve (see Section IX). The latter is
the same as the UBC code design parameter. A force reduction factor of 6.0 obtained from
dynamic analysis in this section is quite agreeable with the result from monotonic static
analysis in Section IX. Therefore, the second definition could be recommended for use in

the building with RC shear wall.

Table XXXXI Summary of range of design parameters DAF/FRF, R, and |,

Earthquake 1A 1B 2A 2B 3A 3B

DAF/FRF 1.875 1.807 1.421 1.375 0962 | 1.044

Ru 1.141 1.160 1.709 1.749 2.274 2.311
Is 2.1 2.1 2.4 24 2.2 24
C. MODIFIE -STOR MME BUILDIN T

SIMULATED EARTHQUAKE
As modified, the three-story commercial building contains one more shear wall in
the middle of both ground level and second floor (described as case 2g in Section IX). The
middle shear wall (here called SW19) on the ground level has twice the load capacity but
half the maximum displacement of shear wall SW1. Shear wall SW2 has one and a half

times the load capacity but three-fourths the maximum displacement of shear wall SWA.
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DAF/FRF

Overstrength factor

Figure 149 Relationship between DAF/FRF and overstrength factor

The second floor's middle shear wall ( here called SW20) has the same properties as shear
wall SW7. As stated, this modified three-story commercial building is subjected to the
same simulated earthquakes. In general, the mass center is still close to the center of
rigidity due to the building's symmetry.

f Shear Walls on Critical Story Figure 151(a) through
(c) shows shear responses caused by shear springs of shear walls at ground level. Ina
simulated earthquake of 0.2 g, the building behaves elastically which is not shown in this
figure. In a simulated earthquake with seismic intensity of 0.3 g, shear walls on the
ground level (i.e., the first story) still dominate the whole behavior of the building. After 4
seconds or so, shear walls SW1, SW19 and SW2 on the ground level enter the fully
inelastic range. Comparing all shear responses in Figure 151 and 152, the shear ratio of a
shear wall's shear spring in the elastic range (4 seconds for earthquake 2A as shown in
Figure 151 and 152) could be strongly related to the ratio of a shear wall's initial stiffness.

After a period of elasticity, the shear walls soon behave highly inelastically. The shear ratio
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Ductility reduction factor

Overstrength factor

Figure 150 Relationship between ductility reduction factor and overstrength factor

of a shear wall's shear spring is about the same as the ratio of the shear ultimate strength of
shear walls. During elastic response (see Figure 152), shear ratios taken by shear springs
of shear walls SW1, SW19 and SW2 are 26%, 36% and 38%, respectively.

As noted, all possibilities except the shear wall's initial stiffness depend on the
configuration of the building, mass center, and location of shear walls. When entering the
phase of inelastic response, shear ratios of shear walls SW1, SW19, and SW2 are 22%
(SW1), 28% and subsequently 25% (SW19), 47% and subsequently 49% (SW2),
respectively. Since shear wall SW2 has much higher ultimate strength, it occupies about
50% of base shear.

Displacement ratios by shear springs of shear walls are shown in Figure 153. In
terms of elastic response for shear walls SW1, SW19, and SW2 these ratios are 38%, 35%
and 27%, respectively. Displacement ratios by rotational springs of shear walls SW1,
SW19, and SW2 are 62%, 65%, and 73%, respectively. For these walls flexural lateral

displacement is larger than shear lateral displacement. In terms of highly inelastic
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Shear wall SW1

Shear by shear spring(SW1)(Tons)

Figure 151 Shear by shear spring of shear wall vs. time on critical story of modified
three-story building
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response, displacement ratios by shear springs of shear walls become 98%, 98% and 80%,
respectively. Displacement ratios by rotational springs of shear walls SW1, SW19 and
SW2 are 2%, 2% and 20%, respectively. The former ratios become 100% when shear
springs of shear walls enter the range of high inelasticity and the latter ratios become zero.

Relationships between shear resistance and shear displacement by shear springs of
shear walls on the critical story are shown in Figure 154. In these figures, shear walls for
simulated earthquakes (2A and 2B) with a seismic intensity of 0.3 g have two quite
different responses. More hysteretic cycles occur in shear walls on the critical story for
earthquake 2A than for earthquake 2B. The former also has more energy dissipation than
the latter. These results are similar to those for monotonic static analysis with columns
taking very little shear.

2. Investigation of Design Parameters Figure 155 shows the relationship between
base shear and critical story drift for both nonlinear and elastic analysis in the earthqliake
cases 2B and 3B. A key factor is the behavior of shear walls on the critical story, which
can be seen in Figure 154. A summary is shown in Table XXXXII. Simulated
earthquakes with a seismic intensity of 0.2 g have a DAF/FRF ratio of 1.0, a ductility
reduction factor Ry, of 1.0, and a system ductility factor of 1.0. Generally, building
response with seismic intensity of 0.2g involves elastic behavior. Later analysis concerns
only simulated earthquakes of 0.3 g and 0.4 g.

In summary, the ratio of displacement amplification factor to force reduction factor
DAF/FRF is in the range of 1.1~2.3. Compared with the previous building (case 1g), the

DAF/FRF is 1.0~1.9, stable in these cases. For practical purposes, a conservative

recommendation is 1.0 to 2.0. Ductility reduction factor R, ranges from 1.0 to 1.12.

System ductility factor i1 is of 1.15 to 2.2, an average of 1.82. Note the difference from

the case of the previous building, having a range of 1.1~2.3 for R,, and an average s of
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Table XXXXII Summary of range of design parameters DAF/FRF, Ry, and p; for
modified three-story building

Earthquake 1A 1B 2A 2B 3A 3B

DAF/FRF 1.000 1.000 2.311 1.116 2.220 1.900

Rp 1.000 1.000 1.000 1.029 0.982 1.123

s 1.000 1.000 1.806 1.148 2.180 2.130

2.3. System ductility seems stable for these two buildings and can be assumed to be 2.1
(=(1.82+2.3) / 2) on average. As to overstrength factor Q (DAF/FRF=1.0 assumed), if it

is 1.0 (based on the first definition in Section IX), force reduction factor Ry

Y o . : .
ﬁ%ﬁg’ which is derived from Eq. (216)) is 1.61 (for s =1.15) and 3.08 (for ps =

2.2). These force reduction factors Ry, (based on the first definition of the general

response curve) are quite low compared to UBC code design parameters. If DAF/FRF
ratio equals 1.0 (presumed minimum), overstrength factor Q (=—D—A—F7/FR—FRW, which is

S

derived from Eq. (216)) is in the range of 2.48~3.73 (for us =1.15 and R,, =4.0~6.0) and
of 1.30~1.95 (us =2.20 and Ry, =4.0~6.0). As shown in Figure 155, overstrength factor
can also be calculated as 1.40 (based on the second definition). It can be concluded that
1.15~1.70 (for the previous building) or 1.30~1.95 (for the current building) are stable
ranges for the overstrength factor. Accordingly, force reduction factor R, can be obtained
in a more reasonable range of 4.0~6.0. As shown in Figures 148 and 155 (based on the
second definition), a calculated overstrength factor of 1.60 (for the previous building) and

1.40 (for the current building) are in the range noted above. These values are in good
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agreement either from base shear vs. critical story drift curve based on the second
definition, or from formulation of design parameters based on the results of dynamic

analysis.
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XI. SUMMARY AND CONCLUSIONS

To study the possible response of an isolated shear wall and a building with shear
walls subjected to external force, a joint research project was conducted by National Cheng
Kung University (NCKU) and University of Missouri-Rolla (UMR). Theoretical analysis
at UMR included (1) observations of NCKU experimental work; (2) establishment of
backbone curve of perforated shear wall; (3) development of hysteresis rules for isolated
shear walls; (4) calculation of equivalent viscous damping model and its associated
damping range for perforated shear walls subjected to seismic loading; (5) illustration of ~
parameters for design code with respect to overstrength factor; (6) formulation of element
model of perforated shear wall; (7) evaluation of design parameter for shear-wall-
dominating buildings under monotonic loading application; (8) assessment of design
parameter of shear wall dominating building subjected to simulated earthquakes. A

summary and conclusions are outlined in this section.

A. EXPERIMENTAL OBSERVATIONS AND MATERIAL MODEIL OF ISOLATED
SHEAR WALL

Experimental results Experimental_ results at NCKU come from two groups of
shear walls. One group was subjected to monotonic static loading, the other to earthquake
quasi-static loading. Twelve perforated shear walls as well as five solid shear walls were
tested with a height/width ratio of 0.5 and 0.75 for each type of wall. Single slit, single
window, and double windows were used f01: perforated shear walls.

Comparing solid shear walls and perforated shear walls based on experimental
results, the yielding and ultimate load capacities for the former are almost twice that of the
latter. Critical displacements are not stable at the cracking point for both solid and
perforated shear walls. Average yielding displacement of the perforated shear wall is about

2.10~2.20 mm, two-thirds of the solid shear wall (whose average yielding displacement is
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3.35 mm). Ultimate displacement of 3.79 mm for the perforated shear wall is about two-
fifths that of the solid shear wall (whose average ultimate displacement is 9.62 mm).
Openings thus play an important role in load capacity and maximum displacement of shear
walls.

Curvature response differs for solid vs. perforated shear walls at locations
throughout a given wall. Solid shear walls have a larger curvature capacity than perforated
shear walls. Curvature illustrates the effect of bending behavior on a shear wall. With
larger curvature capacity, more flexural response occurs when a wall is subjected to
external load. This suggests more applied load can be resisted by shear wall. Comparing
solid and perforated shear walls, the former has more load capacity and maximum
displacement due to its flexural characteristics.

Note the relationship between bending, shear, and total displacement. It can be
seen that shear displacement takes a higher percentage of the total than flexural
displacement. If a shear wall is designed with more horizontal steel bars to improve its
shear capacity, initial stiffness of shear wall's backbone curve is increased. This may
result in less displacement. Then ductility characteristics are not obvious. Optimization
between load capacity and maximum displacement becomes a crucial theme. An average
failure ductility of 4.0 is recommended for the design of perforated shear walls.

Backbone curve of shear wall For perforated shear walls, the location of initial
cracks is important due to possible stress concentration at the corner of openings.
Observations from experiments illustrate this. An initial diagonal crack pushes the block
above the opening segregated from the rest of the wall. Load capacity as well as maximum
displacement are then decreased. Again perforated shear walls behave differently from
solid shear walls. Vertical steel bars above the opening are not long enough to be
considered in the calculation of load and displacement.

On shear walls the region subjected to the effect of combined shear and bending is

the hinging region. It usually absorbs most of the input energy and thus deteriorates. For
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a solid shear wall, the hinging region spreads over the entire wall. From observations of a
perforated shear wall experimentally, the hinging region only covers both sides of the
opening and extends slightly upward or downward. The limited size of the perforated
shear wall's hinging region decreases the wall's potential load capacity and ductility
characteristics.

Considerations in the development of backbone curve for perforated shear wall
include location and size of openings. Generally, comparison between experimental results
and calculated curve is favorable vis-a-vis NCKU perforated shear walls. Note that in
semi-empirical equations for backbone curve, a segment with a negative slope shows the
characteristics of stiffness deterioration after the ultimate state. For better curve-fitting,
more experimental results are needed to calculate the coefficients of semi-empirical
equations presented here.

Hysteresis rules for perforated shear walls An algorithm develops hysteresis rules
pertaining to perforated shear walls. Prior to this, a dissipated envelope is established for a
possible path based on hysteresis energy. This envelope is a reference curve which is a
type of load-displacement curve with energy dissipation. The backbone curve for a shear
wall is unique. But a reference curve may vary, depending on external load history. Three
empirical equations define critical points in the reference curve.

After establishing this reference curve, hysteresis rules can be developed. Five
groups of rules reflect different stages: loading process, unloading process, reversal
loading process, reloading after unloading process, and unloading after reversal loading.
Each group of rules defines the path by calculated stiffness. Agreement between expected
hysteresis curves and experimental hysteresis results is good. All the shear walls display a
pinching effect. This effect, as part of the hysteretic response, shows that RC perforated
shear walls are strongly influenced by shear.

Equivalent viscous damping of RC perforated shear wall As noted in prior

research, hysteretic damping can be observed in a given material. This damping comes
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from internal friction and other complex mechanisms. For practical purposes, equivalent
viscous damping is used to find the effect of hysteretic damping. From NCKU
experimental work, irregular load-displacement cycles can be seen in perforated shear
walls. The formulation herein is aimed to account for irregular skew hysteresis looping.
For reinforced concrete shear walls, hysteretic damping might not be taken into account
before the cracking stage. Damping ratio gradually increases with maximum ductility of
shear walls. Calculated damping ratio based on experimental results may be as high as

15.7%. Initial damping ratio for hysteretic damping, however, ranges from 5 to 6 percent.

B. ELEMENT MODEL OF PERFORATED SHEAR WALL

A panel with four joints at corners serves as a model for the perforated RC shear
wall. Ten degrees of freedom are assumed in ten directions: two in the horizontal direction;
four in the axial direction on both sides of the rigid body; four out of plane to account for
P-A effect. If the bottom of the wall is fixed and out-of-plane deformations do not pertain,
then three springs are necessary to provide adequate resistant force for this shear wall.
Nonlinear equivalent shear springs and nonlinear axial springs are applied to nonlinear total
lateral displacement and nonlinear axial displacement.

From experimental results, lateral displacement caused by flexure is less than that
caused by shear. Total displacement for perforated shear walls, as depicted by the
equivalent shear spring, is a result of both flexure and shear. Deformation caused by
flexure in the vertical direction is expressed by one pair of nonlinear springs. This model,

with equivalent shear spring only, could be used for low-rise shear-wall buildings.

C. RESPONSE STUDY OF THREE-STORY AND FOUR-STORY BUILDINGS
There are two types of buildings used to study global behavior. First is an RC box-

type four-story industrial building with all four shear walls forming an effective resistance

system on each floor. Adjacent walls interconnect and bear a heavy dead load on each
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floor. Shear capacity of the walls is high due to their large dimensions and strong
reinforcement. Second is a three-story commercial building with curtain walls. Six solid
shear walls on each floor comprise its resistance system. Comparatively, the four-story
building has thicker walls than the three-story building. Wall dimensions in the three-story
building are much smaller than the four-story building. Monotonic loading is applied to the
four-story industrial building and then to the three-story commercial building. Other three-
story buildings with modifications are also studied here with regard to perforated shear
walls.

Four-story industrial building Shear walls have a higher initial stiffness for
rotational springs than for shear springs in terms of load-displacement relationship. This
allows the shear spring to deform further than the rotational spring. Walls with rotational
springs thus fail earlier than those with shear springs. For all the shear walls, ultimate
shear displacement is higher than ultimate flexural displacement. SW12 and SW16 at
ground level have a larger ratio of bending displacement vs. shear displacement than the
other shear walls. Bending and shear displacements of SW12 and SW16 at ground level
are more sensitive to the building's global response.

Overall response of the building under monotonic static loading, with ductility of
4.0 for shear walls, shows that SW12 fails first in the flexural mode followed by SW16 in
the same mode. Walls or :he upper level of the building remain in the elastic range.
Overall response is contro: i by shear walls on the first story.

Story response is strongly related to the load-displacement relationship of shear
walls for each floor. Differences in story displacement from floor to floor depend on wall
height as well as backbone curve of shear walls. The four-story industrial building fails at
the first story. Characteristics of backbone curves here show that shear walls after the
yielding point become partly inelastic and then fully inelastic. Even a slight increase in

ductility hastens ultimate displacement of shear walls. Due to high plasticity, ultimate

323



lateral load does not change much. Critical story drift may thus vary for shear walls with
different ductilities but maximum base shear remains stable despite ductility.

Note what generally happens if more load increments are applied to the building
after the critical story fails in the flexural mode. Due to stress redistribution, the shear
wall's shear spring takes extra shear from that wall's rotational spring. Failure of the
building in the shear mode soon occurs. The situation is similar whether the building fails
in the flexural mode or in both the flexural and shear mode.

Three-story commercial building As noted earlier, this structure contains RC
columns. Under monotonic static loading, two shear walls along the force direction resist
external load. Compared to shear walls in the four-story building above, shear walls in this
building have quite different configuration and reinforcement. This difference is partly due
to less wall thickness as well as greater height/width ratio in the three-story building.
Overall backbone curve of shear walls in this building reveal their main features: more
flexural lateral displacement than shear lateral displacement and stiffer shear initial stiffness.
One of the shear walls, SW1, along the force direction fails first in the shear mode; almost
simultaneously, another shear wall, SW2, fails at the next load step. At this time, critical
state at the first story occurs due to failure of SW1 and SW2. Before shear walls at the
critical story fail, flexural behavior caused by their rotational springs is still within elastic
range. After shear walls at the critical story fail, columns located there gradually take over
stress from these failed walls, due to shear redistribution, an& from external force as well.

As mentioned earlier, some modified three-story buildings are considered in
monotonic static analysis. Perforated shear walls, placed at different stories, might cause
significant change in maximum base shear and maximum story drift. Clearly the
configuration and material properties of solid and perforated shear walls are impbrtant
factors in the design of buildings. Adequate story drift and sufficient shear capacity are
major concerns. In some cases, perforated shear walls increase the capacity of structures to

withstand external loads.
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D. DYNAMIC RESPONSE OF RC SHEAR-WALL-DOMINATING BUILDINGS
RC shear wall buildings have three types of failure modes: shear, flexural, and both
flexural and shear. For dynamic analysis here, an existing three-story commercial building
is studied under Loma Prieta earthquake and six other simulated earthquakes. Maximum
intensity of the Loma Prieta earthquake was 0.15g, imposed on the structure along the
skew direction. The output of acceleration response, which shows that the results from
nonlinear analysis and elastic analysis are the same, agrees with the seismic records. Thus,
under the Loma Prieta earthquake, the existing structure displayed an elastic response.
Under six simulated earthquakes, the structure was tested with the same procedure.
~ Seismic intensity is 0.2g for earthquakes 1A and 1B, 0.3g for earthquakes 2A and 2B, and
0.4g for earthquakes 3A and 3B. 1A and 1B have a different earthquake time history as do
2A and 2B as well as 3A and 3B. For earthquake 1A, the three-story building fails at 3.3
seconds, for earthquake 1B at 4.164 seconds, for earthquakes 2A and 2B at 3.3 and 1.58
seconds, respectively, and for earthquakes 3A and 3B at 2.718 and 0.936 seconds,
respectively. A shear-wall-dominating building fails at different time intervals for
earthquakes which have the same seismic intensity: it depends on the type of earthquake.
Given the same type of earthquake, a building fails under stronger seismic excitation. In
this case, for buildings with symmetric configuration, shear walls SW1 and SW2 take the
same percentage of shear resistance. At the critical story, shear displacement by shear
springs of shear walls is important. Shear taken by shear springs of shear walls is 98
percent of base shear while that taken by columns is 2 percent. The effect of rotational
'springs of shear walls can be neglected. At the critical story, displacement ratio by shear
springs of shear walls is also important. Before cracking of shear walls, displacement
caused by rotational springs of these walls is 60 percent of total critical story drift. Note
that rotational springs of shear walls have less stiffness than shear springs of shear walls in

the elastic range. When a structure behaves in a highly plastic manner, shear springs of
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shear walls exhibit ductility characteristics. This increases the displacement ratio by shear
springs of shear walls at the critical story.

A modified three-story building is used for dynamic analysis. This building has
two additional shear walls: one in the middle of the first story and one in the middle of the
second story. Two boundary columns are fixed at each side of these additional walls.
Shear capacity ratio for shear walls SW1, SW19 and SW2 on the first story is 1:1.5:2
while their maximum displacement ratio is 1:0.75:0.5. SW1 has less initial stiffness and
more maximum displacement. Thus it has a somewhat larger vibration than shear wall
SW19, a much larger vibration than shear wall SW2. Its total lateral displacement is also
larger.

Displacement ratios by shear springs of shear walls on the critical story indicate the
following: 30 to 40 percent within the elastic range and 80 to 98 percent in the plastic
range. It can be seen that shear springs of shear walls dominate the entire structure's
response. Overall, the arrangement of shear walls and their load-displacement relationship,
especially on the critical story, is vital for the building's survival during a severe

earthquake.

E. DESIGN PARAMETERS FOR RC SHEAR-WALL-DOMINATING BUILDINGS
Table XXXXIII summarizes design parameters based on monotonic static analysis
of a four-story industrial building and three groups of three-story buildings as well as
dynamic analysis of the three-story building (case 1g of Group I) and a modified three-
story building (case 2g of Group II).
It should be noted that the concept of the first plastic hinge provides a good
definition of design parameters for frame structures. For frame structures, the first and

second definition actually yield the same results.
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In a shear-wall-dominating building, shear wall doesn't have a plastic hinge. The
first significant yield stage is where the first shear wall fails. From Table XXXXIII, (i)
system ductility factor u (1.0), (ii) overstrength factor Q (1.0), and (iii) displacement
amplification factor DAF (1.4) are the same for four-story and three-story buildings under
static analysis based on the first definition. It is apparent that the structural system has
much larger inelastic deformation than yielding deformation. From above results, it can be
concluded that system ductility factor pg (1.0) and overstrength factor Q (1.0) are not
reasonable. Then DAF calculated as Y (i.e., DAF=1-1-Y=Y), which is based on the
expression of DAF=4-Q-Y, is not reasonable. The first definition for design parameters
 is therefore not adequate for shear-wall-dominating buildings.

For the second definition, the first significant yield level is the point where the
critical story response deviates from elastic range. Based on this definition, system
ductility factor W (2.9 ~7.5), overstrength factor 2 (1.8~2.2 and 3), force reduction factor
Ry (7.5 and 6), DAF/FREF ratio (1.6~3.37), DAF (4~24.9), and ductility reduction factor
R, (1.7~1.8 and 2.3) are obtained for both 3-story and 4-story buildings. These factors
except factor DAF are reasonable physically. Thus, the second definition for design

parameters is suitable for shear-wall-dominating buildings.

Results from dynamic analysis show that ductility reduction factor Ry, (1.0~2.3),
system ductility factor g (1.82 and 2.3), overstrength factor Q (1.15~1.95), DAF/FRF

ratio (1~2.3) are also reasonable. Force reduction factor R,, and displacement amplification

factor DAF can then be obtained on the basis of the formulations Ry,=R-Q-Y and
DAF=p,- QY.

In summary, force reduction factor Ry, of 6 and 7.5 is for the two low-rise RC
shear-wall-dominating buildings presented in this report. Compared with these values, Ry
of 6 specified for bearing wall system with RC shear walls in the UBC design code is

different. Actually UBC design code does not identify the influence of building
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configurations and shear wall layout of a structure on Ry,. Further research would benefit
from studying more varieties of RC shear wall buildings.

Displacement amplification factor DAF has a wide range of values (4~24.9) for
both static and dynamic analyses but DAF/FRF ratio has a narrow range of 1~3.37. This
ratio can be used to predict adequate DAF. Furthermore, consideration of overstrength
factor €2, preventing structures from failure, in the UBC design code is urgently needed in

UBC. For low-rise RC shear-wall-dominating buildings, overstrength factor of 1.2~2.2 is

recommended.
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APPENDIX A
SHEIKH'S MODEL



Sheikh proposed a general curve for the stress-strain relationship of confined
concrete, in which three sections are to be defined. The curve is shown in Figure 156. The
first section is a curve of second-degree parabola, denoted by OA, A being (gs;,fcc). Term
fec, representing the relationship between the concrete strength and lateral confinement

produced by rectilinear reinforcement, can be written as
fCC = pr + dpS7 s’ f's’ la n) (299)

in which fep = strength of concrete in plain specimen; ps = ratio of volume of total lateral
reinforcement to volume of core; s= tie spacing in laterally reinforced specimen; f; = stress
in lateral reinforcement; A = factor that accounts for configuration of section and

distribution of longitudinal bars around core parameter; 1 shows the effect of the size of the

section.
In brief, the compressive strength of confined concrete in the specimen, fcc, can be

expressed as follows
fec = Ks'fcp (300)

in which

K= 1. 2.7332[( nCZXsM/ " (f is in kips/in? in ki
s=10+ P 115.5B2 12B) psfy  (f; is in kips/in® and Pocc in kips)

(301)

or

2 2 =
s=10+ 140P, | 1 5 5B2 1 2B psf, (f; is in megapascals and Pocc in

kilonewtons) (302)
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fcc-'-‘stcp =

Stress

Figure 156 Sheikh’s confined concrete model

Here B is center-to-center distance of perimeter tie of core; Py = O.85f;(AC o-As),
theoretical capacity of column core concrete; f; = compressive strength of plain concrete as
measured from standard cylinder [152 mm x 305 mm)] test; As = area of longitudinal steel;
Aco = area of core bounded by center-to-center of perimeter tie; n = number of arc along
one side of perimeter tie; C = base of arc curve; &} is minimum strain corresponding to

maximum concrete stress, which can be expressed as

gs1 = 0.55-K-f.x10°6 (if f. in pounds per square inch) (303)

or

gs1 = 80-K-f.x10°6 (if £, in megapascals) (304)
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Section AB and BC of the curve are straight lines. Strain € is the maximum strain

value corresponding to the maximum stress and is written as

€2 _1 40811 505 psfs (C in inches; stress in pounds per square inch)
2= 1+ 83H 1S OFF = P q

€ \/f_
(305)

or

£2-1+ %5{1-5.qi§-)2)ps—fs (C in millimeters; stress in megapascals)  (306)

€00 - ﬁ;

in which &, = strain corresponding to maximum stress in plain concrete(0.0022 in the case
of present tests).
€585 is the strain corresponding to 85% of maximum stress on the unloading branch

of the curve, which has the form of

esss = 0.225p,1/ B + &) (307)

Beyond point C, the curve drops down linearly until the stress is about 30% of
maximum stress. Beyond point D, due to lack of experimenal data, the assumed horizontal
load can not be confirmed.

Further details can be found in the study by Sheikh and Uzumeri [72].

333



APPENDIX B
AXTIAL HYSTERESIS MODEL



Kabeyasawa et al. [78] developed the axial hysteresis model for shear walls and
boundary columns as part of analytical studies for a full-scale 7-story test structure. This

model concerns behavior before tensile yield and after tensile yield. A brief illustration is

shown in the following.

Tensile Backbone Curve This curve is bilinear. Its initial tensile stiffness is
Kt =0.90 Ec Ag (308)

where Ec is the concrete modulus of elasticity and Ag is the gross cross sectional area of the

member. When the steel bar yields at (Dyt, Fy)

Fy =fy As (309)

and

Dyt =Fy /Kt ‘ (310)

where fy is the yield point of the steel bars and As is the area of the steel bars. Stiffness

becomes

K2 = 0.001 Ec Ag (311)

Compression Backbone Curve This curve is linear. Its compressive stiffness is

expressed by

Kc=Ec Ag (312)

Compressive stresses usually remain below 0.50f .
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Cyclic Loadings before Yielding A bilinear hysteresis loop is used for cyclic

loading before the member has yielded, as shown in Figure 157. When a member is
subjected to a tensile load within critical yielding point, stiffness as noted above is K. Say
the member is subjected to a tensile load FB (point B in the figure), and unloads from point
B. Unloading stiffness of the member is Kc, which is the same as compression initial
stiffness. When unloading to point C, the member is on the compression side and the load
between point B and point C is equal to Fy. If reloading from point D, the member follows
the path with a stiffness of Ke.

Behavior when the member has yielded is shown in Figure 158 where point E is the
maximum load beyond the yielding point on the tension side. The member unloads with

stiffness defined as follows

(313)

Kr = Dy[ ) (Fmax + F

Dmax

max

where Dyc = -Fy / Kc and o = 0.90. Unloading continues to point F where load and

displacement of the member are given by

FF = Fpax - Fy (314)
and
F
DF:Dm-ﬁ (315)

The path between points F and G has the stiffness of

FF +F,

DF - Dyc (316)

Ks =
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Figure 158 Axial hysteresis model after tensile yield
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Load and displacement of the member at point G become

FG = FF + Ks (DG - DF) (317)
and

DG = Dyc + 0.20 (DF - Dyc) (318)

Beyond point G unloading continues on a transition curve that goes from point G to point

H on the compression backbone curve. Stiffness is defined as -

_FG +2 xF,

- (319)
DG -2 x Dy,

KCZ

Further unloading and loading remain on the compression backbone curve except in the
region beyond point I (Dyc, -Fy). Loading beyond point I has the same stiffness as
unloading stiffness on the tension side, which is expressed by Kr. Loading and unloading
on small amplitude loops inside the region E-F-G-H-I-J-E have a stiffness of Kr.

Summary The axial hysteresis model presented here was developed for reinforced
boundary columns. Further research to study RC shear walls with axial loads

experimentally and analytically is recommended.
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