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ABSTRACT

The objective of this research project is to investigate the inelastic behavior and
hysteresis rules of low-rise RC perforated shear walls through a series of experimental
and analytical studies based on various types of monotonic and earthquake loads. The
results derived are then applied to seismic response analysis of box type structures as well
as typical low-rise shear wall buildings. The studies also involve development of
backbone curves of load-displacement relationship of individual walls, equivalent viscous
damping of the walls, and sensitivity analysis of design parameters for building systems.

By observing the failure of cracked shear wall experimentally, a set of semi-
empirical equations for backbone curve of perforated shear wall is obtained. Comparison
between experimental results and calculated curves is favorable. Concept of energy
dissipation is used to establish hysteresis rules which are based on dissipated energy
envelopes calculated from experimental data for different loading states.

Analytical formulation for a perforated shear wall element model is developed by
using three springs: one nonlinear equivalent shear spring; two nonlinear axial springs.
Total lateral displacement of a shear wall is a result of both flexure and shear.

A four-story industrial building of box type consisting of solid shear walls without
boundary columns and a three-story cotnmercial building consisting of isolated columns
as well as walls with boundary columns are studied for evaluating various design
parameters in building code by using monotonic static analysis. The three-story building
is also studied on the basis of dynamic analysis with Loma Prieta earthquake (1989) and
six simulated earthquakes.

The sensitivity study of design parameters includes ductility reduction factor,
force reduction factor, overstrength factor, and ratio of displacement amplification to

force reduction factor. Results are recommended for future building code development.
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I. INTRODUCTION

A. OBJECTIVES

Reinforced concrete shear walls are effective in seismic resistance for civil
engineering buildings and industrial structures, such as hospital and nuclear power plants.
For shear walls with openings of doors and windows, strong ground motion can
significantly affect load capacity and displacement [1-10].

Current building codes use the design parameters such as force reduction factor and
displacement amplification factor in modifying elastic response to inelastic response. These
parameters vary for different types of buildings, but not in terms of whether the walls are
solid or perforated.

This report is to show analytical and experimental studies of solid and perforated
low-rise shear walls as well as elastic and inelastic response behavior of building systems.
Design pbarameters of force reduction factor and displacement amplification factor as well as

equivalent viscous damping are evaluated and assessed.

B. QVERVIEW

Sections of this report are outlined here. Section II illustrates some observations
from test results. A comparison of load and displacement for solid shear walls and
perforated shear walls is made. Total lateral displacement is a combination of shear
displacement and flexural displacement. The role of flexure in lateral displacement is then
depicted from the relationship between bending displacement and shear displacement.
Finally, failure ductility is calculated for all the perforated shear walls.

Section III develops semi-empirical equations of backbone curves for perforated
shear walls. Equations for load and displacement at four loading stages of cracking,
yielding, ultimate, and failure are established. Curves for predicted and experimental

results are then compared.



Section IV observes hysteresis response based on experimental results under
seismic loading and develops a possible energy envelope for the loading process when
shear walls enter the inelastic range. This dissipated envelope is called a reference curve
which provides the shear wall's potential loading path. The hysteresis loop defines
loading, unloading, reversal loading, reloading after unloading, and unloading after
reversal loading. Calculated and experimental results are compared.

Hysteresis response for perforated shear walls clearly shows the existence of
hysteretic damping. By modeling damping effect with hysteresis energy loss,
characteristics of the damping coefficient are explored based on the concept of viscous
damping. Formulation of equivalent viscous damping fpr perforated shear wall is
established in Section V.

Design parameters used in building codes are in terms of force reduction factor and
displacement amplification factor. Section VI discusses the aforementioned factors and
their physical aspects, relationships between ductility reduction factor and overstrength
factor, and maximum base shear ratio and overstrength factor as well as displacement
amplification factor/force reduction factor ratio and overstrength factor.

Section VII derives analytical formulations for perforated shear walls. Element
stiffness matrix is introduced. Also, the free-body diagram concept is applied to perforated
shear walls.

| Section VII studies the response of a four-story industrial building. Monotonic
static analysis is applied on the basis of UBC design code. Response analysis uses load-
displacement relationships of shear walls with ductility range from 4.0 to 8.0. Failure
story drift and failure story base shear are considered for cases of different ductilities.
Cases where the building fails in (1) flexural mode, and (2) both shear and flexural mode

are investigated.



Sensitivity of design parameters based on ductility is discussed. A comparison of
design parameters includes ductility reduction factor, overstrength factor, system ductility
factor, force reduction factor, and displacement amplification factor.

Section IX studies the response of three-story buildings, including an existing
three-story commercial building with solid shear walls in California and other modified
three-story buildings with some perforated shear walls. These structures are subjected to
monotonic static loading. There are eighty-four columns in the existing building, twenty
eight for each floor. The load-displacement relationships of RC columns are examined;
load-displacement relationship for solid and perforated shear walls are calculated as well.

Monotonic static load is applied to the building. Effects of shear and rotational
springs of shear walls along the force direction are discussed. Total displacement response
at different stories in the buildings is demonstrated. An explanation of base shear vs.
critical story drift relationship is given. A comparison of failure base shear and failure
displacement is made.

Ductility reduction factor, overstrength factor, system ductility factor, force
reduction factor, displacement amplification factor, and the ratio of displacement
amplification factor to force reduction factor are discussed with respect to the sensitivity of
design parameters.

Section X studies the response of three-story buildings under dynamic loading, one
an existing three-story commercial building in California, the other a modified three-story
building. The 1989 Loma Prieta Earthquake and six simulated earthquakes are imposed on
the former and six simulated earthquakes on the latter. Responses of shear and rotational
springs of shear walls at the critical story are studied. Details of shear ratio and
displacement ratio by shear springs of shear walls at the critical story are illustrated.
Ductility reduction factor, system ductility factor, overstrength factor, force reduction
factor, and displacement amplification factor/force reduction factor ratio are also discussed.

Section XI includes summary, conclusions, and recommendations.



C. LITERATURE REVIEW

This research is focused on the study of isolated low-rise perforated RC shear walls
without boundary columns. Main work involves the development of 1) load-displacement
relationship, 2) hysteresis rules, and 3) assessment of building code design parameters for
both monotonic loading and earthquake excitations. The literature review presented
herein pertains to this research work.

Recent work in Japan by Watabe et al. [11], among others, has focused on
quantitative evaluation of load-deflection characteristics on heavily reinforced RC low-rise
shear walls normally used in nuclear power plant structures. These specimens have
boundary columns which are mainly subjected to monotonically increasing loading.

Recent work on RC squat shear walls in France has been carried out at the Centre
Experimental de Recherches et d'Etudes du Batiment et des Travous Pulic. The primary
objective is to determine stiffness degrading behavior for walls having differenf
reinforcement ratios, varying from almost zero to 0.5%, in both horizontal and vertical
directions. Results show that the stiffness is constant until cracking, and declines severely
after cracking. Stiffness begins to slowly decrease before the first diagonal shear crack
appears [12].

The French Commissariat a 1'Energie Atomique-Centre d'Etudes Nucleaires also
has a strong research interest in the seismic behavior of RC low-rise shear walls [13].
Results indicate that the dynamic behavior of shear walls depends strongly on the
nonlinearity and time-history of the input force; the inelastic spectrum method
underestimates the margin given by ductility for narrow band excitation centered on a
wall's natural frequency. No experimental work was carried out, and the time-history
analyses were performed with the modified Takeda model which has mainly bending
deformation.

In the U.S., recent work on RC low-rise shear walls has been undertaken at the

Los Alamos National Laboratory (LANL). Bennett, Anderson, Endebrock et al. [14-19]



tested a series of small scale shear walls and box-type structures subjected to both static and
earthquake loadings. The purpose of these tests was to find the stiffness reduction and its
effect on the natural frequency. They studied walls with height-to-width ratios varying
from 1 to 0.25 and steel ratios from 0.25% to 0.6%. Tests showed a 75% stiffness
reduction during a 0.75g peak acceleration earthquake signal; fundamental natural
frequencies were reduced by factors of 2 or more over those calculated based on an
uncracked cross-section strength-of-materials approach. This stiffness reduction caused
the natural frequency to shift into the frequency range for which the earthquake's energy
content is significant. It is apparent that this shift may lead to increased amplification in
floor response spectra at lower frequencies, and will have significant impact on the
equipment and piping design response spectra and their margins of safety. More
experimental work must be undertaken to verify the early results {20].

As shown by the above literature review, low-rise shear walls have been the subject
of extensive research. However, the thrust of the work has been to determine the ultimate
capacity of walls, stiffness reduction, and behavior under cyclic loading. This work,
including the latest information from Japan, France, and LANL (U.S.) does not provide
adequate information with which to develop hysteresis rules for isolated low-rise walls
because: 1) most of the walls subjected to either monotonic loading or cyclic loading had
boundary elements; 2) shear and bending deformations were not separated; and 3) cyclic
loading patterns used in the tests did not provide sufficient information with which to
develop large and small amplitude loops for earthquake response studies.

Low-rise buildings actually constitute a large percentage of total construction.
Many of these buildings are braced by shear walls without boundary columns. Therefore
ongoing research is urgently needed here. Results will have a significant impact on
structural design by improving safety and reducing seismic damage.

Under a joint research project between the National Cheng Kung University

(NCKU) and the University of Missouri-Rolla (UMR),low-rise buildings were studi;:d.



Sheu [21] at NCKU tested a series of isolated low-rise shear walls subjected to various
static monotonic, cyclic, and earthquake-type loadings while Cheng at UMR incorporated
experimental data from NCKU and LANL to develop hysteresis rules and to investigate
inelastic response behavior of individual walls as well as systems. Note that these load-
deflection relationships and hysteresis rules, as developed by Cheng, have two important
features: 1) bending and shear deformations are separated; and 2) the deformations due to
bending, shear, and bond slip are coupled. The importance of these two features in low-
rise shear walls has long been recognized. This is because (1) shear deformation can
dominate total deflections, and (2) the Takeda model, commonly used in RC shear wall
analysis, is based only on bending deformation which cannot accurately predict the seismic
response of low-rise shear wall structures.

In actual engineering practice, walls have openings, such as doors and windows,
and low-rise buildings have walls with or without boundary columns. For instance,
nuclear auxiliary buildings are built mainly of walls without boundary columns and civil
structures are built of walls with or without boundary columns. Yamada et al. (1974)
performed lateral monotonic load tests for low-rise RC shear walls with boundary columns
and beams at the top and bottom of shear walls. Walls with openings are included in the
study. Main focus of the research was to establishan RC load-displacement relationship at
the elastic as well as the plastic stage [22]. Chita et al. tested low-rise heavily reinforced
concrete shear walls with openings [23-25]. Walls having girders on top as well as
boundary columns on both sides were tested under lateral and axial loads. The maximum
shear strength of shear walls was then established.

Sotomura et al. (1985) studied ultimate shear strength of low-rise shear walls with
numerous small openings for a nuclear power plant. Horizontal cyclic loads were applied
to a beam mounted on top of walls which have boundary columns [26].

For design, ACI code [27] has special provisions for shear walls in Section 11.10.

Shear strength of a wall must satisfy governing equations (11-32) or (11-33) in the code.



For a wall with height-to-width ratio less than 0.5, equation (11-32) may be used but does
not reflect the influence of height-to-width ratio on shear strength. Opening in a shear wall,
although it can significantly affect a wall's shear strength and deformation, is not addressed
by the code. Consequently, ACI code has limited application to low-rise perforated shear
walls.

For seismic structural design, design parameters are empirical, such as force
reduction factor and displacement amplification factor. Recently, Uang (1993) studied both
factors and proposed a ratio of displacement amplification factor vs. force reduction factor
(DAF/FRF) on the basis of different definitions of DAF and FRF. His studies are mainly
for frame structures, not for low-rise shear wall buildings [28].

In summary, some research work has been done on low-rise shear walls with
boundary columns. Cheng and Mertz [29] and Cheng and Volger [30] studied seismic
response behavior of low-rise shear walls without boundary columns, and shear wall
systems without openings. Cheng and associates developed bending and shear load-
displacement relationships as well as bending and shear hysteresis rules for such solid
walls. To continue their work, Cheng at UMR and Sheu at NCKU have focused on
development of load-displacement relationship, hysteresis rules, inelastic response, and
design parameter assessment of low-rise RC perforated shear walls and systems as

presented in this report.






II. INVESTIGATION OF TEST RESULTS

A. TEST SCHEDULE

This project joined National Cheng Kung University (NCKU) in Taiwan and
University of Missouri-Rolla (UMR) in cooperative research. Experimental work was
conducted by M. S. Sheu at NCKU and theoretical research was developed under F. Y.
Cheng at UMR. The investigation herein of RC shear walls involves shear walls with
openings, or perforated shear walls. Types of openings in the experimental program
include single windows, double windows, doors and single slits. Also some solid shear
walls were tested in order to distinguish the differences between them.

Test apparatus is shown in Figure 1. A large frame is fixed at ground level to
provide a stable test environment. Specimens are imbedded in the steel beam on the
ground. A steel beam attached to the top of a shear wall is used to transfer lateral force to the
specimen. Two jacks on both sides of the specimen constitute the force system. The top
of the specimen ié not fixed. A test program is scheduled for both solid and perforated
shear walls, with single cyclic loading and earthquake type loading applied to each
specimen. There are two groups of shear walls studied in this program. One group has a
height/width ratio of 0.5. The other has a height/width ratio of 0.75. Two kinds of steel
bars are used, which have yielding strengths of 4617 and 5005 Kg/cm?, respectively.
Steel bars arranged in a diagonal direction within specimens are only employed for
perforated shear walls. It should be noted that the opening rate for shear walls in Group I
is 16.35%, but 21.8% in Group II. Compressive strength of concrete is between 254 and
345 Kg/cm2. A summary of the test schedule is shown in Table L.

As shown in Figure 2(c), all specimens go through four stages under either a cyclic
loading or a earthquake type loading. These four stages are distinguished as elastic,
cracking, yielding and failure stages. Note the case of a single cyclic loading test in Figure

2(a). When loading is applied at a load increment of 0.5~1 tons up to yielding stage, the
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Figure 1 Experimental apparatus for NCKU shear walls

rigidity of specimens decreases and causes more displacement at the same load increment.
Thus, to prevent extensive cracks in a specimen, displacement control (at an increment of
~ 0.5~1.0 mm) dominates the rest of the test. Earthquake type loading follows the same
procedure as the single cyclic loading case. The first three cycles are controlled by load
increment and subsequent cycles by displacement increment (see Figure 2(b)).

Diagonal steel bars are commonly used in RC walls with openings. Among these
specimens, shear walls with single windows or with double windows have more diagonal

steel bars around the openings. Solid shear walls contain no diagonal steel bars. Figure 3
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shows the arrangement of steel bars. Three types of measurements are used for
displacement during loading process. Clip-on gauges are applied in the vertical direction to
measure vertical deformation while potential meters and dial gauges are used to detect
displacement in the horizontal direction. Figure 4 shows the detailed setup. Properties of

steel bars D10 and D13 are shown in Figure 5.

B. LOAD AND DISP C N BETWEEN SOLID AND
PERFORATED S WALLS

Table II shows experimental load and displacement at cracking, yielding and
ultimate stages for NCKU shear walls. This table demonstrates that the cracking load,
which has a range of 4-6 tons or s0,is stable for either solid or perforated shear walls.
The key factor in the cracking load is compressive strength of the concrete. In the test
program, concrete has a compressive strength of 254 to 345 tons/ mm?®. Concrete strength
among test specimens is close for the most part, around 300~330 tons/ mm?.

Solid shear walls have a higher yielding load than perforated shear walls. The

former range from 27 to 28 tons while the latter range from 12 to 22 tons with
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Figure 3 Configuration of steel bars for NCKU shear walls

height/width ratio of 0.5 and from 7 to 18 tons with height/width ratio of 0.75. Average
yielding load for all perforated shear walls is 15.43 tons, about 56% of that for solid shear

walls. Yielding loads for solid shear walls are stable with an average of 27.64 tons.
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Figure 3 (continued) Configuration of steel bars for NCKU shear walls

Ultimate loads for solid shear walls are likewise stable, from 32 to 34 tons, and

higher than those for perforated shear walls. The latter have ultimate loads of 16 to 25
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Figure 4 Locations of load cell and strain gauge for NCKU shear walls

tons, an average of 21.22 tons with a height/width ratio of 0.5, and 9 to 20 tons, an
average of 14.87 tons, with height/width ratio of 0.75. Overall average of ultimate loads

for perforated shear walls is 18.04 tons, less than that for solid shear walls. The ratio of

14



[~
Lel
P

,T 1PT3 _‘}Q
¢ 18( P28 CG ,,9'57,0'

) 6'1 @ 3§0 t? —g

v 8 17 g«”

« 1 r(24 i 4 15 9 —_:—)'

PTIO.8 c pTH 3

—

')

[=]

=27

[ s

0 | 100 l 30 I 30 l 100 [ a0 l

Double window ( SWO-5E-6E) Single window ( SWO—7E+8E)
C o< o<T 14 ([——1 1 ¢
o .
( om- (C o me
PT PT 2
g ‘3,," a0 ) ss_“_g 0
6 (38 v % . 6250l Go
e i oYXl ‘et Q. Gs
! 10' 20 |* (34 " IO' 22 34
12 «2
. s (32 ’ .
- PT1 : 0 12' L
35:51 52 53 18 EY)
S
a0 ( 100 | 30 30 | 100 i 30
Double window ( SWO-13E~ 14E) Single window ( SWO—-15E~ 16 E)

Figure 4 (continued) Locations of load cell and strain gauge for NCKU shear walls

average ultimate load between perforated (18.04 tons) and solid (33.13 tons) is 0.54, about

the same ratio as average yielding load.

Displacement at the cracking stage has a wide range for either solid or perforated

shear walls,0.2-0.7 mm. Cracking displacement is not as stable as cracking load. The
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Figure 5 Stress-strain relationship for D10 and D14 steel bars

Table I Experimental load and displacement at cracking, yielding and ultimate stage for
NCKU shear walls

Group Type Pc Py Pu Ac Ay Ay
(ton) | (ton) | (ton) | (mm) | (mm) | (mm)

SW-0E 531 2668 | 3209 | 040 3.68 9.16

SW-1E 621 27.87 | 33.00 | 0.31 257 8.45

g‘ SWO-3E | 494 | 2091 | 22.62 | 0.134 | 248 | 469
© | swo-se | 447 | 2150 | 2465 | 037 | 243 | 352
SWO-TE | 363 | 1217 | 1639 | 023 | 140 | 3.14
SW9E | 455 | 2837 | 3431 | 024 | 381 | 1126
= | SWO-LIE| 501 | 1846 | 2023 | 0267 | 575 | 103
g SWO-13E| 494 | 1247 | 1499 | 067 | 280 | 390

SWO-15E| 4.54 7.06 938 0.62 1.60 331
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reason for this difference may be the manufacturing process and nonuniformity of concrete.
Displacement of solid shear walls is stable at the yielding stage, with a range of 2.6-3.7
mm, an average of 3.35 mm. For perforated shear walls, except SWO-11E, yielding
displacements average 2.10 and 2.20 mm for Groups I and II, respectively. Generally,
these displacements for perforated shear walls are stable except for those walls with a
single slit (SWO-11E). Yielding displacement of perforated shear walls is about two-thirds
that of solid shear walls. Displacement is also stable at the ultimate stage, with an average
of 9.62 mm for solid shear walls, and 3.79 mm for perforated shear-walls. Thus ultimate
displacement of the latter is about two-fifths that of the former. Note that yielding and
ultimate displacements for perforated shear walls in Groups I and II have almost the same
range.

It can be concluded that openings in shear walls play an important role in load
capacity and maximum displacement of those walls. Generally, cracking loads for both
solid and perforated shear walls are stable and remain in a narrow range of 4 to 6 tons. But
cracking displacement for both types of walls has a wide range of 0.1 to 0.7 mm.
Compared to yielding and ultimate displacement, cracking displacement is small. Yielding
and ultimate loads for perforated shear walls are slightly more than half those for solid
shear walls. Yielding and ultimate displacement for perforated shear walls are two-thirds
and two-fifths, respectively, of those for solid shear walls. Thus openings in a shear wall
reduce load capacity by an average of 0.5 times decay, and decrease maximum

displacement by 33% up to 60%.

C. CURVATURE DISTRIBUTION
Analytic study indicates that curvature starts from zero at the top of the wall and
increases proportionally in relation to square of depth. Finally, curvature reaches its

highest value at the bottom of the wall. This progression can be expressed as

17



o= f %xdx
0

(1)
Here x starts from the top of the wall and increases downwards; W is the wall's width, and
AL is the difference in vertical deformation at each side of the wall. In Figure 6, solid
shear wall SW-OE has curves 1, 2, 3 and 4, which represent locations from top to bottom
of the shear wall. Curves 1, 2, 3,4, 5 and 6 do likewise in solid shear wall SW-9E. These
locations indicate curvature is small at the top and large at the bottom of the wall, which
matches the theoretical derivation very well. Perforated shear walls, except SWO-11E
(with single slit), SWO-3E (with single door) and SWO-15E (with single window)
respond in a manner like solid shear walls here. Note that SWO-5E and SWO-11E (with
double window) and SWO-7E (with single window) have a different curvature distribution
throughout the height of these walls. For shear walls SWO-5E, SWO-7E and SWO-11E,
the relationship between curvature in the middle part (the section with opening) and
curvature at the lower part of shear wall is similar. Thus the middle part of shear walls may
occupy a crucial position in the failure mechanism of shear walls, vis-a-vis load capacity
and maximum displacement.

It is interesting to note that the top portion of perforated shear walls has negative
curvature, quite different from curvature response at the top of solid shear walls. Negative
curvature means that the top portion rotates opposite to the normal direction, as shown by
the lower portion of shear wall. This phenomenon indicates that different mechanics may
prevail at the top of shear wall.

Compare curvature response between perforated and solid shear walls more
closely. It can be seen that solid shear walls have a larger curvature capacity than
perforated shear walls. Physically, curvature implies the effect of flexural behavior on
shear walls. If curvature capacity is larger, then more bending response will occur in a
shear wall. Larger curvature capacity also allows more lateral external load to act on a

shear wall. Shear walls may then hold a larger load capacity. Due to their bending action,
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Figure 6 Relationship of load vs. curvature for NCKU shear walls
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solid shear walls have a larger load capacity and maximum displacement than perforated

shear walls.

D. BENDING, SHEAR AND TOTAL LATERAL DISPLACEMENT

Figure 7 shows three load-displacement curves for each NCKU shear wall. The
curve for total displacement is the combination of bending and shear load-displacement
curves. Bending load-displacement curve reflects the flexural characteristics of a shear
wall, which are caused mainly by deformation of vertical steel bars in the shear wall. Shear
load-displacement curve is likewise related to horizontal steel bars. Concrete is also
important in the behavior of shear walls in either vertical or horizontal direction. For solid
shear walls SW-0E, SW-1E and SW-9E, bending displacement is about 13%~40% of total
lateral displacement. For perforated shear walls in Group 1, approximately 10% of total
displacement is induced by flexure (i.e., bending effect). Bending (or flexural) lateral
displacement of perforated shear walls in Group II accounts for 10%~45% of the total,
slightly more than in Group I. Here the calculation of bending and shear displacements
follows Cheng and Mertz [29].

In general, bending displacement ranges from 10%~40% of the total at ultimate
state. Based on Cheng and Mertz's study, the bending displacement/total displacement
ratio is about 40 to 60%, an average of 50%, at ultimate state. But shear displacement
comprises a larger percentage of the total than bending displacement. If more shear
capacity for shear walls is designed by increasing the ratio of horizontal steel bars, then
stiffness in relation to horizontal shear also increases. Less shear displacement and more
bending displacement could result. Optimal design with consideration of bending and

shear thus has great importance.

E. FAILURED ILITY
Failure ductility is another important factor in controlling the behavior of shear

walls and, consequently, the entire structure. For solid shear walls, Cheng and Mertz
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observed that 4.0 is the failure ductility. Table III outlines yielding and failure
displacement for ‘perforated shear walls. Failure ductility equals the ratio of failure
displacement, Dy, to yielding displacement, D,. This table shows that perforated shear
walls in both cases have a similar range of failure ductility. Ranging from 2.12 to 5.75, the
average is 3.75. Thus 4.0 is recommended as the failure ductility of perforated shear

walls.

Table I Summary of failure ductility
for NCKU shear walls

Wall Dy(mm)| Df (mm)| K¢

SWO-3E [ 2.480 5259 2.12

SWO-5E | 2.430 10083 | 4.15

SWO-7E | 1400 8.053 575

SWO-11E| 5.750 15071 | 2.62

SWO-13E| 2.800 8.944 3.19

SWO-15E| 1.600 7.485 4.68
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. SEMI-EMPIRICAL EQUATIONS OF BACKBONE CURVE FOR SHEAR WALLS

A. DEVELOPMENT OF CRACKS

When RC walls undergo external loads, cracks in the concrete are a sign of more
strength decay in the wall. As cracks develop further, the wall exhibits more complicated
behavior due to coupled flexure and shear. If the applied 'load continues, the wall
approaches its failure mechanism. As shown in Figure 8, many apparent diagonal cracks
and broad crush of concrete on the compression side occur overall in solid shear walls such
as SW-0E, SW-1E and SW-9E. Also shown in Figure 8, perforated shear walls display
major diagonal cracks and crushing area (concrete crush) on both sides of and between
openings. Size and frequency of cracks for perforated shear walls are generally smaller
than for solid shear walls.

Again comparing perforated and solid shear walls, the length and width of major
diagonal cracks is smaller in the former. As discussed later, the role of diagonal cracks is
important in controlling the behavior of shear walls.

1. Initial Cracks These cracks begin at the earliest stage of the loading period.
They may thus have enough duration to develop extensive width and length. Initial cracks
can significantly affect steel bars. In a shear wall, decrease of strength capacity and
increase of lateral displacement are strongly influenced by these cracks. Walls remain in
the elastic range without these cracks.

Figure 9(a) shows a possible configuration of initial cracks in the shear wall, three
on the tension side and two on the compression side. Those on the tension side usually
occur first since cracks are initiated by concrete which has less tensile strength than steel
bars. Also, compressive strength is greater than tensile strength in the concrete itself.
Thus, cracks on the tension side happen sooner than crushing of concrete. Initial cracks
can be in the diagonal or horizontal direction. Diagonal cracks may start at the corners of

openings either on the tension or the compression side.
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Three kinds of initial cracks are most likely to exist in shear walls at the early stage
of loading history. Location, size and shape of openings determine which crack is first.
Mechanical characteristics differ among the three kinds as follows. Diagonal cracks usually
occur at the corners of openings due to stress concentration. They show the combined
action of normal and shear stresses, i.e., coupling effect of bending and shear. Second,
horizontal cracks beside an opening are caused by the shear mechanism. Shear failure
within concete in the horizontal direction induces this kind of initial crack. Third, another
horizontal crack comes from the bending effect. Flexural behavior on the tension side of a
shear wall makes tensile stress of this wall more dominant than tensile strength of the
concrete. Tensile cracks occur in the concrete, unlike the previous horizontal crack which
is the crack-shift type. Other initial cracks on the compression side come from
compression failure. Here the mechanism is that the wall's compressive stress is larger
than the concrete's coinpressive strength. Another mechanism begins at the corner due to
stress concentration.

Concerning the whole shear wall, the initial cracks will separate the integrated shear
wall into several small wall elements. These cracks decrease workability of the whole
shear wall. The development of subsequent cracks is then limited, and the region and scale
of subsequent cracks:is restricted under the initial cracks. Thus, failure mechanism

occurs in one of the small wall blocks (elements). As shown in Figure 8, the critical failure
block will most likely happen in the regions between openings and at both sides of
openings.

As observed in many NCKU shear walls, an initial diagonal crack on the tension
side induces another crack going upward on the compression side. A wedge-shaped block
is then formed (see Figure 9(b)). This wedge-shaped region acts like a transition zone to
transfer force from the tension to the compression side. Since no major cracks exist in this
region, its integrity is assured. Both concrete and steel have the same deflection in either

vertical or horizontal direction. Figure 9(c) shows that the top and bottom of openings are
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free ends which do not take any load and stress. For this reason, the effect of vertical steel
bars is neglected here. In general, initial diagonal cracks separate a block on top from the
rest of the shear wall. This top block, or wedge-shaped region, is elastic and force-free.

Lateral displacement caused by this region thus equals summation of both elastic
deformation and rotation at a given point on the shear wall's compression side. It can also
be observed that subsequent cracks occur below this region and extend downward. Then
the shear wall reaches the failure state. Figure 10 shows the failure region of a perforated
shear wall. With rotation of the wedge-shaped region, vertical bars can yield along the
crack underneath both sides of this region. Vertical bars are therefore examined on both
sides of the opening along the overall .height of the shear wall.

2. Diagonal Cracks These cracks influence a shear wall's resistance to external
load, particularly initial diagonal cracks. Corresponding lateral displacement results.
Figure 11(a) shows that when diagonal cracks occur in a shear wall, relative lateral
displacement Ay develops, with a pseudo rotating center at PRCC1. Lateral displacement
A, at this point equals the product of arc angle 6, and crack length of development L.; (see
Figure 11(c)). As the external lateral load increases, this crack extends further to rotating
center PRCC2 with corresponding lateral displacement A,, expressed as A;=L.,6 (see
Figure 11(b) and (c)). Since the crack length L, is larger than L., displacement A; is
larger than A;. These initial diagonal cracks form the major cracks which significantly
control the behavior of any shear wall. As they extend, these cracks become larger and
wider. Figure 8 shows this phenomenon. Yielding and failure stages of these shear walls
exhibit many large diagonal cracks in failure regions. Comparing perforated and solid
shear walls, it can be seen that the latter has larger diagonal cracks than the former. As
noted above, lateral displacement may result from diagonal cracks. Thus solid shear walls
potentially have larger maximum displacement than perforated shear walls when subjected

to external load.
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3. Hinging Region In the study of solid shear walls, Cheng and Mertz state that
the hinging region is the solid shear wall itself [29]. This region exists where the effect of

bending and shear are coupled. A solid shear wall displays this coupling behavior across
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its height. Prior to the failure mechanism, all cracks in the concrete and possible yielding of
steel have developed. Figure 8 shows that the hinging region for solid shear walls SW-0E,
SW-1E and SW-9E encompasses all the wall elements. In perforated shear walls, hinging
regions are located at both sides of and between openings, sometimes extending slightly
downward.

For simplicity, a major coupling influence line is introduced here to explore how
combined bending and shear works within the shear wall. Figure 12(a) shows that a major
coupling influence line covers all the wall elements. This influence line shows the area
affected by diagonal cracks. In general, connecting the diagonal corners of the solid shear
wall constitutes the major coupling influence line and forms the square or rectangle wherein
this influence line is diagonal. This square or rectangle is the hinging region. As shown in
Figure 12(b), a value of 8 = 45" is used for the angle between the major coupling influence
line and the horizontal line. Also shown is that the hinging regions, as determined by
major coupling influence lines for perforated shear walls, meet the experimental results in
Figure 8. Comparing Figure 12(a) and (b), it can be seen that the hinging region is smaller
for a perforated than a solid shear wall. Load capacity and maximum displacement of
perforated shear walls is therefore less.

Next to be investigated is the effect of horizontal steel bars on perforated shear
walls. Stress distribution in different sections of perforated shear walls is shown in Figure
13. Section A-A's normal stress is small, caused by bending effect. Its shear stress
distribution shape is somewhat uniform, due to shear effect. Section B-B displays stress
redistribution on normal and shear stress. Because this section is narrower, its normal and
* shear stress is larger than section A-A's. Section C-C's moment is larger but its shear is
the same as both A-A's and B-B's. Normal stress in this region is very high, but shear
stress is less than section B-B's. For a perforated shear wall, sections B-B and C-C

generally have a potentially large crack region due to high normal stress or shear stress
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throughout these sections. Regions containing section B-B and C-C are critical in terms of
failure. Horizontal steel bars below the level of openings are thus considered in the

computation of critical loads and displacements of backbone curve.

B. BEHAVIOR OF DIAGONAL BARS

Compare displacement from different strain gauges on vertical and diagonal bars in
Figure 14(a). It can be seen that strain gauge SG34 for a diagonal bar has a large
elongation (7.136 mm) while the strain gauge reading SG35 on the other side of the
opening is 0.000 mm. Hence the latter diagonal bar has little compression or tension; the
same phenomenon can be observed in other tests.

Due to this pattern of displacement, only diagonal bars on the tension side are
considered. Lower diagonal bars on that side are also considered because they are kept in a
state of tension. Lower diagonal bars on the other side of opening are neglected due to
compression. As shown in Figure 14(b), -0.723 mm for this bar means that the bar has

been compressed that amount.

C. DEFINITION OF BACKBONE CURVE
By using analytical derivation coupled with a curve-fitting approach from
experimental results, a set of equations is presented to caculate forces and displacements at
different loading stages. Figure 15 shows the force-displacement relationship or backbone
curve. In this figure, four critical loading points describe the characteristics of a shear wall.
Cracking point indicates the loading point when concrete reaches the moment of cracking,
~and initial cracks first appear. Yielding point represents the stage when the outermost steel
bars attain yielding stress. When the external load cannot be increased, it is called the
ultimate point. After this point, the curve degrades. This demonstrates that the shear wall
cannot reach the previous ultimate state again. If the load continues to increase, the curve

goes downward proportionally until the failure reference point.
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Figure 15 Critical points of defined backbone curve for perforated shear wall

1. Force at Four Loading Stages Various effects are expressed here. They include
shear span length ratio MQD (= M/QD where M is the moment at the bottom of the wall, Q

is external load, D is width of whole wall), height ratio of opening g (= Lo/L), width ratio
of opening Bg (:%), horizontal location factor of opening ; (:WWJ-) and vertical location

factor of opening LWP(=L'/W1). Units employed here are cm, Kg and Kg/cm?2.

Let

PWH=(Z(pwsfy))(L/W) (2)
PWH 1=(Z(pwhfy/5000))(L/W) 3)
PWV=(Z(pwfy))(W/L)™ (4)
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PWV I=(Z(pwyfy/5000))(W/L)% (5)

where a;=4.7663; pwh and pyy represent the steel ratios of horizontal and vertical bars,
respectively. Derivation of PWH and PWYV is discussed later. Equations of loading

capacities at four critical stages are

Cracking point

Pc=[A1+A2 {%) (0o By )WZW t (6)

or
—=—=A+A L) (cto-B1) @
\/—_W t
in which
A1=0.0212+0.2762 (MQD) ®
A,=1.1531-1.2215 (MQD) )

Figure 16 shows the relationship with P..
Yielding point

P,.:[A3+A4-log1({(%) (ao~B1)ﬂ P, (10)
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Figure 16 Relationship between cracking load and opening factors of perforated shear

wall

’

P_1=A3+A4.10g1({(%)(a0-[31)}

o

in which
As=1.2657-0.3188 (MQD)
\¢=0.2702-0.1362 (MQD)

This is also shown in Figure 17.
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Figure 17 Relationship between ratio of yielding load/ultimate load and opening factors of

perforated shear wall
imate point
Py=1,W-t | (14)
1u=[U1+U2(—%)(ao-BJ}‘/E+U3-PWH+U4-PWV (15)
where
U,=0.9320-1.1690 (MQD) (16)
U,=-1.1741+1.5588 (MQD) (17)
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perforated shear wall
U3=0.3128-0.3249 (MQD) (18)
U4=0.1759+0.3079 (MQD) (19)

Here a; in PWV is 4.7663.

Failure reference point

’

Pt is assumed to be half the sum of cracking load and yielding load, which is expressed as

Pf=%(Pc+Py) (20)

Now return to the derivations of PWH and PWV. As shown in Figure 18, a general

rotation system is used. Region 1 represents both sides of the opening and region 2 the
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area below the level of opening. The load taken by vertical steel bars, horizontal stee] bars
and diagonal bars is denoted as Py in the horizontal direction and P, in the vertical
direction.

Before deriving P, and P,, three factors need to be defined: length reduction,
sectional-area reduction and modification of diagonal bars. They are expressed as follows.

From Figure 19, length reduction factor of horizontal bars is

flhh=(LHB 1 1+LHB 12)/Lh (2 1)

Length reduction factor of horizontal bars in region 2 is

finh=La/Lp=1 (22)
diagonal bar
P __: _
50 { — ——
LHB, LHB,,
(@]
=
L
)
("4

Figure 19 Length reduction factor for steel bars of perforated shear wall
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Length reduction factor for diagonal steel bars in horizontal direction is

fign=HLpp/Lp (23)

and in the vertical direction is

flav=VLpp/L (24)

Cross section area reduction factor is demonstrated in Figure 20. Here the

projection of a steel bar's normal force in the horizontal and vertical directions is P-COS#6

and P-SINO formulated as

HLpp

P.COSO=f, (A,.COSB)S, A, (25)
‘ ’ ’ ~/(HLpg 2+ VLps)?
P-COS8
v P-SING
P \e

Figure 20 Projection of cross section of diagonal steel bar
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VLpg
~/(HLpg Y+ VLpg)?

P-SINO=f,- (A, SINB)=f, A (26)

where
HLpp =f,an (i.e., cross section area reduction factor of diagonal bars
~(HLpp)+(VLps)?
in relation to horizontal projection) (27)
Vipp =faqv (i.€., Cross section area reduction factor of diagonal bars
V(HLpgP+VLpg)
in relation to vertical projection) (28)

Figure 21 shows two cases of NCKU shear walls. Bar 1 indicates the lower end is
not fixed which is called a semi-rigid joint. Bar 2 has a fixed joint at the lower end which
is called a rigid point. Bar 3 is the same as Bar 2 but it is in a state of tension due to
stretching of the wall's tension side. Since it is difficult to calculate modification factors for
basic development length of diagonal bars, it is assumed as 0.5 (denoted as f;) for the semi-
rigid point (Bar 1); fr=1.0 is assigned to the rigid points (Bars 2 and 3). A summary of f;
is shown in Table IV where numbers for effective diagonal steel bars NDB are also given.

From Figure 18, P, and Py, are

Pn=A1'(fy)1'L

BB vov A IR cAL bt 4 A (i

+An+l'(f)’)n+l' HLpg ‘HII:DB : (fr)
- +/(HLpp)*+(VLpp)??  Ln

n+1

Y (pi-(Eyk- (Faank- (Frank- (EX)| (29)

i=n+l

(Z (p i (£y)- (tu,h)‘)) Lt (

i=1
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Figure 21 Modification factor for diagonal bars of perforated shear wall
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{A1.(fY)l+m+Am'(fymAnH‘(fy)"“' V(HL V)gf?VL Y VLLD : (fr)}(%a
" DB DB
c n+l
{ (mzl y)‘ )*W t (l_n+1 ( y)l ( adv)1 (fldv)| ( r)l))} (%/_)
(30)

in which a is constant.

Figure 22 shows horizontal and vertical cross sections of a shear wall. Horizontal

shear stress T, on the horizontal cross section can be easily defined as ‘cFL. Vertical
Wt

shear stress T, can likewise be defined as 1:,,=—l?l‘—. Therefore

Lt
n n+1 .
rh-w L(Z (o i-(tk- (Emak) et 3 (o 1-(6yk- (Famk- (Franh- (r)i))
i=1 1-n+l
=(z(pwh.fy)vaV PWH 31)

n n+1
retrak (2 (pi.(fy)a-(flhhx))*v% (iz (P i-(Fyk - (Faowh - (fiak - (5 )i))

= (Zlpwe £y ¥ f'=PWV (32)

Here al in PWV is 4.7663. Effects of horizontal steel bars }:(pwh-fy) on PWH (or
PWHI1) and vertical steel bars Z(pwvfy) on PWV (or PWV1) are discussed later.
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Figure 22 Schematic diagram of vertical and horizontal cross sections
in perforated shear wall

In Egs. (2) to (5), Z(pwnfy) and Z(pwvfy) are defined as

Z(pwhfy)=—L{EHB}+—1{EDBH) (33)
L-t L-t

2(pwviy)=—L{EVBH—L(EDBV) (34)
Wt Wt

where effect of horizontal bar is

NHB \ NHB
EH-B=§ ((Auk-(fy)i- ((HLI:;)')}ZI ((Auk- (£} (Frnk) (39

Effect of diagonal bar in horizontal direction is

NDB

(HLpg); (HLpB)
EDBH=Y [(Ad)-(£,}- . £,
Z{ (( ' (W/(HLDB)3+(VLDB)12 ) ( Ly } )
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NDB v
=) {(Ack- (Ey k- (Faank - (Frank-fr) (36)
i=1

Effect of vertical bar is

NVB
EVB=Y, (A (fy}) | (37)

I=1

Effect of diagonal direction is

NDB

EDBV=Y, (A} (fy)- (Faavk- (Fiavk- (£:)) (38)
I=1

2. stm_agmj_ﬂfgm_mmmm Corresponding displacement at four

critical points are now formulated. From Figure 23(a), shear deformation based on

theoretical derivation is

=qPL 9
D=0 GA 39)
or
D ¢ ;a= 40
EL_) o ; o=constant (40)
GA

where G is shear modulus.

Equations of displacement at critical points are similarly formulated. Some
modifications are considered, such as compressive strength of concrete fc', effect of
opening F;; (and Fyy, Fyy), effect of vertical steel bars and diagonal steel bars on vertical

projection F; (and Fy,, Fy3), and effect of horizontal steel bars and diagonal steel bars on
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horizontal projection F¢3 (and Fy3, Fy3). Shear span length ratio MQD arising from the
factor C1,Y1 and Ul is also involved. All these factors are constants. Thus the form of

critical displacements is

o/ o
cracking displacement 280 | (F +Fcp+Fc3) (41)

P.L
G'Aog

(¢]

Dy' f
yielding displacement 280 _y(F,,+F y2+Fy3) (42)
P y * L

G’Aog

P-ﬁ\

C

280 _J,(Fy +Fuz+Fu3) (43)
Pu 'L

G'Aog

&

ultimate displacement

where Aog is the transformed cross sectional area in the section with an opening. Aog is
described later in this section.

Displacements corresponding to the four loading stages are formulated as follows.

Cracking point
Dc=C1(Fc1+Fc2+Fc3XPcL/GAOgy% (44)
in which
C1=5.007-3.941MQD (45)
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F.,=0.1775-9.6 {L /LYW ,/WYctoBo)
F.,=1903(PWV1)
F.3=-1092(PWH1)

and

[Fci+Fcd>Fcq

NVB
Aog=(W-Wokt+ Y (ni-1 Ak

i=1

Ay is'the cross sectional area of the vertical steel bar (A, in Figure23(b))

and

E,_ Oy&sy _ Oy

ni=-—s-

E 1s000ve 37.5V

where €y is assumed to be 0.0025.

Yielding point
Dy=Y1(Fy1+Fy2+Fy3XPyL/GA0g)/‘/_fZJ_28_O

in which

Y =-1.878+3.773MQD
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Fy1=7.697+229. 2AL/LYW /W )ctoBo)
Fy,=2622(PWV1)
Fy3=-6691(PWH1)

and

[Fy1+Fy2fFy4
Here a; in PWV1 is 0.6751.
Ultimate point
Du=U1(Fu1+Fu2+Fu3XPuUGAogy%
in which
U,=-0.7435+2.4MQD
Fu1=13.05+488.6[L/LYW/WY0toBo)
Fu,=2214PWV1)

F,3=-7685(PWH]1)
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and

[Fui+Fuo2Fy3 (63)

Here a; in PWV1 is 0.2997.

Failure reference point

D(Cri +CrLWP)Dy (64)
in which

Cg1=2.2349-3.4173MQD (65)

Cp=1.5608-0.4736MQD (66)

LWP=L/W, (67)
D. COMPARISON OF CALCULATED AND EXPERIMENTAL RESULTS

Figure 24 shows that caculated and experimental curves compare favorably.
Perforated shear wall SW-11E has a slightly larger deviation at yielding and ultimate stage,

but this error (8%) is acceptable.
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IV. HYSTERESIS RULES FOR PERFORATED SHEAR WALLS

Seismic response due to such external excitation as earthquakes, machine vibration
and unexpected explosion may put stfuctures at risk, particularly in the seismic zone.
Buildings subjected to seismic oscillation deform from elastic to inelastic stages and
possibly collapse through various hysteresis loops at members and structural joints.
Structures absorb energy to some extent associated with hysteretic behavior. Ductile
buildings are more likely to behave hysteretically. This section focuses on the development
of hysteresis loops for shear walls and comparison between analytical and experimental

results.

A. DEFINITION OF DISSIPATED ENVELOPE

For developing hysteresis loops of perforated shear walls, two kinds of curve exist
as shown in Figure 25. One is the backbone curve; the other is the reference curve. The
latter is a type of "dissipated envelope" relating to the most likely response of a wall after
some degree of energy dissipation. This reference curve is set up in a manner similar to the
backbone curve consisting of segments representing four distinct loading stages. In Figure
25, the shaded area enclosed by the backbone and reference curves is due to cracking or

yielding of the shear wall.

B. ESTABLISHMENT OF RENCE CURVE

The process of curve development is based on three empirical equations concerning
the effect of energy dissipation. Figure 26 shows behavior of perforated shear wall from
point A; which is located at zero loading. Here the path will not pass through the origin.
This is due to energy dissipation from nonlinear behavior of the shear wall. Some near-
linear segments are identified in Figure 26. A tangent line is drawn for each segment and

some intersection points are decided, R;, R; and R3. Note that the reference curve has
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three critical points to be detected and that it resembles the corresponding three points in the
backbone curve. These straight lines are connected to form a reference curve which
provides three critical points called equivalent cracking, yielding and ultimate points.

Recall that the backbone curve of a perforated shear wall developed earlier. This
curve's critical points are not on the tangent line, as shown in Figure 27. The backbone
curve is based on experimental results under monotonic static loading while the reference
curve is based on the experimental results under earthquake type loading. The latter's
critical points lie on the tangent line of experimental response. For convenience, reference
curve and backbone curve use the same notation: "C" represents cracking point, "Y"
yielding point, and "U" ultimate point.

An additional critical point R4, representing the failure point, remains to be defined.
The formula for locating point R4's load in the reference curve is assumed to be the same
as in the backbone curve.

1. Equivalent Cracking Point Of primary concemn in the reference curve is
establishment of a reversal slope, if available. This slope is used to locate the equivalent
cracking point, as shown in Figure 28. The relationship between reversal slope ratio
(SR/OSOC) and energy dissipation ratio (ZE4/PyoDyo) is illustrated in Figure 29 while
Figure 30 shows the notation of a perforated shear wall's backbone curve. Reversal slope
ratio is the ratio of reversal stiffness to original (initial) stiffness (from origin to cracking
point on the backbone curve), expressed by SR/OSOC. Stiffness OSOC is constant in the
case of a shear wall. The energy dissipation ratio is defined as ZEyP,,,D,,, (see Figure 31).
As that ratio decreases so does the SR ratio (see Figure 29). Reversal slope near the
equivalent cracking point demonstrates the pinching phenomenon, a characteristic of shear

behavior. Procedures to determine the equivalent cracking point are

1. When 0 < ZE4/PyoDyo £ 0.3,
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Figure 27 Expected critical points of backbone curve on monotonically experimental

curve
P U
T
PU Y
rw
PY F
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PC ‘ C ~
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b R ) » D
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DCA
N ) ¢
—_— DU «—
—» DF

Figure 28 Schematic diagram of equivalent critical points of reference curve
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P
A

U (Duo, Puo)

Figure 30 Notation of backbone curve of perforated shear wall

_equivalent cracking displacement DC = D, (68)

equivalent cracking load P = P, (69)

2. When 0.3 £ ZE4/PyoDyo

reversal slope SR = [0.2780><1o‘°'25 47{3%—)] (0SOC) (70)
and

equivalent cracking displacement DC =|SDP{/ 4 > ODC (71)

equivalent cracking load PC = (SR)[ |SDP| + DC] = %ISDH (SR) (72)
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Figure 31 Definition of energy dissipation and energy dissipation ratio

where SDP (see Figure 32) is the deviation between point A (at loading = 0) and origin. It
shows the current degree of inelasticity.

Data in the region of the equivalent cracking point are scant and sensitive. Thus it is
difficult to decide the appropriate location for this point. At various times this point is close
to the original cracking point (as it was with the backbone curve), particularly when energy

dissipation is slight. Due to this, option (1) (OSZ Ed/PuoDmSO.3) assumes the original

cracking point (the first critical point on backbone curve) as the equivalent cracking point.
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Figure 32 Schematic diagram of reversal loading path

Fortunately, when energy dissipation is slight, this assumption is accurate enough. The
effect of this assumption on determination of subsequent critical points can be neglected.
Figure 33 compares calculated and experimental hysteretic responses. The
response of perforated shear wall SWO-14E is shown in Figure 33(a) while that of
perforated shear wall SWO-6E is shown in Figure 33(b). (SR), and (SR). stand for the
reversal slope in experimental and calculated cases, respectively. Generally, the slope
comparisons for these two figures are good. Corresponding equivalent éracking point R,
ends the reversal slope. Experimental and calculated cracking points are represented by
(R))e and (R,), respectively. Upper critical points (R). and (R,); are close together in
Figure 33(a) where displacement is slight (i.e., smaller than 1 mm). Critical points on the
upper portion in Figure 33(b) are also in close proximity. In terms of equivalent critical

oint Ry, the above cases are in good agreement. But equivalent critical points
p 1 g g q
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(a) Displacement (mm)

Figure 33 Comparison between expected and experimental hysteresis loop with respect to
reversal slope for perforated shear wall (a) SWO-14E (b) SWO-6E
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Figure 33 (continued) Comparison between expected and experimental hysteresis loop
= with respect to reversal slope for perforated shear wall (a) SWO-14E

.(b) SWO-6E
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(Ry)e and (R1)c on the lower part are not close, particularly for shear wall SWO-6E (see
Figure 33(b)).

2. Equivalent Yielding Point As_ shown in Figure 28, this point is determined after
the equivalent cracking point. Either of two approaches may be used to decide equivalent
yielding point. Load and corresponding displacement may be determined directly by
empirical equations, or the slope between the equivalent cracking point and equivalent
yielding point may be found and displacement (or load) obtained. The second approach is
adopted here because it is more stable in searching for the slope.

Figure 34 represents slope ratio (SCY/OSCY) with respect to energy dissipation
ratio (ZEd/PuoDuo). SCY is the slope subsequent to the cracking point, shown in Figure
28. OSCY is the slope of the second segment in the backbone curve of perforated shear
wall, shown in Figure 30. The slope ratio declines to a stabilized level as energy
dissipation accumulates. Note that in Figure 34 slope SCY already exists when energy
dissipation occurs. Slope SCY is defined as the stiffness of the second segment on the
dissipated envelope. This stiffness cannot exceed the stiffness in the same segment of the
backbone curve because energy dissipated in the shear wall decreases the wall's load
capacity and stiffness. In Figure 34 when energy dissipation ratio is smaller than 0.319,
the corresponding second segment slope ratio is assumed to be 1.0. The equation for this

slope is expressed as
SCY = BB-OSCY (73)

where the coefficient BB is in terms of

LE4

BB = (1.1578)-10-0-20154) < 1 (74)
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As shown in Figure 35(a) and (b), the prediction for the second segment slope is
good for all the half cycles in these figures. (SCY). and (SCY), are almost parallel, quite
close for this dissipated envelope reflected by the perforated shear wall. Even though an
actual shear wall cracks or yields, it displays stability in decay of stiffness at this stage,
identical to the cracking-to-yielding stage on the backbone curve of the perforated shear
wall. Similar to determining  the second segment slope, equivalent yielding displacement
DY follows empirical equations and tends to increase in many experimental hysteresis
loops (see Figure 36). Equivalent yielding displacement ratio is the ratio of equivalent
yielding displacement (DY) to original yielding displacement (ODY); DY and ODY are
shown in Figure 28 and 30. Lack of data and instability when energy dissipation is small
limit results. When energy dissipation ratio equals 0.13, it reveals less yielding
displacement on the plot, generally 60% of the original yielding displacement assumed. As
shown in Figure 36, when energy diésipation ratio is smaller than 0.3, equivalent yielding
displacement will be smaller than original yielding displacement. Thus the equivalent
yielding displacement ratio is less than 1.0. When the energy dissipation ratio increases,
equivalent yielding displacement quickly does likewise. Until energy dissipation
approaches 2 and more, the equivalent yielding displacement ratio gradually reaches a more
stable level and stays above 2. Equations for prediction of equivalent yielding displacement

are written as follows.

DY =0DY (75)

DY =0ODY (76)
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Figure 35 Comparison between expected and experimental hysteresis loop with respect
to slope from cracking point to yielding point for perforated shear wall

(a) SWO-14E (b) SWO-6E
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Figure 35 (continued) Comparison between expected and experimental hysteresis loop

with respect to slope from cracking point to yielding point for perforated shear
wall (a) SWO-14E (b) SWO-6E
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DY 1 5299+0.4546 loge( 2E, )
ODY

DY/ODY

YEd/PuoDuo

Figure 36 Relationship between yielding displacement ratio and energy dissipation ratio

2E
3. When 0.13 < d_
PUODUO
DY =|1.5299 + 0.4546 x Ln( ZEq ” (ODY) a7
PyoDuo

3. Eguivalent Ultimate Point Data for deciding the slope between equivalent
yielding point and equivalent ultimate point are insufficient but some data can be compared
at this stage. Assume that the ratio of SYU (slope between equivalent yielding point and

equivalent ultimate point for reference curve) vs. OSYU (original slope between yielding
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point and ultimate point for backbone curve) is equal to the ratio of SCY (slope between
equivalent cracking point and equivalent yielding point for reference curve) vs. OSCY
(slope between cracking point and yielding point for backbone curve). This relationship is

expressed as

=%
Since
OSYU =((-g:f)—:l‘;y;‘% (79)
and
0SCY = (%’ifg—z% (80)

Thus the slope between equivalent yielding point and equivalent ultimate point SYU can be

written as

l:’uo‘l)yo ) (Pyo‘Pco )
SYU SCY 81
=(Duo‘Dyo Dyo‘Dco ( ) ( )

In the same manner, the determination of equivalent ultimate displacement DU can

. be summarized as follows

ZE4

1) when
(1) when 5

=0, i.e., stays in the elastic range, then

DU =DU (82)
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(2) When energy dissipation exists in a shear wall, then

DU _ DY
ODU — ODY (83)
or
_ DY
pu = DX (opU) (84)

where DY is equivalent yielding displacement for reference curve; ODY is yielding
displacement for backbone curve; ODU is ultimate displacement for backbone curve (see
Figure 30).

4. Equivalent Reference Failure Point To determine this point, a procedure similar

to determination of the reference failure point for the backbone curve in Section II is used.
After the ultimate point in the backbone curve, the slope declines to the reference failure
point. After the equivalent ultimate point, the slope also declines. Experimental data,
which show a stable situation, yield the degrading straight line. Generally, the degrading

slope is close to some constant and is expressed as

SUF = -0.5(SCY) (85)

in which SUF and SCY are the degrading slope between equivalent ultimate point and
equivalent reference failure point and the slope between equivalent cracking point and
equivalent yielding point on the reference curve, respectively. The load at equivalent
reference failure point is assumed to be half of summation of equivalent cracking and

equivalent yielding loads, as shown in Figure 37.
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Figure 37 Schematic diagram of loading process on (a) backbone curve (b) reference
curve
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So far, all critical points on the reference curve are established. Then the load at
different stages on this curve can be determined as follows.
(i) Force at equivalent cracking point, PC, is described in Egs. (69) and (72).

(ii) Force at equivalent yielding point, PY, is expressed as
PY = PC+(DY-DC)-SCY (86)
(iii) Force at equivalent ultimate point, FU, is expressed as
PU = PY+(DU-DY)-SYU (87)

(iv) Force at equivalent reference failure point, PF, is assumed to be (PC + PY)/2,

as stated above.
Furthermore, the displacement at equivalent reference failure point, DF, reduces to
DF = DU+(PF-PU)/SUF (88)

NCE CURVE AND BA NE CURVE

A major focus of this section is that hysteresis loops starting from zero force must
follow either backbone curve or reference curve (see Figure 37). If the entire shear wall is
integrated, or has no cracks, this shear wall follows a path defined by the backbone curve.
If any cracks occur in the shear wall, then this wall has initiated a hysteresis response.
Hysteresis response involves constant energy dissipation. In this situation the reference
curve, established with regard to energy dissipation, is used.

Figure 37(a) illustrates the loading process (via the path arrow) on the backbone

curve. Here the curve is shown on the positive force side; its path is identical on the
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negative force side. The backbone curve, as stated in Section II, consists of four
segments, each having distinct behavior. This is depicted in Figure 37(a). Likewise the
reference curve consists of four segments, each having distinct behavior. This is depicted
in Figure 37(b). These two curves diffef in that the reference curve does not pass through
the origin. This is because the reference curve is based on the curve set up for shear wall
with some energy dissipation.

The symbol Dp,x 1S used to determine the current path and its hysteresis rules.
Dpax is taken as an absolute value even though the current path is located on the side of
negative force. Positive or negative force refers to force in one direction or the opposite

direction. Three stages thus occur with respect to current maximum displacement, Dy,ay, as

follows
(i) Elastic stage: [Dmay > [DQ (89)
(ii) Cracking stage: [DQ] < [Dpa < [DY] (90)
(iii) Yielding and failure stage: [DY] < |Dmax, < [DH 91)

In Figure 37(a), loading process is considered and current point JP has maximum

displacement Dpy,x on its half cycle. If

(i) current point JP is between origin and cracking point JC*, then

Dmad <IDA  (elastic stage) -(92)

(ii) current point JP is between yielding point JC* and yielding point JY*, then
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IDC| < |Dmad <[DY]  (cracking stage) (93)

(iii) current point JP is between yielding point JY* and failure point JE*, then

IDY | <|Dmad £DH  (yielding and failure stage) (94)

Similar to Figure 37(a), current point JP in the reference curve (see Figure 37(b))
has maximum displacement D5« on its half cycle. If

(i) current point JP is between reversal loading point A and equivalent cracking
point JC, then JP is in reversal loading stage.

(i1) current point JP is between equivalent cracking point JC and equivalent yielding
point JY, then

IDC| < |Dmad <[DY] (equivalent cracking stage) (95)

(iii) current point JP is between equivalent yielding point JY and equivalent failure

point JF, then

DY | <|Dmad £|DH  (equivalent yielding and failure stage) (96)

From the above discussion of loading process, differences between backbone curve

and reference curve are highlighted:
» Backbone curve involves load vs. displacement in which the mechanical characteristics of
RC shear walls are shown before any lateral load is applied. This curve is unique for a

given shear wall.
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Reference curve involves load vs. displacement in which a wall element has energy
dissipation. This curve is determined every half cycle. Thus the reference curve is
highly related to energy dissipation and is formed when the path crosses zero force.

» Backbone curve exists for the shear wall regardless of external lateral load, but reference

curve may change since energy dissipation changes with external excitation.

Backbone curve of RC shear wall defines four loading stages as stated in Section III
which are related to material properties, such as compressive strength of concrete,
yielding strength of vertical and horizontal steel bars as well as location and dimension
of openings, dimension and thickness of wall element. Each loading stage has its

distinct behavior.

Reference curve has four equivalent loading stages which are based on experimental
observation and defined in a manner similar to backbone curve of perforated shear wall.
These equivalent loading stages reflect hysteresis behavior rather than distinct physical
phenomena caused by the material itself.

* If the wall follows the backbone curve, then the concrete in the RC shear wall does not

crack and the wall remains in the elastic range. If the shear wall follows the reference

curve, then cracks have already begun and the wall manifests nonlinear response.

In cases of reference curve, shear walls cannot develop a path through the origin. Since
energy dissipation has occurred, a hysteresis loop is developed instead of backbone
curve. Shear walls do not have stiffness from origin to first critical point (cracking
point) JC. These walls must follow the route from reversal loading point A to first

equivalent critical point JC, which has reversal stiffness SR (see Figure 37).

D. HYSTERESIS MODEL

Overall hysteresis response reflects such aspects as loading process, unloading
process, reversal loading process, reloading after unloading process and unloading after

reversal loading process. First, the path related to these processes must be defined. Figure
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38 presents a diagram of hysteresis rules for load vs. lateral displacement relationship in a
perforated shear wall. This figure includes loading, unloading, reversal loading, reloading
after unloading and unloading after reversal loading. Table V contains a summary of
hysteresis rules and descriptions. Hysteresis rules in Figure 38 are the summation of
combined bending and shear lateral displacement, which is so-called total lateral
displacement. Figure 38(b) shows rules on the hysteretic diagram.

Before discussing the above processes, one controlling factor, as shown in Figure
39 should be introduced. This controlling factor is expressed as KL and numerically
represents each individual process. From the value of KL, the program can reveal the
current loading situation and the applicable hysteresis rule.

KL of 1 shows the current path is involved in the loading process if the applied
force is positive. If the applied force is negative, KL is 3 for this process. As the
unloading process begins, external force decreases. KL is 2 for the unloading process on
the positive force side, and 4 for the unloading process on the negative force side. KL
equals 5 and 6 for reversal loading process. KL of 5 indicates the reversal loading point
(zero force point) on the positive force side and a shift from positive to negative. KL of 6
indicates the point on the negative force side and a shift from negative to positive. KL of 8
denotes reloading after unloading on the positive force side while KL of 7 denotes the same
process on the negative force side. KL of 10 and 9 express conditions of reloading after
reversal process, 10 for the positive force side after KL of 5, and 9 is for negative force side
after KL of 6. Numerals from 1 to 10 for controlling factor KL designate all the individual
processes.

Table V shows the five groups of rules for five hysteresis paths: loading,
unloading, reversal loading, reloading after unloading and unloading after reversal loading.
In the first group only one rule can be applied to the loading process on the backbone curve
or reference curve. Corresponding controlling factors KL are 1 and 3. In the second

group rules SB 2.1, SB 2.2, SB 2.3, SB 2.4, SB 2.5 and SB 2.6 represent unloading at
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Table V Summary of hysteresis rules and descriptions for perforated shear wall

Rule | Suffness | Description KL
SB1.0 *1 Loading on backbone curve or reference curve 1,3
SB 2.1 .SOC Unloading _ 2,4
SB2.2 SOC Unloading 2,4
SB23 Kb Unloading 2,4
SB24 Kc Unloading 2,4

" SB2.5 SOB Unloading . 2,4
SB26 | SX3Y'*2 | Unloading - 2,4
SB 3.1 SOC' *3 Reversal loading 5.6
SB 3.2 SR Reversal loading 5,6
SB4.1 | SOC*s4 Reloading after unloading 7,8
SB 4.2 Ke Reloading after unloading 7,8
SB 5.1 *s Unloading after reversal loading 9. 10
SBS.2 K4 Unloading after reversal loading 9,10
SB53 | SCY *¢ Unloading after reversal loading 9,10
SBS54 Ka Unloading after reversal loading 9. 10

*1 depending on current stage
*2 or SX3C'

*3 or SXoC'

*1 or Kd

*s idealized vertical line

*¢ or Kf
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Figure 39 Definition of controlling factor used in hysteresis rules of perforated shear wall
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different stages. Corresponding controlling factors KL are 2 and 4. In the third group two
rules indicate reversal loading process. Corresponding controlling factors KL are 5 and 6.
In the fourth group of rules two segments constitute the complete reloading process, the
first with more slope than the second. Corresponding controlling factors KL are 7 and 8.
In the fifth group four rules express the unloading after reversal loading process.
Corresponding controlling factors KL are 9 and 10.

1. Loading Process During this process the external load increases. In Figure 40
an arrow shows the direction of this path. If the shear wall has no cracks, then it conforms
to the path on the backbone curve. When the external load increases, the current path
follows the backbone curve through cracking point, yielding point and ultimate point. As
the current point approaches ultimate state, the shear wall's load capacity is reached.
External force cannot exceed the load capacity of the shear wall. Thus external force
decreases after ultimate point and more displacement occurs. Then on the backbone curve,
the shear wall goes from ultimate point to reference failure point. As shown in Figure
40(b), the current hysteresis path on the negative force side has the same response. Similar
to the loading process on the backbone curve, the reference curve has its equivalent ultimate
state at the third critical point. Before reaching equivalent ultimate load, the external load
acting on the shear wall goes from the equivalent cracking point through the yielding point.
After the equivalent ultimate point, external load decreases until the shear wall fails (under
loading process only). As shown in Figure 40(c) and (d), the path develops in the
direction of the arrow.

As the current path follows the backbone curve or reference curve, the stiffness
changes according to the slope of the curve. Here, the controlling factor KL is 1 (see
Figure 40(a) and (c)) or 3 (see Figure 40(b) and (d)). A summary of loading processes and

mathematical expressions for stiffness is shown in Table VI.
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Table VI Summary of loading process

Loading process

Rule SB 1.0

(1) KL =1 (on positive force side)
KL = 2 (on negative force side)

(2) stffness K = [ P(i+1)-P(i)] / [D(i+1)-D(i)]

For example, DP represents the shear wall's current displacement. If DC<DP<DY,
the current loading point is between cracking point and yielding point. The expressions of

D(i+1), D(@), PG+1), P(i) are

D(i+1) =DY ©7)
D@) =DC (98)
P(i+1) =PY (99)
P() = PC (100)
Therefore
stiffness K = g{%& (101)
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Note the presence of the elastic response on the first segment of backbone curve, as
shown in Figure 40(a) or (b). This indicates the absence of shear wall cracks between
origin and cracking point on the backbone curve.

2. Unloading Process During the unloading process, the applied load is released
from shear wall in stages. Two main responses exist for the unloading process, one within
the elastic range, the other beyond the elastic range. The latter illustrates the phenomenon
of energy dissipation. An unloading paf.h 1s illustrated in the following cases.

(i) Figure 41 shows the unloading process under elastic response. Maximum
displacement is smaller than cracking displacement. Another factor DM is now considered
as maximum displacement from the beginning of force history. It is different from Dy,
as noted earlier, which refers to maximum displacement during current half hysteresis
cycle. Since force history is still in the elastic range, maximum displacement DM or Dy«
is less than original cracking displacement (on the backbone curve) and maximum force
Pyo(i) is smaller than original cracking force (on the backbone curve). Py(i) refers to the
point where the unloading process starts. Maximum force Py(i) is thus the maximum value
during the current loading process in which corresponding maximum displacement is
Dyoli). Stiffness for this case is the same as initial elastic stiffness on the backbone curve.
The applicable hysteresis rule is SB 2.1.

(i) Two cases here show the unloading process under energy dissipation within
the wall.

(a) When maximum force Pyfi) (at the turning point where unloading starts) is
smaller than equivalent cracking load, the unloading path is shown in Figure 42. This
figure applies to positive force side or negative force side. Stiffness for this case is

K=——FPP__ _g_ (102)

~ DPP . ppp
3

where (DPP, FPP) is the turning point which is the same as (Dyg(i) , Pyofi))-
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When unloading extends to the horizontal axis where external force equals zero, the
shear wall returns to a presumed distance of DPP/3. The shear wall exhibits energy
dissipation and deviates from the origin by a displacement of DPP/3. The applicable
hysteresis rule is SB 5.4, same rule for the case of unloading after reversal loading.

(b) In the other unloading case with some shear wall energy dissipation, the
current loading point goes beyond equivalent cracking point but remains below the yielding
point. Thus two segments exist during the unloading process. The first goes from the
turning point (at the end of the loading process) to the unloading force and equals a load
one-third of equivalent cracking load, i.e., F/3. The applicable hysteresis rule is SB 2.2.
The second is more flat and points to the opposite equivalent cracking point (C') but stops
at zero force. The applicable rule is SB 2.3. To elaborate, the first segment moves
downward from turning point X4 to break point X5 where the load equals F/3 and the
second segment moves downward from break point X5 to zero force point X¢. The area
enclosed by points O, C, X4, X5 and X contains energy dissipation for the current half
cycle. This half cycle constitutes part of the hysteresis loops and is shown in Figure 43.

Stiffness for the first segment is the same as initial elastic stiffness of the original

backbone curve

K =080C (103)

where OSOC (see Figure 30) is initial elastic stiffness of the backbone curve. Stiffness for

the second segment is calculated as the slope between break point and equivalent cracking

point on the opposite side
= FCP-FPP _ 104
K= bcpopp = X (109
in which DCP = SIGN (DC, -DPP) (105)
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FCP = SIGN (FC, DCP) (106)

(c) When the current loading point exceeds 70 percents of equivalent yielding

point (Y) but remains below equivalent ultimate point (U), this unloading case occurs. It is

shown as path or in Figure 44(a) and (b). Three segments exist for the entire
process. Path is illustrated for this case.

i) Assume the stiffness of the first segment goes downward vertically until

the load decreases to 0.85 of maximum load Py{i). Stiffness is expressed as
K = SX3X, = K¢ (idealized vertical line) (107)

where SX3X is the slope of line segment from X3 to X,. The applicable rule is SB 2.4.
i1) When the force moves downward from break point X, to X, the force is
assumed to be one-sixth of maximum load Pyi), i.e.,Pyo(iy6. Stiffness for this segment is

written as
K =SOB (108)

where SOB is the slope of segment OB , which is from the origin O to point B. Point B is
midway between points A and Y. Points A, B and Y are in line horizontally. As shown in
Figure 44(c) and (d), point A is on the initial slope's extended line from origin O to
~ cracking point C (or equivalent cracking point). The applicable hysteresis rule is SB 2.5.
iii) In the third segment of the unloading process, the path slope connects
break point X; and the opposite critical point. If maximum displacement Dp,x for the
current half cycle is less than 1.6 times original ultimate displacement (on the backbone
curve), the opposite critical point is assumed to be the yielding point. Unloading stiffness

for the third segment can thus be written as
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Figure 44 Unloading process as current path between yielding point and ultimate point
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Figure 44 (continued) Unloading process as current path between yielding point and
ultimate point
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in which FYP = SIGN(FY, -FPP) and DYP = SIGN(DY, FYP).

If maximum displacement Dy, is more than 1.6 times original ultimate
displacement (on the backbone curve), the opposite critical point is set to the cracking
point. Unloading then becomes

_ » _ FCP-FPP
K = $X,C' = ESE-EEE (110)

in which FCP = SIGN (FC, -FPP) and DCP = SIGN (DC, FCP). This process is shown
in Figure 44(c) and (d). The applicable hysteresis rule is SB 2.6. A summary of these
unloading cases appears in Table VIL.

3. Reversal Loading Process This process is associated with loading from positive
force side to negative force side and vice versa. When the shear wall experiences
unloading until force equals zero and continues vibrating to the other side, the behavior of
shear wall is known as reversal loading stage. Cheng and Mertz [29] observed that this
loading range for shear has a highly pinching effect. The corresponding energy dissipation
for shear is much less than that for flexure.

(i) When displacement for the entire history (DM) is less than original cracking
displacement (ODC), as shown in Figure 45, the shear wall remains in the elastic range.
This wall's reversal stiffness is the same as the backbone curve's initial elastic stiffness and

is written as
K = SOC (= 0SOC) (111)

The applicable rule is SB 3.1.
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Table VI Summary of unloading process

Unloading process: (KL =2 or 4)
(1) If DM < ODC and P, (i)< DC,
rule SB 2.1
stiffness K= SOC
(2)
(A)P, (1) <DC,
rule SB 5.4
K= -FPP/[DPP/3-DPP]=Ka

(B) FC <P, (1)< 0.7 FY,

1) If IFPI 2 FC/3,

rule SB 2.2
stiffness K = SOC
(ii) If IFP| < FC/3,
rule SB 2.3
stiffness K = [ FCP-FPP ] / [ DCP-DPP ]
= Kb
in which DCP = SIGN(DC,-DPP)
FCP = SIGN(FC,DCP)

()P, (i) 2 0.7 FY,

(i) If10.85P (D) < IFPI < [P, (i),

rule SB 2.4
K= SX3X2 = Kc (idealized vertically line)

(ii) If PP, (1)/6l < IFPI < 10.85 P, ()1,
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Table VI (continued) Summary of unloading process

in which FYP = SIGN(FY,-FPP)
DYP = SIGN(DY.FYP)
K = SOB
(iif) If IFPl < P, (i)/6l,
(a) If IDmax! < 1.6(0ODU),

rule SB 2.6
K = SXIY' = [ FYP-FPP ]/ [ DYP-DPP |
() If IDmaxl > 1.6(ODU),
rule SB 2.6
K = SXiC' =[ FCP-FPP ]/ [ DCP-DPP ]
in which FCP = SIGN(FC,-FPP)
~ DCP = SIGN(DC,FCP)

(ii) When maximum displacement for the entire history (DM) is more than or
equal to original cracking displacement (ODC), there are two options for reversal loading
process (see Figure 46). If the energy dissipation ratio (=2Ed/PuoDuo) is less than 0.3 or
maximum force at turning point X3 is less than 70 percent of original yielding load, then
the stiffness of the reversal loading path is along the segment between zero force point Xg

and opposite equivalent cracking point C. This is formulated as
K = SXoC’ (112)

The applicable hysteresis rule is SB 3.1. By this rule, the opposite equivalent cracking

point C” is symmetric at its origin to cracking point C of the backbone curve.
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Figure 45 Reversal loading within elastic range

If the energy dissipation ratio (:EEd/PuoDuo) is greater than or equal to 0.3, the
reversal stiffness is assumed to be SR which is obtained from an empirical equation (see
Figure 29). When displacement of the shear wall at zero force point X is defined as DPP
(see Figure 46), the opposite cracking point C’ can be determined by using one-fourth of
DPP from the above case of SB 3.1. The applicable rule is SB 3.2. Reversal stiffness is

expressed as
K=SR (113)

Table VIII summarizes all cases for the reversal loading process.

4. Reloading after Unloading Process When the shear wall is subjected to a
seismic load with small amplitude, its response remains in the elastic range (shown in
Figure 47). If maximum displacement for the entire response (DM) is less than original
cracking displacement (ODC), reloading stiffness is the same as initial elastic stiffness and

becomes
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Figure 46 Reversal loading for cracked shear wall
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Table VIII Summary of reversal process

Reversal process (KL =5 or 6)
(1) If DM < ODC,

rule SB 3.1
stiffness K = SOC' (= OS0OC'")

(2) DM 2 ODC,

(A) If ZEd/PuoDuo < 0.3 or IFPI < 0.7 FY,

rule SB 3.1
stiffness K= SX ,C' (C'=C)
(B) If ZEd/PuoDuo 2 0.3,

rule SB 3.2
stiffness K = SR

K = SOC(=0S0C)

that they have the same stiffness formulation.

(114)

The applicable hysteresis rule is SB 1.0. Both cases exhibit the same loading process in

If maximum displacement for the entire response (DM) is greater than or equals

original cracking displacement (ODC), then two segments exist for the reloading process.

(i) Turning point Xg and point Xg mark the beginning and end of the first

reloading is defined as
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segment (see Figure 48). Its load is 90 percent of maximum force Pyi), and stiffness of
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Figure 47 Reloading after unloading within elastic range

_ _0.9P,,(i)-FPP _
K = SXpXs =5 rrr=Ka (115)

where Xs = (Dyofi), Puo{i}*0.9) .
(ii) This segment satisfies |DPZiDuc,(i] | Point Xs, which is same as unloading

maximum displacement Dy (i), marks the beginning of the second segment and the
backbone curve or reference curve marks its end (see Figure 48). The applicable hysteresis

rule is SB 4.2. Its stiffness is expressed as
K = 0.5(SXrXs) = K. =(0.5K4) (116)

Table IX summarizes the reloading after unloading process.

5. Unloading after Reversal Loading Process Here unloading is followed by

loading in the opposite direction. In this process, a small loop is often formed during
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Figure 48 Reloading after unloading for cracked shear wall
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seismic motion. The following discusses two situations: (i) elastic response (ii) inelastic
response.

(1) When maximum displacement for the entire response (DM) is less than
original cracking displacement (ODC), the shear wall behaves elastically. Figure 49
illustrates this. Stiffness is the same as initial elastic stiffness of the backbone curve, which

can be expressed as
K = SOC(=0S0C) (117)

Also stiffness is the same as the loading process within the elastic range. The applicable
hysteresis rule is SB 1.0. It can be seen in Figure 49.

(i) When maximum d_isplacement for the entire response (DM) is more than
original cracking displacement (ODC), the shear wall enters into inelastic response. After
reversal loading, the path in a hysteresis loop is composed of three segments. The first
segment meets the requirements that (1) current load P is negative and the corresponding
current displacement is positive and (2) current load P is positive and the cdrresponding
current displacement is negative. The applicable hysteresis rule is SB 5.1. For simplicity,
the slope for this segment is assumed to be an idealized vertical line.

The second and third segments are similar to reloading after unloading process as
shown in Figure 50. If the current path goes only from break point Xro to Xs where load

is 90 percent of maximum load Py(i), stiffness is

0.9P,(j)-FPP _

= = = 118
K = SXRroXs Dyy(j)-DPP K4 (118)

The applicable hysteresis rule is SB 5.2.
After break point X3, if energy dissipation ratio (=2Ed/PuoDuo) is less than 0.3,

stiffness is defined as
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Table IX Summary of reloading after unloading process

Reloading after unloading process (KL = 7 or 8)
(1) DM < ODC,

Rule SB 1.0

stiffness K = SOC

(2) If DM 2 ODC,

(A) If IDP! < [Duo(i)l,

rule SB 4.1

stiffness K = SXRXs

=[ 0.9 Fuo(i)-FPP ] / [ Duo(i)-DPP ] = Kd
in which XS = (Duo(i), Fuo(i) * 0.9)

(B) If IDP! > IDuo(i)!,
rule SB 4.2
K =0.5(SXRrXSs) = Ke ( = 0.5 Kd)

> U

-t D

Figure 49 Unloading after reversal loading within elastic range
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K=SCY (119)
If energy dissipation ratio (=2Ed/PuoDu0) is greater than or equal to 0.3, stiffness becomes
K = 0.4 (SXgroXs) = K¢ (120)

Both cases are shown in Figure 50. The applicable hysteresis rule is SB 5.3.

Unloading after reversal loading also occurs when the path of reversal loading
proceeds to the opposite displacement side and does not reach the first critical point (i.e.,
cracking point or equivalent cracking point). This case is shown in Figure 51. The
applicable hysteresis rule is SB 5.4. Note that controlling factor KL is 2 on the positive
force side or 4 on the negative force side. Associated stiffness K has the form of

- ___-FPP _ _
K =5X3Xo = 5pp/3.ppp - X2 121y

Unloading after reversal loading is summarized in Table X.

E. CO N D E NTAL RESULTS
In Figures 52 through 57, calculated and experimental results for NCKU wall tests

under earthquake type loading are compared. Some findings are discussed below.

As shown in Figure 52, calculated stiffness matches experimental initial stiffness
quite well. The former is provided by the slope of the first segment on the backbone curve.
Experimental maximum load for the second cycle is larger than calculated load. For the
third cycle, calculated maximum load is less than experimental maximum load but the slope
of the calculated path (i.e., between equivalent cracking point and equivalent yielding point)

is close to the experimental slope on the same segment. Slopes for the loading process in

110



K, or SCY

(b)

Figure 50 Unloading after reversal loading for cracked shear wall
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Figure 51 Unloading after reversal loading process as current path below cracking point

the fourth and fifth cycles are compatible vis-a-vis calculated and experimental loops.
Deviation of the path in these two comes from uncertainty of the equivalent cracking point.
In this regard, cycle 6 is similar to the fourth and fifth cycles. Cycles 4, 5, 6 and A have
good agreement for the unloading process in terms of calculated path and experimental
path. Cycle A is a small loop with some deviation in the reloading after unloading path
between calculated and experimental results. In cycle 7 calculated and experimental curves
match well. On the negative force side, B and C show large displacement. Deviation in this
range is more than for previous loops, but the comparison is still good. As shown in
Figure 53, shear wall SWO-6E yields a similar comparison. Maximum load for cycles 3,
4, 5 and 6 of calculated and experimental loops in the loading and unloading process
matches well. Cycle 7 is in the range of high energy dissipation, which involves large

displacement. For this cycle, calculated maximum load is below that of the experimental
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Table X Summary of unloading after reversal process

Unloading after reversal process (KL =9 or 10)
(1) If DM < ODC,

rule SB 1.1
stiffness K = SOC (= OSOC)
(2) If DM 2 0ODC,
(A) IfDPP *FPP <0,
Previous KL =50r6
rule SB 5.1
K = SX3XRO = Kc (idealized vertical line)
(B) If IDPI < ID (i)
stiffﬁess K = SXR0Xs
=[09P_(i)-FPP]/[D,(1)-DPP ] =Kd
(C) If IDP! > IDuc(i)l,
rule SB 5.3

If ZEd/PuoDuo< 0.3 , K=SCY

If ZEd/PuoDuo > 0.3 , K = 0.4(SXR0X5S) = Kf

(D) If Duo(i)| < DC,
KL=2or4
rule SB 5.4
K = SX3Xo = -FPP /[ DPP/3-DPP ] =Ka
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path. On the reversal loading path, shear walls SWO-1E, SWO-6E and SWO-8E exhibit
good comparison between experimental and calculated resulits.

For shear walls with a height/width ratio of 0.65, such as SWO-12, SWO-14E and
SWO-16E, the slopes of loading, unloading, reloading and reversal loading compare well
between calculated and experimental response. The calculated load capacities are generally
smaller than experimental load capacities for some cycles, as shown in Figure 55 through
57.

In summary, calculated hysteresis output and experimental hysteresis results
indicate good agreement when compared. All the shear walls herein display a pinching
effect when force vibrates from one side to the other side. Hysteresis response of RC

perforated shear wall is thus strongly controlled by shear.
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Figure 52 Comparison between calculated and experimental hysteresis response for
perforated shear wall SWO-4E
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Figure 53 Comparison between calculated and experimental hysteresis response for
perforated shear wall SWO-6E
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Figure 54 Comparison between calculated and experimental hysteresis response for
perforated shear wall SWO-8E
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Figure 55 Comparison between calculated and experimental hysteresis response for
perforated shear wall SWO-12E
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Figure 56 Comparison between calculated and experimental hysteresis response for
perforated shear wall SWO-14E
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Figure 57 Comparison between calculated and experimental hysteresis respohse for
perforated shear wall SWO-16E
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V. EQUIVALENT VISCOUS DAMPING OF RC SHEAR WALL

Damping is the action of energy removal from a system subjected to excitation.
Energy loss occurs in the vibration system by dissipation or transmission to protect the
structure itself from failure. Researchers have established many types of damping models
[31-39]. As far back as 1927, Kimball and Lovell found that many engineering materials,
unlike behavior of viscous damping, exhibit energy dissipation with respect to square of
displacement but independent of frequency of motion. Later this phenomenon was named
hysteretic damping by Bishop and Johnson [39]. In fact, hysteresis loops are produced not
only by hysteretic damping but also by a variety of damping mechanisms in a real structural
system. Bishop [40] also noted that if a simple oscillator undergoes steady forced
vibration, it experiences damping effects which are neither truly viscous nor truly hysteretic
in character. Theories based on viscous or hysteretic damping give an approximate
solution for actual behavior. These two are close to each other when damping is light;
hysteretic damping becomes more evident when damping is heavier. Lancaster derived an
equation of motion by combining viscous and hysteretic damping [41].

Strictly speaking, hysteretic damping is defined only for harmonic motion. In this
respect, Crandall [42] emphasized that the non-physical phenomenon of this model still
exists. To solve certain problems, it is often necessary to sacrifice accuracy in representing
physical behavior [39], particularly for applications such as instability in steady state
oscillation or stationary random vibration.

In this section the concept of viscous damping is applied to hysteretic damping.
Characteristics of hysteretic damping of RC shear walls are explored in the context of

NCKU experiments which involved quasi-static excitation.
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A. EO ATION

1. Harmonic Motion When a steady harmonic excitation is imposed, a system will
oscillate with some degree of energy absorption. By means of viscous damping action,
this process of absorption serves to dissipate the input energy. An equation of motion
reveals that applied force P consists of three forces: inertia force Fy, spring force Fg and
viscous damping force Fp. Equilibrium of force is shown in Figure 58 and expressed in

the following equation
P=F;+Fs+Fp (122)
Also, steady harmonic excitation provides
applied force P = po-sin{2t (123)
arbitrary displacement u = uo-sin(Qt-CD) (124)

where @ is phase angle; u, is maximum amplitude; p, is maximum applied load and Q is

frequency of motion.

Thus.
inertial force F; =ma = mii ; ais acceleration , m is mass (125)
spring force Fgs = ku ; k is spring constant (126)
damping force Fp = cu ; c is damping coefficient, u is velocity (127)

Rewrite the above as
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Figure 58 Schematic diagram of forces for a body subjected to external force

Fi=mii=- muoﬂzsin(Qt-d))
Fs = ku = k u,sin(Qt-®)
Fp=ci=c uOQcos{Qt-d))

Combining Eq. (124) and (130) yields

Fp
cQu,

KAk

Figure 59 demonstrates Eq. (131).

(128)

(129)

(130)

(131)

Equations (128) and (129) are illustrated in Figures 60 and 61. All the effects of

P = F; +Fs + Fp can be seen in Figure 62.

The area bounded by inertia force-amplitude in Figure 61 is denoted by

(Ws) and (Ws), which can be expressed as

W1 =Wsz = %kuo2

123

(132)
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Figure 59 Damping force vs. amplitude relationship under harmonic motion

CQu,

Figure 60 Inertia force vs. amplitude relationship under harmonic motion

-» U

Figure 61 Spring force vs. amplitude relationship under harmonic motion
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Figure 62 Hysteresis loop with respect to viscous damping for a body subjected to
applied force

2. Damping Ratio The area bounded by damping force and amplitude in Figure 59

is denoted as Wp which can be written as
Wp = cnQu,? (133)

From Eq. (133), damping coefficient ¢ can be expressed in terms of

c=_Wp (134)
Qdu,2

Damping ratio § is defined as
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or

(135)

(136)

where ®, = undamped natural frequency of structure. From Eq. (132), it can be seen that

spring constant k is
k= 2Wg; = 2Wso
ug? u,?

Thus substitute Egs. (134) and (137) into Eq. (136),

£ = con . Wp | _ o
2k TEQUOZ 2WSI)
Uo2
= Wp . @qug?
mQu,2  4Wsi
=@ _Wp
Q 41I:W51

(137)

(138)

3. Equivalent Damping Ratio Now, apply the viscous damping concept to

hysteretic damping (i.e., equivalent viscous damping). Use equivalent viscous damping in

one full cycle which has a different peak amplitude at each half cycle (see Figure 63). If

equivalent viscous damping vs. amplitude and equivalent spring vs. amplitude can be set

up and shown in Figure 64 ( these are derived later ), then the work caused by damping

force is
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(b) a cracked element

Figure 63' Irregular load-displacement relationship and equivalent damping force vs.
amplitude relationship for (a) uncracked element, (b) cracked element
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Figure 64 Damping force and spring force based on equivalent viscous damping
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From Eq. (139), equivalent damping coefficient ce, and amplitude up is

= Wp

EQUDZ

and

up2 =D

CegN2

Equivalent amplitude from spring force is expressed as

Wsi =-;—ll1(2k

Spring constant k and amplitude UK can be written from Eq. (142) as

UKz
ug? = Vsl
k
Therefore
) ) W ®
damping ratio £ = <%0 - _WD . 0
ping raio § = Qup? 2w31)
UK2
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(141)

(142)

(143)

(144)
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Since hysteretic damping is related to displacement, it is independent of frequency of

motion. Here assume one critical point and let ®,/€2 = 1. Damping ratio & then becomes

__Wp | ug?
§_4TEW51 e (146)

As noted above, hysteretic damping is independent of frequency of motion. The

equation of motion under hysteretic damping is formulated
mii + fy{u) = P (147)

where fy(u) is nonlinear function of displacement.
For simplicity, total spring force fy(u) may consist of two components: equivalent
spring force f; = ku, (k is average spring constant) and equivalent damping force fp. In

view of the fact that hysteretic damping is not related to force frequency €2, assume
CegQ = MK (148)

Then equivalent damping coefficient c.g can be expressed as

k
Cog = = (149)
Q

Therefore, if ug = up = u is assumed, the ratio of dissipated energy Wp to energy by spring

WSl 1S

Wp _enQu? _ 5 .¢Q . = 25 (150)
WSI lkuz k
)
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and

constantﬂ:%}vi—1 _ (151)

From Eq. (146), equivalent damping ratio & becomes

- Wp u?_ 1| Jug? M ug?
v e i i e el (152)
if
B 1
UK = up, then & = -2— (153)

‘4. Near-Harmonic Motion Near-harmonic motion is now explored. In Figure
63(a) and (b), the former's half cycle has amplitude u; and latter's half cycle has amplitude

u2. In a manner similar to the analysis of viscous damping, Figure 65(a) shows the
relationship between equivalent damping force Fp and amplitude. If amplitude u; is
assumed to be larger than amplitude u,, then Figure 65(a) represents a larger half ellipse on
the right side. Figure 65(b) shows idealized ellipse which has amplitude u] and u;. From

this, two eQuadons for dissipated energy can be derived as

Wp, = %— CegMQu}> (154)
Wp, = %cegnﬂugz - (155)

As noted, the dissipation loop is a smooth skew ellipse. It is shown as curves A and B in

Figure 63¢a) and (b). From a practical viewpoint, a solid skew ellipse-like curve (i.e.,
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(a) Irregular damping force
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(b) Irregular equivalent damping force
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(c) Equivalent damping force

Figure 65 Irregular damping force and equivalent damping force vs. amplitude
relationship
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curve C and D in Figure 63(a) and (b)) is a possible response and does occur in the
experimental results for NCKU RC shear walls. In an attempt to obtain another equivalent
ellipse (see Figure 65(b)), an irregular ellipse is formed (Figure 65(b)); up is assumed to be
a new amplitude for both sides of the ellipse. Note that total dissipated energy in Figure

65(b) is equal to total dissipated energy in Figure 65(c). The formulation is

L cegnQfu"f + 1 cegn@fu"f = cegnQup? (156)

and equivalent amplitude up can be obtained as

up = '71_2_—‘\/ (ul‘)2+(u2‘)2 (157)

Concerning the relationship between equivalent spring force and amplitude (see Figure 66),

energy Ws; and Wgj can be given by

Wi » asp
Wi, = L’ (159)

Total energy by spring force is

Ws = W;l + W‘SIZ = %{klu22+k1u§2)

= 2WS4 = kaK2 (160)

Ifke= k_liz'k_z_ is assumed, then
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Figure 66 Equivalent spring force vs.

134

displacement relationship
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%(kl + kaJug? = %‘(klul‘z*'kIUZ‘z)

2 k1U1‘2+k2112.2

K k1+k2

(161)

(162)

By using Equation (146) (corresponding Wg; shown in Figure 60) and substituting Wgy4

into Wy, equivalent damping ratio for irregular load-displacement can thus be obtained as

g __Wp ,UK2
%7 4nWs;  up2
k1U1‘2+k2112‘2
WD k1+k2

- 4TCWs4 . %_ultZ_'_é_uth

W | ko w? K w? (163)
41!Ws4 k1+k2 u1t2+u2t2 k1+k2 U1t2+u2*2
Rewrite Egs. (158) and (159) as
2We 2We
k=Sl k= 2 (164)
oy U
Then
- 2Ws, __2_"!8_1_?
kl - uiz - %—CegQul
itk owyg oWy, 2wy W5,
u}z uzz %cegQu‘Iz %cegﬂuzz
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Ws,
W
Wi, Vs
Wp1 Wp

Since ¢ = 1k, and c€2 = 1k, are assumed

* -Lk 2
Wog_ 2% 1k 1.1
Whi deegmQui? T oceQ T M
In the same manner
Voo 1
Wp, ™2
Equation (5.44) becomes
.
ki = i = N2
kitko _1_, 1 m+m
L | B (11 b
Similarly
ko - N1
ki+k; mi+m2
Furthermore
*2
op? %ﬂggn‘h __ Wp _Wp

«2 «2 - *2 -2 - * x W,
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(165)

(166)

(167)

(168)

(169)

(170)



and

*2 * *
uo W _Wp

x *
uj+uy? Wp+Wp, Wp

(171)

Using Egs. (166) through (171) in Eq. (163), equivalent damping ratio &eg thus reduces to

Eeg = Wp li M2 .WBI+ 13! WSz}
€T 2tWss m+M2 Wp M2 Wp

[112W;>1+T1 1W1*>2}

_ 1
2Ws4(n14+12)

= 1 {mem + WDIWDZjl
{Ws+Wso) (Mi+n2) | W5, W,

iy VoW e e ]
TN +n2) Wi +Ws, [Ws; Ws,

C (W Wiy —] {

- WEI"'W;Z}
ni(n+12) Wsi+Ws,

ook
WSIWSZ

- 1 W;>1W52= mnimz _ 2 172)
nin+ng) Wy Wg,  minp+mg) Ti+m2

in which

.1, =L VD2 (173)

as already given in Egs. (166) and (167), and
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0<n;,m<1l/n (174)

Substitution of Eq.(173) into Eq.(172), another form of equivalent damping ratio, &eg ,is

_ 1 WpWpn
E—'eg - 2 * *
TM1+M2) W, Wy,

- 1 WpiWho
nz(l Wp, +_1_W02) W51 Wso
* X
Tws TWwg

* *
WpiWno
* * 3 3
W Wp+WsoWp,

=1
= (175)

For harmonic motion (see Figure 67(a)) damping ratio & (Eq. (153)) is

=1
&= > (176)

For near-harmonic motion (see Figure 67(b)), equivalent damping ratio is

gol_ WpiWp _Mima (177)
n * * *x * +
W5 WpptWs,Wp, Ttz

B. RIC ERVATION BASED ON EXPERIMENTAL RESULTS

Two perforated shear walls and one solid shear wall are represented in this section.
SWO-4E and SWO-6E , the former, are described in Section II. SWS5 , the latter; is from
Mertz's study [44]. All three walls are subjected to earthquake loading.
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Figure 67 Harmonic motion and near-harmonic motion
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Based on previous derivations, the amplitude(u), dissipated energy (WBl and WBZ),
energy of spring force (ng and W;z) and corresponding damping ratio & for all cycles of
the three shear walls are summarized in Tables XI, XII and XTII. From these tables, it can
be seen that damping ratio generally increases with maximum amplitude(u), ductility,
dissipated energy (WBI and WBZ) and energy of spring force (W;l and Wgz) in the NCKU
shear wall experiments. Figure 68 fur;her shows the relationship between damping ratio
and ductility of shear walls while Figure 69 presents the definition of ductility p as u
=0/ 8y. The trend of damping ratio is depicted in Figure 68. Bert [43] stated that there is
no hysteresis damping unless displacement amplitude exceeds a certain threshold value.
For RC shear walls, it can be assumed that there is no hysteretic damping before the
cracking point. As shown in Figure 68, damping ratio gradually increases with maximum
ductility of a shear wall. This ratio goes as high as 15.7%. Furthermore, it can be
observed that the initial damping ratio for hysteretic damping is in the range of 5 to 6, a

good agreement with practical design.
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Table XI Summary of amplitude, dissipated energy, energy by spring, and damping ratio
for all cycles of shear wall SWO-4E

Dmax 0.268 | 0.938 | 2.68 3.819 | 5.527 | 13.668| 7.437
Ductility | 0.109 | 0.382 | 1.090 | 1.554 | 2.249 | 5.561 | 3.026
WD1 0 2.207 | 19.868| 28.86 | 45.70 | 54.9 80
WD2 0 2975 | 23.74 | 3405 | 57.6 66.247| 0.4
Wsi1 0.5853| 5.146 | 26.958| 4891 | 70.4 66.3 104.3
Ws2 0.3292] 6.057 | 36.63 | 57.35 | 82 70.2 0.5
£ - 7.28 10.98 | 9.42 IQ.74 14.04 | 12.46

Table XII Summary of amplitude, dissipated energy, energy by spring, and damping
ratio for all cycles of shear wall SWO-6E

Dmax 1.306 | 2.680 | 3.517 | 4355 | 8.274 | 17.65

Ductility | 0.564 | 1.157 | 1.518 | 1.880 | 3.571 | 7.619

Wb1 2.396 | 21.00 | 27.97 | 3476 | 83.8 1233
WD2 2.948 | 18.57 | 22.36 | 0.1 58.3 77.3
Ws1 8.507 | 28.356| 50.59 | 60.86 | 111.6 | 125.4
Ws2 7.054 | 34.07 | 4582 | 0.2 80.5 78.1

£-(%) 5.36 9.99 8.25 8.49 11.73 | 15.70
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VI. SOME OBSERVATIONS ON DESIGN PARAMETERS

When a structure is subjected to earthquake excitation, the system may deform into
the inelastic range. Building codes use design parameters to include inelastic response in
elastic design. Force reduction factor and displacement amplification factor are two key
parameters. Response modification factor R is related to force reduction factor. It is used
in the National Earthquake Hazards Reduction Program (NEHRP) recommended
provisions [46] as is displacement amplification factor C4. Ry is the force reduction factor
used in Uniform Building Code (UBC) [47]. UBC code’also uses the displacement
amplification factor to compute an actual structure's drift. Force reduction factor,
expressed as R or Ry, generally serves to reduce linear elastic design response spectra.

Story response on the critical story of a building is shown in Figure 70. Here the
critical story exhibits stability vis-a-vis energy dissipation until it fails. Elastic response is
also illustrated in Figure 70. For simplicity in obtaining design parameters, the actual
response is idealized as a linearly elastic-perfectly plastic curve. On this idealized curve,
the point where critical story enters the inelastic range is defined as yielding point which
has load capacity, (Vi), and associated yielding story drift, 8,. Since load capacity
encompasses the failure point (point D at the end of the plastic range on this response
curve), load capacity (Vi) at yielding strength refers to the structural collapse level.
Maximum inelastic displacement at the end of the response curve refers to failure story drift
which is maximum story drift, 8ax. Failure (or ultimate) load capacity, (Vi), means the
maximum ultimate base shear taken by the structure equals (V).

For design purposes, actual maximum load level is reduced to the level where
global structural response significantly initiates deviation from previous elastic response.
First significant yield level is the usual term for this level. Prior to it, inelastic response is
the same as elastic response. Being consistent with strength design approach for building

codes, this level is adopted by NEHRP provisions. Base shear corresponding to this load
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Figure 70 General story response of a structure

level is denoted as (V;); which has corresponding story drift, 8. UBC code further
reduces this value from significant yield to seﬁiceable load level. The latter is basically
compatible with allowable (or working) stress design approach. Allowable base shear,
(Vi)a, represents this load level. Related allowable story drift is expressed as 8,.

UBC design code has summarized formulae to estimate maximum design force
based on extensive earthquake data with statistical analysis. When desirable seismic
strength is determined and a simulated earthquake is applied to a structure, an elastic
response is then obtained. Elastic response is shown in Figure 70, which has maximum
elastic base shear, V,,. UBC design code also provides a chart of normalized acceleration
response spectrum. If the natural period of a structure is given, maximum design intensity can
be applied. Here the idealized design response spectrum is called smooth linear elastic
design response spectrum.

Based on Figure 70, some pertinent factors can be defined as follows.

(1) Ductility reduction factor, Ry, represents the capacity to dissipate hysteretic energy

by ductility characteristics of material. It is defined as
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Ry = (178)

(2) System ductility factor, W, is based on the idealized linearly elastic-perfectly plastic
curve. It 1s expressed as the ratio of maximum story drift to yield story drift and

has the form of

pg = Smax - (179)

The relationship between i and R, was established for single degree-of-freedom by
Newmark and Hall [48]. They stated that the ratio of R,/ is smaller than or equal to 1.0.
(3) Overstrength factor, €2, is the reserve load capacity existing between the actual
structural collapse level and first significant yield level. If this range is larger, the
overstrength factor increases. Larger overstrength factor offers more protection to

structures subjected to seismic motion. This factor is expressed as

o= Yik (180)

(4) Load factor, Y, reflects the difference between strength design approach and
allowable stress approach. This factor is 1.4 for reinforced concrete structures [49].
Formulations by Uang [50] elaborate on these factors and can be summarized as

follows

(i) NEHRP force reduction tactor (NEHRP called response modification factor)

R =R,0Q (181)

(i) UBC force reduction factor Ry, = R,QY (182)
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(iii) NEHRP displacement amplification factor Cy4 = Omax - UsQ (183)

(iv) R/ICq=Ry/ig (184)

where the ratio of Ry, to U is equal to or smaller than 1.0 as cited earlier in Newmark and
Hall's study [48].

These derivations as observed by Uang [50] illustrate that both force reduction
factor R (or Ry,) and displacement amplification factor Cy4 are functions of overstrength
factor, system ductility tactor, and damping (the effect of damping is involved in ductility
reduction factor(Ru)). Equations (181) through (183) show that the overstrength factor
plays an important role in controlling structural response. An overstrength factor of
2.4~2 8 is observed in a six-story braced steel frame [45, 51].

Some researchers [495, 50, 51] note that the current UBC design procedure does not
explicitly take the overstrength factor into account. This factor may be influenced by
redundancy (internal stress redistribution), higher material strength, multiple loading
conditions, strain hardening, and so forth. Also, displacement amplification factor/force
reduction factor (DAF/FRF) ratio has a further advantage. Ditferent design algorithms
used in many countries make this ratio a more rational approach to the appropriate range for
displacement amplification factor. Based on Uang's study [28], a DAF/FREF ratio of 1.0 is
adequate for design purposes.

Some relationships discussed below shed light on the overstrength and related
factors. The work herein attemnpts to explore a rational range for factors and their physical

application.
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A. RELATIONSHIP BETWEEN DUCTILITY REDUCTION FACTOR AND
OVERSTRENGTH FACTOR
Recall Eq. (182)

Ry = R, QY

It can be rewritten as
-t

where load factor, Y, is assumed to be 1.4 [50].

From Eq. (182), ductility reduction factor, Ry, is inversely proportional to
overstrength factor, €2, if UBC-specified force reduction factor, Ry, is given. Figlire 71
shows this relationship for some presumed UBC-specified force reduction factor of
interest. Overstrength factor, €2, is defined as the ratio of actual base shear at collapse level
to NEHRP design base shear at first significant yield level, and actual base shear at collapse
level should be greater than (or equal to) design base shear at first significant yield level.
Thus the overstrength ratio, €2, has a minimum value of 1.0. In the chart the overstrength
factor of interest ranges from 1.0 to 2.5. UBC design force reduction factor, Ry, ranges
from 2 to 15. It can be seen that ductility reduction factor becomes stable when |
overstrength factor is close to 2.5. Further observations from this chart appear in the next
figure.

Turning to Figure 72(a), a reinforced concrete shear wall is examined. UBC-
specified force reduction factor, Ry, is specified as 6 and overstrength factors, €2, of 1.0,
1.5, 2.0, and 2.5 are selected. As shown in Figure 72(a), when overstrength factor is 1.0,
ductility reduction factor is 4.28. Actual base shear at collapse level is the same as base

shear at first significant yield level. There is no evidence of a gradual change in elastic
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range with inelastic range of higher ductility. The building's critical story displays a

linearly elastic-pertectly plastic response. Duectility reduction factor (Ry) does not appear to
correlate with system ductility factor Ms). In Figure 72(a), the response of higher ductility
remains unknown.

When the overstrength factor increases to 1.5, an obvious change in the load
capacity of the structure's system can be observed. A gradual trend toward high inelasticity
can be expected. In this case, a slight increment of overstrength tactor at a low level can

provide more load resistance for the structure against external excitation. When the
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Ry =6
R, =4.28
Q=10

Figure 72 Structural response on critical story with respect to R, of 6 for overstrength
factor equal to (a) 1.0; (b) 1.5; (c) 2.0; (d) 2.5
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overstrength factor goes up to 2.0, it provides more load capacity for the system but not as
much as in the previous case. Similarly, when overstrength factor goes up to 2.5, load
capacity of the structure increases to some extent. Generally, a higher overstrength factor
can give enough reserve strength capacity for a structure to develop more material ductility
and absorb more hysteretic energy. A higher overstrength factor also ensures that the
structure can sustain higher base shear capacity.

Recall Eq. (185)
—(Rw
Ry (1.4 Q

Overstrength factor is defined for the critical story. For a sound existing building
or one under design, the overstrength factor can be approximately determined. The above

formulation can be rewritten as

= (LR, (186)
Re=(maR
or
R, = CiRw (187)

where C| = 1/(1.4(2) is constant.
Ductility reduction factor, Ry, is defined in Eq. (178) as

= Ve
R“-(Vi)f
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R, in the above formulation is strongly affected by the seismic intensity of an earthquake.

From Equation (187)
R, = Sk
w = a—l (188)

UBC-specified force reduction factor (Ry) is also influenced by seismic intensity.
Smoothed linear elastic design response spectrum, as mentioned earlier, is
proposed by UBC design code. It is shown as curve SLEDRS in Figure 73. UBC

provides the following formula for design force, based on allowable stress design approach

v = ZCw ‘ (189)
Ry

where Z is seismic zone factor; I is importance factor; C is function of both site coefficient
and structure's fundamental period;and W is active weight of the system. It is also shown
as curve IDRS, which considers the nonlinear behavior of a system, in Figure 73. Here a
general form of Eq. (189) is expressed as
v=4Cw (190)
R,

where Ry is a factor to assess base shear for a different design approach. It is noteworthy

that if Ry is assumed to be unity, Eq. (190) becomes
V =(ZIC)W (191)

or
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* Period

Figure 73 Schematic diagram of design response spectrum

A
W ZIC (192)
Equation (192) is physically the same as the maximum normalized design earthquake on
the smoothed linear elastic design response spectrum (SLEDRS). If force reduction factor

(Rg) is not considered in Eq. (190), this factor represents the elastic response which is

identical to UBC's definition of SLEDRS curve. Eq. (192) can thus be expressed as

= (SLEDRS) (193)

where (SLEDRS) is maximum intensity of normalized design earthquake for elastic
“analysis in accordance with the natural frequency of the structure's system.

Now Eq. (193) can be reformulated as

Ve

o = (SLEDRS) = fey (194)

where fq, is constant.
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If the most severe earthquake is chosen, f, becomes

fo, =ZIC = 1.1 | (195)

where Z=04;1=1.0; C=2.75.

From Eqgs. (194) and (195), maximum Vg, is obtained as Vg,=f,,W=1.1W and V. ,=f,,W.

Ductility reduction factor then becomes

feu‘ W 1.1W
< —- 1.1 ¥V 9

If a smaller seismic region is considered, and f.,s = ZIC is defined for Z < 0.4,

ductility reduction factor becomes

(197)

B. RE NSHIP BE EN BASE AR RA

OVERSTREN F
Comparing Eq. (186) with (178), it yields

Ru:Lan::(_Rl)L (198)

Vg = ((L)Ll_{l 1_ (Q’ﬁ) (R_w) (199)
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For the most severe earthquake, Vg, equals 1.1 W (i.e., fe, = 1.1) (see Egs. (194)

and (195)) and is the maximum elastic base shear. Eq. (199) then becomes

vw=(%)‘)(%)s LIW

Equation (200) can be rewritten as

(%)és 1.1%

or
WS (&v_)i

(Vi \1.54/

and further (Vi) is normalized and defined as

o—

Vik _
w -

where Cs is called failure (or collapse) base shear ratio. From Eq.(199), (Vi)=

(1.4)ZICW
Ry

Then C; becomes

1.4ZIC
Ce= R, Q

_Ldfe,
. RW Q

Furthermore, Eq. (203) then reduces to
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(200)
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(202)

(203)

A Verry

Ry
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1.5

Cfs(—li—w—

)Q (206)

For the most severe earthquake (i.e.,Z=04;1=1.0; C =2.75)

—(1.54
Ct _( = )Q | (207)
Figure 74 shows relationship between C¢ and Q2 for some UBC-specified force reduction
factors while Figure 75 is the same except Z = 0.3 (i.e., Z=0.3, I=1.0, C=2.75), C; is
written as

Ce=L133 0 (208)
Ry

If UBC-specified force reduction factor (Ry,) is equal to 6.0 in Figure 74, then C¢

will be less than or equal to 0.26, 0.51, and 0.64 for overstrength factors of 1.0, 2.0, and
Veu _ 1.1IW _ 1.1
(Vik CW  C;

= icel), is less than 4.23, 2.16, and 1.72, respectively. For an overstrength factor of 2.5
f

2.5, respectively. In these cases, ductility reduction factor, Ry, (i.e., =

with Z=0.4, C; is 0.64. From Eq. (203), base shear for a structure's system is
(Vi)= CW = 0.64W (209)

In Eq. (209) the total base shear resisted by the structure's system at collapse level is 64
percent of structural active weight.
Also, Figure 74 is based on severe seismic situation with fs, = 1.1 for a short

period. For a structure's system with a long period, point A in Figure 76 illustrates design
base shear ratio (fey),. From Eq. (205), Cs is 1—'4(R—f"’“—)a§2. In Figure 74 Cs is l—‘g—fﬂﬂ and
W

W
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Figure 74 Relationship between failure base shear ratio and overstrength factor for severe
earthquake with Z=0.4

f., equals 1.1. If Figure 74 is applied to the structure's system with a long fundamental

period (let Cf,=1'—‘:({f—°“)—aﬂ), then Cg, in relation to C¢ becomes
W

_L4{feu)a _1-4feu44(feu)a)=c (few)a ,
=R, TR, At LI (210)

It means that with the chart in Figure 74 failure base shear (Vi is

(Vie=Cr ‘—ﬁ—%-w (211)
where C; is obtained from Figure 74.
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C. RELATI@ISHTP BETWEEN DAF/FRF RATIO AND OQVERSTRENGTH FACTOR

DAF/FREF ratio is defined as the ratio of displacement amplification factor (DAF) to
force reduction factor (FRF) for a structure subjected to external excitation. In Figure
77(a), (b), and (c) the relationship between DAF/FRF and overstrength factor for system

ductility factor, [, equals 1.5, 2.0, and 2.5, respectively. Comparison and derivation in

this section use NEHRP recommended provisions.
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Figure 77 Relationship between DAF/FRF ratio with overstrength factor for system
ductility factor equal to (a) 1.5; (b) 2.0; (c) 2.5
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As stated before, NEHRP defines force reduction factor, FRF, as
FRF =R (212)

Since all comparisons in this section use UBC-specified force reduction factor, Ry, R is

expressed in terms of Ry, which is written as

R=RyY (213)
Also, NEHRP defines displacement amplification factor, DAF? as

DAF =Cy (214)

Substitution of Eq. (183) into Eq. (214) reduces this factor to

DAF = (215)
DAF/FREF ratio thus becomes

DAF _Cq_ (Es_‘_f')

FRF R Ry Q (216)

For structure ductility factor, s, of 1.5, 2.0, and 2.5, and Y=1.4, DAF equals (2 I)Q

Rw
(%8) Q, and (:1315) Q, respectively.
w w

From Figure 77(a), if UBC-specified force reduction factor (R,,) is 6.0, then
DAF/FRF is less than 1.0. For pg of 2.0 and 2.5, (Ry) of 6.0 has a DAF/FREF ratio greater

than 1.0 when the overstrength factor is close to 2.5. To obtain a minimum value of 1.0

161



for DAF/FREF ratio, as recommended by Uang {28], requires a lower force reduction factor
{Rw or R), higher system ductility factor (W), and higher overstrength factor (Q)

From above discussion, relationships between maximum base shear ratio and
overstrength factor as well as between DAF/FRF ratio and overstrength factor provide
the following information:

1) if ranges of reduction factor and overstrength factor are known from analysis, the
maximum base shear of a structure's system can be predicted from Egs. (204) and (209).

ii) if force reduction factor and maximum base shear are estimated, overstrength

factor for a structure's system can also be found from Eqgs. (204) and (209).
Some correlations between the above factors are obvious in the structure's system. Later
these correlations are checked with results for the RC shear-wall buildings which were

analyzed by both monotonic and dynamic loading cases.
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VII. ANALYTICAL FORMULATION FOR PERFORATED SHEAR WALL ELEMENT
MODEL

Matrix formulation for analyzing 3-D structural systems is established and coded in
the computer program, INRESB-3D-SUP, developed at UMR. This program can analyze
elastic and inelastic building systems subjected to static loading, multi-component
earthquake motion, and pseudo-static cyclic loading. It is also capable of calculating
elastic natural frequency and buckling load [52-58].

Among major features of reinforced concrete and stee! members of plane and 3-D
buildings are elastic, inelastic, dynamic and stability analysis as well as various hysteresis
rules of elasto-plastic, bilinear, Ramberg-Osgood, Takeda, and Cheng-Mertz. Other
attributes of this computer program are listed as follows [29, 59,60]:

1) joint based degrees of freedom

2) rigid body and planar constraints

3) incremental nonlinear static solution

4) unbalanced load correction for overshooting

5) incremental nonlinear dynamic solution

6) mass and stiffness proportional damping

7) condensation to reduce size of dynamic problem

8) damage index

9) energy balance

10) ductility and excursion ratio for various definitions of displacement, constant
‘strain energy, and variable strain energy

The RC perforated shear wall element consists of a panel with a joint at each corner.
As shown in Figure 78, nonlinear equivalent shear spring and nonlinear axial spring
account for nonlinear total lateral displacement and nonlinear axial displacement,

respectively. Lumped nonlinear springs connect two bodies with two corner joints for each
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Figure 78 Perforated shear wall element model

body. Joints J1 and J2 are on the top corners of the upper body which has a height of c.

Joint J3 and J4 are on the bottom corners of the lower body which has a height of B. Total

height of the wall is the sum of the respective heights and can be written as

L =o+B (217)

Out of plane (i.e., perpendicular to the plane of the wall) stiffness is not considered. A

lumped parameter formulation of geometric stiffness with consideration of both in-plane

and out-of-plane P-A effect was also developed.
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A. ELEMENT COORDINATE SYSTEM AND DEGREES OF FREEDOM

As shown in Figure 78, the perforated shear wall element has ten transitional
degrees of freedom. Degrees of freedom 1 and 8 represent in-plane total lateral
deformation. Note that total lateral deformation is the sum of shear deformation and
flexural deformation with consideration of shear and bending effects. Degrees of freedom
2, 4, 6, and 9 represent axial deformation. In matrix form,.these local forces and

displacements in the element's coordinate system (ECS) are

[Fe] =[F1 F2 F3 F4 Fs Fg F; Fg Fg Fo]" (218)

T

[A) = A A A3 Ay As Ag Ay Ag Ag Ao (219)

Figure 79 shows a perforated shear wall coordinate system. In this system, global
coordinates for all four joints, J1, J2, J3, and J4, are denoted as (Xgl, Ygi1, Zgl),
(Xg2, Yg2, Zg2), (Xg3, Yg3, Zg3), (Xg4» Yga, Zga) , respectively. Vectors )—(: and 5(?, stand
for orientation in the X direction from joint J2 to J1 and from joint J3 to J4 at the top and
bottom of the wall expressed as

Xi = (Xg1-Xg2) i + (Ya1-Yg2)j + (Zg1-Zg2) K (220)

Xp = (Xga-Xg3) 1+ (Yga-Yg3)j +(Zga-Zg3) K (221)

A vector \7;, assumed along the mid-width of the wall in the longitudinal axis of the wall,

is defined as

\—]' - Xg1+Xg2 ) Xg3+Xg4] I 4‘{Yg1+Yg2 ) Yg3+Yg4} . + [Zg1+Zg2 i Zg3+Zg4 E
y 2 2 2 2 2 2

(222)
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(X2, Yg2, Zg2) (Xg1 Yg1, Zg1)
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2 TR
Vyea\7;
I3 Vo J4 Vxes Vx
| o ——P < g
(Xg37 Yg3s ZgB) (Xg4’ Yg4’ 284)
VZC,VZ

Figure 79 Perforated shear wall coordinate system

Vector V;, is oriented from mid-width at the bottom of the wall to mid-width at the top of

the wall. Thus the span of vector \7; is the height of the wall, formulated as
L =V} (223)

Normalized V; becomes

<

——

vy = (224)

T

where normalized V, is a unit vector along the horizontal axis of the wall.

Vector \_’; , perpendicular to the wall, is defined as
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Vo =Vpx vy (225)

Unit vector v, calculated by normalized \_’; can be expressed as

=Y (226)
v

where |V] is the length of vector \_/;
Unit vectors vy and v, are established above. Unit vector vy, perpendicular to both

unit vectors vy and v, yields
Vx = Vy XV (227)

Unit vectors Vx, Vy, and v; form the basis of the element's coordinate system

(ECS). This system with origin midway between joints J3 and J4 has three scalars denoted

DY Vxe, Vye, Vze. The three unit vectors that define ECS orientation are expressed in matrix

form as

Vx i i
U Ci1 G2 €13 || | .
[vel=| v, ={ C21 €22 €23 } i |=ICe] (228)
— C3; €32 € - -
7 31 €32 Ca3 ) g
where [C,]4s the direction cosine matrix for the ECS.
B. ELEMENT STIFFNESS MATRIX IN THE ELEMENT COORDINATE SYSTEM

Stiffness derived here for perforated shear walls includes equivalent shear stiffness

of the entire wall as well as axial stiffness of a unit height wall (in the computer program
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noted earlier). Shear backbone curve and hysteresis model that determine shear stiffness
are derived in terms of shear and shear displacement, but the axial hysteresis model is
expressed as axial load vs. axial strain. The force deformation relationship for each of the

springs is shown in Figure 80 and can be written as

V, =K, = %& (Va-ve) = -Vi (229)
and
. K
P, = Ksu, = "I:'(ua'uc) =-P; (230)
. K. _
P, = Kau; = 3 (up-uq) = -Py (231)
where
K = 521 (232)

K is stiffness of the entire wall, shown in the shear hysteresis model in Section IV,
K, is the axial stiffness on both the right and left sides of a unit height wall,

K. is shown in the axial hysteresis model in Appendix B,

Va, Vp are shear deformations at the top and bottom of the shear spring,

U,, U, are axial deformations at the top and bottom of the axial spring on the right
side,

Up, Uy are axial deformations at the top and bottom of the axial spring on the left
side,

Va, V,, are shears at the top and bottom of the shear spring,

P,, Py, are axial forces at the top and bottom of the axial spring on the right side,
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Figure 80 Shear wall forces and deformations
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P, P4 are axial forces at the top and bottom of the axial spring on the left side,
v, is relative unit shear deformation,

u, is relative unit axial deformation on the right side, and

y, is relative unit axial deformation on the left side.

Combining Eqs. (229) through (231) into the matrix form reduces them to

(V.) 1 0 0
P 0 1 0 Va Vs
< 3 r = P‘ =[A1] P. (233)
P |0 0 1|, >
P, |0 -1 0| " b
Pd ) | O 0 _1_

Va vl’ Vb
u
P, b =[SIKu, } =[SIJ[A,]'; N (234)
P, U, ut:
(Ua)
where [S1] is the stiffness matrix
K 0 0 ]
[sn=1 o ki o© (235)
0 Ki |
K 0 O
=1 Ka 236)
i 0 3 0 (
K,
00 5]
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Applying the equilibrium of forces in Figure 80, some relationships between the

spring and element forces can be determined.

Upper body becomes

2F, =0, Fi-V,=0 (237)
ZFy =0, F3+F4-Ps-Pp =0 (238)
IMp =0, F-a+P, W-F,-W =0 (239)

These equations can be written as
Fi =V, (240)

Fp=(Vaoo + PpW)/W

=% V, +P, (241)

f=4=l>a+1>.,-{;1‘;-va-1>a=1>.,-{,‘!;va (242)
Lower body becomes

IF;=0, Fg-Vp=0 (243)

TF, =0, Fg+Fy-P.-Pg=0 (244)

IM. =0, F¢W - P4W - Fg:f =0 (245)
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These equations can be rewritten as

Fg=Vy (246)
Fe = EVb + Py (247)
w
F9=P +Pd-P—Vb-Pd=P -—B—Vb (248)
c W CTW

Equations (240) through (242) and (246) through (248) can be rewritten in matrix form

1
]

(F) [1 0 0000
el |2 0 1000
2l | W
F, 0 0 00 0 0|V,
F4 W 0O 01 0O Vb
F, 0 0 0 0 0 O||P,
Fl={gt=| o B ot
F, 0 = 000 1P,
F, 0 0 00 0 O||P,
F, 0 0 0 0 0 0Py
F, 0o B ooi1o
W
Fo) {0 0 00 0 O
v
Vb
PaL
= 249
(a2l p, (249)
PC
[ Pa )

Combining Egs. (233) and (249) reduces them to
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v

a

{F.}=[AJA ]3P, (250)
P,

The perforated shear wall's ECS stiffness is formulated as

[Ke] = [A[Al[SO T A AT (251)

C. ELEMENT STIFENESS MATRIX IN GLOBAL DEGREES OF FREEDOM

Two steps occur in the transformation of degrees of freedom from the element
coordinate system to global degree of freedom. First, rotate the degrees of freedom ateach
of the four ECS joints to their four counterparts in the joint coordinate system (JCS) at
joints J1 through J4. Second, move degrees of freedom from each of the 'slave’ joints to
the 'master’ joints for the constraint transformation. Global degree of freedom is defined at
the master joints. Further discussion on the constraint transformation from the 'slave’
joints to the 'master’ joints can be found in Ref. 29.

Next the transformation explicitly focuses on the perforated shear wall. Element

force of this wall is rotated to the four joints on an ECS basis and expressed as
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(F,,] [1 00000000 0]
F,,| [0 1 0000000 OF)
F.,| [0 01000000 O0|lF,
F,.| [0 00 000O0O0GOO O|F,
F,] [F,| |0 00100000 O|F,
Fo| _JFa|_[0000 10000 O4F5>=[A]{F}
F,[ |F.[ [0 00 00O0O0GO OO OfF, I
F.,] |F,| [0 00001000 O|F,
F.| [0 000007100 0|F (252)
F..l |00 0000010 0||F
Fo,| |00 000000 1 0|F,]
F.. 0000000001

where the wall does not have transitional DOF along the ECS X axis. Some dummy

degrees of freedom are included in the matrix form. {Fd} = [Feix F,, F. ]T represents

y
forces on the joints according to ECS and variable i can be 1, 2, 3 or 4. Then the forces at
the four joints of the shear wall are rotated from ECS to JCS. Since both systems are the

same in this case, the formulation becomes

/M o M M

o
~
-

V
il
N

e3x

(253)

o
—
M T T ' ' N7
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where [Fji =[Fjix Fjiy Fjiz]? represents forces acting on joint i along X, Y, and Z direction.
Based on JCS, i can be 1, 2, 3 or 4. An aspect of constraint transformation should be
noted. If slave joints have the same coordinate system as master joints, then translational
degrees of freedom for this perforated shear wall are found as follows. The transformation

matrix is a unit matrix which can be written as

~

N

Fjlxm Fjlx

Fjlym Fjly

Fjlzm Fjlz

F j2xm Fij
FJIM Fj2ym FJZY Fn
FIZM - Fszm <Fj22L=[A ] FIz
1::13M W Fj3xrn Fj3x . PJs
FI4M Fjsym 0 1 l':1‘3y Fu

Fiam| | 1| (254)

F j4xm Fj4x

Fj4ym Fj4y

LFjllm) \Fj4z

where [Fjim] =[Fjixm Fiiym Fjizm]T is translational degrees of freedom at joint i and i can be

1, 2, 3 or 4. Combining Egs. (252), (253) and (254) yields

Com = (A JAAE) @59
F

Substitution of Eq. (250) into (255) reduces them to
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=[A|KP, - (256)

where [A] =[As] [A4] [A3] [Ag] [A4].

Stiffness matrix is thus transformed from spring stiffness to global degrees of freedom by
[Keg] = [Al[STI[A]T (257)

In the case of this perforated shear wall, computer results for [ch] are as follows

K, 0 0]
2k, K 0
W
0o 0 0
o 0 0
22K, 0 KT
s o 031%00%00%,@0—1%0
[A][SI][A]T=0 o o0 1 00000000 -10
B o g |® 000 1 00-100 00
ws a L
0o 0 0
K, 0 0
Bx x o0
W
|0 o o]
(258)
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[ALST[A] =

] o sl B -K [E )
K (WK) 00 (WK) 00 (WK) 0 : W 0
(;K) (;ZKS+K,) 00 (‘—O‘-K) 00 (%BK) 0 (;;K) [;—EKS—K;) 0
0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0
(;—NOEK) [—%VQ—ZK) 0 0 [aZKS+K:) 00 (;—%K K) 0 (% ) (%‘?K) 0
0 0 00 0 0 0 0 0 o 0 0
0 0 0 0 0 00 0 0 0 : 0
(%VQK) (%@Kj 00 (g‘v—%K—K) 00 (%;K,+K,) 0 (%K) (:-B—K] 0
0 0 0 0 0 00 Bo 0 0 ; 0
pre's o -
_ - 2k 00 [(=k| 0 K —Ks) 0
RN RN SR
) (w00 (B8] o (o) o () (B
(WKS) (VK—K) 0 0 (wz K) 00 (wz ) 0 [Tk K,+K.| 0
0 0 0 0 0 0 0 0 0 0 0]
(259)

The relationship between external force and external displacement with degrees of freedom

based on the perforated shear wall's springs is

P, X,
(P} ={P,  =[AISTAT{X, f=[K,](X} (260
P, X4

Equation (259) can be reduced to

o -
K, —K, ==K,
P, ) K W1 X,
o o X -a°
11:2 = WK’ W2 K:+—2- 7W2 K, ;(2 (261)
JoRg, 2k, Lk e
LW W w 2 |

This corresponds to Figure 81.
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P4, X4 Py, X2

81, 82, 84 refer to Fig.81.

Figure 81 Unrestrained global degrees of freedom considered in the isolated system

RAM-BASED FORMULATION
In this case, three unit forces are applied to the perforated shear wall in relation to
three kinds of springs. Formulations are then observed and established. To begin, unit
force is applied at degree of freedom 1; the associated free-body diagram is shown in
Figure 82. The bottom of the shear wall is fixed, and degree of freedom 1 is allowed one
unit displacement. Degrees of freedom 2 and 5 are assumed to be fixed. Displacement

matrix [X] becomes

X,) [1
{X}={X,t=40 (262)
X, o

This is shown in Figure 82(a).
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Figure 82(b) depicts internal shear V which is equal to external force P,. Note that
a moment is induced within the upper free-body diagram. Internal shear is provided by the

shear spring with stiffness of K. Force P; is thus

P =K¢X) =K1 = K (263)

Two forces, resisted by axial springs on both ends of the shear wall, balance the moment.

As shown in Figure 82(c), these forces can be determined by equilibrium of moment and

force as
IMp=0,P1aa-P;W=0 (264)
XFy=0,-P4+ P2 =0 (265)

Forces P; and P4 then become

X1=1 P1 -
— >
J2 J1 ’l UB
/ -—
y \ Vv
13 J4 vy
M
P4 P2
-y w t :Pl
) o
UB: Upper body 1_ UB
B 8) A

Figure 82 Free body diagram for unit force applied to degree of freedom 1
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P, = %pl =K. (266)

Py = 2K, (267)

External force can be rewritten as

p
P, K,
o
P}=4P,r=¢—K 268
{ } P2 W sr ( )
4 E_.Ks
(W)

If a unit force is applied to degree of freedom 2, as shown in Figure 83(a), degrees of

freedom 1 and 4 are not allowed to move. The displacement matrix is thus written as

x,] (o
X}={x,}t={1 (269)
X,] (0

In Figure 83(b), X, is allowed to move one unit length upwards. Joint J1 (where degree
of freedom 1 is located) then displaces AX to the left. Joint J2 rotates 86 and, with slight

displacement of X; upwards, can be expressed by

W56 = 1 (270)
or
36 = % (271)
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Figure 83 Free body diagram for unit force applied to degree of freedom 2

Lateral displacement of AX at joint J1 becomes

AX=a-96 =-% (272)

Thus external force P; becomes

P =K, - AX = &K, (273)

External force P,, caused by one unit displacement upwards at joint J1, reduces to

P2=K;-x2=K;-1=% (274)
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which is shown in Figure 83(c). Figure 83(d) illustrates associated external forces P, and
P4 due to the existence of external force P, which is obtained from equilibrium of

moment. External force P; is formulated as

P, = \%Ks + 521 275)

where —Kia— results from the action of axial spring (see Eg. (274)).

External force P4 is written as

P,=—K,({)= WZ—KS(T) | (276)

277)

v

P,
{P}=<P, =J—K +—=2
P,

2 s
. W )

Similarly, when a unit force is applied to degree of freedom 4 (see Figure 84(a)), lateral

displacement AX at joint J2 (see Figure 84(b)) caused by rotation 86 is

AX = 066 (278)

Since

W0 =X=1 (279)

182



then

=1
o0 W

Substituting Eq. (280) into Eq. (278) yields

=_G..
AX W

External force P, resisted by shear spring thus becomes

P, =K; - AX = %— Ks ((-—)='—\%,-- Ks (=)

Due to the existence of Py, forces P; and P4 are

X4=1
t’""\.‘
J2 J1
I3 J4

Figure 84 Free body diagram for unit force applied to degree of freedom 4
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P, = 22K, (}) =22k, (1)
w? w32

Py =K, (1)
w2

Furthermore, external force Ps due to vertical unit displacement is

. K K
- .AX=_§..1=_A
Ps=Ka 2 2

Total force P4 then becomes

oty K
P4-—W2Ks+ 2

The final matrix force due to unit displacement at joint J2 thus reduces to

iKs
p] | W
-a
{P}=1{P, = _\V—sz >
P, o’ K,
_TKs+—
(W 2 )

py=| 2k Lk K _—vs‘—K X}
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Comparing Eq. (288) with (261) shows that the stiffness matrix is the same for both

approaches with the perforated shear wall.
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VIII. RESPONSE STUDY OF FOUR-STORY INDUSTRIAL BUILDING

This section investigates the design parameters of force reduction and
displacement amplification factors for a shear wall box-type building. Results are

compared with UBC design parameters. Other parameters such as the ductility reduction

factor R, overstrength factor Q and system ductility factor y, are also studied.

A. CONFIGURATION AND MASS CENTER

The structural system studied in this section is a reinforced concrete box-type
building. The structural model is based on the building layout shown in Figure 85.
Layout is for diesel power auxiliary building of the type used in nuclear plants as shown
in Figure 86. Sixteen shear walls comprise the model for which the interior walls were
not considered as structural elements[30].Table XTIV shows the lumped mass at different
levels. Level 1 represents the floor of the second story, Level 2 represents the floor of
third story, and so on. Level 1 and Level 3 have heavier masses. At all levels, mass
centers are located near the center of rigidity which is also the center of the floor. This
means that the effect of torsion is small and can be neglected. In fact, only monotonic
loading process is performed statically. Therefore the effect of masses is disregarded.

Having a basically square shape, this building system includes many kinds of
shear walls. One set of shear walls along column lines C2-C4 has dimensions of
74'x26'x48" (SW9), 74'x12'x48"(SW10), 74'x13'x48"(SW11) and 74'x25'x48"(SW12).
One set of shear walls(SW13, SW14, SW15, SW16) along column lines C1-C3 has the
same dimensions as the previous set of shear walls along column lines C2-C4, except its
thickness is 36". Perpendicular to these two sets of shear walls, the dimensions of shear
walls along column lines C1-C2, C3-C4 are 75'x26'x30"(SW1), 75'x26'x36"(SW3),
75'x12'x36"(SW2, SW6), 75'x13'x36" (SW3, SW7), and 75'x25'x36" (SW4, SW8).
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Figure 85 Structural configuration
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It can be seen that this box-type building system has sixteen large shear walls 74'
(or 75") long and 30" to 48" thick. Shear walls denoted SW1 to SW16 above are shown in

the Figure 85. Thickness of walls and floors are shown in Table XV.

Table XIV Mass distribution and mass center

L MASS (k-sec/in) MASS CENTER
COLUMN | COLUMN | COLUMN | COLUMN
LINET | LINE2 | LINE3 |LINE 4 | TOTAL | X (in.) L. Y (in.)
1 3.43 | 3.62 | 3.43 | 3.67 |14.15 | 444.80 | 454.30
2 2.31 | 2.59 | 2.31 | 2.61 | 9.82 | 444.00 | 460.10
3 2.88 | 3.36 | 3.36 | 3.49 | 13.09 | 450.60 | 451.10
2 2.47 | 2.76 | 2.56 | 2.90 | 10.69 | 442.40 | 454.20

NOTE: The mass center is measured from the reference origin.

Table XV Thickness of walls and floors

PANEL POSITION | THICKNESS
e | eve | W | )
] 36 18
2 36 18
1-2 3 36 18
4 30 18
] 36 18
2 36 18
3-4 3 36 18
4 36 18
) 36 18
13 2 36 18
3 36 18
) 4 36 18
1 i | 18
- 2 48 18
3 48 18
4 a8 18

NOTE: Level 4 is at the top of the structure.
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B. LOAD-DISPLACEMENT RELATIONSHIP OF SHEAR WALLS

Based on the Cheng-Mertz solid shear wall model, the load-displacement
relationship of solid shear walls is strongly dependent on moment/shear ratio ( i.e., M/V).
Because the box-type building has elements of the solid shear wall type, the building, as
an indeterminate structure, has sixteen solid shear walls counteracting one another. The
interaction between walls causes moment/shear ratios to change. Therefore elastic
analysis is performed first to determine the actual moment/shear ratios for all walls in the
box-type building. Initial stiffnesses of shear walls are based on load-displacement
relationship of the isolated solid shear walls (i.e., moment/shear ratio of the wall equals
wall height). Table XVI shows moment/shear ratios based on elastic analysis as well as
the isolated wall itself for walls in force direction. From the study of Cheng-Mertz's solid
shear wall model, moment-resistant capacity increases and shear-resistant capacity
decreases when the moment/shear ratio becomes larger in a given isolated shear wall, and
vice versa.

1. Bending Backbone Curves of Shear Walls From above elastic analysis, shear
walls SW3, SW4, SW7 and SW8 in the direction perpendicular to force direction have
small moment/shear ratios. These shear walls have far less moment capacity. Figure 87
shows moment-rotation relationship for rotational spring of unit wall length of SW12 and
SW16. Rotation includes rotation of the wall itself due to flexural behavior and base
rotation due to dowel action. Unit length shear wall represents shear wall with height
equivalent to one unit. Those values are referred to as the bending backbone curves of
shear walls in the analysis.

2. Shear Backbone Curves of Shear Walls Similar to previous cases, shear
capacities of shear walls SW3, SW4, SW7, and SW8 are larger compared to other shear
walls. This is caused by low moment/shear ratios. Figure 88 shows shear-shear
displacement relationship for shear walls SW12 and SW 16. In general, shear capacities

of shear walls in the force direction are smaller than those in the direction perpendicular
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Table XVI Comparison of moment/shear ratio for solid shear walls

Wall No.| Moment/shear ratioM/V)*| Moment/shear ratio(M/V)**
9 3956.1 : 7924.8
10 2977.1 3657.6
11 2624.3 3962.4
12 5450.8 7620.0
13 1441.2 7924.8
14 2387.6 3657.6
15 4309.6 3962.4
16 5377.9 7620.0
(Unit: mm)

*results from elastic analysis
**results from isolated shear wall of the building

to force direction. Also, shear capacities of shear walls (SW12<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>