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ABSTRACT

Most seismic codes specify empirical formulas to estimate the fundamental vibration
period of buildings. Developed first in this investigation is a database on vibration properties —
period and damping ratio of the first two longitudinal, transverse, and torsional vibration modes
— of buildings “measured” from their motions recorded during eight California earthquakes,
starting from the 1971 San Fernando earthquake and ending with the 1994 Northridge
earthquake. To this end, the natural vibration periods of 21 buildings have been measured by
system identification methods applied to the motions of buildings recorded during the 1994
Northridge earthquake. These data have been combined with similar data from the motions of
buildings recorded during the 1971 San Fernando, 1984 Morgan Hill, 1986 Mt. Lewis and Palm
Springs, 1987 Whittier, 1989 Loma Prieta, 1990 Upland, and 1991 Sierra Madre earthquakes
reported by several investigators. The “measured” fundamental periods of moment-resisting
frame and shear wall buildings, extracted from the database, are then used to evaluate the
empirical formulas specified in present US codes. It is shown that although current code
formulas provide periods of moment-resisting frame buildings that are generally shorter than
measured periods, these formulas can be improved to provide better correlation with the
measured period data. The code formulas for concrete shear wall buildings are, however,
inadequate. Subsequently, improved formulas are developed by calibrating the theoretical
formulas against the measured period data through regression analysis. The theoretical formula
for moment-resisting frame buildings is developed using Rayleigh’s method whereas that for
shear wall buildings is developed using Dunkerley’s method. Finally factors to limit the period
calculated by a “rational” analysis, such as Rayleigh’s method or computer-based eigen-analysis,

of both types of buildings are recommended for code applications.
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PREFACE

This work on vibration properties of buildings determined from recorded earthquake
motions is divided into three parts. Part I is concerned with the code formulas for the
fundamental periods of reinforced concrete (RC) and steel moment-resisting frame buildings,
whereas Part II is focused on the code formulas for the fundamental period of concrete shear
wall (SW) buildings. Appendices containing details that could not be included in the Part T and II
are presented in Part III.

Each of the Part I and 1I first presents a brief introduction followed by the measured
period database for the type of buildings under consideration, The fundamental period formulas
in current US codes are reviewed and evaluated next. Subsequently, theoretical formulas are
developed and calibrated against the measured period data using regression analysis techniques.
Each part ends with recommendations for improved formula to estimate the fundamental period
of a building and a factor to limit the period calculated by a “rational” analysis,‘ such as
Rayleigh's method.

Part III contains several appendices where detailed information on several aspects of the
project is presented. Appendix A presents the complete database on vibration properties of
buildings determined from recorded earthquake motions. The database was compiled using
Microsoft Access 2.0; the database is available electronically from the Earthquake Engineering
Research Center at the University of California at Berkeley via their web page at
www eerc.berkeley.edu. Described is the format of the database followed by the techniques that
can be used to add and extract data from the database. Although only the fundamental period
data is used in Parts I and II of this report, the database includes the vibration period and

damping ratio of the first two longitudinal, transverse, and torsional vibration modes.
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Appendix B presents the theoretical background, along with examples, for various system
identification techniques used in this investigation. Appendix C summarizes results of system
identification for twenty-two buildings, conducted as part of this investigation. Appendix D
develops theoretical formula and associated assumptions, which form the basis for empirical
formulas in current US codes to estimate the fundamental period. Appendix E presents
development of the fundamental period formula for moment-resisting frame buildings using
Rayleigh’s method. Appendix F describes the regression analysis method. Appendix G presents
detailed development of theoretical formulas for fundamental period of concrete shear wall
buildings using Rayleigh’s .and Dunkerley’s methods. These formulas are used in Part 1T of this
report for developing improved period formula for shear wall buildings. Appendix H presents
sketches of structural plans and information on shear wall dimensions for nine buildings (this
information was not available for the remaining seven shear wall buildings) followed by the
computations for the fundamental period using the code empirical formula and the proposed
formula involving shear wall dimensions. Finally, Appendix I includes an exhaustive list of
references on system identification techniques, data on period and damping ratio values for

buildings, their recorded motions, and other relevant publications.
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PARTI:
MOMENT-RESISTING FRAME BUILDINGS






INTRODUCTION

The fundamental vibration period of a building appears in the equation specified in
building codes to calculate the design base shear and lateral forces. Because this building
property can not be computed for a structure that is yet to be designed, building codes provide
empirical formulas that depend on the building material (steel, R/C, etc.), building type (frame,
shear wall etc.), and overall dimensions.

The period formulas in the 1997 UBC (Uniform Building Code, 1997) and the 1996
SEAOC recommendations (Recommended Lateral Force Requirements, 1996) are derived from
those developed in 1975 as part of the ATC3-06 project (Tentative Provisions, 1978), based
largely on periods of buildings “measured” from their motions recorded during the 1971 San
Fernando earthquake. However, motions of many more buildings recorded during recent
earthquakes, including the 1989 lLoma Prieta and 1994 Northridge earthquakes, are now
available. These recorded motions provide an opportunity to expand greatly the existing database
on the fundamental vibration periods of buildings. To this end, the natural vibration periods of 21
buildings have been measured by system identification methods applied to the motions of
buildings recorded during the 1994 Northridge earthquake (Goel and Chopra, 1997). These data
have been combined with similar data from the motions of buildings recorded during the 1971
San Fernando, 1984 Morgan Hill, 1986 Mt. Lewis and Palm Springs, 1987 Whittier, 1989 Loma
Prieta, 1990 Upland, and 1991 Sierra Madre earthquakes reported by several investigators (an
exhaustive list of references is available in Appendix I).

The objective of this investigation is to develop improved empirical formulas to estimate
the fundamental vibration period of reinforced-concrete (R/C) and steel moment-resisting frame

(MRF) buildings for use in equivalent lateral force analysis specified in building codes. Presented



first is the expanded database for measured values of fundamental periods of MRF buildings,

against which the empirical formulas in present US codes are evaluated. Subsequently, regression
analysis of the measured data is used to develop improved formulas for estimating the
fundamental periods of R/C MREF buildings and of steel MRF buildings. Finally, factors to limit

the period calculated by a rational analysis, such as Rayleigh’s method, are recommended.



PERIOD DATABASE

The data that are most useful but hard to come by are from structures shaken strongly but
not deformed into the inelastic range. Such data are slow to accumulate because relatively few
structures are installed with permanent accelerographs, and earthquakes causing strong motions
of these instrumented buildings are infrequent. Thus, it is very important to investigate
comprehensively the recorded motions when they do become available, as during the 1994
Northridge earthquake. Unfortunately, this obviously important goal is not always accomplished,
as indicated by the fact that the vibration properties of only a few of the buildings whose motions
were recorded during post-1971 earthquakes have been determined.

Available data on the fundamental vibration period of buildings measured from their
motions recorded during several California earthquakes have been collected (Appendix A). This
database contains data for a total of 106 buildings, including twenty-one buildings that

experienced peak ground acceleration, jig,> 0.15g during the 1994 Northridge earthquake. The

remaining data comes from motions of buildings recorded during the 1971 San Fernando
earthquake and subsequent earthquakes (Tentative Provisions, 1978; Bertero et al., 1988; Cole et
al.,, 1992; Hart and Vasudevan, 1975; Goel and Chopra, 1997).

Shown in Tables 1 and 2 is the subset of this database pertaining to MRF buildings
including 37 data points for 27 R/C MRF buildings, and 53 data points for 42 steel MRF
buildings; buildings subjected to i, = 0.15g are identified with an asterisk (*). “C”, “U”, and
“N” denote buildings instrumented by the California Strong Motion Instrumentation Program
(CSMIP), United States Geological Survey (USGS), and National Oceanic and Atmospheric
Administration (NOAA); “ATC” denotes buildings included in the ATC3-06 report (Tentative

Provisions, 1978). The number of data points exceeds the number of buildings because the



period of some buildings was determined from their motions recorded during more than one
earthquake, or was reported by more than one investigator for the same earthquake.

Table 1. Period data for R/C MRF buildings.

No. Location ID No. of Height Earthquake Period T (sec)
Number Stories (ft)
Longitudinal | Transverse

1 Emeryville NA 30 300.0 | Loma Prieta 2.80 2.80
2 Los Angeles NA 9 120.0 | San Fernando 1.40 1.30
3 Los Angeles NA 14 160.0 | San Fernando 1.80 1.60
4 Los Angeles NA 13 166.0 | San Fernando 1.90 2.40
5 Los Angeles ATC_12 10 137.5 | San Fernando 1.40 1.60
6 Los Angeles ATC 14 7 61.0 | San Fernando 0.90 1.20
7 Los Angeles ATC_2 7 68.0 | San Fernando 1.00 1.00
8 Los Angeles ATC_3 12 159.0 | San Fernando SW 1.33
9 Los Angeles ATC 5 19 196.8 | San Fernando 2.15 2,22
10 | Los Angeles ATC_6 11 124.0 | San Fernando 1.43 1.60
11 Los Angeles ATC 7 22 204.3 | San Fernando 1.90 2.20
12 Los Angeles ATC 9 16. 152.0 | San Fernando 1.10 1.80
13* | Los Angeles 24236 14 148.8 | Northridge NA 2.28
14* | Los Angeles 24463 5 119.0 | Northridge 1.46 1.61
15* | Los Angeles 24463 5 119.0 | Whittier 1.40 1.30
16* | Los Angeles C24569 15 274.0 | Northridge 3.11 3.19
17* | Los Angeles C24579 9 141.0 | Northridge 1.39 1.28
18* | Los Angeles N220-2 20 196.8 | San Fernando 2.27 2.09
19* | Los Angeles N220-2 20 196.8 | San Fernando 2.27 2.13
20* | Los Angeles N220-2 20 196.8 | San Fernando 2.24 1.98
21* | Los Angeles N446-8 22 204.3 | San Fernando 1.94 2.14
22* | Los Angeles N446-8 22 204.3 | San Fernando 1.84 2.17
23* | North Hollywood | €24464 20 169.0 | Northridge 2.60 2.62
24 | North Hollywood | C24464 20 169.0 | Whittier 2.15 2.21
25 | Pomona 23511 2 30.0 | Upland 0.28 0.30
26 | Pomona C23511 2 30.0 | Whittier 0.27 0.29
27 San Bruno 58490 6 78.0 | Loma Prieta 0.85 1.10
28 San Bruno C58490 6 78.0 | Loma Prieta 0.85 1.02
29 San Jose NA 5 65.0 | Morgan Hill 0.83 0.83
30 San Jose C57355 10 124.0 | Loma Prieta 1.01 SW
31 San Jose C57355 10 124.0 | Morgan Hill 0.91 Sw
32 San Jose C57355 10 124.0 | Mount Lewis 0.91 Sw
33* | Sherman Oaks ATC_4 13 124.0 | San Fernando 1.20 1.40
34* | Sherman Oaks (24322 13 184.5 | Whittier 1.90 2.30
35* | Sherman Oaks C24322 13 184.5 | Whittier NA 2.44
36 | Van Nuys ATC_1 7 65.7 | San Fernando 0.79 0.88
37* | Van Nuys (24386 7 65.7 | Whittier 1.40 1.20

* Denotes buildings with iz, 2 0.15g.

NA Indicates data not available.
SW Implies shear walls form the lateral load resisting system.
Number followed by “C” or “N” indicates the station number, and by “ATC” indicates the building number in ATC3-06 report.




Table 2. Period data for steel MRF buildings (continues ...).

No. Location ID No. of Height Earthguake Period T (sec)
Number Stories (ft) Name
Longitudinal | Transverse
1* | Alhambra U482 13 198.0 | Northridge 2.15 2.20
2* | Burbank C24370 6 82.5 | Northridge 1.36 1.38
3* Burbank C24370 6 82.5 | Whittier 1.32 1.30
4 Long Beach C14323 7 91.0 | Whittier 1.19 1.50
5 Los Angeles ATC_1 19 208.5 { San Fernando 3.00 3.21
6 Los Angeles ATC_10 39 494.0 | San Fernando 5.00 476
7 Los Angeles ATC_11 15 202.0 | San Fernando 291 2.79
8 Los Angeles ATC 12 31 336.5 | San Fernando 3.26 3.00
9 Los Angeles ATC 13 NA 102.0 | San Fernando 1.71 1.62
10 Los Angeles ATC 14 NA 158.5 | San Fernando 2.76 2.38
11 | Los Angeles ATC_15 41 599.0 | San Fernando 6.00 5.50
12 | Los Angeles ATC_17 NA. 81.5 [ San Fernando 1.85 1.71
13 | Los Angeles ATC_3 NA 120.0 { San Fernando 2.41 2.23
14 Los Angeles ATC 4 27 368.5 | San Fernando 438 418
15 Los Angeles ATC 5 19 267.0 | San Fernando 397 3.50
16 | Los Angeles ATC_6 17 207.0 { San Fernando 3.00 2.28
17 | Los Angeles ATC_7 NA 250.0 | San Fernando 4.03 3.88
18 Los Angeles ATC 8 32 428.5 | San Fernando 5.00 5.40
19 Los Angeles ATC_ 9 NA 208.5 | San Fernando 3.20 3.20
20* | Los Angeles C24643 19 270.0 | Northridge 3.89 BF
21 Los Angeles N151-3 15 202.0 | San Fernando 2.84 2.77
22 | Los Angeles N157-9 39 459.0 | San Fernando 4.65 NA
23 | Los Angeles N163-5 41 599.0 | San Fernando 6.06 5.40
24* | Los Angeles N172-4 31 336.5 | San Fernando 3.38 2.90
25* | Los Angeles N172-4 31 336.5 | San Fernando 3.42 2.94
26 | Los Angeles N184-6 27 398.0 | San Fernando 4,27 4.26
27 Los Angeles N184-6 27 398.0 | San Fernando 4.37 4,24
28* | Los Angeles N187-9 19 270.0 | San Fernando 3.43 341
29 | Los Angeles N428-30 32 443.5 | San Fernando 4.86 5.50
30 Los Angeles N440-2 17 207.0 | San Fernando 2.85 3.43
31* | Los Angeles N461-3 19 231.7 | San Fernando 3.27 3.34
32* | Los Angeles N461-3 19 231.7 | San Fernando 3.02 3.30
33* | Los Angeles N461-3 19 231.7 | San Fernando 3.28 3.34
34* | Los Angeles U5208 6 104.0 | Northridge 0.94 0.96
35% | Los Angeles U5233 32 430.0 | Northridge 3.43 4.36
36* | Norwalk U5239 7 96.0 | Whittier 1.54 1.54
37* | Norwalk U5239 7 98.0 | Whittier 1.30 1.22

* Denotes buildings with Iig, 2 0.15g.

NA Indicates data not available.
BF Implies braced frame and EBF means eccentric braced frame form the lateral load resisting system.
Number followed by “C”, “N”, or “U"” indicates the station number, and by “ATC” indicates the building number in ATC3-06

report.




Table 2. Period data for steel MRF buildings (... continued).

No. Location D No. of Height Earthquake Period T (sec)
Number Stories (ft) Name
Longitudinal | Transverse
38* | Palm Springs C12299 4 51.5 | Palm Springs 07 0.63
39 Pasadena ATC 2 9 128.5 | San Fernando 1.29 1.44
40* | Pasadena C24541 6 92.3 | Northridge 2.19 1.79
41 Pasadena N267-8 9 130.0 | Lytle Creek 1.02 1.13
42 Pasadena N267-8 9 130.0 | San Fernando 1.26 1.42
43 Richmond 58506 3 45.0 | Loma Prieta 0.63 0.74
44 Richmond C58506 3 45.0 | Loma Prieta 0.60 0.76
45 San Bernardino C23516 3 41.3 | Whittier 0.50 0.46
46* | San Francisco C58532 47 564.0 | Loma Pricta 6.25 EBF
47* | San Prancisco {58532 47 564.0 | Loma Prieta 6.50 EBF
48 San Francisco NA 60 843.2 | Loma Prieta 3.57 3.57
49* | San Jose 57357 13 186.6 | Loma Prieta 2.22 2.22
50* | San Jose C57357 13 186.6 | Loma Prieta 2.23 223
51 San Jose C57357 13 186.6 | Morgan Hill 2.05 2.16
52 San Jose 57562 3 49.5 | Loma Prieta 0.67 0.69
53 San Jose C57562 3 49.5 | Loma Prieta 0.69 (.69

* Denotes baildings with §j,,> 0.15g.

NA Indicates data not available.
BF Implies braced frame and EBF means eccentric braced frame form the lateral load resisting system.
Number followed by “C”, “N”, or “U” indicates the station number, and by “ATC"” indicates the building number in ATC3-06

report.




CODE FORMULAS

The empirical formulas for the fundamental vibration period of MRF buildings specified
in US building codes -- UBC-97 (Uniform Building Code, 1997), ATC3-06 (Tentative
Provisions, 1978), SEAOC-96 (Recommended Lateral Force Requirements, 1996), and NEHRP-
94 (NEHRP, 1994) -- are of the form:

T=cH" 6]
where H is the height of the building in feet above the base and the numerical coefficient C, =
0.030 and 0.035 for R/C and steel MRF buildings, respectively, with one exception: in ATC3-06
recommendations ¢, = 0.025 for R/C MRF buildings.

Equation (1), which first appeared in the ATC3-06 report, was derived using Rayleigh's
method (Chopra, 1995) with the following assumptions: (1) equivalent static lateral forces are
distributed linearly over the height of the building; (2) seismic base shear is proportional to
1/ 7?7, and (3) deflections of the building are controlled by drift limitations (Appendix D).
While the first two assumptions are evident, the third assumption implies that the height-wise
distribution of stiffness is such that the inter-story drift under linearly distributed forces is
uniform over the height of the building. Numerical values of ¢, = 0.035 and 0.025 for steel and
R/C MRF buildings were established in the ATC3-06 report based on measured periods of
buildings from their motions recorded during the 1971 San Fernando earthquake. The
commentary to SEAOC-88 (Recommended Lateral Force Requirements, 1988) states that ...
data upon which the ATC3-06 values were based were re-examined for concrete frames and the

0.030 value judged to be more appropriate.” This judgmental change was adopted by other codes.



The NEHRP-94 provisions also recommend an alternative formula for R/C and steel
MREF buildings:
T=0lN | 2
in which N is the number of stories. The simple formula is restricted to buildings not exceeding
12 stories in height and having a minimum story height of 10 ft. This formula was also specified
in earlier versions of other seismic codes before it was replaced by Eq. (1).

UBC-97 (Uniform Building Code, 1997) and SEAOC-96 codes specify that the design
base shear should be calculated from:
V=CW (3)
in which W is the total seismic dead load and C is the seismic coefficient defined as

c=SL o11c,1<c<®2Cy )
RT

and for seismic zone 4

L 08Z N, I (5)
R

C

in which coefficients C, and C, depend on the near-source factors, N, and N,, respectively,
along with the soil profile and the seismic zone factor Z; I is the important factor; and the R is the
numerical coefficient representative of the inherent overstrength and global ductility capacity of
the lateral-load resisting system. The upper limit of 2.5C,I+ Ron C applies to very-short period
buildings, whereas the lower limit of 0.11C,! (or 0.8ZN,I + R for seismic zone 4) applies to
very-long period buildings. These limits imply that C becomes independent of the period for

very-short or very-tall buildings. The upper limit existed, although in slightly different form, in

10



previous versions of UBC and SEAOC blue book; the lower limit, however, appeared only
recently in UBC-97 and SEAOC-96.

The fundamental period 7, calculated using the empirical Eq. (1), should be smaller than
the “true” period to obtain a conservative estimate for the base shear. Therefore, code formulas
are intentionally calibrated to underestimate the period by about 10 to 20 percent at first yield of
the building (Tentative Provisions, 1978; Recommended Lateral Force Requirements, 1988).

The codes permit calculation of the period by a rational analysis, such as Rayleigh’s
method, but specify that the resulting value should not be longer than that estimated from the
empirical formula (Eq. 1) by a certain factor. The factors specified in various US codes are: 1.2
in ATC3-06; 1.3 for high seismic region (Zone 4) and 1.4 for other regions (Zones 3, 2, and 1) in
UBC-97; and a range of values with 1.2 for regions of high seismicity to 1.7 for regions of very
low seismicity in NEHRP-94. The restriction in SEAOC-88 that the base shear calculated using
the rational period shall not be less than 80 percent of the value obtained by using the empirical
period corresponds to a factor of 1.4 (Cole et al., 1992). These restrictions are imposed in order
to safeguard against unreasonable assumptions in the rational analysis, which may lead to

unreasonably long periods and hence unconservative values of base shear.

11



EVALUATION OF CODE FORMULAS

For buildings listed in Tables ! and 2, the fundamental period identified from their
motions recorded during earthquakes (subsequently denoted as measured period) is compared
with the value given by the empirical code formula (Figures 1 to 4, part a); the measured periods
in two orthogonal lateral directions are shown by solid circles connected by a vertical line,
whereas code periods are shown by a single solid curve because the code formula gives the same
period in the two directions if the lateral resisting systems are of the same type. Also included are
curves for 1.27 and 1.4T representing the limits imposed by codes on the rational value of the
period for use in high seismic regions like California. Also compared are the two values of the
seismic coefficient for each building calculated according to Eqgs. (4) and (5) with I=1 for
standard occupancy structures; R = 3.5 for ordinary concrete moment-resisting frames or R=4.5
for ordinary steel moment-resisting frames; and C,=0.64 and C,=0.44 for seismic zone 4 with
Z =04, soil profile type Sy, i.e., stiff soil profile with average shear wave velocity between 180
and 360 m/s, and N, = N,=1. The seismic coefficients corresponding to the measured periods in
the two orthogonal directions are shown by solid circles connected by a vertical line, whereas the
value based on the code period is shown by a solid curve.

R/C MRF Buildings

The data shown in Figure 1 for all R/C MRF buildings (Table 1) permit the following
observations. The code formula is close to the lower bound of measured periods for buildings up
to 160 ft high, but leads to periods significantly shorter than the measured periods for buildings
in the height range of 160 ft to 225 ft. For such buildings, the lower bound tends to be about 1.2
times the code period. Although data for R/C MRF buildings taller than 225 ft is limited, it

appears that the measured period of such buildings is much longer than the code value. The
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measured periods of most R/C MRF buildings fall between the curves for 1.2T and 1.47,
indicating that the code limits on the period calculated from rational analysis may be reasonable
for high seismic regions like California; improved limits are proposed later. Data on measured
periods of buildings in regions of low seismicity are needed to evaluate the much higher values
of 1.7T permitted in NEHRP-94 to reflect the expectation that these buildings are likely to be
more flexible (Commentary for NEHRP-94). The seismic coefficient calculated from the code
period is conservative for most buildings because the code period is shorter than the measured
period. For very-short (H less than about 50 ft) or very-tall (H more than about 250 ft) buildings,
measured and code periods lead to the same seismic coefficient as C becomes independent of the
period.

Since for design applications, it is most useful to examine the periods of buildings that
have been shaken strongly but did not reach their yield limit, the data for buildings subjected to
igo 2 0.15g (denoted with an * in Table 1) are separated in Figure 2. These data permit the
following observations. For buildings of similar height, the fundamental period of strongly
shaken buildings is longer compared to less strongly shaken buildings because of increased
cracking of R/C that results in reduced stiffness. As a result the measured periods are in all cases
longer than their code values, in most cases much longer. The lower bound of measured periods
of strongly shaken buildings is close to 1.2 times the code period. Thus the coefficient C, = 0.030
in current codes seems to be too small, and a value like 0.035, as will be seen later from the
results of regression analysis, may be more appropriate. Just as observed from the data for all
buildings, the seismic coefficient value calculated using the code period is conservative for most
strongly shaken buildings and the conservatism is larger; exception occurs for very-short or very-

tall buildings for which the seismic coefficient is independent of the period.
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R/C MRF Buildings
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Figure 1. Comparison of (a) measured and code periods, and (b) UBC-97 seismic coefficients
from measured and code periods, for R/C MRF buildings.
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R/C MRF Buildings with U4, 0.15g
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Figure 2. Comparison of (a) measured and code periods, and (b) UBC-97 seismic coefficients
from measured and code periods, for R/C MRF buildings with ji,, 2 0.15g.
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Steel MRF Buildings

The data presented in Figure 3 for all steel MRF buildings (Table 2) permit the following
observations. The code formula leads to periods that are generally shorter than measured periods,
with the margin between the two being much larger than for R/C MRF buildings (Figure 1a). The
code formula gives periods close to the lower bound of measured periods for buildings up to
about 120 ft high, but 20-30% shorter for buildings taller than 120 ft; this conclusion is based on
a larger data set compared to the meager data for R/C MRF buildings. For many buildings the
measured periods exceed 1.47, indicating that the code limits on the period calculated from
rational analysis are too restrictive. The seismic coefficient value calculated from the code period
is conservative for most buildings and the degree of conservatism is larger compared to R/C
buildings; as noted previously for R/C buildings, exception occurs for very-short or very-tall
buildings for which the seismic coefficient is independent of the period.

The data for stee]l MRF buildings subjected to ground acceleration of 0.15g or more
(denoted with an * in Table 2) are separated in Figure 4. Comparing these data with Figure 3, it
can be observed that the intensity of ground shaking has little influence on the measured period.
The period elongates slightly due to stronger shaking but less than for R/C buildings which
exhibit significantly longer periods due to increased cracking. Thus period data from all levels of
shaking of buildings remaining essential elastic may be used to develop improved formulas for

fundamental periods of stee]l MRF buildings.
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Steel MRF Buildings
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Figure 3. Comparison of (a) measured and coede periods, and (b) UBC-97 seismic coefficients
from measured and code periods, for steel MRF buildings.
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Steel MRF Bulldings with {ig,> 0.15g
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THEORETICAL FORMULAS

Although the results presented in the preceding section indicate that the code formulas
provide periods that are, in general, shorter than the measured periods, leading to conservative
estimates of design forces, these formulas may be improved to provide better correlation with the
measured periods. The relation between the period and building height in the improved formulas
should be consistent with theoretical formulas presented next.

Using Rayleigh’s method, the following relationships for fundamental period of
multistory building frames with equal floor masses and story heights have been determined
{(Housner and Brady, 1963; Appendix E):

T=CWH or C,H (6)
The exponent of H and the numerical values of C and C, depends on the stiffness properties,
including their height-wise variation.

Another formula for the fundamental period has been derived by Rayleigh’s method
under the following assumptions: (1) lateral forces are distributed linearly (triangular variation of
forces) over the building height; (2) base shear is proportional to 1/77; (3) weight of the
building is distributed uniformly over its height; and (4) deflected shape of the building, under
application of the lateral forces, is linear over its height, which implies that the inter-story drift is

the same for all stories. The result of this derivation (Appendix D) is:

T=CHry 0
If the base shear is proportional to 1/T%?, as in US codes (Eq. 4), y =2/3 and Eq. (7) gives:
T=C,H" 8)

which is in the ATC3-06 report and appears in current US codes.
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The formulas presented in Egs. (6) to (8) are of the form:
T=aH’ &)
in which constants ¢ and 3 depend on building properties, with B bounded between one-half and
one. This form is adopted in the present investigation and constants o and § are determined by

regression analysis of the measured period data.
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REGRESSION ANALYSIS METHOD
For the purpose of regression analysis, it is useful to recast Eq. (9) as:
y=a+fBx (10)
in which y=1log(T), a=1log(a), and x =log(H). The intercept a at x = 0 and slope B of the
straight line of Eq. (10) were determined by minimizing the squared error between the measured

and computed periods, and then o was back calculated from the relationship a =log(a). The

standard error of estimate is:

Ely{aspr]
(n—2) (11)

Se =

in which y,=log(T;) is the observed value (with 7T = measured period) and
(a+Bx;)=[log(c) + Blog(H.)] is the computed value of the ith data, and » is the total number of
data points. The s, represents scatter in the data and approaches, for large n, the standard
deviation of the measured periods from the best-fit equation.

This procedure leads to values of o, and B for Eq. (9) to represent the best-fit, in the
least squared sense, to the measured period data. However, for code applications, the formula
should provide lower values of the period, and this was obtained by lowering the best-fit line
(Eq. 10) by s, without changing its slope. Thus a,, the lower value of a, is computed from:
log(a, ) =log(cz)—s, (12)
Since s, approaches the standard deviation for a large number of samples and y is log-normal,
o, is the mean-minus-one-standard-deviation or 15.9 percentile value, implying that 15.9

percent of the measured periods would fall below the curve corresponding to o, (subsequently
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referred to as the best-fit - 1o curve). If desired, o, corresponding to other non-exceedance

probabilities may be selected. Additional details of the regression analysis method and the

procedure to estimate o, are available elsewhere (Appendix F).

As mentioned previously, codes also specify an upper limit on the period calculated by
rational analysis. This limit is established in this investigation by raising the best-fit line (Eq. 10)

by s. without changing its slope. Thus a,, the value of o corresponding to the upper limit, is
computed from:

log(cty ) = log(org) +5, (13)
Eq. (9) with o, and P represents the best-fit + 16 curve which will be exceeded by 15.9 percent

of the measured periods.
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RESULTS OF REGRESSION ANALYSIS
For each of the two categories of MRF buildings -- R/C and steel -- results are presented
for the following regression analyses:
1. Unconstrained regression analysis to determine o and J3.
2. Constrained regression analysis to determine o with the value of B from unconstrained

regression analysis rounded-off to the nearest 0.05, e.g., B =0.92 is rounded-off to 0.90, and
B=0.63 to 0.65.

3. Constrained regression analysis to determine a with f fixed at 0.75, the value in some current
building codes (Eq. 1).
4. Constrained regression analysis to determine o with B fixed at 1.0, the value which
corresponds to the alternative formula specified in NEHRP-94 (Eq. 2).
These regression analyses, implemented using the data from all buildings (Tables 1 and
2), lead to the formulas in Table 3 for R/C MRF buildings and in Table 4 for steel MRF
buildings. In order to permit visual inspection, the formulas obtained from the second, third, and
fourth regression analyses are presented in Figures 5 and 6 together with the measured period
data. In order to preserve clarity in the plots, the formulas from the first regression, which are
close to those from the second regression, are not included in these figures. The best-fit curves
are labeled as T; and the best-fit - 1o curves as 7.
R/C MRF Buildings
Figure 5 gives an impression of the scatter in the data of the measured periods relative to

curves from regression analyses. As expected, the data fall above and below the curve, more or

less evenly, and most of the data are above the best-fit - 1o curve. Observe that, as expected,
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constrained regression generally implies a larger standard error of estimate, s, (Table 3),

indicating greater scatter of the data about the best-fit curve; s, increases as the value of B
deviates increasingly from its unconstrained regression value. However, s, is insensitive to B in

the immediate vicinity of its unconstrained regression value, as evident from nearly identical

values (up to three digits after the decimal point) of s, from the first two regression analyses
(Table 3). The value of s, is significantly larger if = 0.75 or 1.0, demonstrating that the period

formula with either of these B values, as in present US codes, is less accurate. Thus the best
choice is B = 0.90 with the associated o = 0.015.

The values of a and B, determined from all available data, should be modified to
recognize that the period of a R/C building lengthens at levels of motion large enough to cause

cracking of concrete. The data from buildings experiencing ji,, = 0.15g are too few (Figure 2) to

permit a reliable value of B from unconstrained regression analysis. Therefore, constrained
regression analysis of these data with § = 0.90, determined from the full set of data, was

conducted to obtain a, =0.016 and a, =0.023 leading to:

T, =0.016 H*?® (14)
and
T, =0.023 g°% (15)

Eqgs. (14) and (15) are plotted in Figure 7 together with the measured period data. As expected,

very few data fall above the curve for 7;, or below the curve for 7, . This indicates that Eq. (14)

is suitable for estimating, conservatively, the fundamental period and Eq. (15) for limiting the
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period computed from rational analysis. This period should not be longer than 1.47; ; the factor

1.4 is determined as the ratio 0.023/0.016, rounded-off to one digit after the decimal point.
Steel MRF Buildings

Figure 6 gives an impression of the scatter in the measured period data relative to the
best-fit curve. As expected, the data fall above and below the curve, more or less evenly, and

most of the data are above the best-fit - 1o curve. Observe that values of s, are almost identical
for unconstrained regression and constrained regression with rounded-off value of 8 because this

value is close to the regressed value (Table 4); however, s, increases as the value of B deviates

increasingly from its unconstrained regression value. It is larger if B = 0.75 or 1.0, demonstrating
that the period formula with either of these B values, as in present US codes, is less accurate.

Thus the best choice is § = 0.80 with the associated o, =0.028 and o, = 0.045 leading to:

T, = 0.028 %% (16)
and
T,, = 0.045 5o (17)

Egs. (16) and (17) are plotted in Figure 8 together with the measured period data. As
observed earlier for R/C buildings, Eq. (16) is suitable for estimating, conservatively, the
fundamental period and Eq. (17) for limiting the period from rational analysis. The period from
rational analysis should not be longer than 1.67;; the factor 1.6 is determined as the ratio
0.045/0.028, rounded-off to one digit after the decimal point. The period formula (Eq. 16) and
the factor 1.6, determined from all available data, also apply to strongly shaken buildings
because, as observed earlier, the intensity of shaking has little influence on the period of steel

MRF buildings, so long as there is no significant yielding of the structure.
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Table 3. Results from regression analysis: R/C MRF buildings.

Regression Analysis Type

Period Formula

Best Fit Best-Fit - 1o s,
Unconstrained T,=0017H*” | T, =0.014 " 0.209
Constrained with B = 0.90 T, =0.018 H** | T, =0.015H*¥ 0.209
Constrained with B = 0.75 T, =0038H"" | T =0030H"" 0.229
Constrained with § = 1 T, =0011H T, =0.009H 0.214

Table 4. Results from regression analysis: steel MRF buildings.
Regression Analysis Type Period Formula

Best-Fit Best-Fit - 1o s,
Unconstrained T, =0.035g%% | T, =0.027 &5 0.233
Constrained with § = 0.80 T,=0035H"% | 7, =0.028 H** | 0.233
Constrained with B = 0.75 T, =0.046 H*™ | T, =0.036 H*™ | 0.237
Constrained with § = 1.0 T, =0.013H T, =0.009H 0.277
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Steel MRF Buildings
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CONCLUSIONS AND RECOMMENDATIONS

Based on analysis of the available data for the fundamental vibration period of 27 R/C
MRF buildings and 42 stee] MRF buildings, measured from their motions recorded during
earthquakes, Eqs. (14) and (16) are recommended for estimating, conservatively, the period of
R/C and steel buildings, respectively. These formulas provide the “best” fit of Eq. (9) to the
available data; the fit is better than possible with B = 0.75 or 1.0 in current US codes.
Furthermore, the period from rational analysis should not be allowed to exceed the value from
the recommended equations by a factor larger than 1.4 for R/C MRF buildings or 1.6 for steel
MRF buildings. Since these recommendations are developed based on data from buildings in
California, they should be applied with discretion to buildings in less seismic regions of the US
or other parts of the world where building design practice is significantly different than in
California.

Regresston analyses that led to the recommended formulas should be repeated
periodically on larger data sets. The database can be expanded by including buildings, other than
those in Tables 1 and 2, whose motions recorded during past earthquakes have, so far, not been
analyzed. Period data should also be developed for additional buildings when records of their

motions during future earthquakes become available.
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PART II:
SHEAR WALL BUILDINGS
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INTRODUCTION

The fundamental vibration period of a building appears in the equation specified in
building codes to calculate the design base shear and lateral forces. Because this building
property can not be computed for a structure that is yet to be designed, building codes provide
empirical formulas that depend on the building material (steel, R/C, etc.), building type (frame,
shear wall etc.), and overall dimensions.

The empirical period formulas for concrete shear wall (SW) buildings in the 1997 UBC
(Uniform Building Code, 1997) and the 1996 SEAOC bluebook (Recommended Lateral Force
Requirements, 1996) were derived, by modifying the ATC3-06 formulas (Zentative Provisions,
1978), during development of the 1988 SEAOC bluebook to more accurately reflect the
configuration and material properties of these systems (Recommended Lateral Force
Requirements, 1988: Appendix 1E2b(1)-T). The period formulas in ATC3-06 (Tentative
Provisions, 1978) are based largely on motions of buildings recorded during the 1971 San
Fernando earthquake. However, motions of many more buildings recorded during recent
earthquakes, including the 1989 Loma Prieta and 1994 Northridge earthquakes, are now
available. These recorded motions provide an opportunity to expand greatly the existing database
on the fundamental vibration periods of buildings. To this end, the natural vibration periods of
twenty-one buildings have been measured by system identification methods applied to the
motions of buildings recorded during the 1994 Northridge carthquake (Appendix A). These data
have been combined with similar data from the motions of buildings recorded during the 1971
San Fernando, 1984 Morgan Hill, 1986 Mt. Lewis and Palm Springs, 1987 Whittier, 1989 Loma

Prieta, 1990 Upland, and 1991 Sierra Madre earthquakes.
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The objective of this investigation is to develop improved empirical formulas to estimate
the fundamental vibration period of concrete SW buildings for use in equivalent lateral force
analysis specified in building codes. Presented first is the expanded database for “measured”
values of fundamental periods of SW buildings, against which the code formulas in present US
codes are evaluated; similar work on limited data sets has appeared previously (e.g., Arias and
Husid, 1962; Cole et al., 1992; Housner and Brady, 1963; Lee and Mau, 1997). It is shown that
current code formulas for estimating the fundamental period of concrete SW buildings are
grossly inadequate. Subsequently, an improved formula is developed by calibrating a theoretical
formula, derived using Dunkerley’s method, against the measured period data through regression
analysis, Finally, a factor to limit the period calculated by a “rational” analysis, such as

Rayleigh’s method, is recommended.
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PERIOD DATABASE

The data that are most useful but hard to come by are from structuresl shaken strongly but
not deformed into the inelastic range. Such data are slow to accumulate because relatively few
structures are installed with permanent accelerographs and earthquakes causing strong motions of
these instrumented buildings are infrequent. Thus, it is very important to investigate
comprehensively the recorded motions when they do become available, as during the 1994
Northridge earthquake. Unfortunately, this obviously important goal is not always accomplished,
as indicated by the fact that the vibration properties of only a few of the buildings whose motions
were recorded during post-1971 earthquakes have been determined.

Available data on the fundamental vibration period of buildings measured from their
motions recorded during several California earthquakes have been collected (Appendix A). This
database contains data for a total of 106 buildings, including twenty-one buildings that

experienced peak ground acceleration, ji,, = 0.15g during the 1994 Northridge earthquake. The

remaining data comes from motions of buildings recorded during the 1971 San Fernando
earthquake and subsequent earthquakes (Cole et al., 1992; Gates et al., 1994; Hart et al., 1975;
Hart and Vasudevan, 1975; Marshall et al., 1994; MacVerry, 1979; Werner et al., 1992).

Shown in Table 1 is the subset of this database pertaining to 16 concrete SW buildings

(27 data points); buildings subjected to peak ground acceleration, i, > 0.15g are identified with

an asterisk (*). “C” and “N” denote buildings instrumented by the California Strong Motion
Instrumentation Program (CSMIP) and National Oceanic and Atmospheric Administration
(NOAA); “ATC” denotes one of the buildings included in the ATC3-06 report (Tentative
Provisions, 1978) for which the height and base dimensions were available from other sources,

but these dimensions for other buildings could not be discerned from the plot presented in the
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ATC3-06 report. The number of data points exceeds the number of buildings because the period

of some buildings was determined from their motions recorded during more than one earthquake,

or was reported by more than one investigator for the same earthquake.

Table 1. Period data for concrete SW buildings.

No. Location ID No. of | Height | Earthquake Period T (sec) Width | Length
Number | Stories (ft) (ft) (ft)
Longi- | Trans-
tudinal | verse
1 Belmont 58262 2 28.0 | Loma Prieta 0.13 0.20 NA NA
2% Burbank C24385 10 88.0 | Northridge 0.60 0.56 75.0 215.0
3% Burbank (24385 10 88.0 | Whittier 0.57 0.51 75.0 215.0
4 Hayward (58488 4 50.0 | Loma Prieta 0.15 0.22 NA NA
5 Long Beach | C14311 5 71.0 | Whittier 0.17 0.34 81.0 205.0
6 Los Angeles | ATC_3 12 159.0 | San Fernando 1.15 MRE 60.0 161.0
T* Los Angeles | C24468 8 127.0 | Northridge 1.54 1.62 63.0 154.0
8+ | Los Angeles | C24601 17 149.7 | Northridge 1.18 1.05 80.0 227.0
9 Los Angeles | C24601 17 149.7 | Sierra Madre 1.00 1.00 80.0 227.0
10* | Los Angeles | N253-5 12 161.5 | San Fernando 1.19 1.14 76.0 156.0
11* | Los Angeles | N253-5 12 161.5 | San Fernando 1.07 1.13 76.0 156.0
12 Palm Desert | C12284 4 50.2 | Palm Springs 0.50 0.60 60.0 180.0
13 Pasadena N264-5 10 142.0 | Lytle Creek 0.71 0.52 69.0 75.0
14* | Pasadena N264-5 10 142.0 | San Fernando 0.98 0.62 69.0 75.0
15* | Pasadena N264-5 10 142.0 | San Fernando 0.97 0.62 69.0 75.0
16 Piedmont 58334 3 36.0 | Loma Prieta 0.18 0.18 NA NA
17 Pleasant Hill | C58348 3 40.6 | Loma Prieta 0.38 0.46 77.0 131.0
18 San Bruno 58394 9 104.0 | Loma Prieta 1.20 1.30 84.0 192.0
19 San Bruno 58394 9 104.0 | Loma Prieta 1.00 1.45 84.0 192.0
20 San Jose C57355 i0 124.0 | Loma Prieta MRF 0.75 82.0 190.0
21 San Jose C57355 10 124.0 | Morgan Hill MRE 0.61 82.0 190.0
22 San Jose C57355 10 124.0 | Mount Lewis MRF 0.61 82.0 190.0
23 San Jose C57356 10 96.0 | Loma Prieta 0.73 0.43 64.0 210.0
24 San Jose C57356 10 96.0 | Loma Prieta 0.70 0.42 64.0 210.0
25 San Jose C57356 10 96.0 | Morgan Hill 0.65 0.43 64.0 210.0
26 San Jose C57356 10 96.0 | Mount Lewis 0.63 0.41 64.0 210.0
27* | Watsonville | C47459 4 66.3 | Loma Prieta 0.24 0.35 71.0 75.0

* Denotes buildings with i, 2 0.15g.

NA Indicates data not available.
MRF Implies moment-resisting frames form the lateral load resisting system.
Number followed by “C” or “N” indicates the station number, and by “ATC” indicates the building number in ATC3-06 report,
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CODE FORMULAS
The empirical formula for fundamental vibration period of concrete SW buildings
specified in current US building codes -- UBC-97 (Uniform Building Code, 1997), SEAOC-96
(Recommended Lateral Force Requirements, 1996), and NEHRP-94 (NEHRP, 1994) -- is of the
form:
T=CH" (1
where H is the height of the building in feet above the base and the numerical coefficient

C,=0.02. UBC-97 and SEAOC-96 permit an alternative value for C, to be calculated from:

C,=0.1/A (2)

where A_, the combined effective area (in square feet) of the shear walls, is defined as:

A=Y A[02+(D/Hf];  D/HS09 3)

i=1
in which A; is the horizontal cross-sectional area (in square feet) and D; is dimension in the
direction under consideration (in feet) of the ith shear wall in the first story of the structure; and

NW is the total number of shear walls. The value of D,/ H in Eq. (3) should not exceed 0.9.

ATC3-06 (Tentative Provisions, 1978) and earlier versions of other US codes specify a
different formula:

_0.05H @)

="7p

where D is the dimension, in feet, of the building at its base in the direction under consideration.
UBC-97 and SEAOC-96 codes specify that the design base shear should be calculated
from:

V=CW &)
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in which W is the total seismic dead load and C is the seismic coefficient defined as

G I, 25¢C,

C T 011C,I<C< -—R—I and for seismic zone 4 €2 ST (6)

in which coefficients C, and C, depend on the near-source factors, N, and N,, respectively,
along with the soil profile and the seismic zone factor Z; I is the importance factor; and the R is
the numerical coefficient representative of the inherent overstrength and global ductility capacity
of the lateral-load resisting system. The upper limit of 2.5C,I+ Ron C applies to very-short
period buildings, whereas the lower limit of 0.11C,I (or 0.8ZN,I+ R for seismic zone 4)
applies to very-long period buildings. These limits imply that C becomes independent of the
period for very-short or very-tall buildings. The upper limit existed, although in slightly different
form, in previous versions of UBC and SEAOC bluebook; the lower limit, however, appeared
only recently in UBC-97 and SEAOC-96.

The fundamental period 7, calculated using the empirical Eqgs. (1) or (4), should be
smaller than the “true” pericd to obtain a conservative estimate for the base shear. Therefore,
code formulas are intentionally calibrated to underestimate the period by about 10 to 20 percent
at first yield of the building (Tentative Provisions, 1978; Recommended Lateral Force
Requirements, 1988).

The codes permit calculation of the period by established methods of mechanics (referred
to as “rational” analyses in this investigation), such as Rayleigh’s method or computer-based
eigen-value analysis, but specify that the resulting value should not be longer than that estimated
from the empirical formula (Eqs. 1 or 4) by a certain factor. The factors specified in various US
codes are: 1.2 in ATC3-06; 1.3 for high seismic region (Zone 4) and 1.4 for other regions (Zones

3, 2, and 1) in UBC-97 and SEAOC-96; and a range of values with 1.2 for regions of high
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seismicity to 1.7 for regions of very low seismicity in NEHRP-94. The restriction in SEAOC-88
that the base shear calculated using the “rational” period shall not be less than 80 percent of the
value obtained by using the empirical period corresponds to a factor of 1.4 (Cole et al., 1992).
These restrictions are imposed in order to safeguard against unreasonable assumptions in the
“rational” analysis, which may lead to unreasonably long periods and hence unconservative

values of base shear.
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EVALUATION OF CODE FORMULAS

For buildings listed in Table 1, the fundamental period identified from their motions
recorded during earthquakes (subsequently denoted as “measured” period) is compared with the
values given by the code empirical formulas (Figures 1 to 3, part a). Also compared are the two
values of the seismic coefficient for each building calculated according to Eq. (6) with =1 for
standard occupancy structures; R =35.5 for concrete shear walls; and C,=0.64 and C,=0.44
for seismic zone 4 with Z =0.4, soil profile type §p, i.e., stiff soil profile with average shear
wave velocity between 180 and 360 m/s, and N, = N, =1 (Figures 1 to 3, part b).
Code Formula: Eq. (1) With C,=0.02

For all buildings in Table 1, the periods and seismic coefficients are plotted against the
building height in Figure 1. The measured periods in two orthogonal directions are shown by

circles (solid for jj,, > 0.15g, open for jj,, < 0.15g) connected by a vertical line, whereas the code

period is shown by a solid curve because the code formula gives the same period in the two
directions if the lateral-force resisting systems are of the same type. Also included are the curves
for 1.2T and 1.47 representing the limits imposed by codes on a “rational” value of the period for
use in high seismic regions like California. The seismic coefficients (Eq. 6) corresponding to the
measured periods in the two orthogonal directions are also shown by circles connected by a
vertical line, whereas the value based on the code period is shown by a solid curve.

Figure 1 leads to the following observations. For a majority of buildings, the code
formula gives a period longer than the measured value. In contrast, for concrete and steel
moment-resisting frame buildings, the code formula almost always gives a period shorter than the
measured value (Part I). The longer period from the code formul.'; leads to seismic coefficient

smaller than the value based on the measured period if the period falls outside the flat portion of
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the seismic coefficient spectrum; otherwise the two periods lead to the same seismic coefficient.
For most of the remaining buildings, the code formula gives a period much shorter than the
measured value and seismic coefficient much larger than the value based on the measured period.
Since the code period for many buildings is longer than the measured period, the limits of 1.27T or
1.4T for the period calculated from a “rational” analysis are obviously inappropriate.

The building height alone is not.sufficient to estimate accurately the fundamental period
of SW buildings because measured periods of buildings with similar heights can be very
different, whereas they can be similar for buildings with very different heights. For example, in
Table 1 the measured longitudinal periods of buildings 4 and 12 of nearly equal heights differ by
a factor of more than three; the heights of these buildings are 50 ft and 50.2 ft whereas the
periods are 0.15 sec and 0.50 sec, respectively. On the other hand, measured longitudinal periods
of buildings 13 and 23 are close even though building 13 is 50% taller than building 23; periods
of these buildings are 0.71 sec and 0.73 sec, whereas the heights are 142 ft and 96 ft,
respectively. The poor correlation between the building height and the measured period is also
apparent from the significant scatter of the measured period data (Figure 1a).

Alternate Code Formula: Eq. (1) With C, From Egs. (2) and (3)

Table 2 lists a subset of nine buildings (17 data points) with their A, values calculated

from Eq. (3) using shear wall dimensions obtained from structural drawings; for details see
Appendix H. These dimensions were not available for the remaining seven buildings in Table 1.
In Figure 2 the alternate code formula for estimating the fundamental period is compared

with the measured periods of the nine buildings. The code period is determined from Egs. (1) to

(3) using the calculated value of A_ and plotted against J*'*+ \/,_4? . This comparison shows that
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the alternate code formula almost always gives a value for the period that is much shorter than

the measured periods, and a value for the seismic coefficient that is much higher than from the
measured periods. The measured periods of most buildings are longer than the code imposed
limits of 1.2T and 1.4T on the period computed from a “rational” analysis. Although the code
period formula gives a conservative value for the seismic coefficient, the degree of conservatism
seems excessive for most buildings considered in this investigation.

Table 2. Measured periods and areas of selected concrete SW buildings.

No. | ID No. Height | Measured Period A, (Sq. ft) Ke (%)
(fv)

Longi- | Trans- | Longi- | Trans- | Longi- | Trans-

tudinal | verse | tudinal | verse | tudinal verse
1* | C24385 88.0 0.60 0.56 83.5 92.1 0.1642 0.1677
2* | C24385 88.0 0.57 0.51 83.5 92.1 0.1642 0.1677
3« | C24468 127.0 1.54 1.62 13.8 34.2 0.0265 0.0345
4* | C24601 149.7 1.18 1.05 63.3 106.9 0.0635 0.0939
5 24601 1497 1.00 1.00 63.3 106.9 0.0635 0.0939
6 C12284 50.2 0.50 0.60 215 17.7 0.0537 0.0550
7 58334 36.0 0.18 0.18 26.2 26.2 0.1311 0.1311
8 58348 40.6 0.38 0.46 26.6 12.2 0.1118 0.0501
9 C58394 104.0 1.20 1.30 21.5 222 0.0330 0.0189
10 | ©58394 104.0 1.00 1.45 21.5 222 0.0330 0.0189
11 | €57355 C 1240 MRF 0.75 MRF 104.5 MRF 0.2751
12 | ¢57355 124.0 MRF 0.61 MRF 104.5 MRF 0.2751
13 | C57355 124.0 MRF 0.61 MRF 104.5 MRF 0.2751
14 | C57356 96.0 0.73 0.43 60.7 84.5 0.1280 0.1547
15 | C57356 96.0 0.70 0.42 60.7 84.5 0.1280 0.1547
16 | €57356 96.0 0,65 0.43 60.7 84.5 0.1280 0.1547
17 | C57356 96.0 0.63 0.41 60.7 84.5 0.1280 0.1547

* Denotes buildings with igg, 2 0.15g.

MRF Implies moment-resisting frames form the lateral load resisting system.
Number followed by “C” indicates the station number.

ATC3-06 Formula
In Figure 3, the ATC3-06 formula for estimating the fundamental period is compared

with the measured periods of all buildings listed in Table 1. The code period is determined from

Eq. (4) using the H and D dimensions of the building (Table 1) and plotted against H =D

This comparison demonstrates that Eq. (4) significantly underestimates the period and
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considerably overestimates the seismic coefficient for many buildings and the ATC3-06 imposed

limit of 1.27 is too restrictive,

The ratio H ++/D is not sufficient to estimate accurately the fundamental period of
concrete SW buildings because measured periods of buildings with similar values of this ratio

can be very different, whereas they can be similar for buildings with very different values of
H ++/D . For example, in Table 1 the measured transverse period of building 18 and measured
longitudinal period of building 27 -- two buildings with similar values of H ++/D -- differ by

nearly a factor of five; H +\/B =7.51 and 7.87, and measured periods = 1.30 sec and 0.24 sec,

respectively. On the other hand, the measured longitudinal and transverse periods of building ¢
are the same, equal to 1 sec, even though the values of H +JB in the two directions are 16.7

and 9.93. The poor correlation between the ratio H ++/D and the measured periods is also

apparent from a large scatter of the measured period data (Figure 3a).
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Figure 1. Comparison of (a) measured and code periods, and (b) UBC-97 seismic coefficients
from measured and code periods.

46



Concrete SW Buildings

2
o (.3
175 0., 3 0.15g
o Ug,40.15g ®
1.5 >
81.25 2
) . o P
5o : : 14" ’;
Q P e
20.75 g s s
Weo Ll
05 .‘,’ "’.-.5*‘-'
P g Tk 0.1HP4-AY2
0.25 —
0
0 1 2 3 /4 6 7 8
H3 4+Aé/2
(2)
0.3
Yalues aof C from
-— Code Period
20'25 « Measured Reriod, @, = 0.159
_g o Medsured F}eriod, EEO <0.15g
% 0.2 - S
S 8 \
[+]
£0.15 ° S
(72}
)
(D) 3 H P
ICT’ 0.1 - o :
0 . °
[01]
=0.05
0
0 1 2 3 4 5 6 7 8
H3/4_:_Aé12

(b)

Figure 2. Comparison of (a) measured and code periods, and (b) UBC-97 seismic coefficients
from measured and code periods; code periods are calculated from the alternate formula.
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Figure 3. Comparison of (a) measured and code periods, and (b) UBC-97 seismic coefficients
from measured and code periods; code pericds are calculated from the ATC3-06 formula.
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THEORETICAL FORMULAS
The observations in the preceding section clearly indicate that the current code formulas
for estimating the fundamental period of concrete SW buildings are grossly inadequate. For this
purpose, equations for the fundamental period are derived using established analytical
procedures. Based on Dunkerley’s method (Jacobsen and Ayre, 1958: pages 119-120 and 502-
505; Inman, 1996: pages 442-449; Veletsos and Yang, 1977), the fundamental period of a

cantilever, considering flexural and shear deformations, is:
T=T}+T} )

in which 7, and 7 are the fundamental periods of pure-flexural and pure-shear cantilevers,
respectively. For uniform cantilevers T, and 7; are given by (Chopra, 1995: page 592;

Timoshenko et al., 1974: pages 424-431; Jacobsen and Ayre, 1958: pages 471-496):

Lo [m o (8)
Fas16 VEI

m 1 9
TS““\/%TXH

In Eqgs. (8) and (9), m is the mass per unit height, E is the modulus of elasticity, G is the shear

modulus, I is the section moment of inertia, A is the section area, and x is the shape factor to
account for nonuniform distribution of shear stresses (= 5/6 for rectangular sections). Combining
Egs. (7) to (9) and recognizing that G=E+2(l+,u), where the Poison’s ratio p=0.2 for

concrete, leads to:
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m 1 (10)
T_4‘/E\/A_8H

A (11)

where D is the plan dimension of the cantilever in the direction under consideration. Comparing
Egs. (10) and (11) with Eq. (9) reveals that the fundamental period of a cantilever considering
flexural and shear deformations may be computed by replacing the area A in Eq. (9) with the

equivalent shear area A, given by Eq. (11).

The period T from Eq. (10) normalized by 7, is plotted in Figure 4 against the ratio
H + D on a logarithmic scale. Also shown is the period of a pure-shear cantilever and of a pure-
flexural cantilever. Eq. (10) approaches the period of a pure-shear cantilever (Eq. 9) as H + D
becomes small and the period of a pure-flexural cantilever (Eq. 8) for large values of H + D . For
all practical purposes, the contribution of flexure can be neglected for shear walls with
H + D < 0.2 whereas the contribution of shear can be neglected for shear walls with H + D >5;
the resulting error is less than 2%. However, both shear and flexural deformations should be

included for shear walls with 0.2 < H + D <5.

Equation (10), based on Dunkerley’s method, provides a highly accurate value for the true
fundamental period of a shear-flexural cantilever. This can be demonstrated by recognizing that
the exact period is bounded by the periods obtained from Dunkerley’s and Rayleigh’s methods;
Dunkerley’s method gives a period longer than the éxact value (Jacobsen and Ayre, 1958: pages

113-120; Inman, 1996: pages 442-449), whereas Rayleigh’s method provides a shorter period
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(Chopra, 1995: page 554). Also shown in Figure 4 is the period determined by Rayleigh’s
method using the deflected shape due to lateral forces varying linearly with height, considering
both shear and flexural deformations; details are available in Appendix G. The resulting period is
very close to that obtained from Eq. (10), derived using Dunkerley’s method; the difference
between the two periods is no more than 3%. Since the exact period lies between the two

approximate values, Eq. (10) errs by less than 3%.

20
—r DunIJerley’s Method
' - -4 - Rayleigh’s Methpd
10 \\
T B
=
2 \\
| /\N |
Flexural Cantilever
N
0'8.1 0.2 0.5 2 5 10

1
H/D
Figure 4. Fundamental period of cantilever beams.

Now consider a class of symmetric-plan buildings -- symmetric in the lateral direction
considered -- with lateral-force resisting system comprised of a number of uncoupled (i.e.,
without coupling beams) shear walls connected through rigid floor diaphragms. Assuming that
the stiffness properties of each wall are uniform over its height, the equivalent shear area, A., is

given by a generalized version of Eq. (11) (details are available in Appendix G):
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2
i H A;
A= Ei(};) | :
T [1+0.83(£1) ] (12)
D
where A;, H;,and D; are the area, height, and dimension in the direction under consideration of

the ith shear wall, and NW is the number of shear walls. With A, so defined, Eq. (10) is valid for

a system of shear walls of different height.

Equation (10) is now expressed in a form convenient for buildings:

13
T=4o1/—’?—L_H (13
kG ,/Ae

where p is the average mass density, defined as the total building mass (= mH) divided by the
total building volume (=ApH -- Ap is the building plan area), i.e., p=m/Ap; and 4, is the
equivalent shear area expressed as a percentage of Az, i.e.,

A. (14)

Equation (13) applies only to those buildings in which lateral load resistance is provided
by uncoupled shear walls. Theoretical formulas for the fundamental period of buildings with
coupled shear walls are available in Rutenberg (1975), and for buildings with a combination of
shear walls and moment-resisting frames in Heiderbrecht and Stafford-Smith (1973) and
Stafford-Smith and Crowe (1986). It seems that these formulas can not be simplified to the form
of Eq. (13).

Sozen (1989) and Wallace and Mochle (1992) also presented a formula for the
fundamental vibration period of SW buildings. Their formula was developed based on pure-
flexural cantilever idealization of SW buildings and ignored the influence of shear deformations.

Furthermore, the numerical constant in their formula was determined based on assumed material
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properties and effective member stiffness equal to half its initial value. In contrast, the formula
developed in this investigation (Eq. 13) includes both flexural and shear deformations and the
numerical constant is determined directly from regression analysis of measured period data as

described in the following sections.
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REGRESSION ANALYSIS METHOD
Although C_=4OW in Eq. (13) can be calculated from building properties, it is
determined from regression analysis to account for variations in properties among various ,
buildings and for differences between building behavior and its idealization. For this purpose, it

is useful to write Eq. (13) as:

T=C——H (15)
AE

and recast it as:

y=a+x (16)

in which y=log(T), a=1og(C), and x =log(H +[4,). The intercept a at x = 0 of the straight
line in Eq. (16) was determined by minimizing the squared error between the measured and
computed periods, and then C was back-calculated from the relationship @ =1log(C}. The

standard error of estimate is:

Ebtasn)f
(n-2) (17

Se =

in which y,=log(T;) is the observed value (with 7, = measured period) and
(a+x)=1og(C)+ log((H +JA. )) is the computed value of the ith data, and # is the total number
of data points. The s, represents scatter in the data and approaches, for large n, the standard
deviation of the measured period data from the best-fit equation.

This procedure leads to the value of C, for Eq. (15) to represent the best-fit, in the least

squared sense, to the measured period data. However, for code applications the formula should
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provide a lower value of the period and this was obtained by lowering the best-fit line (Eq. 16) by

s. without changing its slope. Thus C, , the lower value of C, is computed from:

log(EL)= log(fk)—se (18)
Since s, approaches the standard deviation for large number of samples and y is log-normal, C,
is the mean-minus-one-standard-deviation or 15.9 percentile value, implying that 15.9 percent of
the measured periods would fall below the curve corresponding to C, (subsequently referred to
as the best-fit — 1o curve). If desired, C, corresponding to other non-exceedance probabilities
may be selected. Additional details of the regression analysis method and the procedure to
estimate C, are available in Appendix F.

As mentioned previously, codes also specify an upper limit on the period calculated by a

“rational” analysis. This limit is established in this investigation by raising the best-fit line (Eq.
16) by s, without changing its slope. Thus C, , the upper value of C corresponding to the upper
limit, is computed from:

log(C, )= log(fk) +5, (19
Eq. (15) with C, represents the best-fit + 1o curve which will be exceeded by 15.9 percent of

the measured periods.
Regression analysis in the log-log space (Eq. 16) is preferred over the direct regression on

Eq. (15) because it permits convenient development of the best-fit — 1o and best-fit + 1o curves;

both regression analyses give essentially identical values of C,.
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RESULTS OF REGRESSION ANALYSIS

The formula for estimating the fundamental period of concrete SW buildings was
obtained by calibrating the theoretical formula of Eq. (15) by regression analysis of the measured
period data for nine concrete SW buildings (17 data points) listed in Table 2. For each building,
the equivalent area 4, was calculated from Eqs. (12) and (14) using dimensions from structural
plans (Appendix H); for shear walls with dimensions varying over height, A; and D; were taken

as the values at the base. Regression analysis gives ¢ ,=0.0023 and ¢, =0.0018. Using these
values for C in Eq. (15) give T, and T, the best-fit and best-fit — 1o values of the period,

respectively.
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Figure 5. Results of regression analysis: all buildings.

These period values are plotted against H + ,/Ke in Figure 5, together with the measured

periods shown in circles; the measured periods of a building in the two orthogonal directions are
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not joined by a vertical line because the ratio H +,/z, is different if the shear wall areas are not

the same in the two directions. Figure 5 permits the following observations. As expected the
measured period data falls above and below (more or less evenly) the best-fit curve. The best-fit
equation correlates with measured periods much better (error of estimate s.= 0.143) than
formulas (Eqgs. 1 to 3) in UBC-97 (s5,= 0.546). It is apparent that the form of Eq. (15) includes
many of the important parameters that influence the fundamental period of concrete SW
buildings.

In passing, observe that the value of (¢,=0.0023 for concrete buildings with E =
31x10° psi (214x10° MPa) and p=0.2 corresponds to p~ 0.47 Ib-sec?/ft* = 240 Kg/m’
or unit weight = 15 pcf, implying approximately 10% solids and 90% voids in the building,
which seem reasonable for many buildings.

The values of C determined from all available data, should be modified to recognize that
the period of a concrete building lengthens at moderate to high levels of ground shaking.

Regression analysis of the data from buildings experiencing peak ground acceleration i, > 0.15g

(denoted with * in Table 2) gives:

T, = 0.0019——H (20)

N

T, = 0.0026—— H 0

VA,
Eqgs. (20) and (21) are plotted in Figure 6 with the measured period data. As expected,
very few data fall above the curve for T, or below the curve for T, indicating that Eq. (20} is

suitable for estimating, conservatively, the fundamental periods and Eq. (21) for limiting the

period computed from “rational” analysis. Thus the period from “rational” analysis should not be
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longer than 1.4 T, ; the factor is determined as the ratio 0.0026+0.0019, rounded-off to one digit

after the decimal point.
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Figure 6. Results of regression analysis: buildings with i, = 0.15g.

In using Eq. (12) to calculate A, for nonuniform shear walls, 4; and D; should be
defined as the area and the dimension in the direction under consideration, respectively, at the
base of the wall. To provide support for this recommendation, consider the building identified as
(57356 in Table 2. The thickness of the shear walls in this ten-story building is 11 inch (30 cm)
in the first story, 9 inch (23 cm) in second to fourth stories, 8 inch (20 cm) in fifth to eighth
stories, and 7 inch (18 cm) in ninth and tenth stories. Calculating A, by using D; = 11 inch (at
the base), 8 inch (at mid height) and 7 inch (at the roof), and substituting in Eq. (20) gives period
values 0.36 sec, 0.42 sec, and 0.45 sec, respectively. Although the mid-height-value of D; gives
the period value close to the “measured” period (0.41 to 0.43 sec, by different investigators), the

base value of I); provides a shorter period, leading to a conservative value of base shear. This
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recommendation is consistent with the current codes (Uniform Building Code, 1997,

Recommended Lateral Force Requirements, 1996).
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CONCLUSIONS AND RECOMMENDATIONS
Based on the analysis of the available data for the fundamental vibration period of nine
concrete SW buildings (17 data points), measured from their motions recorded during

earthquakes, Eq. (20) with Ke calculated from Eqs. (12) and (14) using wall dimensions at the

base is recommended for conservatively estimating the fundamental period of concrete SW
buildings. This formula provides the “best” fit of Eq. (15) to the available data; the fit is better
than possible from formulas (Egs. ! to 3) in current US codes. Furthermore, the period from
“rational” analysis should not be allowed to exceed the value from the recommended equation by
a factor larger than 1.4. Since these recommendations are developed based on data from
buildings in California, they should be applied with discretion to buildings in less seismic regions
of the US or other parts of the world where building design practice is significantly different than
in California.

Regression analyses that led to the recommended formulas should be repeated
periodically on larger data sets. The database can be expanded by including buildings, other than
those in Tables 1 and 2, whose motions recorded during past earthquakes have, so far, not been
analyzed. Period data should also be developed for additional buildings when records of their

motions during future earthquakes become available.

60



REFERENCES
Arias, A. and Husid, R. (1962). “Empirical Formula for the Computation of Natural Periods of
Reinforced Concrete Buildings with Shear Walls,” Reinsta del IDIEM, 39(3).
Chopra, A. K. (1995). Dynamics of Structures: Theory and Applications to Earthquake

Engineering, Prentice Hall, Englewood Cliffs, N.J.

Cole, E. E., Tokas, C. V. and Meehan, J. F. (1992). “Analysis of Recorded Building Data to
Verify or Improve 1991 Uniform Building Code (UBC) Period of Vibration Formulas,”
Proceedings of SMIP92, Strong Motion Instrumentation Program, Division of Mines and
Geology, California Department of Conservation, Sacramento, 6-1 - 6-12.

Gates, W. E., Hart, G. C., Gupta, S. and Srinivasan, M. (1994). “Evaluation of Overturning
Forces of Shear Wall Buildings,” Proceedings of SMIP94, Strong Motion Instrumentation
Program, Division of Mines and Geology, California Department of Conservation,

Sacramento, 105-120.

Hart, G. C. and Vasudevan, R. (1975). “Earthquake Design of Buildings: Damping,” Journal of

the Structural Division, ASCE, 101(ST1), 11-30.

Hart, G. C., DiJulio, R. M. and Lew, M. (1975). “Torsional Response of High-Rise Buildings,”

Journal of the Structural Division, ASCE, 101(ST2), 397-416.

Heidebrecht, A. C. and Stafford-Smith, B. (1973).‘ “Approximate Analysis of Tall Wall-Frame
Structures,” Journal of Structural Division, ASCE, 99(5T2), 199-221.

Housner, G. W. and Brady, A. G. (1963). “Natural Periods of Vibration of Buildings,” Journal
of Engineering Mechanics Division, ASCE, 89(EM4), 31-65.

Inman, D. J. (1996). Engineering Vibrations, Prentice Hall, Englewood Cliffs, New Jersey.

61



Jacobsen, L. S. and Ayre, R. S. (1958). Engineering Vibrations, McGraw-Hill, New York.

Li, Y. and Mau, S. T. (1997). “Learning from Recorded Earthquake Motion of Buildings,”
Journal of Structural Engineering, ASCE, 123(1), 62-69.

Marshall, R. D., Phan, L. T. and Celebi, M. (1994). “Full-Scale Measurement of Building
Response to Ambient Vibration and the Loma Prieta Earthquake,” Proceedings of Fifth

U. §. National Conference of Earthquake Engineering, Vol. I, 661-670.

McVerry, G. H. (1979). Frequency Domain Identification of Structural Models from Earthquake
Records, Report No. EERL 79-02, Earthquake Engineering research Laboratory,

California Institute of Technology, Pasadena, CA, October.

NEHRP Recommended Provisions for the Development of seismic Regulations for New
Buildings. (1994). Building Seismic Safety Council, Washington, D. C.

Recommended Lateral Force Requirements and Commentary. (1988). Seismological Committee,
Structural Engineers Association of California, San Francisco, CA.

Recommended Lateral Force Requirements and Commentary. (1996). Seismological Committee,
Structural Engineers Association of California, San Francisco, CA.

Rutenberg, A. (1975). “Approximate Natural Frequencies for Coupled Shear Walls,” Journal of
Earthquake Engineering and Structural Dynamics, 4(1), 95-100.

Sozen, M. A. (1989). “Earthquake Response of Buildings with Robust Walls,” Proceedings of
the Fifth Chilean Conference on Seismology and Earthquake Engineering, Association
Chilean de Sismologia e Ingenieria Antisismica, Santiago, Chile.

Stafford-Smith, B. and Crowe, E. (1986). “Estimating Periods of Vibration of Tall Buildings,”

Journal of Structural Engineering, ASCE, 112(5), 1005-1019.

62



Tentative Provisions for the Development of Seismic Regulations for Buildings, (1978). ATC3-
06, Applied Technological Council, Palo Alto, CA.

Timoshenko, S., Young, D. H., and Weaver, W. Jr. (1974). Vibration Problems in Engineering,
Wiley, New York.

Uniform Building Code. (1997). International Conference of Building Officials, Whittier, CA.

Veletsos, A. S. and Yang, J. Y. (1977). “Earthquake Response of Liquid Storage Tanks,”
Advances in Civil Engineering Through Engineering Mechanics, Proceedings of the

Engineering Mechanics Division Specialty Conference, Rayleigh, North Carolina, 1-24.

Wallace, J. W. and Moehle, J. P. (1992). “Ductility and Detailing Requirements of Bearing Wall

Buildings,” Journal of Structural Engineering, ASCE, 118(6), 1625-1643.

Werner, S. D., Nisar, A. and Beck, J. L. (1992). Assessment of UBC Seismic Design Provisions
Using Recorded Building Motion from the Morgan Hill, Mount Lewis, and Loma Prieta

Earthquakes, Dames and Moor, Oakland, CA, April.

63






PART III:
APPENDICES

65






APPENDIX A: DATABASE

The vibration periods and modal damping ratios of about twenty-five buildings have been
identified from their recorded motions during the Northridge earthquake using system
identification techniques. These results are combined with similar data available from the 1971
San Fernando earthquake and other recent earthquakes to form a comprehensive set of data. This
data set includes the period and damping values along with information on other factors that
could influence these vibration properties. These data are compiled on an electronic database that
can be easily updated after every major earthquake. This appendix describes the information
included in the database followed by the procedures to update the database and to extract the
relevant information for further evaluation.
Database Format

A master database containing information on the vibration properties and other relevant
information is compiled using Microsoft Access 2.0, a commercially-available database
management software package. Contents of this database are arranged into the following five
broad categories:
1. General information
2. Structure characteristics
3. Excitation characteristics
4. Recorded motion characteristics
5. Response characteristics

For each of these general categories, a series of individual parameters are defined. These
parameters are defined in more details in subsequent sections. This information is extracted for

each of the building considered in this study and entered into the master database. A separate set
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of data, or “record” is established for each different building. In addition, a separate record is

created for data obtained for the same building but for different earthquakes or by different
investigators for the same earthquake. If the information on a particular parameter in a record is
not available, that parameter is left blank.

General Information

The following general information is included for building identification purposes and for

future reference.
Location: This parameter indicates the city where the structure is located.

Identification Number: Each building is assigned a unique identification number. This parameter

includes a single character followed by a number. The character indicates the agency that
instrumented the building. For example, “C” indicates that this building was instrumented by the
California Strong Motion Instrumentation Program (CSMIP). Similarly, “U” and “N” indicate
that the building was instrumented by the United States Geological Survey (USGS) or the
National Oceanographic and Atmospheric Agency (NOAA), respectively. The number followed
by the first character indicates the station number or the instrument identification numbers
assigned by the instrumenting agency. For buildings instrumented by the CSMIP or the USGS,
this number represents the station number assigned by the respective agency. For example, a
number “58262” following the character “C” indicates the station number assigned to the
building by the CSMIP. Similarly, a number “482” following the character “U” implies the
station number assigned to the building by the USGS. However, for buildings instrumented by
the NOAA, the number represents the identification numbers of the instruments used to measure
motions of the buildings. For example, a number “151-3" followed by the character “N” indicates

that the motions of the building were recorded by the instruments numbered 151 to 153,
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Occupancy: This parameter indicates the building usage, for example, office, residential,
hospital, or hotel.
Name: This parameter lists the name, if available, of the building. For example, building with
identification number “N151-3” is known as the “Kajima International Building”.
Address: Several buildings, especially those instrumented by the NOAA, are identified by their
address. Thus, this information is also included in the database.
Reference: This parameter identifies the source of the vibration data if these data were not
identified in this study. If the properties are identified in this study, “Goel and Chopra” is entered
in the database.
Structure Characteristics

The following quantitative and qualitative parameters associated with characteristics of
the building are included in the database:
Height: This parameter lists the height in feet from base level of the building. This height is used
for estimating the fundamental vibration period of the building from code formulas.
Width: Width is the base dimension in feet along the longitudinal direction of the building.
Length: Length is the base dimension in feet along the transverse direction of the building.

Number of Stories: This parameter represents the number of stories above the ground level.

Number of Basements: This parameter represents the number of stories below the ground level
(or the number of basements).

Base to Roof Height: Base to roof height lists the height in feet between the locations of

instruments recording the input ground accelerations and the output ground accelerations. This
parameter is used to estimate the average drift of the building during an earthquake. Since the

instrument measuring the input ground acceleration may not always be located at the base of the
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building or the instrument measuring the output acceleration may not be located at the top-most

floor level, this height can be different than the height of the building described previously.
Material: The construction materials encountered in the building data included: Reinforced
concrete (R/C); Steel; Masonry (MS); Unreinforced Masonry (URM); mixed materials such as
Steel and R/C, Steet and URM, and R/C and URM.

Longitudinal Resisting System: This parameter categorizes the lateral system used in the

longitudinal direction of the building for resisting the earthquake loads. Following is a list of

lateral load resisting systems encountered in the building data:

o Moment-Resisting Frame (MRF): This category identifies a structure constructed of an
assemblage of beams and columns that resist earthquake loads by frame action. The frames
may be constructed of steel or reinforced concrete.

o Shear Wall (SW): This category identifies reinforced concrete or masonry systems that resist
lateral loads by walls loaded in their own plane.

s Braced Frame (BF): This category identifies a structure whose frames are braced by diagonal
members such that lateral loads are resisted by axial forces in the members.

o Eccentric Braced Frame (EBF): This system transfers the load through axial forces in
members as well as dissipates earthquake energy through inelastic deformations in the shear
links formed by the eccentric bracing.

e Moment Frames and Shear Walls (MRF/SW): This category is assigned to buildings having
dual shear wall and moment frame systems or shear wall buildings with moment frames that
contribute significantly to the earthquake resistance.

Transverse Resisting System: Similar to the longitudinal resisting system, this parameter

indicates the lateral load resisting system of the building in the transverse direction.
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Excitation Characteristics
This category includes the following two parameters to indicate the information on the

earthquake for which the building vibration properties are identified:

Earthquake Name: This parameter indicates the name of the earthquake, usually indicating the
location of the earthquake epicenter.

Earthquake Date: This is the date on which the earthquake occurred.

Recorded Motion Characteristics

This category includes the information on the building motions that is either recorded or
derived directly from the recorded motions. This information is useful for estimating the intensity
of the earthquake shaking at the building site or deformations of the building itself.

Longitudinal Base Acceleration: This parameter indicates the base peak acceleration recorded in

the longitudinal direction of the building.

Longitudinal Roof Acceleration: This parameter indicates the roof peak acceleration recorded in

the longitudinal direction of the building.

Transverse Base Acceleration: This parameter indicates the base peak acceleration recorded in

the transverse direction of the building.

Transverse Roof Acceleration: This parameter indicates the roof peak acceleration recorded in

the transverse direction of the building.

Longitudinal Roof Deformation: The longitudinal roof deformation, specified in feet, is

calculated as the difference between the displacements at the roof level and the base level. The
displacements used are obtained by double integrating the corrected accelerations.

Transverse Roof Deformation: Similar to longitudinal roof deformation, this parameter indicates

the roof deformation in the transverse direction of the building.
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Longitudinal Drift: Measured in percentage (%), this value indicates the average drift over the

height of the building in the longitudinal direction. This drift is obtained by dividing the
longitudinal roof deformation by the base to roof height of the building.

Transverse Drift: Similar to the longitudinal drift, this value is the average drift of the building in

the transverse direction.
Vibration Properties

This category lists the vibration properties of the building identified from its motions
recorded during the earthquake. The information includes the vibration period (T) and modal
damping ratio () for the first two modes of the building in each of the following directions:
longitudinal, transverse, and torsional.
Database Manipulation

The database for vibration properties should be amenable to easy update after each
earthquake to include data for vibration properties of additional buildings. Furthermore, it should
also be possible to easily extract the relevant data required for further studies. This section
describes how the data can be added to or extracted from the database.
Adding Data

The data for each building can be entered in the database using two alternative
approaches. These approaches are described next.
Tables: In Microsoft Access 2.0, the entire database can be viewed in the form of a table. Each
row of this table contains data for a record. The various data properties (or fields), mentioned
previously, are arranged in columns of this table. Thus, to enter data for each additional building,
one can enter the appropriate row and column of the table and type in value of that field. For data

records containing a large number of fields, this may become cumbersome because it may not be
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possible to view the entire record on the computer screen. In such situations, forms, described

next, offer a more attractive alternative.

Forms: Forms present the data for all fields of one record in an organized and attractive manner.

In order to enter information on various fields of a record, one can navigate the form by using tab

key of the keyboard and typing in the appropriate data. Furthermore, data in forms can also be

organized differently compared to the tables, with category titles and more descriptive field
names. The form designed for entering the vibration property database and used in this study is

shown in Figure A.1.

Extracting Data

One of the primary advantages of organizing the data in databases is that it is easy to
extract portions of the data, arrange various fields in a manner different compared to the original

database, and sort them in ascending or descending order. The process of selectively extracting a

subset of data from the larger database is facilitated by the queries.

Queries: Queries are used to extract data selectively from a larger data set stored in the database.

To extract this data, the following options may be used:

o The data fields in the records that are to be extracted. Using this information, only selected
data fields may be extracted and they may be arranged in a manner different than the main
database,

e The order in which the records are to be sorted. The database stores the records in their order
of entry. Using this information, the data may be sorted either in ascending or descending
order of one or more fields.

e Whether the field is to be displayed. Using this option, a field may be hidden from the final

printout but all other options and criteria may be applied to this field.
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o The criteria to be used to extract the data. This criteria in usually in the form of Boolean
operators and may be specified on more than one field simultaneously.
Example: The following example illustrates the use of queries in selectively extracting data from
the main database. The fields to be extracted are: (1) Location, (2) Identification Number, (3)
Height, (4) First Longitudinal Period, and (5) First Transverse Period. The data is to be extracted
only for the Northridge earthquake and the steel buildings; the earthquake name or the material
should not be printed. Furthermore, the records extracted are arranged in ascending order by the
location and the height. The query designed to extract this data is shown in Figure A.2 and the

extracted data in Figure A.3.
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Figure A.1. Form designed for the vibration properties database.
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APPENDIX B: SYSTEM IDENTIFICATION METHODS

System identification techniques are used to identify the vibration periods and modal
damping ratios of buildings from their motions recorded during earthquakes. Although, a number
of parametric and nonparametric system identification techniques are available (Appendix I),
this appendix describes the following three more commonly used techniques for system
identification of the vibration properties from recorded motion: (a) the transfer function method,
(b) the modal minimization method, and (c) the autoregressive modeling method. Described first
is the theory for each of these techniques followed by an example.
Transfer Function Method

The transfer function method is a nonparametric system identification approach designed
to work for linear and time-invariant systems. This approach involves determining the transfer

function, H(iw), from the Fourier transforms of input and output accelerations. The modal
frequencies are estimated from the locations of the resonant peaks in the absolute value, |H(i®)|,

of the transfer function; and the modal damping ratios are determined from their half-power
bandwidths.

The transfer function method usually works well for steady-state harmonic test data or
ambient vibration data where the level of noise in the data is small. When applied to earthquake
data, difficulties arise because the transfer function is characterized by extreme variability.
Furthermore, the transfer function exhibits numerous peaks that are not related to the resonant
peaks but are a function of the noise in the data and the model error. Smoothing of the transfer
function can reduce the variability and thus make the resonant peaks more apparent, but leads to
a loss of information that can result in the damping ratios being overestimated. Generally, past

work suggests that the only vibration properties that can be reliably estimated from the transfer
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function are the frequencies of the first few modes and possibly the damping ratio in the
fundamental vibration mode. Since the goal of this study is to estimate the vibration frequencies
as well as the modal damping ratios for at least first two modes, the transfer function method is
used only to obtain initial estimates that are to be supplied to the parametric system identification

techniques described in the next two sections.

Roof N-8 Acceleration, 15-Stary Govt. Office Bidg., Los Angeles
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Figure B.1. Smoothed transfer function and initial frequency estimates.

Figure B.1 shows the smoothed transfer function determined from the base and roof
accelerations of one of buildings considered in this study. The frequencies of the first and
second modes of vibration estimated from this transfer function are 0.3175 Hz and 0.8667 Hz,
respectively. Although two other peaks at 1.3672 Hz and 2.1851 Hz are also identified, these can
not be reliably associated with higher modes of the building. Since the resonant peaks are very

sharp, it is not possible to estimate the damping ratio even for the first mode of vibration; the
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initial guess for modal damping ratios for these modes would be 2% and 3% of the critical
damping value.
Modal Minimization Method

The modal minimization method is a parametric system identification approach for
estimating the vibration properties of a linear system. This approach involves minimizing the
error between the output acceleration and the input acceleration, in the least square sense, for the
various vibration parameters of the building (Beck, 1978; Li and Mau, 1971). This section
describes the theoretical background for the modal minimization method followed by an
example. The approach presented is valid for multiple input and multiple output. The single input
and single output approach adopted in the present study is a simplified version of this more
general approach.
Theoretical Background

Using modal superposition for linear systems, the output acceleration, g;, of the building

can be expressed in terms of its modal acceleration responses, ji;, through the following

gquation:

ai=Z¢ijii1 (B-1)
]

in which ¢'i.i is the mode shape component of the jth mode at location I. The modal accelerations

are defined by the second order differential equation:

ﬁj+2§jm1ﬁj+w?uj=§l7,-kagk (B-2)

where § ; and @; are the modal damping ratio and the natural frequency, respectively, of the jth
mode, and p; is the participation factor of the jth mode with respect to the kth input motion.

Since the input accelerations, a4, are linear within each time step Ar, the acceleration response,
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u; for each mode can be computed using the exact solution to the piecewise linear excitation
(Chopra, 1993); this computation requires the initial modal velocity, 4;(0), and modal

displacement, ;(0) for each mode. Thus, the unknown modal parameters are: @;, & v P

1;(0), u;(0), and ¢; .
The modal minimization method seeks to iteratively minimize the squared error:

J = X X[aoi(sAt)-ai(sAt)f (B-3)

between the recorded output acceleration, g,;, and the output acceleration, g;, of the linear

model with respect the unknown modal parameters. A relative error corresponding to J of Eq. (B-

3) is defined as:

> X [aoilsAt)~ai(sAt)f (B-4)
¥ ¥ [auil sAt)]

This modal minimization technique implemented on computer by Beck (1978) and Li and
Mau (1991) generally follows the above-described methodology with minor differences in the
minimization procedures; this study used the program‘ developed by the latter authors. The
iterative minimization procedure requires initial estimates of the unknown modal parameters.
The initial estimates for the modal frequencies and damping ratios may be obtained from the
transfer function approach described previously. Obtaining estimates of the other parameters
requires some judgment.

The system identification process using the modal minimization method involves
increasing the number of modes until the difference in the relative error E (Eq. B-4) is less than a

certain value; a value of 3% is selected in this study. Although the last included mode often
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contributes little to the output by itself, it improves the error estimate somewhat. This procedure

is illustrated with an example next.

Example

The problem solved in the present study is that of single input at the building base and

single output at the building roof. For such a problem, the unknown modal parameters are: @;,

&+ P 4j(0), u;(0), and ¢;. Since one component of the mode shape can always be set

arbitrarily equal to one, only the first five of these six parameters for each mode need to be

identified. The various steps involved in the system identification process are:

1.

Obtain initial estimates of the modal frequencies and damping ratios from the transfer
function. Figure B.2 shows the transfer function between roof and base accelerations in the
N-S direction of the 15-story Government Office Building in Los Angeles. Initial estimates of
the modal frequencies are shown on this figure. Since it was not possible to obtain estimates
of the modal damping ratio, the initial values for the first two modes is selected as 2% and
remaining modes as 5% based on judgment.

Obtain initial estimates of the remaining modal parameters by judgment. The relative
magnitude of the participation factor can be judged from the relative peak heights at the
modal frequencies. Furthermore, initial modal velocities and displacements can be selected as
zero. This selection is reasonable because the recorded motion used in the identification
process starts at time zero when the initial motions of the building are for all practical
purposes zero.

Identify the modal parameters using the modal minimization procedure. Start with first two
modes and increase the number of modes until the difference between two successive values

of the relative error is within 3%. For the example building, four modes are needed to satisfy
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the convergence criteria. The results of the system identification are summarized in Table

B.1.

4. Validate the identified model by comparing (a) the transfer functions, and (b) the time

histories of the recorded motion and the motion of the identified model. Such comparisons

are presented in Figures B.3 and B.4 for the example building. These comparisons also assist

in reliably estimating the true modal frequencies and damping ratios of the building, For

example, while the match in the time history is very good, only the first two peaks of the

transfer function are matched well by the system identification procedure. Therefore, modal

parameters for these two modes are considered to be reliable estimates of the true vibration

properties of the building.

Table B.1. Results of system identification in N-S direction.

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo., Cont.
1 0.3220 0.0241{ -6.99E-00| -3.78E-04| 2.24E-03| 1.06E+00 1st Mode
2 0.8667 0.0390( 1.05E-00| 4.76E-05| 7.97E-04| 3.28E-O1| 2nd Mode
3 1.4200 0.0887| -3.89E-01| 2.11E-05| -3.86E-05| 1.28E-01
4 2.1877 0.0358| 1.06E-01| 4.05E-06| -4.07E-05| 4.89E-02

Relative Error = 0.326 and Absolute Error = 0.683

Auto-Regressive Modeling Method

The auto-regressive modeling method is also a parametric system identification approach

for estimating the vibration properties of a linear system. Similar to the modal minimization

procedure, this approach involves minimizing the error between the output acceleration and the

input acceleration, in the least squares sense, for the various parameters of the autoregressive

model (Ljung, 1987). This section describes briefly the theoretical background for the

autoregressive modeling method followed by an example; details of this method can be found

elsewhere (Safak, 1988, 1989a, 1989b, 1991).
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Figure B.2.. Initial frequency estimates from transfer function in N-S direction.
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Figure B.3. Comparison of empirical transfer functions: recorded motions and calculated
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83



Roof N-8 Acceleration, 15-Story Govt. Office Bldg., Los Angeles

T T T T T

0.2r 'Hecorde]d Outpu; ] L
I
;j O
§ VPWU'“'W"!'W“W WA WY VAMNA A
-0.2 J
Il i 1 i 3 L L 1 L
0 5 10 15 20 25 30 35 40 45 50
Time (sec)
T T Ll Ll 1 T 4 T T
0.2F Calcutated Qutput
Ci A n n A \ \
g 0
Q
<
-0.2f L
1 1 1 1 1 1 1L 1 1
0 5 10 15 20 25 30 35 40 45 50
Time (sec)
13 ] L} 1 L3 T T T +
_ ozr Calculated and Recorded Qutputs 4
o .
g © L
2 Calculated
-0.21 T e Recorded E
L 1 L 1 i 1 1 1 1
0 3 10 15 20 25 30 35 40 45 50
Time {sac)

Figure B.4. Comparison of time-histories: recorded motions and calculated motions.

Theoretical Background

The set of second order differential equations governing the earthquake response of a
linear system may be written as:

00+ Say(e—jd)= Lbux(1—kd-ncd) (B-3)
Z >

in which y(z) is the system output, x(t) is the input, A is the sampling interval, 4; and b, are
the parameters of the autoregressive model numbering 5, and n,, respectively, and p, is the

time delay, in terms of the number of discrete time steps, between the input and the output. The
ng and n, are called the order of the auto-regressive model. The same equation can also be

written in the frequency domain as:

Y(o)=H(in)X(®) (B-6)
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where Y(w) and X(w) are the Fourier transforms of the output, y(z), and the input x(t),
respectively, and H(iw) is the transfer function defined as:

E bk e—im(k+nc)A (B'7)

H(io)=4=L—
I+ Xa j P
j=i

in which i = 4/=1. The denominator of equation seven contains information about the dynamic
properties of the building. The frequencies and the damping ratios are computed from the poles,
p;, of the transfer function which are determined as the roots of the following denominator
polynomial:

pPltapd+ o 4 app+ay =0 (B-8)
For stable structures, i.e., structures with non negative damping, the poles are in complex-

conjugate pairs. The modal frequencies, w;= 27f;, and the damping ratios, ¢;, are computed

from these poles as:

In| —
7! B-9)

fj = 172
+1n[———1 }
i
J .
| Ip jl
f
P (B-10)
To2méA

where v, is argument of p,. The frequencies and damping ratios corresponding to the complex-
conjugate pairs are identical. Therefore, n, poles result in #,/2 distinct frequencies and damping

ratios.
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To compute the contribution of each mode to the response, the transfer functions are
expanded into partial fractions and the pairs of terms corresponding to pairs of complex-

conjugate poles are combined:

(B-11)

H(iw)= 2, —

na/z (rj z_(nc+1) + r; Z_(nc'H)
A\l=p;z?t 1-p;z

) with z = eim

where r; denotes the residue for the jth transfer function corresponding to the jth pole. The

contribution of the jth mode to the response is obtained by multiplying the input by the
corresponding modal transfer function.
The autoregressive modeling method seeks to minimize the error between the output and

the input in the least squared sense with respect to the parameters q; and by . The next section

describes the various step of the system identification using this method and illustrates these

steps with an example.

Example

Various steps of this procedure are illustrated next with an example. For this purpose, the
vibration properties of a 6-story commercial building located in Burbank are determined in the

N-S direction from its roof and base accelerations recorded during the Northridge earthquake.

Various steps of this procedure are implemented conveniently in the System Identification

Toolbox of the commercially available software MATLAB. The steps are as follows:

1. Estimate the time delay, n., between the input and output. Time delay compensates the
synchronization and discretization errors as well as errors introduced by considering only a
limited number of modes. To determine the time delay, a single-mode system is assumed,
i.e., n,=2 and n, =1, and variation of the squared error between the recorded output and the

model output is investigated. The time delay that minimizes the error is selected as the time

86



delay for further system identification. Figure B.5a shows the variation for the example
building where the error is minimized in the neighborhood of ».=10. The time delay selected
for the system identification is 9.

Determine the model order »,. Similar to the time delay, the model order is also selected by
investigating the error with increasing model orders. Generally the error decreases with
increasing n, with sharp decrease at the beginning and gradual flattening with further
increase. The beginning of the flat region indicates the optimal model order. Figure B.5b
shows variation of the error for n,= 2 to 30 assuming n,= n, and p.=10. This figure
suggests that p, = 4, i.e., two modes, would be sufficient as the model order. However, the
model verification tests described next, showed that a2 much higher value of n,= 32 is

required for satisfactory identification.

Roof N-S Acceleration, 6-Story Commercial Building, Burbank
0‘085 1 1 T T T

0.08

0.075

Error

0.07

0.065

10

1. i 1
0 5 10 15 20 25 30
(a) Time Delay (# of time steps}

0.06 L

0.4 T T T T 4 T T

0 5 10 16 20 2 30 35 40
{b) Model Order (2 x number of modes}
Figure B.S. Time delay and model order for the example building.

Select the parameter p,. The error is not sensitive to the parameter p,. This selection is

based on zero-pole cancellation criteria rather than the minimum error criteria. Normally, the
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accuracy of the identification increases with increasing n; . However, if 5, becomes too high,
one or more zeros may become equal to the poles of the transfer function. This results in a
zero-pole cancellation eliminating some of the modes of the building. By trying several
values, n;, = 16 is found to be appropriate for the example building. As shown in Figure B.6,
it does not result in any zero-pole cancellation.

. Identify the building. Using n,=32, n, = 16, and n.= 9, the modal frequencies and damping
ratios identified for the example building are presented in Table B.2. For this building the
first mode is identified with a frequency of 4.607 Hz and damping ratio of 4.0%; the second
mode vaiues are 13.475 Hz and 5.3%, respectively. Figure B.7 and B.8 show the contribution
of various modes to the output response.

. Verify the identified model. The final step in the system identification using auto-regressive
modeling is verification of the identified model. This is accomplished by ensuring the
transfer function (Figure B.9) and time history (Figure B.10) of the auto-regressive model
match closely with those of the recorded output motion. In addition, the autocorrelation and
the cross correlation of the residuals are checked with the input (Figure B.11). For a valid
identification, the residuals should be close to white noise and independent (uncorrelated)
with the input. For this purpose, the dotted lines are also plotted in Figure B.11 for 95%
confidence limits for whiteness in the autocorrelation and for independence in the cross
correlation. The autocorrelation plot show that the residuals of the identified model satisfy
the whiteness criteria. Although the cross correlation exceeds the confidence limit as a few
places, the amplitude is generally small. Thus even the autocorrelation criteria is acceptable

for the identified model.
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Roof N-S Acceleration, 8-Story Commercial Building, Burbank

1.5 T : T T
Model Order:na=32nb=16nc= 8
1 b 4
0.5t 1
or ]
-0.5+ 1
Ak J
135 -1 05 0 0.5 1 15

Chack for Zero-Pole Cancellation

Figure B.6. Zero-pole cancellation for the example building.
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Table B.2. Results of system identification for the example building.

i Frequency Period Damping Pole Comments
(Hz) (sec) Magnitude

1 4.607 1.364 0.040 0.996! 1Ist Mode
2 4.607 1.364 0.040 0.996

3 13.475 0.466 0.053 0.986! 2nd Mode
4 13.475 0.466 0.053 0.986
5 36.071 0.174 0.043 0.969
6 36.071 0.174 0.043 0.969
7 23.180 0.271 0.094 0.957
8 23.180 0.271 0.094 0.957
9 18.357 0.342 0.127 0.954
10 18.357 0.342 0.127 0.954
11 9.871 0.637 9.239 0.954
12 9.871 0.637 0.239 0.954
13 71.118 0.088 0.036 0.950
14 71.118 0.088 0.036 0.950
15 59.051 0.106 0.054 0.638
16 59.051 0.106 0.054 0.938
17 64.668 0.097 0.051 0.937
18 64.668 0.097 0.051 0.937
19 47.817 0.131 0.069 0.937
20 47.817 0.131 0.069 0.937
21 27.343 0.230 0.121 0.936
22 27.343 0.230 0.121 0.936
23 36.592 0.172 0.101 0.929
24 36.592 0.172 0.101 0.929
25 74.201 0.085 0.053 0.924
26 74.201 0.085 0.053 0.924
27 56.639 0.111 0.071 0.922
28 56.639 0.111 0.071 0.922
29 48.909 0.129 0.090 0916
30 48.909 0.129 0.090 0.916
31 31.807 0.198 0.184 0.890
32 31.807 0.198 0.184 0.890
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Reof N-S Acceleration, 6-Story Commercial Building, Burbank
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Figure B.7. Modal contributions of autoregressive model; modes 1 to 8.



Mode 9
0.5

Roof N-S Acceleration, 6-Story Commercial Building, Burbank
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Figure B.8. Modal contributions of autoregressive model; modes 9 to 16.
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Roof N-§ Acceleration, 8-Story Commercial Building, Burbank
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Figure B.9. Comparison of empirical transfer functions: recorded motions and calculated motions
of autoregressive model.

Model Order:na=32nb=16nc= 9
Roof N-S Acceleration, 6-Story Commercial Building, Burbank
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Figure B.10. Comparison of time-histories: recorded motions and calculated motions of
autoregressive model.
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Root N-S Acceleration, 6-Story Commaercial Building, Burbank
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Figure B.11. Residuals for autoregressive model.
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APPENDIX C: RESULTS OF SYSTEM IDENTIFICATION

Table C.1. List of identified buildings.

No. Location Station Name ID No. of | Material
Number | Story
! | Los Angeles UCLA Math-Science Bldg. | C24231 7 Steel/RC
2 | Burbank Residential Bldg. C24385 10 {RC
3 | Sylmar County Hospital C24514 6 Steel/RC
4 | Burbank Commercial Bldg. 24370 6 Steel
5 | Los Angeles Office Bldg. C24643 19 | Steel
6 | Los Angeles Hollywood Storage Bldg. 24236 14 | RC
7 | North Hollywood Hotel C24464 20 |RC
8 | Pasadena Milikan Library N264-5 10 |RC
9 | Los Angeles Warehouse C24463 5 RC
10 | Los Angeles Commercial Bldg. C24332 3 Steel/RC
11 | Los Angeles Residential Bldg. C24601 17 |[RC
12 | Los Angeles Govt. Office Bldg. C24569 15 | Steel
13 | Los Angeles Office Bldg. C24602 52 | Steel
14 | Los Angeles Office Bldg. C24579 9 RC/URM
15 | Los Angeles CSULA Adm. Bldg. C24468 8 RC
16 | Pasadena Office Bldg. C24541 6 Steel/URM
17 | Whittier Hotel C14606 8 MAS
18 | Los Angeles Office Bldg. C24652 6 RC
19 | Alhambra 900 South Fremont Street U482 13 | Steel
20 | Los Angeles 1100 Wilshire Blvd. U5233 32 | Steel
21 | Los Angeles Wadsworth VA Hospital U5082 6 Steel
22 | Los Angeles Office Bldg. C24567 13 | Steel/RC
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1. Los Angeles - 7-Story UCLA Math-Science Building, CSMIP Station No. 24231

Los Angeles - 7-story UCLA Math- -Sclence Bldg,
(CSMIP Station No. 24231

No. of Stories abuvcihclow ground: 70
- Plan Shape: Rectaiigular

Dase Dimcasions: 60° x 48"

Typieal Floar Dimensions: 60' x 487
Design Date: 1969

Vertica! Load Carrying Systein:

© 2.5" concrete siab over wietad deck
supported by steel framers at Sth, 6th, Tth
floors and roof, thick conerete slab
supporicd by. concrete walls at 3sd floor,

Lazeral Jowd Carrying System:
Thick concrete shear walls between Levels
| and 3; moment resisting steel frames
shove.

Figure C.1.1a. Details of UCLA Math Science Building, CSMIP Station No. 24231

Los Angeles - 7-story UCLA Math- Scsenca Bldg
{CSMIP Station No. 24231)

SENSOR LOCATIONS
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+ § ath e,
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Siructwre Reforence
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Figure C.1.1b. Sensof locations in UCLA Math Science Building, CSMIP Station No. 24231
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Table C.1.1. Results of system identification in E-W (longitudinal) direction by autoregressive

modeling.

j |Frequency| Period | Damping Pole Comments
(Hz) (sec) Magnitude

1 0.902 LL108 0.071 0992| ]st Mode
2 0.902 1.108 0.071 0.992
3 11.648 0.086 0.015 0.978
4 11.648 0.086 0.015 0.978
5 9.430 0.106 0.025 0971
6 9.430 0.106 0.025 0.971
7 3.136 0.319 0.088 0.966
8 3.136 0.319 0.088 0.966
9 6.557 0.153 0.043 0.965
10 6.557 0.153 0.043 0.965
11 7.741 0.129 0.043 0.960
12 7.741 0.129 0.043 0.960
13 1.393 0.718 0.241 0.959
14 1.393 0.718 0.241 0.959
15 4.028 0.248 0.107 0.947
16 4.028 0.248 0.107 0.947
17 10.591 0.094 0.042 0.946
18 10.591 0.094 0.042 0.946
19 12.046 0.083 0.040 0.942
20 12.046 0.083 0.040 0.942
21 10.528 0.095 0.046 0.941
22 10.528 0.095 0.046 0.941
23 1.654 0.605 0.304 0.939
24 1.654 0.605 0.304 0.939
25 2.531 0.395 0.202 0.938
26 2.531 0.395 0.202 0.938
27 4.180 0.239 0.129 0.935
28 4.180 0.239 0.129 0.935
29 8.260 0.121 0.066 0.934
30 8.260 0.121 0.066 0.934
31 5.764 0.174 0.116 0.920
32 5.764 0.174 0.116 0.920
33 6.161 0.162 0.131 0.904
34 6.161 0.162 0.131 0.904
35 5.896 0.170 0.137 0.903
36| 5.896 0.170 0.137 0.903
37 9.345 0.107 0.103 0.886
38 9.345 0.107 0.103 0.886
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Roof E-W Acceleration, 7-Story UCLA Math-Science Bldg, Los Angeles

1.5 T T T T T
Model Order: na=36nb=15nc= 8

0.5¢

-1}

1

15 -1 -0.5 0 0.5 1 1.5
Check for Zero-Pole Cancellation

Figure C.1.2. Zero-pole cancellation for autoregressive model in E-W direction.

Roof E-W Acceleration, 7-Story UCLA Math-Science Bidg, Los Angeles
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Figure C.1.3. Residuals for autoregressive model in E-W direction.
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Roof E-W Acceleration, 7-Story UCLA Math-Science Bldg, Los Angeles
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Figure C.1.4. Comparison of empirical transfer functions: recorded motion and calculated motion
of autoregressive model in E-W direction.

Madel Order: na=36nb=15nc= 8
Roof E-W Acceleration, 7-Story UCLA Math-Science Bldg, Los Angeles
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Figure C.1.5. Comparison of time-histories: recorded motion and calculated motion of
autoregressive model in E-W direction.
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Roof E-W Acceleration, 7-Story UCLA Math-Science Bldg, Los Angeles
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Figure C.1.6. Modal contributions of autoregressive model in E-W direction.
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Table C.1.2. Results of system identification in N-S (transverse) direction by autoregressive
modeling.

j {Frequency| Period | Damping Pole Comments
(Hz) (sec) Magnitude

1.184 0.845 0.172 0.975] 1st Mode

1.184 0.845 0.172 0.975

2.696 0.371 0.123 0.959

2.696 0.371 0.123 0.959

3.583 0.279 0.100 0.956

3.583 0.279 0.100 0.956

4.235 0.236 0.093 0.952

4.235 0.236 0.093 0.952

5.703 0.175 0.070 0.951
10 5.703 0.175 0.070 0.951
11 1.756 0.569 0.236 0.949
| 12 1.756 0.569 0.236 0.949
13 6.105 0.164 0.071 0.947
14 6.105 0.164 0.071 0.947
15 7.669 0.130 0.058 0.946
16 7.669 0.130 0.058 0.946
17 1.337 0.748 0.331 0.946
18 1.337 0.743 0.331 0.946
19 11.485 0.087 0.041 0.943
20 11.485 0.087 0.041 0.943
21 4.235 0.236 0.121 0.938
22 4.235 0.236 0.121 0.938
23 9.839 0.102 0.053 0.937
24 9.839 0.102 0.053 0.937
25 8.938 0.112 0.059 0.936
26 8.938 0.112 0.059 0.936
27 7.396 0.135 0.072 0.935
28 7.396 0.135 0.072 0.935
29 10.671 0.094 0.063 0.919
30 10.671 0.094 0.063 0.919
31 11.961 0.084 0.066 0.906
32 11.961 0.084 0.066 0.906
33 8.521 0.117 0.095 0.904
34 8.521 0.117 0.095 0.904
35 10.442 0.096 0.462 0.545
36 10.442 0.096 0.462 0.545

O oo [~ o un | fuo [ro b=

101



Roof N-S Acceleration, 7-Story UCLA Math-Science Bldg, Los Angeles
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Figure C.1.7. Zero-pole cancellation for autoregressive model in N-S direction.
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Figure C.1.8. Residuals for autoregressive model in N-S direction.
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Roof N-S Acceleration, 7-Stary UCLA Math-Science Bldg, Los Angeles
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Figure C.1.9. Comparison of empirical transfer functions: recorded motion and calculated motion
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of autoregressive model in N-S direction.

Model Order: na=36nb=10nc= 8
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Figure C.1.10. Comparison of time-histories: recorded motion and calculated motion of

autoregressive model
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in N-S direction.
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Roof N-S Acceleration, 7-Story UCLA Math-Science Bldg, Los Angeles
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Figure C.1.11. Modal contributions of autoregressive model in N-S direction.
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2. Burbank - 10-Story Residential Building, CSMIP Station No. 24385

 Burbank - 10:story Rexidential Building
(CSMIP Station Na, 24385) -

Yertical Load Currying Systent )
Precast and poured-in-place conerete Tloor
slabs supparted by precast concrete hearing

No. of Stories above/below ground: 100
Plan Shape: Rectangular
Base: Dimensions: 215* x 75

Typieal Floor Dimensions: 215 x 7§' walls.
Design Dafe: 1974 Lateral Foree Resisting System:
Construstion Date: 1974 Precast concrete shear walls in both
directions,
Foundation Type:

Corerele caissons (25' 10 35" deep).

Figure C.2.1a. Details of 10-story residential building, CSMIP Station No. 24385

Burbank - 10-story Residential Ridg.
WCEMIP Station No. 74385}
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Figure C.2.1b. Sensor locations in 10-story residential building, CSMIP Station No. 24385
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Table C.2.1 Results of system identification in E-W (longitudinal) direction by autoregressive

modeling.

Figure C.2.2. Zero-pole cancellation for autoregressive model in E-W direction.

j |Frequency| Period | Damping Pole Comments
(Hz) (sec) Magnitude

1 1.673 0.598 0.056 0988 1st Mode

2 1.673] . 0.598 0.056 0.988

3 7.199 0.139 0.073 0.936] 2nd Mode

4 7.199 0.139 0.073 0.936

5 3.147 0.318 0.290 0.892

6 3.147 0.318 0.290 0.892

7 9.995 0.100 0.094 0.888

8 9.995 0.100 0.094 0.888

9 6.263 0.160 0.162 0.880

10 6.263 0.160 0.162 0.880

11 12.029 0.083 0.128 0.824

12 12.029 0.083 0.128 0.824

13 9.212 0.109 0.174 0.818

14 9.212 0.109 0.174 0.818

15 5.127 0.195 0.502 0.724

16 5.127 0.195 0.502 0.724

17 9.538 0.105 0.514 0.540

18 9.538 0.105 0.514 0.540

Roof E-W Acceleration, 10-Story Residential Bldg, Burbank
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Check for Zero-Pole Cancellation
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Roof E-W Acceleration, 10-Story Residential Bldg, Burbank
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Figure C.2.3. Residuals for autoregressive model in E-W direction.
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Figure C.2.4, Comparison of empirical transfer functions: recorded motions and calculated
motions of autoregressive model in E-W direction,
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Model Order: na=18nb= 6nc= 1

Roof E-W Acceleration, 10-Story Residential Bldg, Burbank
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Figure C.2.5. Comparison of time-histories: recorded motions and calculated motions of

autoregressive model in E-W direction.
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Roof E-W Acceleration, 10-Story Residential Bldg, Burbank
na=18nb=6nc= 1

Per.= 0.1048 sec

Damp. 51.40 %

Per. = (.1951 sec

Damp. 50.21 %

Per. = 0.1086 sec

Damp.= 17.41%
Mode 6 ! “ : ‘ Peor.= 0.0831 sec
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Damp. = 16.18 %

Mode 4 Per.= 0.1001 sec
Damp. = 9.42%
Mode 3 Per.= 0.3177 sec

Damp. = 28.98 %
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Mode 1 Per.= 0.5078 sec
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Figure C.2.6. Modal contributions of autoregressive model in E-W direction.
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Table C.2.2 Results of system identification in N-S (transverse) direction by autoregressive
modeling.

] |Frequency| Period | Damping Pole Comments
(Hz) (sec) Magnitude

1 1.789 0.559 0.075 09831 Ist Mode*
2 1.789 0.559 0.075 0.983

3 7.619 0.131 0.082 0.924| 2nd Mode
4 7.619 0.131 0.082 0.924
5 10.474 0.096 0.062 0.922
6 10.474 0.096 0.062 0.922
7 2.977 0.336 0.338 0.881
8 2977 0.336 0.338 0.881
9 5.492 0.182 0.205 0.868

10 5.492 0.182 0.205 0.868
11 11.376 0.088 0.105 0.861
12 11.376 0.088 0.105 0.861
13 8.494 0.118 0.155 0.848
14 8.494 0.118 0.155 0.848
15 3.664 0.273 0.486 0.800
16 3.664 0.273 0.486 0.800
17 7.554 0.132 0.297 0.755
18 7.554 0.132 0.297 0.755
* Mode not used due to poor match in empirical transfer function

Roof N-S Acceleration, 10-Story Residential Bldg, Burbank

15
Model Order:na=18nb= 6 nc= 1
1 -
0.5F
0 L.
-0.5}F .
-1} .
135 - -0.5 0 05 1 1.5

Check for Zero-Pole Cancellation
Figure C.2.7. Zero-pole cancellation for autoregressive model in N-S direction.
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Roof N-§ Acceleration, 10-Story Residential Bldg, Burbank
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Figure C.2.8. Residuals for autoregressive model in N-S direction.
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Figure C.2.9. Comparison of empirical transfer functions: recorded motions and calculated
motions of autoregressive model in N-S direction.
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Mode! Order-na=18nb= 6nc= 1
Roof N-8 Acceleration, 10-Story Residantial Bldg, Burbank
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Figure C.2.10. Comparison of time-histories: recorded motions and calculated motions of
autoregressive model in N-S direction.
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Roof N-S Acceleration, 10-Story Residential Bldg, Burbank
na=18nb=6nc= 1

Mode 9 Per.= 0.1324 soc

Damp. 28.65 %

Mode 8 Per.= 0.2729 sec
Damp. = 4859 %
Mode 7 Per.= 0.1177 sec
Damp.= 1545 %
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Damp. = 33.82%
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Damp.= 6.18 %
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A -—
Damp,.= 822%
Mode 1 Per.= 0.5589 sec

Figure C.2.11. Modal contributions of autoregressive model in N-S direction.

113



Table C.2.3. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode | Frequency | Damping| Part. Initial Initial Moedal Comments
No. {Hz) Factor Disp. Velo. Cont.

1 1.4379 0.016] 7.06E-02| -674E-03! S5.66E-021 1.28E-02

2 1.7393 0.026| -2.58E-01| -3.14E-02| 7.24E-02] 1.55E-01

3 1.8023 0.133} -1.73E-00| 5.33E-02| -4.04E-01| 7.24E-01] 1st Tran. Mode*
4 1.8497 0.011] -3.55E-03| 249E-03| 2.48E-01| 1.75E-01] 1st Tor. Mode
5 7.5531 0.015| 240E-02| -6.03E-06] -4.05E-05] 5.23E-03

6 8.1820 0.183] 2.49E-01| 1.75E-04} 2.64E-02| 4.85E-02

7 10.0890 0.576] -1.05E-00} 3.53E-03) -1.74E-01] 1.16E-O1

8 12.3968 0.894| 2.59E-00| -3.03E-03] 9.94E-02; 8.42E-02

9 22.6437 0.098] 4.14E-02| 1.66E-05| 2.10E-04| 9.10E-05

* Damping is net reliable
Relative Error = 0.223 and Absolute Error = 2.406

Transfer Function
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Roof N-S Acceleratian, 10-Story Residential Bldg, Burbank
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Figure C.2.12. Initial frequency estimates from transfer function in N-S direction.
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Roof N-S Acceleration, 10-Story Residential Bidg, Burbank

30
25 ‘

|

!

: - - Cajcutated
20 Reporded

Empirical Transfer Function
o

—
(=]

VRl

v [ \ \\
Py ’&}““"V“‘—’:/Mﬂ\,\ny(}:\‘

[

0

[Ny -
w

4 5 6 7 8 9 10
Frequency, Hz

Figure C.2.13. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.
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Figure C.2.14. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction.
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3. Sylmar - 6-Story County Hospital, CSMIP Station No. 24514

Sylmir -« Olive ¢ievw Medicdl Centor

14465 grtve View Urive vartieal Leas Carrylng System:
Mdeavs: :sy);:r, Ch Conorota stabs over welal deck oupported
Ma. of Suories abovesbelow ’ . by Stool frams,
ground: 6/0 Lateral Forco Hesisting Systes:

Plan Shaps: . RN Conurota shaar wills on iower 2 storled,
Rootangular(iewer 2 atortea) stosl shear walls on the perimater of uppor
.Croso-shaped(upper- k- atorsea) A storiey.

Bnao DPimansioos; 452" ¥ 302* Foondation Typa:

Typiosl Floor bmnx:ona mx' 2 302' Spread réotings. .
Deatgn Date: 1978 . .
connwuouon Date: . 1977-86

Figure C.3.1a. Detalls of 6- story county hospital, CSMIP Station No. 24514
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Figure C.3.1b. Sensor locations in 6-story county hoépital, CSMIP Station No. 24514
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Table C.3.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO,

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.

1 2.8439 0.057| -1.67E-01| 4.39E-04| -4 17E-02| 1.96E-01 1st Mode
2 3.3200 0.088]| -1.44E-01] -3.85E-03| 3.11E-02( 1.08E-01

3 5.1094 0.020| -3.88E-02| 5.65E-05! 8.66E-03| 7.01E-02

4 6.0289 0.111] -7.94E-02| 1.84E-04] 2.27E-02] 2.79E-02

5 3.9917 0.011| 2.60E-02| 2.63E-04| 6.78E-03| 3.64E-02

6 4.5870 0.009] -1.76E-021 -5.24E-05| 6.25E-03| 2.90E-02

7 7.5857 0.003[ 1.37E-02; 6.81E-05] 222E-03| 1.37E-02

8 7.9046 0.005]_ 4.43E-03| 2.03E-05] -7.73E-03| 4.17E-03

9 6.9689 0.002] 1.97E-03] 1.98E-04! 4.66E-04] 1.20E-02

Relative Error = 0.657 and Absolute Error = 7.180

F -y

Transfer Function
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2.6001 J 5-P00Z
31320 7.do6s
An , | g85449
/Y 156
__/ " 6313 4014
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v J
%
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Roof E-W Acceleration, 6-Stery County Hospital, Sylmar

20

Figure C.3.2. Initial frequency estimates from transfer function in E-W direction.
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Roof E-W Acceleration, 6-Story County Hospital, Sylmar
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Figure C.3.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Figure C.3.4. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction.
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Table C.3.2. Results of system identification in N-S (longitudinal) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.

1 2.5134 0.045, -2.07E-01! 3.36E-03| -2.51E-02| 3.29E-01 1st Mode
2 2.8562 0.124( -3.24E-01| -5.45E-03| -2.61E-02| 2.87E-01

3 7.2613 0.039] 4.66E-02| 1.61E-04| -2.11E-02| 1.26E-02

4 7.7771 0.010( 1.33E-02| -2.96E-04| 4.79E-04| 4.71E-03

5 0.7825 0.600| 1.56E-00| -7.50E-03| 2.46E-02| 2.11E-02

6 7.0997 0.266| -2.74E-01| -5.52E-04} -1.89E-02| 4.51E-02

7 8.1373 0.230| 1.13E-01{ -498E-04| 6.23E-02] 1.02E-02

8 13.1001 0.696] 1.10E-01{ -2.07E-04| 3.68E-02| 2.59E-03

Relative Error = 0.343 and Absolute Error =4.751

Transfer Function
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Figure C.3.5. Initial frequency estimates from transfer function in N-S direction.
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16

-
o

-
n
i
i
i

- - - Calculated
Reforded

-t
o

Empirical Transfer Function
(/] [+

1
?/ i T, Mt d - -~ J[;/\J ‘
W \/7\\#‘
00 2 4 6 8 10 12 14 16 18 20
Frequency, Hz

Figure C.3.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-§ direction.
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Figure C.3.7. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction.
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4. Burbank - 6-Story Commercial Building, CSMIP Station No. 24370

- Burbank - €:stury Commieceial Building.
" (CSMIP Station No; 24370)

No. of Stories above/betow ground: G40 Vertical Loal Carrying Systemn? -

Pian Shape: Rectangular 3* concrete slab over metal deck supporicd
Base Dimeasions: 120° x 120° by sieel frames.

Typical Ploor Dimensions: 120 x 120° " Lateial Force Resisting System;

Design Date: 1976 . . Perimuter moment resisting steel frames.
Construction Dale; 1977 ) Poundation Type: ’

Concrele caissons (aprox, 32° deep), -

Figure C.4.1a. Details of 6-story commercial btiilding, CSMIP Station No. 24370

Burbank - 6-story Commercial Bldg.
{CSMIP Station No. 24370)
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Figure C.4.1b. Sensor locations in 6-story commercial building, CSMIP Station No. 24370
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Table C.4.1. Results of system identification in E-W (longitudinal) direction by autoregressive
modeling.

j |Frequency| Period | Damping Pole Comments
(Hz) (sec) Magnitude

1 4558 1.378 0.041 0996] 1st Mode
2 4.558 1.378 0.041 0.996

3 13.525 0.465 0.065 0.983| 2nd Mode
4 13.525 0.465 0.065 0.983
5 10.668 0.589 0.166 0.965
6 10.668 0.589 0.166 0.965
7 24.553 0.256 0.073 0.965
8 24.553 0.256 0.073 0.965
9 34.228 0.184 0.061 0.959

10 34.228 0.184 0.061 0.959
11 38.662 0.163 0.064 0.952
12 38.662 0.163 0.064 0.952
13 64.509 0.097 0.041 0.948
14 64.509 0.097 0.041 0.948
15 18.997 0.331 0.148 0.946
16 18.997 0.331 0.148 0.946
17 29.556 0.213 0.112 0.936
18 29.556 0.213 0.112 0.936
19 52.0533 0.121 0.065 0.935
20 52.053 0.121 0.065 0.935
21 32.023 0.121 0.066 0.933
22 52.023 0.121 0.066 0.933
23 60.611 0.104 0.066 0.923
24 60.611 0.104 0.066 0.923
25 43.751 0.144 0.092 0.922
26 43.751 0.144 0.092 0.922
27 74.606 0.084 0.059 0916
28 74.606 0.084 0.059 0.916
29 72.439 0.087 0.080 0.890
30 72.439 0.087 0.080 0.890
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Root E-W Acceleration, 6-Story Commercial Building, Burbank
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Figure C.4.2. Zero-pole cancellation for autoregressive model in E-W direction.
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Figure C.4.3. Residuals for autoregressive model in E-W direction.
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Roof E-W Acceleration, 6-Story Commercial Building, Burbank
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Figure C.4.4. Comparison of empirical transfer functions: recorded motions and calculated
motions of autoregressive model in E-W direction.
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Figure C.4.5. Comparison of time-histories: recorded motions and calculated motions of
autoregressive model in E-W direction.
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Roof E-W Acceleration, 6-Story Commercial Building, Burbank
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Figure C.4.6. Modal contributions of autoregressive model in E-W direction; modes 1 to 8.
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Root E-W Acceleration, 6-Story Commercial Building, Burbank
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Figure C.4.7. Modal contributions of autoregressive model in E-W direction; modes 9 to 16.



Table C.4.2. Results of system identification in N-S (longitudinal) direction by autoregressive
modeling.

j |Frequency| Period | Damping Pole Comments
(Hz) (sec) Magnitude

1 4,607 1.364 0.040 0.996] 1st Mode
2 4.607 1.364 0.040 0.996

3 13.475 0.466 0.053 0.986| 2nd Mode
4 13.475 0.466 0.053 0.986
5 36.071 0.174 0.043 0.969
6 36.071 0.174 0.043 0.969
7 23.180 0.271 0.094 0.957
8 23.180 0.271 0.094 0.957
9 18.357 0.342 0.127 0.954

10 18.357 0.342 0.127 0.954
11 9.871 0.637 0.239 0.954
12 9.871 0.637 0.239 0.954
13 71.118 0.088 0.036 0.950
14 71.118 0.088 0.036 0.950
15 59.051 0.106 0.054 0.938
16 59.051 0.106 0.054 0.938
17 64.668 0.097 0.051 0.937
18 64.668 0.097 0.051 0.937
19 47.817 0.131 0.069 0.937
20 47.817 0.131 0.069 0.937
21 27.343 0.230 0.121 0.936
22 27.343 0.230 0.121 0.936
23 36.592 0.172 0.101 0.929
24 36.592 0.172 0.101 0.929
25 74.201 0.085 0.053 0.924
26 74.201 0.085 0.053 0.924
27 56.639 0.111 0.071 0.922
28 56.639 0.111 0.071 0.922
29 48.909 0.129 0.090 0916
30 48.909 0.129 0.090 0.916
31 31.807 0.198 0.184 0.890
32 31.807 0.198 0.184 0.890
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Roof N-S Acceleration, 6-Story Commercial Building, Burbank
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Figure C.4.8. Zero-pole cancellation for autoregressive model in N-S direction.

Roof N-S Acceleration, 6-Story Commercial Building, Burbank
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Figure C.4.9. Residuals for autoregressive model in N-S direction.
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Roof N-S Acceleratian, 6-Story Commercial Building, Burbank
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Figure C.4.10. Comparison of empirical transfer functions: recorded motions and calculated
motions of autoregressive model in N-S direction.

Model Order:na=32nb=16nc= 9
Roof N-S Acceleration, 6-Story Commerciai Building, Burbank
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Figure C.4.11. Comparison of time-histories: recorded motions and calculated motions of
autoregressive model in N-S direction.
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Roof N-S Acceleration, 6-Story Commercial Building, Burbank
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Figure C.4.12. Modal contributions of autoregressive model in N-S direction; modes 1 to 8.
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Roof N-S Acceleration, 6-Story Commercial Building, Burbank
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Figure C.4.13. Modal contributions of autoregressive model in E-W direction; modes 9 to 16.
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5. Los Angeles - 19-Story Office Building, CSMIP Station No. 24643

li-u Angeles - 1%story Office Blig,
{CSMIF Station No. 24643)

No. of Stories sbove/below prounds 19/4
Plan Shape: Rectmgutar

Base Dimenslons: 303" x 318

ypical Floor Dimensions: 240° x 1]0*
Design Date: 1966-67

Construction Date: 1967

Vertical Load Carrying Systern;
4.5" RC slab supported on stoe! frames,
Laleral Load Carrying Sysiem:
Momen! resisting ste2l frames in the
longitudinal and X-braced steed frames b
the (eanivesse direction, :
Foundation Type:
7%’ wong, driven, stes] I-beam piles.

Figure C.5.1a. Details of 19-story office building, CSMIP Station No. 24643

Los Angeles - 19-story Office Bldg.
{CSMIP Statlon No, 24643)
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Figure C.5.1b. Sensor locations in 19-story office building, CSMIP Station No. 24643
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Table C.5.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 0,2571 00221 -8.63E-00! -1,57E-02} -4 13E-03! 6.84E-01 1st Mode
2 0.7141 0.043{ 1.42E-00| -2.93E-04| 1.87E-03]| 3.25E-01 2nd Mode
3 1.2481 0.051] -5.52E-01] -1.14E-04| 1.60E-03| 1.03E-01
4 1.8057 0.078] 2.82E-01] -2.59E-05| 1.50E-03| 7.41E-02
5 2.3037 0.047{ -1.55E-G1| 1.94E-05| 7.05E-04| 5.42E-02
6 2.7331 0.036] 2.14E-02] 2.24E-05] 1.80E-04| 1.60E-03

Relative Error = 0.203 and Absolute Error = 1.232

Transfer Function

Roof E-W Acceleration, 19-Story Office Bidg., Los Angeles
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Figure C.5.2. Initial frequency estimate from transfer function in E-W direction.
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Roof E-W Acceleration, 19-Story Office Bldg, Los Angeles
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Figure C.5.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.

Roof E-W Acceteration, 19-Story Office Bldg, Los Angeles
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Figure C.5.4. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction.
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Table C.5.2. Results of system identification in N-S (fransverse) direction by WPCMIMO.

Mode | Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
I 0.2877 0026 |-8357E-00{-66]E-03] [.39E-03 | 3.20E-0] 1st Mode
2 1.2139 0.040 | 1.14E-00 | 9.30E-0S | -1.06E-03 | 447E-01 2nd Mode
3 2.5687 0.107 |-7.64E-01 | -4.30E-05 | -1.00E-03 | 4.14E-01
4 29114 0.244 | 5.86E-01 [-7.32E-05 | 2.47E-03 | 1.27E-01
5 3.6779 0.030 | 9.09E-02 | -1.37E-05 | 1.03E-04 [ 1.64E-02
6 3.8857 0.036 | 8.51E-02 | 1.56E-05 | 2.83E-04 | 1.62E-02
7 4.5257 0.053 | -148E-01{ 1.04E-05 | -4.62E-05 | 8.37E-02

Relative Error = 0.295 and Absolute Error = 3.953
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Figure C.5.5. Initial frequency estimate from transfer function in N-S direction.
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Roof N-S Acceleration, 19-Story Office Bldg, Los Angeles
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Figure C.5.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.

Roof N-S Acceleration, 19-Story Olffice Bidg, Los Angeles
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Figure C.5.7. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction.
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6. Los Angeles - Hollywood Storage Building, CSMIP Station No. 24236

Los Augeles - Hollywond Storage Bldg.
(CSMIP Station No. 24236

‘l:llo. nsthlnrics above/below grovnd: 1441 Veertieat Lowd Caerying System:
an Shape: Rectangular 8% concrete sfabs supporisd b Crete
Hase Dimensions; 21 x $1* frzme, ) e ¥ ronee
Fypical Flooe Dimtensions: 217 x 517 Lateral Yorce Resisting System:
ypic y 2 g System:
Design Dawe: {928 Reinforced concrete frames in hoth
disections.

Foundation Type: Concrete piles.

Figure C.6.1a. Details of Hollywood Storage Building, CSMIP Station No. 24236

Los Angeles - Hollywood Storage Bidg.
{CSMIP Station No. 24236
SENSOR LOCATIONS
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Figure C.6.1b. Sensor locations in Hollywood Storage Buildihg, CSMIP Station No. 24236
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Table C.6.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 0.5907 0.0827( -4.82E-021 1.69E-03| 6209E-03] 2.82FE-04] 1st Mode*
2 1.2645 0.0085] -3.90E-02| -2.92E-03] 1.38E-02] 9.53E-03
3 1.2758 0.0964| -1.34E-00| 5.98E-03{ -2.31E-02| 841E-01{ 2nd Mode
4 4.7198 0.0900| -3.03E-02| 4.92E-05| -2.84E-03| 3.12E-03
5 6.1129 0.0659] 2.55E-02] -2.86E-05| -1.52E-03| 4.48E-03
6 7.8347 0.1198| 3.57E-02] -3.46E-05| -5.27E-04| 3.13E-03

* 1st mode not visible in transfer function
Relative Error = 0.271 and Absolute Error = 0.703

Transfer Function

12th Floor E-W Acceleration, Hollywood Storage Bldg., Los Angeles

10

R o——

; A A ~
V) RPN A ke SOV LT

Figure C.6.2. Initial frequency estimates from transfer function in E-W direction.
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12th Floor E-W Acceleration, Hollywood Storage Bldg., Los Angeles
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Figure C.6.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.

12th Floor E-W Acceleration, Hollywood Storage Bldg., Los Angeles
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Figure C.6.4. Comparison of time-histories: recorded motions and calculated motions from

WPCMIMO in E-W direction.
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Table C.6.2. Résults of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 00,4397 0.0472| -7.61E-00] -9.23E-02| -5.59E-01} 1.49E+00/| 1st Trans, Mode
2 0.4500 0.0436] 2.53E-00| 6.06E-02| S5.89E-01] 3.39E-01| 1st Tor. Mode
3 1.5361 0.0801| 5.39E-01| -1.08E-03| 1.36E-02| 2.72E-O1{2nd Tran. Mode
4 1.8336 0.0437] 1.24E-01| 5.26E-04| 4.02E-03| 4.39E-02| 2nd Tor. Mode
5 5.8838 0.0236| 3.17E-01| -3.72E-04| -2.12E-02| 2.28E+00
6 1.1576 0.0757] 6.66E-02| 4.11E-05| 1.74E-04| 1.77E-02
7 3.9003 0.0299] -3.81E-01| 4.32E-04] 2.48E-02] 2.67E+00
8 4.2006 0.0918] 1.14E-01]| -4.18E-05] 2.68E-03| 7.04E-02

Relative Error = 0.478 and Absolute Error = 3.981

Transfer Function
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Figure C.6.5. Initial frequency estimates from transfer function in N-S direction.
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Roof N-S Acceleration, Hollywood Storage Bldg., Los Angeles
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Figure C.6.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.

Roof N-S Acceleration, Hollywood Storage Bldg., Los Angeles
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Figure C.6.7. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction.
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7. North Hollywood - 20-Story Hotel, CSMIP Station No. 24464

Nooth Hollywood - 20-story Hot)
(CSMIP Station No. 24464

it

?"‘f

L2k e

o g

%

LBl

EEGES R

No. of Stries abeveselow ground: 2041 Verical Load Carrying System:
Plan Shape: Rectanputar . 4.57 10 6" concrite stabs supperted by
Base Dimansions: 199 x 96" voncrete beams a0 <olumas.
Typical Floor Dimensions: 184¢ % 5§ Lateral Foree Resisting System:
Design Dae: 1967 Ductile mament sesisting concrete trames in
Construction Dae: 1968 upper stories; concrale shedr walls in e

. basement. - '

Founidation Fype: Spreat footings,

Figure C.7.1a. Details of 20-story hotel building, CSMIP Station No. 24464

North Hollywood - 20-story Hotel

{CSMIP Station No. 24464} SENSOR LOCATIONS
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Figure C.7.1b. Sensor locations in 20-story hote! building, CSMIP Station No. 24464
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Table C.7.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode | Frequency | Damping Part. Initial Initial Modal Comments
No. {Hz) Factor Disp. Velo. Cont.

1 0.3851 0.05871 -5.79E-00! 3.35E-03; -9.30E-Q03| 6.86E-01{ 1st Mode
2 1.1353 0.1578| 8.28E-01] -7.65E-03] -2.71E-02| 1.49E-01

3 1.2817 0.0315] 2.00E-01| 1.80E-03| 3.05E-02| 6.31E-02

4 2.9555 0.4005[ -11.28E-0| 1.09E-02] 1.66E-01| 7.45E+01

5 2.9632 0.3350| 9.49E-00] -9.24E-03| -1.34E-01| 7.03E+01

6 5.1417 00114 -2.11E-02{ -1.19E-04| 1.25E-03| 2.58E-02

7 5.4144 0.2175] 7.15E-01] -8.31E-04| -4.32E-02| 9.02E-01

8 5.8070 0.08231 -1.79E-01]| 5.22E-04| 1.68E-02( [.13E-01

9 5.3661 0.0036; -1.15E-03] -4.82E-05) 5.83E-03] 7.59E-03

Relative Error = 0.433 and Absolute Error = 1.055

Transfer Function
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Figure C.7.2. Initial frequency estimates from transfer function in E-W direction.
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Figure C.7.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Figure C.7.4. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction.
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Table C.7.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency | Damping Part. Initial Initial Model Comments
No. (Hz) Factor Disp. Velo. Cont.
1 0.3821 0.0650| -5.58E-001 -9.03E-03] S69E-02] 1.01E+Q0 1st Mode
2 1.2939 0.1325] 5.02E-01| -1.10E-03{ 9.80E-03| 3.30E-01
3 1.1051 0.02981 9.54E-02] -1.78E-04| -1.18E-02| 1.81E-02
4 3.8197 0.0015¢f 7.49E-03| -1.24E-04] -1.24E-03| 2.25E-03
5 3.9666 0.0083| 8.38E-03| 6.73E-06] 3.09E-03| 1.71E-03
6 4.2187 0.0024| -1.25E-03] -3.81E-05] 1.88E-03| 7.20E-04
Relative Error = 0.360 and Absolute Error = 0.891
Roof N-S Acceleration, 20-Story Hotel, North Hollywood
10 T T T
! !
9 |
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8 |
03840 |
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Figure C.7.5. Initial frequency estimates from transfer function in N-S direction.
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Figure C.7.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-§ direction.
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Figure C.7.7. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction,
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8. Milikan Library - NOAA Station No. N264-265

Table C.8.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.

1 1.0466 0.06721 -2,03E-001 -2 42E-03| -8.54E-03| 6.81E-01 Ist Mode |
2 1.4648 0.1070] -3.47E-01] -9.15E-04| 5.59E-03| 1.71E-02

3 4.9699 0.0503| 1.34E-01{ -4.73E-05] -7.15E-04| 2.75E-02

4 5.5484 0.0025| 1.65E-03] -4.84E-05| 3.64E-03| 2.08E-03

5 11.2341 031761 -2.86E-01| 4.61E-06| 3.85E-03| 4.92E-03

6 11.9808 0.0237| 161E-02]| -3.27E-06] -1.21E-04| 1.90E-04

Relative Error = 0.443 and Absolute Error = 2.800

Transfer Function

10th Floor E-W Acceleration, Milikan Library, Pasadena

10

1.0010

5.5664

#.9072

N\

2 f V
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Figure C.8.1. Initial frequency estimates from transfer function in E-W direction.
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10th Floor E-W Acceleration, Milikan Library, Pasadena
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Figure C.8.2. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.

10th Floor E-W Acceleration, Milikan Library, Pasadena
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Figure C.8.3. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction.
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Table C.8.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 1.5897 0.0605] -1.24E-00| -1.58E-03] 4.89E-02] 6.32E-0] 1st Mode
2 1.7578 0.0267] -2.08E-01} 3.50E-03] -2.18E-02| 3.58E-02
3 6.4101 0.1372 6.96E-02) 1.02E-04| 3.51E-03| 9.78E-03
4 8.1378 0.0250] 3.64E-02} -2.58E-05] -1.11E-03| 6.00E-03
5 7.8556 0.0021! 1.94E-02) 243E-05| 8.60E-05] 6.51E-03
6 7.2776 0.0186| 2.15E-02} 1.22E-05| 1.01E-04| 1.44E-03
7 7.2881 0.6551| -2.04E-01| 2.46E-04| -1.65E-02} 5.68E-03
8 -~ 8.4907 0.0000] -2.72E-03] 1.72E-05] -5.0SE-04{ 7.72E-04
Relative Error = 0.279 and Absolute Error =0.718
10th Floor N-S Acceleration, Milikan Library, Pasadena
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Figure C.8.4. Initial frequency estimates from transfer function in N-S direction.
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Empirical Transfer Function

Figure C.8.5. Comparison of empirical transfer functions: recorded motions and calculated
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9. Los Angeles - 5-Story Warehouse, CSMIP Station No. 24463

Loy Angeles - Swarp Werabouss

kddress: 2655 Eust Glympic Blwd. - Vertiosl lLoad Careylng Systus:

Low Angeles, Ci Conereto alabs, bbumo wnd Coliumns,
Ho. of Storics shova/balow Latoral Forae Rosiating Systom: - :
ground: 5/1 Ductile reinforced concrets porimetor fraes;
Plon Inape: Reotangular basecont shear-walls] sasigied acooraing
Baro Dimsnaions: 360 x 286 -to the 1570 lLos Angeley Bullding Code.
Typlonl Ploor Dlmansfons: Susw Foundution Type: '
Dealgn Duts: 1970 Sproad fovtivgs.

" ¥ote: This building i3 adjacent te u simflar nuldaing; the huuuang;s Ary ueparstad by &
scisate jaint. *

Figure C.9.1a. Details of 5-story warehouse, CSMIP Station No. 24463

Los Angeles - 5-story Warehouse
{CSMIP Station No. 24463)

SENSOR LOCATIONS

. Roof
I s
4
5th } . }
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oW ezt st
g 7
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W/E Elevation 12._,
' o 4 L= Znd Fioor Plan -
2 Nre! " 3n0c8" .
' 10 'I i
****** 9
-Jr- Roof Plan :L- Structure Referance F ' 8 i

N
Orientation; N= 350° - . 1

Figure C.9.1a. Sensor locations in 5-story warehouse, CSMIP Station No. 24463
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Table C.9.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.

1 0.6868 0.05521 -3.16E-00] -1.25E-03} -3 26E-03| 8.]13E-01 Ist Mode
2 2.1240 0.0656] 4.22E-01| -1.34E-05| 7.84E-04| 2.87E-01| 2nd Mode
3 3.6467 0.0569| -1.11E-01| -1.66E-06| -3.18E-04| 7.71E-02
4 8.0107 0.0055| 6.75E-02| -4.44E-04| -3.73E-02| 5.76E-01
S 8.0102 0.0061] -7.24E-02{ 4.38E-04]| 3.92E-02} 5.83E-01
6 7.9110 0.0028] 3.03E-04] 1.76E-05| -156E-03} 1.14E-03

Relative Error = 0.314 and Absolute Error = 0.635

Transfer Function

Roof E-W Acceleration, 5-Story Ware House, Los Angeles
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Figure C.9.2. Initial frequency estimates from transfer function in E-W direction.
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Roof E-W Acceleration, 5-Story Wars House, Los Angelas
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Figure C.9.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.

Roof E-W Acceleration, 5-Story Ware House, Los Angeles
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Figure C.9.4. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction.
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Table C.9.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.

| 0.6230 0.0363) -3.25E-001 471E-03| 5.75E-03| 9.31E-01 1st Mode
2 1.8555 0.0721] -3.25E-00{ 4.01E-03] -3.11E-02]| 1.51E+01 2nd Mode
3 1.8597 0.0731] 3.62E-00| -4.01E-03| 2.88E-02| 1.85E+01

4 3.4478 0.0697| -9.83E-02| 2.03E-05| -2.86E-05| 4.77E-02

5 4.7759 0.0609] 2.40E-02| -1.58E-05] -8.12E-04[ 2.91E-03

Relative Error = 0.164 and Absolute Error = 0.230

Transfer Function

Roof N-§ Acceleration, 5-Story Ware House, Los Angeles
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Figure C.9.5. Initial frequency estimates from transfer function in N-S direction.
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Roof N-S Acceleration, 5-Story Ware House, Los Angeles
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Figure C.9.6. Comparison of empirical transfer functions: recorded motions and calculated

motions from WPCMIMO in N-S direction.

Roof N-S Acceleration, 5-Story Ware House, Los Angeles
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Figure C.9.7. Comparison of time-histories: recorded motions and calculated motions from

WPCMIMO in N-S direction.
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10. Los Angeles - 3-Story Commercial Building, CSMIP Station No. 24332

Los Anpeles - 3-story Comnevcial Baililing
{CSMIP Station Ne. 24332)

No. of Storics sboverbelow ground: 32 Verticat Load Carrying System:

Flan Shape: Reclangular A.257 light-weight concrefe slsb over metal
Hase Dimensions: 520 = 227 ) deck in upper three stories; 18¥ thick walfle
Typical Floor Dimensions: 261" x 219 slah in the basement.
Design Date: 1974 . . tatetal Force Resisting Sysiem:
Construction Dale: 197576 Steel bracsd {rames in upper theee siores;
concrete shear watls in the busement.
Foundation Type:
Spread footings end drifled befl
caissons.

Figure C.10.1a. Details of 3-story commercial building, CSMIP Station No. 24332

Los Angeles - 3-story Commercial Bldg.
{CSMIP Station No. 24332)
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Figure C.10.1b. Sensor locations in 3-story commercial buiIding,‘ CSMIP Station No. 24332
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Table C.10.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.

1 1.7203 0.2343| -1.39E-00/| -3.00E-03] 4.76E-03| 4.15E-0Q]

2 1.9897 0.0484| -5.94E-01| 8.50E-04]| 9.96E-03| 3.26E-01 1st Mode
3 2.6335 0.5218| 1.53E-00| 1.91E-03| -1.30E-02| 2.96E-01

4 44917 0.0362| 5.82E-02| -8.27E-05]| 2.22E-03| 1.87E-02

5 5.4994 0.1164| -1.82E-01| -2.52E-05| -5.42E-04| 4.95E-02

6 6.5720 0.0600| 1.94E-02| -7.30E-06{ 1.39E-03| 8.91E-04

Relative Error = 0.250 and Absolute Error = 1.995

Transfer Function

Roof E-W Acceleration, 3-Story Commercial Bldg., Los Angeles
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Figure C.10.2. Initial frequency estimates from transfer function in E-W direction.
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Roof E-W Acceleration, 3-Story Commercial Bldg., Los Angeles
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Figure C.10.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.

Roof E-W Acceleration, 3-Story Commercial Bldg., Los Angeles
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Figure C.10.4. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction.
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Table C.10.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.

1 1.8938 04290/ -3282F-11 -198E-01| 843E-01{ 1.59E+02

2 1.8066 0.0071] -5.95E-02| 3.04E-03]| -1.64E-02| 3.13E-02 1st Mode*
3 3.6306 0.0903| 1.44E-01| 4.51E-04| -1.64E-02| 6.54E-02

4 2.0896 0.3859| 2.39E+01| 1.24E-01] -6.05E-01] 1.16E+02

5 1.4502 0.3263| 5.05E-00| 6.08E-02| -1.73E-01| 2.92E+00

6 4,0497 0.0475] 6.91E-02] -3.50E-04| -5.49E-03| 4.10E-02

* Damping is not reliable
Relative Error = 0.366 and Absolute Error = 4.888

Transter Function

Roof N-S Acceleration, 3-Story Commercial Bldg., Los Angeles
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Figure C.10.5. Initial frequency estimates from transfer function in N-S direction.
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Roof N-S Acceleration, 3-Story Commercial Bldg., Los Angeles
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Figure C.10.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.

Roof N-S Acceleration, 3-Story Commercial Bldg., Los Angetes
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Figure C.10.7. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction.
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11. Los Angeles - 17-Story Residential Building, CSMIP Station No. 24601

Laos Angeles - 17-story Residential Bldg, -
{CEMID Sttion No, 24601)

No. of Stories abovelbelow ground: 17/0 Veriical Lowl Camrying System:

Plan Shape: Restangular 4" or 8 precast, peetensioned concrere
Base Dimegions: 227" x §0° shabs supporied by precast concrete walls,
Typical Floor Dimensions; 227 x §0' Laterat Force Resisting System;

Design Date: 1980 Distribated precast concrete shear walls,
Construction PDate: 1982 Foundation Type: :

Concrere drifled pits {447 - $3° fong).
Figure C.11.1a. Details of 17-story residential building, CSMIP Station No. 24601

Los Angeles - 17-story Residential Bldg.
(CSMIP Station No. 24601) .
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Figure C.11.1b. Sensor locations in 17-story residential building, CSMIP Station No. 24601
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Table C.11.1. Results of system identification in N-S (longitudinal) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont,
1 0.8493 0.04011] -3.18E-00{ -1.47E-03[ 6.31E-03{ 8.09E-01] 1st Mode
2 4.1504 0.1069] 1.12E+01] -1.41E-03| -3.66E-02! 9.39E+01} 2nd Mode*
3 4.1576 0.1080]-1.10E+01¢ 1.38E-03| 3.78E-02| §.94E+01
4 6.1290 0.0506] -7.70E-03| 2.58E-06| 1.40E-04| 9.S0E-05
5 12.3674 0.0136] 9.62E-04| 247E-07| 3.07E-09| 2.00E-06
6 8.2835 0.1204] -1.18E-01] 4.55E-06] 1.86E-04| 3.57E-03
Not reliable

Relative Error = 0.248 and Absolute Error = 3.265

Transter Function
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Figure C.11.2. Initial frequency estimates from transfer function in N-S direction.
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Roof N-S Acceleration, 17-Story Residential Bldg., Los Angeles
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Figure C.11.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.
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Figure C.11.4. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction.
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Table C.11.2. Results of system identification in E-W (transverse) direction by WPCMIMO.

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.

1 0.9506 0.0331 -2.43E-00] -1.79E-0Q3| -3,3]1E-03| 8.30E-01 1st Mode
2 4.5000 0.0115] 3.34E-02{ -4.18E-06| 7.07E-04| 2.74E-03

3 4.7540 0.0090] 3.60E-02| 7.18E-06| -4.78E-04| 4.35E-03

4 5.3400 0.0902] 9.89E-02; -1.43E-05| 6.67E-04| 5.76E-03

5 10.3040 0.1082| -6.32E-021 4.36E-06] 3.53E-04| 1.29E-03

6 7.3071 0.0468| -1.03E-02] -1.39E-07{ 3.23E-04]| 2.02E-04

Relative Error = 0.352 and Absolute Error = 6.348

Transter Funclion
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Figure C.11.5. Initial frequency estimates from transfer function in E-W direction.
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Root E-W Acceleration, 17-Story Residential Bidg., Los Angeles

10

7 © L

A

ERTAIN .
N AT NN

Empirical Transfer Function
[+4)

1 — i
IR

0

[} 1 2 3 4 5 6 7 8 9 10

Frequency, Hz

Figure C.11.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Figure C.11.7. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction. -
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12. Los Angeles - 15-Story Govt. Office Building, CSMIP Station No. 24569

~0s Angeles - 15-story Govt. Office Bldy.
(CSMIP Station No. 24569)
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Figure C.12.1. Sensor locations in 15-story office building, CSMIP Station No. 24569
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Table C.12.1. Results of system identification in N-S (longitudinal} direction by WPCMIMO.

Mode |Frequency [ Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 0.3220 0.0241| -6.99E-00{ -3.78E-04| 2.24E-03| 1.06E+00 1st Mode
2 0.8667 0.0390] 1.05E-00{ 4.76E-05| 7.97E-04| 3.28E-01 2nd Mode
3 1.4200 0.0887| -3.89E-01| 2.11E-05]| -3.86E-05| 1.28E-01
4 2.1877 0.0358] 1.06E-01| 4.05E-06{ -4.07E-05| 4.89E-02

Relative Error = 0.326 and Absolute Error = 0.683

Transfer Function
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Roof N-S Acceleration, 15-Story Govt. Office Bldg., Los Angeles
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Figure C.12.2. Initial frequency estimates from transfer function in N-S direction.
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Figure C.12.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.
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Figure C.12.4, Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction.
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Table C.12.2. Results of system identification in E-W (transverse) direction by WPCMIMO.

Mode | Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 03133 00154 -6.47E-00] -7.86E-04| -1.406-03| 5.59E-01 1st Mode
2 0.8555 0.0321| 1.01E-00| -6.49E-04| 9.07E-04| 3.84E-O1| 2nd Mode
3 1.9356 0.3273] -1.43E-00| -741E-04| 6.63E-03| 7.01E-01
4 2.1726 0.1557| 7.93E-01] 5.30E-04| 5.61E-04| 6.00E-01
5 2.3915 0.0172| 1.11E-00| -3.02E-04} -3.29E-02| 6.12E+00
6 2.3915 0.0153] -1.00E-00|{ 2.70E-04| 3.07E-02| 5.19E+00
7 2.9069 0.0598| -1.58E-01]| -1.95E-05| -9.07E-04| 7.50E-02
8 3.6051 0.0517| 141E-01] -6.22E-06] -2.31E-04| 1.14E-01

Relative Error = 0.310 and Absolute Error = 0.556
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Figure C.12.5. Initial frequency estimates from transfer function in E-W direction,
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Figure C.12.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Figure C.12.7. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction.
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13. Los Angeles - 52-Story Office Building, CSMIP Station No. 24602

105 Angeles - Si-stary Office Bldg.
(CSMIF Station Ne. 24602)

-No. of Slories abovefbclow groumdt; S5

Plan Shape; Square, with clipped corners
Base Dimenyions: 274 x 263

" Typica) Bloor Dimenslons: 156° x 156°

Design Date: 1988 '

" Construction Date: 1988-00

Vertical Load Carrying Sysiém:
37-77 concrete slabs on seel deck supported
Ly steel frames, '
Laterd Force Resisting Sysiem:

“oncentricaily briced steed frame m the
core with momenl resisting connections and
outrigger moment frames in both directions.

Foundation Type:
Concrete spread foolings (9° 1o 117 hick),

Figure C.13.1a. Details of 52-story office building, CSMIP Station No. 24602
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Figure C.13.1b. Sensor locations in 52-story office building, CSMIP Station No. 24602
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Table C.13.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
[ 0.1612 0,0065]-141E+401] -4 206-03] -4.36E-04| [.92E-0] 1st Mode
2 0.5371 0.0146] 2.34E-00| -2.01E-03] -9.67E-03| 3.84E-01 2nd Mode
3 1.0332 0.0177] -9.09E-01] -3.24E-04| 3.89E-03| 3.07E-01
4 1.5220 0.0218| S.08E-01| 1.10E-04; 2.83E-04| 141E-01
5 1.9951 0.0303| -3.70E-01| 5.04E-06! 2.68E-04| 8.11E-02
6 24731 0.0198] 1.52E-01]| 1.94E-05} -2.38E-04| 3.37E-02
7 3.2628 0.0194| 7.60E-02| 1.38E-05| 4.45E-04| 1.20E-02
8 3.6766 0.0208| -4.04E-02] 1.10E-05] 1.75E-04} 9.38E-03
9 2.9215 0.0251] -1.58E-00| -4.53E-04( -1.54E-02} 1.67E+00
10 2.9367 0.0245] 148E-00f 346E-04]| 1.61E-02| 1.52E+00

Relative Error = 0.245 and Absolute Error = 1,071
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Figure C.13.2. Initial frequency estimates from transfer function in E-W direction.
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Figure C.13.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Figure C.13.4. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction.
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Table C.13.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo, Cont.
1 0.1673 0,0303]1-2.13E+01| -2.25E-03| -1.07E-03] 3.17E-01 1st Mode
2 0.5371 0.0509] 4.16E-00| -3.91E-03| -6.53E-031 2.70E-01| 2nd Mode
3 1.0178 0.0131} -7.33E-01] -1.96E-04| 8.26E-05| 1.97E-01
4 1.4625 0.0228| 4.77E-01] -7.38E-05] -4.71E-05| 2.47E-01
5 1.8992 0.0320] -3.61E-01] -1.52E-04] 6.39E-04| 8.10E-02
6 3.1560 0.0300] 9.21E-02] 9.60E-05| -1.92E-03| 1.80E-02
7 2.3602 0.0113] 1.18E-01|_ 1.54E-04| 6.99E-04| 2.13E-02
8 2.6214 0.0259] -1.54E-01]| -2.56E-05| 2.85E-03]| 2.22E-02
9 2.2931 0.0463| 191E-01]| -4.20E-04| 2.86E-03]| 2.42E-02
10 2.9765 0.0059| 2.16E-02] 9.52E-05| 9.84E-04| 1.27E-03
11 2.7816 0.0052| -8.66E-02] 1.00E-04| 1.75E-03| 7.16E-03

Relative Error = 0.448 and Absolute Error = 4.326
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Figure C.13.5. Initial frequency estimates from transfer function in N-S direction.
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Figure C.13.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.
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Figure C.13.7. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction.
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14. Los Angeles - 9-Story Office Building, CSMIP Station No. 24579

Los Angeles - 9-story Office Bldg.
(CSMIP Station No. 24579)
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Figure C.14.1. Sensor locations in 9-story office building, CSMIP Station No. 24579
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Table C.14.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode | Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.

1 0.0143 0.0042] 6 12E+01{ 1.23E-02]| 7.92E-03} 5.51E-Q2

2 0.6226 0.0136|-1.94E+01]| -8.82E-01{ -2.31E-00| 1.37E+02

3 0.7172 0.0830] -2.96E-00| -3.44E-03| 1.99E-02| 6.83E-01 1st Mode
4 0.8163 0.0135| -3.30E-01]| -6.42E-04| -2.90E-04| 3.24E-02

5 0.6224 0.0134] 1.87E+01| 8.82E-01] 2.28E-00{ 1.34E+02

6 0.9218 0.0005| 5.40E-03]| -2.21E-04| 5.60E-03| 1.77E-03

7 2.4321 0.0833] 1.71E-01| 7.72E-05| 4.92E-03| 8.40E-02

8 2.8442 0.0018] 1.92E-02| 7.01E-05| -2.14E-03| 8.65E-03

9 2.7451 0.0044| 141E-02] 1.11E-05| -5.29E-04| 4.79E-03

10 3.8004 0.0097] -1.38E-02| -5.96E-06| -1.26E-04| 5.02E-03

11 4.2073 0.0715] -5.60E-02] 4.28E-07| 4.26E-04] 1.55E-02

Relative Error = 0.340 and Absolute Error = 1.352
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Figure C.14.2. Initial frequency estimates from transfer function in E-W direction.
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Figure C.14.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Figure C.14.4. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction.
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Table C.14.2, Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.

1 0.6408 0.0060| -1.44E-01] -7.83E-04| -1.28E-02{ 197E-02

2 0.7813 0.0690] -1.70E-00| 3.97E-03| -1.08E-01| 2.87E-01l 1st Mode
3 0.7588 0.0000} -6.78E-02| 3.74E-03] 4.90E-02) 1.02E-Ot

4 1.1144 0.6307| -7.89E-00| -3.46E-02| 6.57E-02| 2.53E+00

5 1.3357 0.4244| 4.14E-00| 8.52E-03( 6.82E-03]| 1.76E+00

6 2.7573 0.1304| 4.18E-01| 4.58E-04| 1.93E-03| 1.80E-O1

7 24292 0.0501| 9.99E-02| 1.65E-08| 1.61E-06| 2.73E-02

8 3.0762 0.0500] 9.99E-02| 1.34E-08] -1.28E-06] 3.20E-02

Relative Error = 0.502 and Absolute Error = 3.267
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Figure C.14.5. Initial frequency estimates from transfer function in N-S direction.
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Figure C.14.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.
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15. Los Angeles - 8-Story CSULA Administration Building, CSMIP Station No. 24468

Loy Angelea - CSULA Adainistration Bidg.

Addroasg: Calif. State Univarsity at LA Vortical Load farvying System: .
Les Angelos, €A . Concrata 3laba aupporyed by conarste beana

Ka. of Stories above/below and colimna,

ground: 8/1 Lateral Force Hualoting System: .
Plon Shaps: Hectangular Conoreve sngar walla exeapt butween levels
Base Dixonatons: Irvegular basa sheps -1 and 2 where compnsite ooncrete/stool
Typical Floor Dlwgnsiong: J15&' x 63°' colmmns resist lateral foroos,
Design Date: 1967 Foundetlon Type:
Construction Bate: 1969 Spread footings and concrete calsnons.

Figure C.15.1a. Details of 8-story CSULA administration building, CSMIP Station No. 24468
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(CSMIP Statlon No. 24468}
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Figure C.15.1b. Sensor locations in 8-story administration building, CSMIP Station No. 24468
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Table C.15.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 0.6479 0.0360| -3.08E-00] -4 72E-03{ 1.56E-02] 8 78E-01| 1stLong, Mode
2 0.7263 0.0304| -2 57E-01| 5.14E-03| -4.06E-03| 8.95E-03| 1st Tor. Mode
3 1.8301 0.0724| 3.87E-01| 2.19E-04| 3.65E-03| 8.07E-02
4 1.9892 0.0030| 2.50E-02] 247E-04| -2.01E-03| 3.59E-03
5 4.5171 0.0449]| -2.23E-02| -1.05E-05| -2.67E-04| 3.49E-03
6 3.6944 0.0462] -1.33E-02| -7.75E-06] -5.72E-04| 7.17E-04

Relative Error = 0.240 and Absolute Error = 0.421
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Figure C.15.2. Initial frequency estimates from transfer function in E-W direction.
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Figure C.15.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Figure C.15.4. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction,
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Table C.15.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Medal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 0.6188 0.0370] -427E-00] 291E-03] 2.07E-02! 9.18E-0] 1st Mode
2 1.9653 0.0582| 4.56E-01| 2.26E-04| 2.80E-03| 2.51E-Ot 2nd Mode
3 3.3866 0.4742| -1.72E-01| 3.77E-04| -1.74E-02] 1.51E-02
4 5.5919 0.2183] 7.03E-02| -6.67E-05| 8.51E-03| 1.08E-02

Relative Error = 0.253 and Absolute Error = 0.412
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Figure C.15.5. Initial frequency estimates from transfer function in N-S direction.
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Roof N-S Acceleration, 8-Story CSULA Administration Bldg., Los Angeles
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motions from WPCMIMO in N-S direction.
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16. Pasadena - 6-Story Office Building, CSMIP Station No. 24541

Pasadena —~ 6-story Office Bldg.
(CSMIP Siation No. 24541)
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Figure C.16.1. Sensor locations in 6-story office building, CSMIP Station No. 24541
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Table C.16.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode | Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont,
1 0.4564 0.0542| -447E-00] 3.13E-03] -3.78E-03| 6.59E-01 1st Mode
2 1.8677 0.0736] 3.77E-01] 835E-05| 1.67E-04| 4.13E-01 2nd Mode
3 3.5074 0.1201| -1.63E-01| 1.61E-04| -2.09E-03! 9.63E-02
4 4.6060 0.0658] 4.87E-02| -2.48E-05| -3.34E-03| 2.22E-02
5 5.1310 0.0000( -3.38E-03| -5.25E-05| 1.44E-03| 6.37E-03
6 6.5609 0.0627| 7.58E-03] 1.14E-06] 1.51E-05| 3.41E-04
Relative Error = 0.379 and Absolute Error = 0.268
Roof E-W Acceleration, 6-Story Office Bldg., Pasadena
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= 0.4395
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Figure C.16.2. Initial frequency estimates from transfer function in E-W di-ection.
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Roof E-W Acceleration, 6-Story Office Bldg., Pasadena
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Figure C.16.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Figure C.16.4. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in E-W direction.
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Table C.16.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
| 0.4760 0.2218{ 03372291 0.001893} 0001131} 3.62E-02/ 1stTran. Mode*
2 0.5595 0.0008] -2.36E-00; -2.36E-04| 3.57E-03| 4.76E-01| 1stTor. Mode*
3 0.7813 0.0744| -9.89E-01| 151E-03| 1.69E-03| 222E-01
4 2.0093 0.1908| 3.76E-01| 2.09E-04| -3.00E-03| 3.37E-Ol{ 2nd Tran. Mode*
5 4.9434 0.0264| -4.12E-03| -5.85E-05] 9.34E-04] 1.89E-03
6 4.4202 0.0159] -3.96E-03! -8.64E-06| -7.25E-04| 1.13E-03
7 3.8488 0.0996) -5.86E-02] 3.35E-05]| -1.98E-03] 3.62E-02

* Damping is unreliable
Relative Error = 0.231 and Absolute Error = 0.100
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Figure C.16.5. Initial frequency estimates from transfer function in N-S direction.
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Figure C.16.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.
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Figure C.16.7. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction.
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17. Whittier - 8-Story Hotel, CSMIP Station No. 14606

Whittier - 8-story Hotel
(CSMIF Station No. 14606)

SENSOR LOCATIONS ,
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Figure C.17.1. Sensor locations in 8-story hotel, CSMIP Station No. 14606
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Table C.17.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo., Cont,
1 1.4441 0,0519] -1.71E-00{ -3.20E-05] 2.82E-04| 8.03E-0] Ist Mode
2 5.5298 0.1125] 1.60E-01] -4.79E-08| 3.30E-05| 1.01E-0l 2nd Mode
3 12.2209 0.0912| -2.82E-02| 5.32E-08| 9.89E-06| 1.66E-03
4 20.9184 0.0570{ -1.15E-02| 2.68E-08] 2.47E-06| 4.10E-05
Relative Error = 0.283 and Absolute Error = 1.077
i Roof E-W Acceleration, 8-Story Hotel, Whittier
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Figure C.17.2. Initial frequency estimates from transfer function in E-W direction.
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Figure C.17.3. Comparison of empirical transfer functions: recorded motions and calculated

motions from WPCMIMO in E-W direction.
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Table C.17.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 1.5956 0.1163} -1.11E-00| 3.11E-06] 420E-04| S5.91E-O[[1st Tran. Mode*
2 1.7822 0.0846| -241E-01| 1.79E-05] -4.13E-04] 4.96E-02} 1st Tor. Mode *
3 3.2949 0.5232| 2.56E-00| -5.63E-05| 8.72E-04| 2.22E+00
4 3.2605 0.3913| -1.96E-00| 4.19E-05] -8.58E-04] 2.23E+00
5 4.8955 0.0918] -4.75E-02| 6.26E-07| -4.26E-05| 1.25E-02
6 5.5757 0.0438( -1.70E-02| -1.27E-06| -1.58E-05| 2.52E-03
7 9.5854 0.0329] 1.09E-02] -6.25E-08| -1.94E-06] 9.35E-04

* Damping is not reliable
Relative Error = 0.355 and Absolute Error = 1.595
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Figure C.17.5. Initial frequency estimates from transfer function in N-S direction.
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Figure C.17.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.
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Figure C.17.7. Comparison of time-histories: recorded motions and calculated motions from
WPCMIMO in N-S direction.

195



18. Los Angeles - 6-Story Office Building, CSMIP Station No. 24652

" Los Angeles « 6-story Office Bldg,
{CSMIP Srtion No, 24652)

No. of Swories abovedbelow ground: 561 Vertical Load Carrying System:

Tfant Shupe: Square Canerete slabs aver metal deck supported
. Base Dimensions: 94° x 947 by stee! frames.

Typical Floor Dimensions: 94 x 94 fawral Force Resisting System:

Design Date: 198¥ Cheveon type sieel braced Trames for laterat
" Constrection Date: (984 . resistance; steel momert frames for

torsional resistance,
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Mat founditions for four towers; sptead
footings elsewhere. '

Figure C.18. 1a. Details of 6-story 6fficc building, CSMIP Station No. 24652
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Figure C.18.1b. Sensor locations in 6-story office building, CSMIP Station No. 24652

196



Table C.18.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 11116 0.0394| -142E-00{ -1.01E-03] 3.61E-03! 8.18E-0]] 1stLong, Mode |
2 3.8208 0.0768| 1.67E-01] -9.39E-07| 1.87E-04; 2.22E-02|2nd Long. Mode
3 1.2847 0.0367]| -3.43E-01| 4.85E-04| -1.03E-03| 4.24E-02} 1st Tor. Mode
4 6.1724 0.1110] -4 45E-02| 3.25E-06] 1.44E-04] 1.79E-03

Relative Error = 0.272 and Absolute Error = 2.695

Roof E-W Acceleration, 6-Story Office Bldg., Los Angeles
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Figure C.18.2. Initial frequency estimates from transfer function in E-W direction.
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Figure C.18.3. Comparison of empirical transfer functions: recorded motions and calculated

motions from WPCMIMO in E-W direction.
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Figure C.18.4. Comparison of time-histories: recorded motions and calculated motions from

WPCMIMO in E-W direction.
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Table C.18.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 11584 0.0358] -1.80E-00! -144E-04] 5.19E-03] 8.65E-0] 1st Mode
2 3.8818 0.0740( 1.95E-01] 8.08E-06] 1.23E-04| 5.60E-02 2nd Mode
3 6.6710 0.0976| -4.49E-02| 3.17E-06| -4.19E-05| 2.66E-03
4 9.0754 0.0814y 9.35E-03]| -3.48E-07| -5.24E-05| 1.94E-04
Relative Error = 0.250 and Absolute Error = 1.518
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Figure C.18.5. Initial frequency estimates from transfer function in N-S direction.
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Figure C.18.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S§ direction.
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Figure C.18.7. Comparison of time-histories: recorded motions and calculated motions from
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19. AThambra: 900 South Fremont Street - 13-Story Steel Building, USGS Station No. 482
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Figure C.19.1 Sensor locations in 13-story building, USGS Station No. 482
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Table C.19.1. Results of system identification in E-W (longitudinal} direction by WPCMIMO.

Mode | Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 32271 0.1869| -2,.00E-01!] -1.95E-04] 444E-03] 1.05E-01
2 0.4650 0.0119} -4.44E-00| -9.64E-03[ -8.32E-03| 1.02E+00 1st Mode
3 1.3052 0.0493| 4.13E-01] 7.99E-05| 2.61E-03} 1.79E-0Ol 2nd Mode
4 3.8401 0.07211 1.17E-01| 8.23E-05! 4.56E-04]| 1.27E-01

Relative Error = 0.236 and Absolute Error = 0.687
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Figure C.19.2. Initial frequency estimates from transfer function in E-W direction.
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Roof E-W Acceleration, 12-Story Bldg., 800 S. Fremont, Alhambra
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Figure C.19.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Table C.19.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode | Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 0.4204 0.0000| 2.89E-00| 7.57E-03]| -2.01E-02! 3.12E-01
2 0.4505 0.0194| -7.09E-00| -1.03E-02| -7.15E-03| 2.30E+00 1st Mode
3 1.2728 0.0643| 4.04E-01| -2.80E-04| 3.08E-03] 1.96E-01 2nd Mode
4 2.9829 0.0788| -1.22E-01{ 3.05E-05]| 1.38E-03| 7.49E-02
5 3.7287 0.0383] 3.67E-02| -3.29E-05| 9.86E-04| 2.74E-02
6 4.0595 0.0092] 5.18E-03| 6.12E-05! 3.87E-04| 1.58E-03

Relative Error = 0.323 and Absolute Error = 1.035
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Figure C.19.5. Initial frequency estimates from transfer function in N-§ direction.
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Roof N-S Acceleration, 12-Story Bldg., 200 S. Fremont, Alhambra
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Figure C.19.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-S direction.
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Figure C.19.7. Comparison of time-histories: recorded motions and calculated motions from
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20. Los Angeles: 1100 Wilshire Blvd. - 32-Story Building, USGS Station No. 5233

LOS ANGELES

1100 WILSHIRE BLVD

STRONG-MOTION INSTRUMENT
322d FLOOR ATION

TRIANGULAR
430’

13tk FLOOR

219°

32zd FLOOR

A

12th FLOOR

BECTANGULAR

=~ GROUND
-

T

BASE 12th FLOOR

DIAGONAL ELEVATLION

—
(=]

STRUCTURE
"GROUND :
Rectangular base 12 staries

Triangular tower 21 stories
Steel frame

Couplsd shear '"1-1

Post-tsnsioned slabs

ACCELEROMETER DIRECTIONS

® YVERTICAL

-— HORIZONTAL

43
Figure C.20.1. Sensor locations in 32-story building, USGS Station No. 5233
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Table C.20.1. Results of system identification in E-W (longitudinal) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 0.5907 0.0329] 1.59E+01] -5.70E-01| 4.58E-00{ 9.92E+01| 2nd Tor. Mode
2 0.2808 0.0413|-1.43E+401| 1.07E-01| -8.97E-02| 1.31E+00| 1st Tor. Mode
3 -0.0062 0.0055| 1.22E+01|-1.65E+01]| 3.38E-01{ 1.84E-03
4 0.2296 0.0090|-1.01E+01| 6.15E-02] 7.36E-02{ 4.69E-01
5 0.2919 0.0165| 1.43E+01| -6.31E-02| 1.08E-02| 1.44E+00]| 1st Long. Mode
6 0.5881 0.0355|-1.90E+01| 6.34E-01| -4.95E-00| 1.09E+02|2nd Long. Mode
7 0.5548 0.0030| 3.17E-00| -442E-02| 2.69E-01| 1.00E+00
8 1.0561 0.0167| -2.36E-01{ 1.20E-03| -2.72E-03| 4.38E-02
9 1.0867 0.2598| 6.71E-01] -1.12E-02] 7.21E-03| 5.39E-02
10 1.4649 0.0066| -5.09E-03| 9.33E-04| 3.07E-02| 3.99E-02
11 1.5024 0.0076] 7.23E-02| 1.02E-03)| -2.97E-02] 2.82E-02

Relative Error = 0.377 and Absolute Error = 2.521
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Figure C.20.2. Initial frequency estimates from transfer function in E-W direction.
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Figure C.20.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Table C.20.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 0.6689 0.0294] -1.87E-00{ -1.01E-02] -3.99E-02} 1.29E-01
2 0.2295 0.0177(-1.11E+01| 4.36E-02| -5.32E-02} 2.83E-01 1st Mode
3 0.5538 0.0299] 270E-00| 2.25E-03] -7.37E-02] 4.54E-O1| 2nd Mode
4 1.0586 0.0012| -2.26E-01]| -4.65E-03} -6.55E-03| 2.23E-02
5 1.2360 0.0184| 4.39E-01( -2.17E-03} 2.84E-02| 6.80E-02
6 2.2550 0.0532] 194E-01] -6.09E-04; 2.38E-02| 5.80E-02
7 1.6792 0.0076| 9.09E-02| 1.24E-03| 1.30E-02} 1.18E-02
8 1.8565 0.0355| -2.39E-01| 4.89E-04| -1.31E-02} 5.24E-02
9 2.2729 0.0000] 1.68E-02] 2.26E-04] -1.12E-02| 4.02E-03

Relative Error = 0.419 and Absolute Error = 10.187
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21. Los Angeles - 6-Story Wadsworth VA Hospital Building, USGS Station No. 5082
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Figure C.21.1. Sensor locations in 6-story hospital building, USGS Station No. 5082
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Table C.21.1. Results of system identification in E-W (longitudinal} direction by WPCMIMO.

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 1.0648 0.0516 -2.58E-00| 4.38E-03| 2.34E-02] 7.04E-01 1st Mode
2 3.1250 0.3305| 1.58E-00| 3.29E-03| -4.25E-02] 6.30E-0l
3 3.1434 0.0400| 7.21E-02| -1.56E-04| -1.55E-04| 1.16E-02
4 3.6626 0.1114} -3.90E-01]| -6.76E-04| -5.05E-03| 1.58E-01
5 4.3789 0.1321} -3.86E-01] -4.69E-04| 8.74E-03| 2.00E-01

Relative Error = 0.343 and Absolute Error = 8.968
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Figure C.21.2. Initial frequency estimates from transfer function in E-W direction.
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Table C.21.2. Results of system identification in N-S (transverse) direction by WPCMIMO.

Mode |Frequency| Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 1.0376 0.0427} -2.31E-00] -143E-03] 5.53E-03{ 9.68E-O1| 1st Mode
2 32715 0.0835} 1.80E-O1| -1.11E-04]| 9.02E-03{ 4.32E-02

Relative Error = 0.261 and Absolute Error = 5.600
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Figure C.21.5. Initial frequency estimates from transfer function in N-S direction.
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Figure C.21.6. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in N-§ direction.
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22. Los Angeles - 13-Story Office Building, CSMIP Station No. 24567
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Figure C.22.1. Sensor locations in 13-story office building, CSMIP Station No. 24567
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Table C.22.1 Results of system identification in E-W (transverse) direction by WPCMIMO.

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont,
1 0.3803 0.0802] -8.22E-01| 8.05E-04| 2.55E-04| 7.85E-01]1st Mode
2 1.0986 0.1489| 1.95E-01| 5.89E-05]| -3.26E-04| 5.88E-01|2nd Mode*
3 2.0581 0.1332] -5.07E-02| 1.78E-05] -2.18E-04| 2.03E-0f
4 3.5180 0.1559| 4.62E-01| 1.98E-04( -2.17E-03 | 3.05E+01
5 3.5545 0.1579] -4.50E-01] -2.00E-04| 1.79E-03] 2.90E+01
6 5.7913 0.0472| 2.70E-03| -6.38E-07| 5.25E-06{ 4.19E-03
* Damping is not reliable
Relative Error = 0.466 and Absolute Error = 3.341
Roof E-W Acceleration, 13-Story Office Bldg., Los Angeles
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Figure C.22.2 Initial frequency estimates from transfer function in E-W direction.
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Figure C.22.3. Comparison of empirical transfer functions: recorded motions and calculated
motions from WPCMIMO in E-W direction.
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Table C.22.2 Results of system identification in N-S (longitudinal) direction by WPCMIMO.

Mode |Frequency | Damping Part. Initial Initial Modal Comments
No. (Hz) Factor Disp. Velo. Cont.
1 0.4356 0.0927 -4.77E-01 | -4.80E-05 j4.93E-04 |5.92E-01 | 1st Mode
2 1.1353 0.2527 1.17E-O1 |3.74E-05 |5.01E-05 }2.65E-01
3 2.2378 0.1570 -4.82E-02 |9.98E-06 ]-6.84E-05 |3.87E-01
4 ]3.2740 0.1390 1.44E-02 }2.22E-06 |-1.40E-04 ]6.69E-02
5 14.4041 0.0463 -3.95E-03 | -1.37E-06 |-6.89E-05 ] 1.56E-02
6 ]5.0297 0.0000 -1.43E-04 | -2.26E-06 |4.22E-05 ]7.78E-04
Relative Error = 0.535 and Absolute Error = 2.324
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Figure C.22.5 Initial frequency estimates from transfer function in N-S direction.
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Figure C.22.6. Comparison of empirical transfer functions: recorded motions and calculated
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APPENDIX D: BASIS FOR CODE FORMULA

The period formula specified in current US codes is based on the following assumptions:
1. Equivalent lateral forces are distributed linearly over height of the building.
2. Base shear is proportional to 1/7*.
3. Weight of the building is distributed uniformly over its height.

4. Deflection of the building due to the equivalent lateral force distribution is linear over its

height implying that the inter-story drift, A, is constant over height of the building.

For these assumptions, period of a building, idealized as a cantilever with uniform mass,

may be estimated using the Rayleigh’s method as follows:

T =2n([m&*(x))+ (g f(x)8(x)dx) (O-1)

in which 8(x)is the deflected shape of the building due to the equivalent lateral force f(x).

Utilizing assumption (1) to (3) regarding distribution of lateral forces leads to:

f(x)=2mg%§ (D-2)

in which C is the constant related to the seismic coefficient, and H is total height of the building,
and assumption (4) for deflected shape of the building gives:
8(x)=Ax (D-3)
Utilizing Egs. (D-2) and (D-3) in (D-1) leads to:

1 (D-4)

A o
T=|(2n)*~—| His
[( )zgc} :
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For a =0, which corresponds to base shear independent of the period, Eq. (D-4) gives:

A (D-5)
T=2n /?g—éx/ﬁ

For a =1, implying base shear proportional to 1/T, Eq. (D-4) leads to:

T=(2n)= @-6)
2gC
For o = 2/3, indicating base shear proportional to 1/7%?, Eq. (D-4) results in:
3/4
A (D-7)
T=|(2n)'~—| H
{( ) 52 C}

Eq. (D-7) is consistent with the formula 7= C, H** in US seismic codes that specify

base shear proportional to 1/7%? in the velocity-controlled region of the design spectrum,
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APPENDIX E: THEORETICAL FORMULA FOR MRF BUILDINGS

Derived in this appendix are the theoretical formulas for fundamental period of frame
buildings using the Rayleigh’s method. The formulas are derived for the shear buildings, that is
buildings with rigid girders (or beams).

Using Rayleigh’s method, the fundamental period of a shear building is:

2 (E-D)

in which m; is the mass and ; is the deflection at jth floor of the building; and , k;is the
stiffness of the jth story. For equal mass at all floors, ie., mj=mforj=1-N, and linear

deflected shape of the building, i.e., ¥ j=J/N,Eq. (E-1) leads to:

(E-2)

Buildings with Uniform Stiffness Over Height

For uniform building stiffness over height, i.e., k; =k forj=1- N, Eq. (E-2) simplifies

10!

(E-3)

Eq. (E-3) can be further simplified by utilizing the following result:

5, N(N+1)(2N+1) (B-4)
2= 6

s,
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to obtain

T=2ﬂJﬁ(N+l)(2N+l)=2”\/22N2+3N+1 (E-5)
6 k 6

For N > 6, i.e., building with more than 6 stories, the N? term in Eq. (E-5) would dominate and
the following relationship may be used to e;timate the fundamental period:

T=CN (E-6)

in which the coefficient C; depends on the unit mass and stiffness properties among other
constants in Eq. (E-5). For buildings with uniform story height, Eq. (E-6) may also be written in
terms of the total building height, H , as:
T=C,H | (E-7)
Buildingé with Linearly Decreasing Stiffness Over Height

For linearly decreasing stiffness with height,
k;=ky(N-j+1) (E-8)

in which ky is the stiffness at the top story level. This leads to

N N X N L N+lJN 1 E-9
Ski=kn LN +1-j)=ky(N+ )Xk X j=kn (N +1)N —kNL—L=—th (=9)
x| = j=l jal 2 2
Utilizing Eqs. (E-9) and (E-4) in Eq. (E-2) leads to:
(E-10)
T =2n m (2N + 1)
kv 3

For N > 3, Eq. (E-10) may be approximated as:

T=C VN (E-11)

or
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T=G, VH E-12)

Buildings with Linear Deflection Due toTriangular Load
For linear deflection under the triangular loading, the stiffness required at the jth story is

given as:

kv & ' (E-13)
;= — 1
ki N i

which leads to:

_ky
1k1_N

N -

ky N(N +1)2N +1) (E-14)
Li=—
=li=j N 6

N

M=

1

L

Utilizing Eqs. (E-4) and (E-14) in Eq. (E-2) leads to:

E-15
T=2n /ﬂN E-15)
kw

which can obviously be written as:

T=c N (E-16)
or
T=C, VH E17)
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APPENDIX F: REGRESSION ANALYSIS METHOD

The fundamental period of a building can be expressed as:
T=af’ (F-1)
For MRF buildings f = H and o and B are the numerical constants to be determined from
regression analysis. For SW buildings H = H + \/Z , B is fixed at one, and a is the numerical

constant to be determined from regression analysis. Eq. (F-1) may be recast as:

y=a+px (F-2)
where y=1log(T), a=log(a), and x =log(H). Equation (F-2) represents a straight line with
intercept a and slope P. Therefore, the power relationship of Eq. (F-1) becomes a linear

relationship in the log-log space as shown in Figure F.1.

y=log(T)
A

)’Z(a‘*'se)'*'Bxh‘\

y=a+px %

y=(a—s.)+Px

a=log(a)

x = log (H')

Figure F.1. Conceptual explanation of regression analysis.
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In the regression analysis, the intercept a and slope B of the line in Figure F.1 were
determined by minimizing the squared error between the measured and computed periods, and

then the numerical constant o was back calculated from the relationship a = log(a.).

The goodness of the fit is represented by the standard error of estimate defined as:

é[)’:“(aJeri)]z
(n—2) (F-3)

Se =

in  which yizlog(:r,-) is the observed value (with 7,= measured period) and

(a+Bx)= 10g(a)+ Jij log(ﬁ ) is the computed value of the ith data, and »n is the number of data
points. The s, represents scatter in the data and approaches, for large n, the standard deviation of

the measured period data from the best-fit equation.

This procedure leads to the value of g, for Eq. (F-1) to represent the best-fit, in the least

squared sense, to the measured period data. However, for code applications the formula should
provide a lower value of the period and this was obtained by lowering the best-fit line (Eq: F-2)

by s. without changing its slope (Figure F.1). Thus «,, the lower value of «, is computed from:
log(ar,)=log(ag )~ s, (F-4)

Since s, approaches the standard deviation for large number of samples and if y is assumed to be
log-normal, ¢, is the mean-minus-one-standard-deviation or 15.9 percentile value, implying that
159 percent of the measured periods would fall below the curve corresponding to «
(subsequently referred to as the best-fit — 1o curve). If desired, e, corresponding to other non-

exceedance probabilities may be selected.
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As mentioned previously, codes also specify an upper limit on the period calculated by a

“rational” analysis. This limit is established in this investigation by raising the best-fit line (Eq.
F-2) by s. without changing its slope (Figure F.1). Thus «,, the upper value of «
correspending to the upper limit, is computed from:

log(er, ) = log(a, )+, (F-5)
Eq. (F-1) with a,, represents the best-fit + 1o curve which will be exceeded by 15.9 percent of

the measured periods.

Regression analysis in the log-log space (Eq. F-2) is preferred over the direct regression
on Eq. (F-1) because it permits convenient development of the best-fit — 1o and best-fit + 1o
curves. Also note that B is fixed at one for SW buildings and only a is determined from the

regression analysis.
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APPENDIX G: THEORETICAL FORMULAS FOR SW BUILDINGS
Rayleigh’s Method
For a cantilever with uniformly distributed mass and stiffness properties, the fundamental

period may be calculated from:

=szh”‘m”‘MX G-
F(8(x)d

in which m(x)= mass per unit length, f(x)= applied force, and &(x)= deflection due to the
applied force at height = x from base of the cantilever. For a cantilever with uniform mass

m{x)=m and a triangular distribution of applied force f(x)= f, x/H , Eq. (G-1) becomes:

m[8*(x)dx_ (G-2)

T=2n 7
E”j'x&(x)dx

The triangular distribution of forces over the height of the cantilever is similar to that specified in
building codes. For such a height-wise distribution of forces, variations of shear force and

bending moment with height of the cantilever are given as:

11 (G-3)
V —_Je 2_ .2
(x) > (H?-x?)
1 -
M(x)=g%(2H3—3H2x+x3) G4
The deflection at location x can be calculated by the principle of virtual work as:
m(§ ) (G-5)

5@ =Ty + )

s kKGA — M (§)dg = §5(x) + 5 (%)

in which v(¢) and m({) are the shear force and bending moment, respectively, at location ¢ due

to a virtual unit force at location x; E and G are the Young’s modulus and shear modulus,

respectively; and x is the shape factor for the cantilever. The first term in Eq. (G-5) is the
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contribution due to shear deformation whereas the second term is the contribution due to flexural

deformation. For the cantilever with triangular loading, the deflections due to shear and flexure

are:

_p 117, 1f, 1 (G-6)
550 = |—— e (p C)M— By

I ERT 9L A A WD [ U AN (G-7)
5p(x)-‘{ = 6H(H HC+§):15—120HEI(20H;¢ 10H*F + )

Deflection due to Shear Alone

Considering deflections due to shear alone (Eq. G-6), the numerator and denominator in

Eq. (G-2) are:
’ 2 (G-8)
H HA1F, 17(f
mgi(x)dx = 3x-3) dx=—| 2= | mH*
jmos(xde= m {6 H KGA@H x )} 315(KGAJ H
(G-9)
" f, J1£, 1 2 _f,
[ *dJe 3 24, .3 dx = - [ 3
085 Hx[GHKGA(Hx x)} 15xGA T
Utilizing Egs. G-8 and G-9 in Eq. G-2 leads to:
2
i)™, ma
T=2r - 2 997 (G-10)
2 fo \/_ *G JA
15 kGA
This formula compares well with the following exact solution for a shear cantilever:
T =4, f% %
A (G-11)
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Deflection due to Flexure Alone

Considering deflections due to flexure alone (Eq. G-7), the numerator and denominator in

Eq. (G-2) are:
i " 21128 f ’ (G-12)
2 32210523453 dx = | L2 |
jm& (x)dx = fm [12011 El(z H H23+) 9979200 1)
(G-13)
1 f, 1 11 f,
201 2~ 10 {2 5 + 5°) |dx =
I “iH [1201151( H'x 108" x)} om
Utilizing Eqgs. G-12 and G-13 in Eq. G-2 leads to:
95;230 (}%J mH’ 2641
T=2r : c o | 204 m 1 86‘]_ (G-14)
11 £, e 32670 E VI JI
420 EI

which also compares well with the following exact solution for a flexural cantilever:

G-15
27 mH 787\/7 ( )
~ 3516 JT

Recognizing that /= AD?/12, in which A is the area and D is the dimension of shear

wall along the direction under consideration, Eq. G-14 and G-15 may be re-written as:

H 1 (G-16)
T =1.786, | — =6.188 —_H =
AD D \/—

(G-17)
=6.190,[— mH 1

12
=1 787J;
;AD f
12
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Deflections Due to Shear and Flexure
Considering deflections due to shear as well as flexure, the numerator and denominator in Eq.

(G-2) are:

}jm 2 (x)dx = Tm (5s(x)+8 p(x)f dx
0 [¢]

no 0w " (G-18)
= [m&s(X)dx + [m§e(x)dx+2 [m§s(x)§F(x)dx
0 0 0
2 2
=£ __f.g_._ mHs.{.M_ _'):.?. mH9+4_67_LLmH7
315 kGA 9979200\ EI 22680 kGA EI
h, H H H
[F6(0)dx = [F(x)Es(x)+8p()dx = [F(x)§s(x)dx + [f(x)§p (x)dx (G-19)
0 0 0 [
2 fo s, AL fo s
 — — + —
srcal Twomr?
Utilizing Eqgs. (G-18) and (G-19) in Eq. (G-2) gives:
2 2
E( f,,)mH5+ 2641 [f_) mpt+ 260 Lo So, o
I = oy |315\4GA 1247400\ EI 22680 kGA EI
2 fo s, W fe s
- ¥ +_.__._
5x6a”? Taom®
17(EY 2641 (12 , 467 E 12
—| =+ — | —————=H
315\xG ) 1247400\ p2 22680 kG p*
—2;:‘/55’ | (G-20)
E JA] 2 E 1112
15 kG~ 420 p?
_ . -
i(£J+5282(H2)+467£H_2
2
—2n\/EH 315\xG .17325 p2) 18%0xG p
E A 2 E UK
15xkG 35 p?
Dunkerley’s Method
Single Shear Wall

Based on Dunkerley’s method, the fundamental period of a cantilever considering

flexural and shear deformations, can be computed from:
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(G-21)

T*=T:+T$
in which Tp=1/f,=2n/or and Ts=1/f;=2n/w; are the periods of the fundamental periods

of pure-flexural and pure-shear cantilevers, respectively. For uniform cantilevers, these periods

are given by:

- 2 [m e (G-22)
FT3s16\VE

and

4 ’f_i (G-23)
TS_ KG‘\/X

In Egs. (G-22) and (G-23), m is the mass per unit height, E is the modulus of elasticity, G is the
shear modulus, I is the section moment of inertia, A is the section area, and x is the shape factor
to account for nonuniform distribution of shear stresses (= 5/6 for rectangular sections). Utilizing

Eqs. (G-22) and (G-23) in (G-21) gives:

2 1/2 N 172 (G_27)
1‘[4”-ﬂHumle}=m&%Pﬁﬁﬁ%l]H

3.5162 EI KGA E I A
Since I = Ap*+12, Eq. (G-27) can be further simplified to:

2 (G-28)
T =4 /ﬂ 1 142 4@(5_) H
kG| A " E\D

Recognizing that G = E + 2(1 + /1), where the Poison’s ratio p = 0.2 for concrete, leads to:
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(m 1 (G-29)
T=4 E\/A_H

with
A (G-30)

|:1 + 0.83(%) 2}

where D is the plan dimension of the cantilever in the direction under consideration.

A=

Several Shear Walls

Now consider a class of symmetric-plan buildings -- symmetric in the lateral direction
considered -- with lateral-force resisting system comprised of a number of uncoupled (i.e.,
without coupling beams) shear walls connected through rigid floor diaphragms. Assuming that
the stiffness properties of each wall are uniform over its height, Eq. (G-27) may be written as:

NV 4.2 m m "
T= Z{ z —H?+16——H?}
Lzl 3516’ EJ; kG A

SEERe G|

in which A;, H;, and D; are the area, height, and dimension in the direction under consideration

(G-31)

of the ith shear wall, and NW is the number of shear walls. Eq. (G-31) may be written in the

same form as Eq. (G-29) if A, is defined as:

Ae = Nzw(g Ai 27
: [1 + 0.83(5-"] ] (G-32)

i=1
i

Equation (G-29) can be expressed in a form convenient for buildings:
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(G-33)

where p is the average mass density, defined as the total building mass (= mH) divided by the

total building volume (=ApH -- Ap is the building plan area), i.e., p=m/Ap; and 4, is the

equivalent shear area expressed as a percentage of Az, i.e.,

A, (G-34)

B

a4, =100
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APPENDIX H: COMPUTED PERIODS OF SW BUILDINGS

1. Burbank - 10 Story Residential Building, CSMIP Station No. 24385
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Figure H.1.1. Sketch of shear walls in CSMIP Station No. 24385
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Location Burbank
Occupancy Residential
Station ID 24385
Name Pacific Manor
Address 609 Glenoaks Blvd
Height 88 ft
Building Plan Area 16125 sq. ft
Period Calculations
Direction Code Formula New Formula
Ac (5. ft) T (sec) A, (%) T (sec)
Longitudinal 83.48 0.3145 0.1978 0.3760
Transverse 92.07 0.2594 0.2019 0.3721
Calculation of Equivalent Shear Wall Areas: Transverse Direction
Area for Code Formula Area for New Formula
Wall ID Width | Thickness | Area D/H t 02+(p/HY Ad 1/(1 +0.83(H/ D,‘)’) Au
(v I (sq. ft) (sq. 1) (sq. 1)
1-DEF 7.58 0.67 5.06 0.09 0.21 1.05 0.009 0.045
2-BE 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
2-F) 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
3-BE 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
3-F] 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
4-BE 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
4-FJ 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
5-BE 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
5-FJ 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
6-AC 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
6-FJ 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
7-BE 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
7-FJ 28.00 (.67 18.67 (.32 0.30 5.62 0.109 2.029
8-BE 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
8-FJ 28.00 0.67 18.67 0.32 0.30 562 0.109 2.029
9-BE 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
9-FJ 28.00 0.67 18.67 0.32 (.30 5.62 0.109 2.029
10-EG 7.58 0.67 5.06 0.09 0.21 1.05 0.009 0.045
Calculation of Equivalent Shear Wall Areas: Longitudinal Direction
Area for Code Formula Area for New Formula
Wall ID Width | Thickness Area DIH | 024(py/H) Ac 1 (I +0.83(H/ Di)z) Aa
(ft) (ft) (sq. ft) (sq. 0 (sq. O
C-12 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
D-12 28.00 0.67 18.67 0.32 Q.30 5.62 0.109 2.029
F-12 17.67 0.67 11.78 0.20 .24 2.83 0.046 0.545
G-12 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
H-12 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
E-24 34.67 0.67 23.11 0.39 0.36 8.21 0.158 3.640
F-24 34.67 0.67 23.11 0.39 0.36 8.21 0.158 3.640
E-79 34.67 0.67 23.11 0.39 0.36 8.21 0.158 3.640
F-79 34.67 0.67 23.11 0.39 0.36 8.21 0.158 3.640
C-910 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
D-910 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
EF-910 17.67 0.67 11.78 0.20 0.24 2.83 0.046 0.545
G-910 28.00 0.67 18.67 0.32 0.30 5.62 0.109 2.029
H-910 28.00 0.67 18.67 (.32 0.30 5.62 0.109 2.029
T A 83.48 2 Ad 31.89
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2. Los Angeles - 8 Story Administration Building, CSMIP Station No. 24468
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Figure H.2.1. Sketch of shear walls in CSMIP Station No. 24468
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Location Los Angeles
Qccupancy Administration
Station ID 24468
Name CSULA
Height 127 ft
Building Plan Area 9702 sq. ft
Period Calculations
Direction Code Formula New Formula
Ac(sq. ft) T (sec) A. (%) T (sec)
Longitudinal 13.84 1.0168 0.0319 1.3507
Transverse 34.21 0.6468 0.0416 1.1833
Calculation of Equivalent Shear Wall Areas: Transverse Direction
Area for Code Formula Area for New Formula
Wall ID Width | Thickness Area B/H | 02+(p/H) A 1/(1 +0.83(H/ Di)z) Aa
(fty (fty (sq. ft) (sq. f) (sq. 0
1-AD 36.00 0.83 30.00 0.28 0.28 841 0.088 2.648
1-DEF 14.50 0.83 12.08 0.11 0.21 2.57 0.015 0.187
1-F 3.00 0.83 2.50 0.02 0.20 0.50 0.601 0.002
2-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
3-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
4-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
5-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
6-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
7-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
8-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
9-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
10-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
1i-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.602
12.F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
13-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
14-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
15-F 3.00 0.83 2.50 0.02 0.20 0.50 0.00! 0.002
16-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
17-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
18-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
19-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
20-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
21-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
22-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
23-F 3.00 0.83 2.50 0.02 0.20 0.50 0.001 0.002
23-AC 20.50 0.83 17.08 0.16 0.23 3.86 0.030 0.520
23-CD 12.00 0.83 10,00 0.09 0.21 2.09 0.0i1 0.106
23-DF 18.75 0.83 15.63 0.15 0.22 3.47 0.026 0.400
2223-Cb 13.00 0.83 10.83 0.10 0.21 2.28 0.012 0.135
z An‘ 34»21 Z Aei 4.03
Calculation of Equivalent Shear Wall Areas: Longitudinal Direction
Area for Code Formula Area for New Formula
Wall ID Width Thickness Area Di/H 02+(Dy H)l Au 1/ (1 +0.83 (H /D 1)1) Ad
() ({ft) (sq. ft) (sq. ft) (sq. ft)
DE-12 5.00 0.83 4.17 0.04 0.20 0.84 0.002 0.008
C-49 37.50 0.83 31.25 0.30 0.29 8.97 0.095 2.971
(C-2223 8.75 0.83 7.29 0.07 0.20 1.49 0.006 0.041
D-2122 4.33 0.83 3.61 0.03 0.20 0.73 0.001 0.005
D21-23 10.50 0.83 875 0.08 0.21 1.81 0.008 0.071
2 Ad 13.84 T Ad 3.10
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3. Los Angeles - 10 Story Residential Building, CSMIP Station No. 24601
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Figure H.3.1. Sketch of shear walls in CSMIP Station No. 24601
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Location Los Angeles
Qccupancy Residential

Station ID 24601

Height 1497 ft
Building Plan Area 18160 sq. ft

Period Calculations

Direction Code Formula New Formula

A, (5q. ft) T (sec) Z, (%) T (sec)

Longitudinal 63.37 0.5376 0.0765 1.0286

Transverse 106.95 0.4138 0.1131 0.8458

Calculation of Equivalent Shear Wall Areas: Transverse Direction
Area for Code Formula Area for New Formula
WallID | Width | Thickness |  Area o/ L o2+(pyBY | A [Vl+os3(a/pf)] s
(M (fy (sq. 10 (sq. ) (sq. )
4-1 29.00 0.67 19.33 0.194 0.24 4.59 0.043 .836
4-2 29.00 0.67 19.33 0.194 0.24 4.59 0.043 0.836
6-1 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
6-2 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
8-1 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
8-2 37.00 0.67 24.67 0.247 0.26 6.44 0.069 1.691
10-1 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
10-2 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
13-1 37.00 0.67 24.67 0.247 0.26 6.44 0.069 1.691
13-2 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
15-1 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
15-2 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
17-1 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
17-2 37.00 0.67 24.67 0.247 0.26 6.44 0.069 1.691
19-1 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
19-2 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
22-1 37.00 0.67 24 67 0.247 0.26 6.44 0.069 1.691
22-2 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
24-1 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
24-2 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
25-1 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
25-2 28.00 0.67 18.67 0.187 0.23 4.39 0.040 0.755
Core-1 6.75 0.67 4.50 0.045 0.20 0.91 0.002 0.011
Core-2 5.75 0.67 4.50 0.045 0.20 0.91 0.002 0.011
2 Ad 106.95 2 A 20.54
Calculation of Equivalent Shear Wall Areas: Longitudinal Direction :
Area for Code Formula Area for New Formula
WallID | Width | Thickness | Area DIH | 02+ (py/HY A. | /l+o83(/py)|  au

(f1) (ft) (sq. ft) (sq. ) (sq. 0
B-48 33.25 0.67 22.28 0.22 0.25 5.55 0.056 1.250
BC-48 33.25 0.67 22.28 0.22 0.25 5.55 0.056 1.250
C-48 33.25 0.67 22,17 0.22 0.25 5.53 0.056 1.244
B-813 33.25 0.67 22.17 0.22 0.25 5.53 0.056 1.244
BC-813 33.25 0.67 22.17 0.22 0.25 5.53 0.056 1.244
AB-1317 33.25 0.67 22.17 0.22 0.25 5.53 0.056 [.244
B-1722 33.25 0.67 22.17 0.22 0.25 5.53 0.056 1.244
AB-1722 33.25 0.67 22,17 0.22 0.25 5.53 0.056 1.244
B-2225 33.25 0.67 22.17 0.22 0.25 5.53 0.056 1.244
AB-2225 33.25 0.67 22.17 0.22 0.25 5.53 0.056 1.244
AAB-2225 33.25 0.67 22.17 0.22 0.25 5.53 0.056 1.244
Core-1 17.67 0.67 11.78 0.12 0.21 2.52 0.017 0.194
2 Ad 63.37 Y Aa 13.89
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Figure H.4.1. Sketch of shear walls in CSMIP Station No. 12284



Location Palm Desert
Qccupancy Medical Center
Station ID 12284
Name Kiewit Bldg
Address 39000 Bob Hope Drive
Height 522 ft
Building Plan Area 10800 sq. ft
Period Calculations
Direction Code Formula New Formula
A (sq. ft) T (sec) A, (%) T {sec)
| Longitudinal 21.53 0.4186 0.0646 0.3901
Transverse 17.68 0.4618 0.0662 0.3854
Calculation of Equivalent Shear Wall Areas: Transverse Direction
Area for Code Formula Area for New Formula
Wall D | Width | Thickness | Area o/t Loav(p/ey | as  [Wi+083(/p )] A
(ft) (ft) (sq. ft) (sq. 0 (sq. 9
Core-L 9.58 0.83 7.99 0.18 0.23 1.87 0.039 0.312
Core-C1 22,08 0.83 18.40 0.42 0.38 6.97 0.177 3.264
Core-C2 22.08 0.83 18.40 0.42 0.38 6.97 0.177 3.264
Core-R 9.58 0.83 7.99 0.18 0.23 1.87 0.039 0.312
Y. Ac 17.68 Y A 7.15
Calculation of Equivalent Shear Wall Areas: Longitudinal Direction
Area for Code Formula Area for New Formula
Wall ID Width Thickness Area D./H 0.2+ (D,/H)z Au 1/(1 +0.83 (H/Di)z) A
(ft) (ft) (sq. ft) (sq. ) (sq. )
Core-R1 16.42 0.83 13.68 0.31 0.30 4.09 0.106 1.457
Core-R2 16.42 0.83 13.68 0.31 0.30 4.09 0.106 1.457
Core-Cl 14.83 0.83 12.36 028 0.28 347 0.089 1.096
Core-C2 1.42 0.83 1,18 0.03 0.20 0.24 0.001 0.001
Core-C3 4.25 0.83 3.54 0.08 0.21 0.73 0.008 0.028
Core-C4 4.25 0.83 3.54 0.08 0.21 0.73 0.008 0.028
Core-LI 16.42 0.83 [3.68 0.31 0.30 4.09 0.106 1.457
Core-1.2 16.42 0.83 13.68 031 0.30 4.09 0.106 1.457
Z Ad 21.53 2 Ad 6.98
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5, Piedmont - 3 Story School Building, CSMIP Station No. 58334
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Figure H.5.1. Sketch of shear walls in CSMIP Station No. 58334
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Location Piedmont
Occupancy School
Station ID 58334
Name Piedmont Jr. High
Height 36 ft
Building Plan Area 811525 sq. ft
Period Calculations

Direction Code Formula New Formula

Ac(sq. ft) T (sec) A, (%) T (sec)
Longitudinal 26.24 0.2869 0.1579 0.1722
Transverse 26.24 0.2869 0.1579 0.1722

Calculation of Equivalent Shear Wall Areas: Transverse Direction

Area for Code Formula Area for New Formula
WalllD | Width | Thickness | Area D/ L o2+(p/H) | A« |/+083(H/DF)] A
(ft) {ft) (sq. ft) (sq. 0 (sq. )
I-AB 16.25 1.00 16.25 0.45 0.40 6.56 0.197 3.203
{-DE 16.25 1.00 16.25 045 0.40 6.56 0.197 3.203
6-AB 16.25 1.00 16.25 0.45 0.40 6.56 0.197 3.203
6-DE 16.25 1.00 16.25 0.45 0.40 6.56 0.197 3.203
T Aci 26.24 Y Ad 12.81
Calculation of Equivalent Shear Wall Areas: Longitudinal Direction
Area for Code Formula Area for New Formula
Wl | Widh | Tickness | Awa |0 oo (ognp | s, | JRe0msED))] 4
(0 (v (sq. f1) s ) sq. f)
A-12 16.25 1.00 16.25 0.45 0.40 6.56 0.197 3.203
A-56 16.25 1.00 16.25 0.45 .40 6.56 0.197 3.203
E-12 16.25 1.00 16.25 0.45 0.40 6.56 0.197 3.203
E-56 16.25 1.00 16.25 0.45 0.40 6.56 0.197 3.203
Y Aa 26.24 > Ad 12.81
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6. Pleasant Hill - 3 Story Commercial Building, CSMIP Station No. 58348
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Figure H.6.1. Sketch of shear walls in CSMIP Station No. 58348
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Location Pleasant Hill
Occupancy Commercial
Station ID 58348
Height 40.6 ft
Building Plan Area 10087 sq. ft
Period Calculations
Direction Code Formula New Formula
A.(sq. ft) T (sec) A, %) T {sec)
| Longitudinal 26.56 0.3121 0.1346 0.2103
Transverse 12.16 0.4613 0.0603 0.3141

Calculation of Equivalent Shear Wall Areas: Transverse Direction

Area for Code Formulza Area for New Formula
Wall ID Width | Thickness |  Area D/H | 02+(p/HY Ax 1/ (1 +0.83(H/ Di)z) A
(ft) (ft) (sq. ft) (sq. 1) (sq. )
1-AG 19.17 0.75 14,38 0.47 0.42 6.08 0.212 3.043
9-AG 19.17 0.75 14.38 0.47 0.42 6.08 0.212 3.043
Y A 12.16 > Ad 6.09

Calculation of Equivalent Shear Wall Areas: Longitudinal Direction

Area for Code Formula Area for New Formula
Wall ID Width | Thickness Area DfH 02+(Dy/ H)’ A 1 /(1 +0.83(H / D’.)?) A

(ft) (ft) (sq. ft) (sq. ) (sq. )

A-34 20.00 0.75 15.00 0.49 0.44 6.64 0.226 3.393
A-67 20.00 0.75 15.00 0.49 0.44 6.64 0.226 3.393
G-34 20.00 0.75 15.00 0.49 0.44 6.64 0.226 3.393
G-67 20.00 0.75 15.00 0.49 0.44 6.64 0.226 3.393
T A 26.56 T Aei 13.57
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7. San Bruno - 9 Story Office Building, CSMIP Station No. 58394
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Figure H.7.1. Sketch of shear walls in CSMIP Station No. 58394
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Location

Occupancy

Staticn ID
Height

Building Plan Area

San Bruno
Office
58394

104 ft
16128 sq. ft

Period Calculations

Directicn Code Formula New Formula
A (5q-f) T {sec) A, (%) T (sec)
Longitudinal 21.52 0.7021 0.0397 0.9912
Teansverse 22.17 0.6916 0.0228 1.3095
Calculation of Equivalent Shear Wall Areas: Transverse Direction
Area for Code Formula Area for New Formula
WalllD | Width | Thickness |  Area DIH | 02+(p/H) As | Wiros3(/p )| A
() () (sq. ft) {sq. ft) (sq. ft)
Core-1 19.00 1.00 19.00 0.18 0.23 4.43 0.039 0.735
Core-2 19.00 1.00 19.00 0.18 0.23 4.43 0.039 0.735
Core-3 19.00 1.00 19.00 0.18 0.23 4.43 0.039 0.735
Core-4 19.00 1.00 19.00 0.18 (.23 4.43 0.039 0.735
Core-5 19.00 1.00 19.00 0.18 0.23 4.43 0.039 0.735
Z A:J' 22A ] 7 Z AH’ 367
Calculation of Equivalent Shear Wall Areas: Longitudinal Direction
Area for Code Formula Area for New Formula
Wall ID Width Thickness Area DifH 02+ (Di/HY A 1/(1 +0.83 (H/D ‘)2) A
(ft) (ft) (sq. ft) sq. 0 9. 0
Core-1 40.00 1.00 40.00 0.38 0.35 13.92 0.151 6.051
Core-2 8.33 1.00 8.33 0.08 0.21 1.72 0.008 0.064
Core-3 11.50 1.00 11.50 0.11 0.21 2.44 0.015 0.167
Core-4 8.33 1.00 8.33 0.08 0.21 1.72 0.008 0.064
Core-5 8.33 1.00 8.33 0.08 0.21 1.72 0.008 0.064
2 Ad 21.52 2 Avi 6.41
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8. San Jose - 10 Story Commercial Building, CSMIP Station No. 57355
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Figure H.8.1. Sketch of shear walls in CSMIP Station No. 57355
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Location San Jose
Occupancy Commercial
Station ID 57355
Name Great Western S&L
Height 124 fi
Building Plan Area 17100 sq. fi
Period Calculations

Direction Code Formula New Formula

A (5g. 1) T (sec) A, (%) T (sec)
Longitudinal NA NA NA NA
Transverse 104.52 (.3635 0.3309 0.4095

Calculation of Equivalent Shear Wall Areas: Transverse Direction
Area for Code Formula Area for New Formula
WallID | Width | Thickness | Area DiH | 02+ (p/HY As  |Y+o83(/pf)| A
® v (sq- 10 (sq. ) (sq.
Wall-L 82.00 1.00 82.00 0.66 0.64 52.26 0.345 28.295
Wall-R 82.00 1.00 82.00 0.66 0.64 52.26 0.345 28.295
Y Ad 104.52 2 Adi 56.59
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9. San Jose - 10 Story Residential Building, CSMIP Station No. 57356
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Figure H.9.1. Sketch of shear walls in CSMIP Station No. 57356
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Location San Jose
Occupancy Residential
Station ID 57356
Name Town Park Tower Apartment
Height 96 ft
Building Plan Area 13440 sq. ft
Period Calculations

Direction Code Formula New Formula

A, (sq. ft) T (sec) A, (%) T (sec)
Longitudinal 83.41 0.3358 0.2120 0.3962
Transverse 116.20 0.2845 02563 0.3603

Calculation of Equivalent Shear Wall Areas: Transverse Direction

Area for Code Formula Area for New Formula
Wall ID Width Thickness Area DifH 0.2+ ( D/ H)z Au 1 /(L2 + ( H/ D‘_}z) A

(f1) fty (sq. ft) (sq. fo) (sq. f)

1-BC 18.00 0.92 16.50 0.19 0.24 3.88 0.041 0.670
1-CD 27.00 0.92 24.75 0.28 0.28 6.91 0.087 2.154
1-AB 27.00 0.92 2475 0.28 0.28 6.91 0.087 2.154
2-CD 26.00 0.92 23.83 0.27 0.27 6.51 0.081 1.935
2-AB 26.00 0.92 23.83 0.27 0.27 6.51 0.081 1.935
4-CD 26.00 0.92 23.83 0.27 0.27 6.51 0.081 1.935
4-AB 26.00 0.92 23.83 0.27 0.27 6.51 0.081 1.935
6-CD 26.00 0.92 23.83 0.27 0.27 6.51 0.081 1.935
6-AB 26,00 0.92 23.83 0.27 0.27 6.51 0.08t 1.935
8-CD 26.00 0.92 23.83 0.27 0.27 6.51 0.081 1.935
8-AB 26.00 0.92 23.83 0.27 0.27 6.51 0.081 1.935
10-CD 26.00 0.92 23.83 0.27 0.27 6.51 0.081 1.935
10-AB 26.00 0.92 23.83 0.27 0.27 6.51 (.081 1.935
12-CD 26.00 0.92 23.83 0.27 0.27 6.51 (.081 1.935
12-AB 26.00 0.92 23.83 0.27 0.27 6.51 0.081 1.935
13-CD 27.00 0.92 24.75 0.28 0.28 6.91 0.087 2.154
13-AB 27.00 0.92 24.75 0.28 0.28 6.91 0.087 2.154
13-BC 26.00 0.92 23.83 0.27 0.27 6.51 0.081 1.935
2 Ad 116.20 Y Aa 34.44

Calculation of Eguivalent Shear Wall Areas: Longitudinal Direction
Area for Code Formula Area for New Formula
Wall ID Width Thickness Area DifH 02+ ( D H)2 A 1 /(12 " ( H/ Di)l) Aa

LY () (sq. 9 (sq. ft) (sq. ft)

C-24 24.00 0.92 22.00 0.25 0.26 5.78 0.070 1.541
B-24 24.00 0.92 22.00 0.25 0.26 5.78 0.070 1.541
C-46 24.00 0.92 22.00 0.25 0.26 5.78 0.070 1.541
B-46 24.00 0.92 22.00 0.25 0.26 5.78 0.070 1.541
C-1012 24.00 0.92 22.00 (.25 0.26 5.78 0.070 1.541
B-1012 24.00 (.92 22.00 0.25 0.26 5.78 0.070 1.541
B-1722 33.25 0.92 30.48 0.35 0.32 9.75 0.126 3.849
AB-1722 33.25 0.92 3048 0.35 0.32 9.75 0.126 3.849
B-2225 33.25 0.92 30.48 0.35 0.32 9.75 0.126 3.849
AB-2225 33.25 0.92 30.48 0.35 0.32 9.75 0.126 3.849
AAB-2225 33.25 0.92 30.48 (.35 0.32 9.75 0.126 3.849
2 Aa 83.41 Y Ax 28.49
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