REPORT FOR BOREHOLE EXPLOSION DATA ACQUIRED IN THE 1999 LOS ANGELES REGION SEISMIC EXPERIMENT (LARSE II), SOUTHERN CALIFORNIA: PART I, DESCRIPTION OF THE SURVEY

by Gary S. Fuis¹, Janice M. Murphy¹, David A. Okaya², Robert W. Clayton³, Paul M. Davis⁴, Kristina Thygesen⁵, Shirley A. Baher⁴, Trond Ryberg⁶, Mark L. Benthien², Gerry Simila⁷, J. Taylor Perron¹, Alan K. Yong¹, Luke Reusser², William J. Lutter⁸, Galen Kaip⁹, Michael D. Fort¹⁰, Isa Asudeh¹¹, Russell Sell¹, John R. Vanschaack¹², Edward E. Criley¹², Ronald Kaderabek¹², Will M. Kohler¹, Nickolas H. Magnuski¹

Open-File Report 01-408

2001

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

- ¹ U.S. Geological Survey, Menlo Park, CA 94025
- ² Southern California Earthquake Center, University of Southern California, Los Angeles CA, 90089-0740
- ³ Southern California Earthquake Center, University of California at Los Angeles, Los Angeles, CA 90024-1567
- ⁴ Southern California Earthquake Center, California Institute of Technology, Pasadena, CA 91125
- ⁵ Copenhagen University, Copenhagen, DENMARK1350; TK 170573
- ⁶ GeoForschungsZentrum, Potsdam, 14473 GERMANY
- ⁷ Southern California Earthquake Center, California State University at Northridge, Northridge, CA 91330
- ⁸ University of Wisconsin-Madison, Madison, WI 53711
- ⁹ University of Texas at El Paso, El Paso, TX 79968-0555
- ¹⁰ IRIS/PASSCAL, Socorro, NM 87807
- ¹¹ Geological Survey of Canada, Ottawa, CANADA K1A 0Y3
- ¹² U.S. Geological Survey, Menlo Park, CA 94025 (retired)

TABLE OF CONTENTS

	Page
Introduction	. 1
Geologic setting	. 2
Experiment planning and design	. 5
Permitting	. 7
Shotpoints and shot-size determination	. 8
Seismic acquisition systems	. 11
Experiment schedule	. 12
Determing locations	. 12
Data processing	. 12
Data reduction and merging	. 13
Quality assurance	. 15
Water levels in shotholes	. 16
Acknowledgments	. 16
References cited	. 18

APPENDICES

Appendix I. Maximum ground motions estimated from LARSE I shots	53
Appendix II. Participating organizations and institutions	63
Appendix III. LARSE publications, open-file reports, recent abstracts, and videos	67

TABLES

Table 1. Seismographs: type, source, number, recording parameters	38
Table 2a. Shot list	40
Table 2b. Additional shotpoint information	45
Table 3. Permitting organizations	48
Table 4a. Sample trace problems	49
Table 4b. Sample trace corrections	50
Table 5. List of acknowledgments	51

FIGURES

Figure 1.	Fault map of Los Angeles region showing LARSE Lines	24
Figure 2.	Fault map of northwestern part of Los Angeles region showing shotpoint	
	and seismograph locations along LARSE Line 2	25
Figure 3.	Fault map showing southern part of LARSE Line 2, auxiliary lines	
	3000-7000, and the Santa Monica scatter deployment	26
Figure 4.	Fault map showing central part of LARSE Line 2	27
Figure 5.	Fault map showing northern part of LARSE Line 2	28
Figure 6.	Shot size distribution along LARSE Line 2	29
Figure 7.	Shot hole diagram	30

FIGURES (continued)

Figure 8Seismic amplitudes (vertical ground velocities) versus distance from	
LARSE Line 1 data and from calibration shots for LARSE Line 2 in	
San Fernando Valley	31
Figure 9. P-wave propagation distance vs shot size	32
Figure 10. Data from Shotpoint 8095 (Sequence number 10)	33
Figure 11. Data from Shotpoint 8140 (Sequence number 16)	34
Figure 12. Data from Shotpoint 8190 (Sequence number 18)	35
Figure 13. Data from Shotpoint 8740 (Sequence number 64)	36
Figure 14Profile of borehole depth and water-table depth along main part of	
LARSE Line 2	37

INTRODUCTION

The Los Angeles Region Seismic Experiment (LARSE) is a joint project of the U.S. Geological Survey (USGS) and the Southern California Earthquake Center (SCEC). The purpose of this project is to produce seismic images of the subsurface of the Los Angeles region down to the depths at which earthquakes occur, and deeper, in order to remedy a deficit in our knowledge of the deep structure of this region. This deficit in knowledge has persisted despite over a century of oil exploration and nearly 70 years of recording earthquakes in southern California. Understanding the deep crustal structure and tectonics of southern California is important to earthquake hazard assessment. Specific imaging targets of LARSE include (a) faults, especially blind thrust faults, which cannot be reliably detected any other way, and (b) the depths and configurations of sedimentary basins. Imaging of faults is important in both earthquake hazard assessment but also in modeling earthquake occurrence. Earthquake occurrence cannot be understood unless the earthquake-producing "machinery" (tectonics) is known (Fuis and others, 2001). Imaging the depths and configurations of sedimentary basins is important because earthquake shaking at the surface is enhanced by basin depth and by the presence of sharp basin edges (Wald and Graves, 1998, Working Group on California Earthquake Probabilities, 1995; Field and others, 2001). (Sedimentary basins are large former valleys now filled with sediment eroded from nearby mountains.) Sedimentary basins in the Los Angeles region that have been investigated by LARSE include the Los Angeles, San Gabriel Valley, San Fernando Valley, and Santa Clarita Valley basins.

The seismic imaging surveys of LARSE include recording of earthquakes (both local and distant earthquakes) along several corridors (or transects) through the Los Angeles region and also recording of man-made sources along these same corridors. Man-made sources have included airguns offshore and borehole explosions and vibrating-truck sources onshore. The two chief LARSE transects pass near recent moderate earthquakes, including the 1971 M 6.7 San Fernando, 1987 M 5.9 Whittier Narrows, 1991 M 5.8 Sierra Madre, and 1994 M 6.7 Northridge earthquakes. The first transect extended from San Clemente Island northeastward to the Mojave Desert (Line 1, Fig.1), passing near the epicenter of the Whittier Narrows and Sierra Madre earthquakes. The second transect extended from west of San Clemente Island northward to the western Mojave Desert (Line 2, Figs. 1, 2), passing through the epicenter of the Northridge earthquake and near the epicenter of the San Fernando earthquake. Data along Line 1 were acquired during the years 1993-1994, and data along Line 2, during the years 1994-2000.

In this open-file report and that of Murphy and others (in preparation), we present the details of the October 1999 explosion survey along Line 2, which extended from Santa Monica Bay northward to the western Mojave Desert (Figs. 1, 2). This survey is referred to as LARSE II. In this survey, 93 borehole explosions were detonated along the main north-south line and along 5 auxiliary lines in the San Fernando Valley and Santa Monica areas. These explosions were recorded by ~1400 seismographs. Prior LARSE surveys include the following:

(1) 1993 recording of local and distant earthquakes along Line 1 (1-month period) (Kohler and others, 1996)

- (2) 1994 recording of airgun signals on a 4.2-km-long seismic streamer towed by the R.V. Ewing along the offshore parts of Lines 1, 2, and 3 (Brocher and others, 1995)
- (3) 1994 recording of airgun signals on ocean-bottom seismographs along the offshore parts of Lines 1 and 2 (ten Brink and others, 1996)
- (4) 1994 onshore recording of the airgun signals along Lines 1, 2, and 3 (Okaya and others, 1996a)
- (5) 1994 onshore recording of earthquakes along Lines 1, 2, and 3 (8-day period) (Okaya and others, 1996b).
- (6) 1994 recording of borehole explosions along Line 1 (Murphy and others, 1996)
- (7) 1997 recording of local and distant earthquakes along Line 1 in the Los Angeles basin (9-month period) (Kohler and others, 2000)
- (8) 1998-1999 recording of local and distant earthquakes along Line 2 (6.5-month period) (Kohler and Kerr, in preparation)

A variety of seismic instrumentation was used in these imaging surveys and was obtained from collaborators from around the world, including the Geological Survey of Canada (Ottawa, Canada), IRIS/PASSCAL (Socorro, NM), Lamont-Doherty Earth Observatory (Palisades, NY), Stanford University (Stanford, CA), SCEC (Los Angeles, CA), USGS (Menlo Park, CA, and Woods Hole, MA), University of Texas at El Paso (El Paso, TX), GeoForschungsZentrum (Potsdam, Germany), University of Karlsruhe (Karlsruhe, Germany), and University of Copenhagen (Copenhagen, Denmark). The reader is referred to Table 1 for instrumentation used in LARSE II.

GEOLOGIC SETTING

The LARSE II survey extended northward from Santa Monica Bay through the Santa Monica Mountains, San Fernando Valley, Santa Susana Mountains, Santa Clarita Valley, northcentral Transverse Ranges, and western Mojave Desert, with a sparsely recorded extension into the Sierra Nevada (Figs. 2-5). The survey also included 3 auxiliary lines in the San Fernando Valley basin and 2 auxiliary lines in the Santa Monica area. Chief faults we hoped to image in the LARSE II survey include, from south to north, the Santa Monica fault, the causative fault for the Northridge earthquake, the Northridge Hills fault, the Santa Susana thrust fault, the San Gabriel fault, and the San Andreas fault. Sedimentary basins we hoped to image include the San Fernando Valley and Santa Clarita Valley basins. Below, we describe the geologic setting for each geologic region crossed by LARSE II lines.

The Los Angeles basin is a rift basin that began to form perhaps as early as the Paleogene but took on its modern configuration in late Miocene through Pleistocene times (Wright, 1991; McCulloh and others, 2000). It is located at the juncture of three primary physiographic provinces of southern California, the Transverse Ranges, the Peninsular Ranges, and the Continental Borderland (Fig. 1), and shares the geologic history of all three provinces. Structurally, it is bounded by the current left-oblique Santa Monica/Hollywood fault system on the north, the right-oblique Whittier fault on the northeast, and the right(?)-oblique Palos Verde fault on the southwest. These modern faults are believed to have superseded normal faults that existed during a period of rifting/ transtension prior to 3.9-3.4 ma (Wright, 1991; Crouch and Suppe, 1993). The rifting apparently involved clockwise rotation of the western Transverse Ranges, including the Santa

Monica Mountains, of more than 90 degrees from positions on the current Continental Borderland to their present positions (Hornafius and others, 1986, Crouch and Suppe, 1993). In its center, south of Los Angeles, the Los Angeles basin contains as much as 10 km of Miocene and younger sedimentary rocks (Yerkes and others, 1965; Fuis and others, 2001). In the Santa Monica area, where two LARSE II auxiliary lines are located, the Los Angeles basin contains 3 km or more of sedimentary rocks that are juxtaposed across the Santa Monica fault with the Santa Monica Slate, Mesozoic granitic rocks, and a low-angle-faulted stack of Upper Cretaceous through Miocene sedimentary and volcanic rocks.

The Santa Monica Mountains are Mesozoic metamorphic rocks (Santa Monica Slate) and granitic rocks overlain by a section of Upper Cretaceous to Miocene clastic sedimentary and volcanic rocks, with some diabasic intrusive rocks (Campbell and others, 1966; Jennings and Strand, 1969; Yerkes and Campbell, 1980; Dibblee, 1992). The structure is a west-plunging antiform where Line 2 crosses it, but structure within the Mesozoic-Cenozoic sedimentary rocks is Campbell and others (1966) interpret a stack of several thrust sheets within the debated. sedimentary section, but the sense of stacking is always younger over older, and could represent, instead, simple unconformities or detachment faulting. Detachment faulting is predicted in the model of Crouch and Suppe (1993), wherein the Los Angeles basin and inner Continental Borderland (Fig. 1) were extended in the Neogene as the western Transverse Ranges, including the Santa Monica Mountains, rotated (by more than 90 degrees) from positions in the current Continental Borderland to their present positions. Core complexes were created in the center of the rift (e.g., Santa Catalina Island (Fig. 1) and the Palos Verde peninsula) and detachment faults are observed chiefly on the edges of the Santa Monica Mountains, western Peninsular Ranges and southeastern part of the inner Continental borderland (Crouch and Suppe, 1993).

The San Fernando Valley, located within the western Transverse Ranges, is structurally the southeastward echelon extension of the east-trending Ventura basin. In the southern part of the valley, a Miocene to Holocene clastic sedimentary section overlies a basement containing granitic rocks penetrated by oil wells at depths of 1.3-1.4 km (Tsutsumi and Yeats, 1999). These granitic rocks are similar to those exposed in the Santa Monica Mountains to the south. In the northern and northeastern part of the valley, basement is not penetrated by oil wells (some wells as deep as 3 km), except near the west end of the crystalline San Gabriel Mountains. Gravity modeling, geologic projection from outcrops, and oil-well data indicate a depth to basement exceeding 3-4 km (Oakeshott, 1975; Weber, 1975; Langenheim and others, 2000; Tsutsumi and Yeats, 1999). The thickness' of individual sedimentary formations increase significantly in the northern part of the valley and to the north in the Santa Susana Mountains. Abrupt thickness changes are seen across the western and central Santa Susana thrust fault, mid-slope on the south side of the Santa Susana Mountains (Winterer and Durham, 1954; Yeats, 1987), and the Mission Hills reverse fault, at the base of the Santa Susana Mountains (Tsutsumi and Yeats, 1999) (see Fig. 2). These two faults were apparently formed during the Pliocene along normal faults or hingelines for the deep eastern part of the Ventura basin to the north.

Historic faulting in and beneath the San Fernando Valley has occurred along conjugate reverse faults, the north-dipping San Fernando fault, which ruptured from a depth of 13-15 km beneath the eastern Santa Clarita Valley (Soledad Canyon) to the surface in the northeastern San Fernando Valley in the 1971 M 6.7 San Fernando earthquake (Allen and others, 1971, 1975; U.S.

Geological Survey staff, 1971: Heaton, 1982), and the south-dipping Northridge fault, which ruptured from a depth of 18-19 km in the southern San Fernando Valley to a depth of 5-8 km in the northern part of the valley (Hauksson and others, 1995; Mori and others, 1995). The northeastern part of the Northridge aftershock zone is apparently truncated by the southwestern part of the San Fernando aftershock zone (Mori and others, 1995; Tsutsumi and Yeats, 1999). Tsutsumi and Yeats (1999) suggest that the San Fernando fault zone actually extends at depth southwestward of the 1971 surface breaks to the Northridge Hills fault, and they interpret the 1971 surface breaks and the Mission Hills fault as upward splays from this southward extension.

The sedimentary rocks of the eastern Ventura basin have been uplifted in the central and northern Santa Susana Mountains and in the low hills and valleys south of the San Gabriel fault in the Santa Clarita Valley (see Figs. 2, 3). The Upper Miocene through Quaternary sedimentary section is substantially thicker here than in the San Fernando Valley south of the Santa Susana and Mission Hills faults, as stated above. Gravity modeling and geologic projection from oil-well data indicate that basement depth ranges from 1.5 to possibly 4 km (Winterer and Durham, 1954; Stitt, 1986; Yeats and others, 1994; Dibblee, 1996).

The San Gabriel fault is an older branch of the San Andreas fault system, that was active during the period ~10-5 Ma and has a total offset of 40-60 km in the region of Line 2 (Crowell, 1962, 1982; Bohannon, 1975; Ehlig and others, 1975; Powell, 1993). It separates the Soledad and Ridge sedimentary basins on the north and east from the eastern Ventura basin and older rocks on the south and west. There is a marked difference between the basin histories north and south of this fault, and these basins were clearly formed in separate environments (Crowell, 1954, 1962, 1982; Jahns and Muehlberger, 1954; Winterer and Durham, 1954). The Soledad basin contains Oligocene through Quaternary sedimentary rocks and wraps around the south side of the Sierra Pelona to interfinger with the base of the Upper Miocene and Pliocene Ridge basin. Along Line 2, Stitt (1986) and Dibblee (1996) show a ridge of basement rocks (granitic and metamorphic rocks, based on oil-well data) at 1- to 3-km depth in the northeasternmost part of the Ventura basin, just south of the San Gabriel fault. Basement depth (> 3 km) to the north, beneath the western Soledad basin is unknown. Basement rocks (Pelona Schist) are exposed at the surface along Line 2 farther north, across the Sierra Pelona fault (see Figs. 3, 4).

Sierra Pelona, Sawmill Mountain, and Liebre Mountain are echelon basement terranes bounded on the northeast by the San Andreas fault system and on the south and southwest by older faults of various ages that extend into the Soledad and Ridge basins. These faults include (1) the Sierra Pelona fault, located along the south side of the Sierra Pelona, (2) the San Francisquito fault, along the north side of the Sierra Pelona, buried by upper Miocene strata of the Ridge basin, (3) the Clearwater fault along the south edge of the Sawmill Mountain block, that is buried by the middle part of the Ridge basin section, and (4) the Liebre fault, along the south side of the Liebre Mountain block, that is buried by the uppermost part of the Ridge basin section (Crowell, 1954; Jahns and Muehlberger, 1954; Jennings and Strand, 1969). The San Francisquito fault is part of the earliest San Andreas fault system in southern California (see summary in Powell, 1993). The San Francisquito fault and Pelona Schist of the Sierra Pelona are offset ~45 km right laterally within the San Andreas fault system from a similar structure and from similar rocks in the northern San Gabriel Mountains (Ehlig, 1968, 1981; Powell, 1993). The Liebre fault, which bounds a distinctive intrusive rock type in the Liebre Mountains, is in part a thrust fault believed to be equivalent to, and offset from, the Squaw Peak thrust fault in the western San Bernardino Mountains. The Squaw Peak thrust fault lies 160 km to the southeast, on the north side of the San Andreas fault system (Matti and others, 1985; Meisling and Weldon, 1989). A wedge of Paleocene to Oligocene-aged sedimentary rocks of unknown origin and structural thickness lies between the San Francisquito and Clearwater faults.

North of the San Andreas rift zone along Line 2, is a low ridge of Mesozoic granitic rocks which is overlain to the north in the western Mojave Desert by Oligocene and younger sedimentary and volcanic rocks (Dibblee, 1967). An oil test well in the western Mojave Desert, located near Line 2 ~85 km north of the coast, reaches basement (granitic rocks) at 2.4-km depth. Beginning about 104 km north of the coast, Line 2 is underlain by igneous and metamorphic rocks of the northwestern Mojave Desert and Tehachapi Mountains (Dibblee, 1967). Line 2 crosses the Garlock fault at about 109 km north of the coast.

EXPERIMENT PLANNING AND DESIGN

The geographic location of Line 2 was actually chosen prior to the January 1994 M 6.7 Northridge earthquake and was based on our desires to (a) cross the western Transverse Ranges more or less perpendicularly to geologic strike, (b) provide an offshore extension of the route that passed near Santa Catalina and San Clemente Islands, (c) cross the San Fernando Valley through the aftershock zone of the 1971 San Fernando earthquake, (d) route the line through as many large open spaces as possible, for shotpoint location and background seismic noise reduction, and (e) locate the line along access roads, wherever possible. This route (Line 2) fortuitously passed through the epicentral area of the Northridge earthquake (Figs. 1-3).

Seismographs were deployed along the onshore part of Line 2 in 1994 to record airgun sources located along its offshore extension (Figs 1, 2) (Brocher and others, 1995; Okaya and others, 1996a). Local and distant earthquakes were recorded by seismographs deployed along Line 2 during a ~6-month period from November 1997 to April 1998 (Fig. 2) (Kohler and others, 2000). In the Fall of 1999, 93 borehole explosions were recorded by ~1400 seismographs along Line 2 and five auxiliary lines (Figs. 2-5; Tables 1, 2a).

The 1999 survey consisted of a 150-kilometer-long main line (Line 2) and five auxiliary lines, ranging in length from 11-22 km: three in the San Fernando Valley and two in the Santa Monica region (Figs. 1-5). The route of Line 2 through the San Fernando Valley was determined by the factors listed above, and especially by the location of the campus of California State University at Northridge, which provided one of the largest blocks of open space in the valley. Line 2 was designed to be a combined refraction/ low-fold reflection survey. A shotpoint spacing of 1 km and an instrument spacing of 100 m was our goal, and we nearly achieved this goal from the coast to the southern Mojave Desert (0-79 km). In that interval our average shotpoint spacing is 1.2 km and average station spacing is 103 m. North of that interval, shotpoint spacing averages 2.75 km from 79-101 km, and the remaining shotpoint on Line 2 (the northernmost shotpoint, SP 9136) was located at 136 km (see Figs. 1-5; Table 2a). Station spacing averages 100 m from 79 to 90 km, 300 m from 90 to 98 km, 500 m from 98 to 101 km, and 1000 m from 101 to 150 km (Figs.

4,5). Our goal for shot size was to mix small (113 kg, or 250 lbs.), medium (227 kg, or 500 lbs.), and large (454 kg, or 1000 lbs., and larger) shots, in order to investigate reflective features at all crustal and upper mantle depths and also to investigate reflective features with differing frequency returns (Fig. 6). In general, larger shots generate energy with lower frequency. Such a mixture was possible in areas of open space, including the several mountain ranges crossed, and also the Mojave Desert. In areas of dense population and in many other areas where buildings, aqueducts, and pipelines were nearby, shot size was determined as described below (see "Shotpoints and Shot Size Determination"). All shots on all lines were recorded by the seismographs on all lines, except for shots in the last two nights of shooting, where some instruments had memory limitations (Table 1).

The three short cross-lines in the San Fernando Valley were designed as refraction surveys and are informally named the "3000", "4000", and "5000" lines, after station numbers (Fig. 3). The 3000 and 4000 lines were designed to image the velocity structure along strike in the upper few km of the southern and northern parts of the San Fernando Valley, respectively. The 3000 line was located to take advantage of open space and access provided by the Sepulveda Flood Control basin, along the Los Angeles River. The 4000 line was designed to coincide in large part with an oilindustry seismic line along Devonshire Blvd (made available to SCEC, see Tsusumi and Yeats, 1999) and it's eastern end was located in the open space of the Hansen Dam Flood Control Basin. The 5000 line was designed to cross the Bouguer gravity low centered on the Van Norman Debris Basin in the northern San Fernando Valley (see Oliver and others, 1980). This line joined the eastern end of the 4000 line at Hansen Dam and intersected Line 2 at SP 8310. Along the 3000 line, 3 relatively large shots (136-295 kg, or 300-650 lbs.) were detonated in the central part of the line, and a smaller shot (SP 8170) was detonated near its west end on the main line. Four relatively large shots (227-455 kg, or 500-1000 lbs.) were detonated at a pair of shotpoints at both ends of the 4000 line (SP's 9211, 9212, 9221, 9222). Double shots were detonated with the intention of stacking the signals. Two smaller shots were detonated along the line--SP 9213 at or near the Verdugo fault and SP 8260 on the main line (Fig. 3). The 5000 line had only shots on its ends - the double shot at the eastern end of the 4000 line (SPs 9211, 9212) and a shot on the main line (SP 8310).

The 2 auxiliary lines in the Santa Monica area were designed to investigate the exaggerated shaking that occurred there during the 1994 M 6.7 Northridge earthquake (Gao and others, 1996; Davis and others, 2000). The 6000 line and a scatter deployment of 50 3-component Reftek recorders (Fig. 3) were deployed through the region of maximum damage. The 7000 line, which was designed as a control line, was deployed through an area with little or no damage to the east of and parallel to the 6000 line. Two large shots (SP's 9350 and 9360; 1700 and 1800 kg, respectively), located at azimuths similar to the azimuths of Northridge aftershocks showing the highest amplitudes in the damage zone and at distances that produced critical reflections from the Moho (approximately 70 and 90 km from the Santa Monica area, respectively), were detonated well west of Line 2 (Fig. 1, 2). These shots were designed to approximate upcoming rays from the Northridge shocks at Santa Monica (see Gao, and others, 1996). In addition, in-line shots were detonated on both the 6000 and 7000 lines. The 6000 line recorded 4 in-line shots, including a northern end shot on the main line (SP 8130), and the 7000 line recorded 2 in-line shots (Fig. 3). The scatter deployment in the damage zone was deployed as a passive survey a few days before the explosion survey, and some of these instruments fortuitously recorded the October 16, M 7.1 Hector Mine earthquake.

Seismographs used in LARSE II included 5 types with varied recording parameters (Table 1). The Reftek, Texan, SGR, and PDAS seismograph systems have broad bandwidths, from 4.5 Hz (sensor eigen frequency; 8 Hz for the SGR's) to more than 100 Hz. The PRS1's and PRS4's have narrow bandwidths, from 2 Hz (sensor eigen frequency) to about 20 Hz. The Refteks, and PRS4's are 3-component recorders. Three-component recorders were distributed as evenly as possible among all lines, including the main and auxiliary lines. Along Line 2, from 0-100 km, where we hoped to record near-vertical-incidence reflections, we chiefly used the broader-band instruments, and all instrument types were mixed, to the extent possible. From 0-100 km, Refteks were deployed at 500-600-m intervals on average. PDAS's were deployed continuously as 6-channel cabled spreads from 62-90 km, with one or more Refteks between each spread. Texans were interspersed throughout the line from 0-100 km, but, because of their small size, were deployed exclusively in hike-in segments of the line, notably from 29-30 km, 57-62.5 km, and 66.5-68.5 km. SGR's were interspersed from 0-57 km, averaging 600-700 m apart and PRS1's were interspersed every 1 km from 0-44 km. From 100-150 km, an interval with only 2 shotpoints, PRS1's were deployed at 1 km intervals with no other interspersed instruments. On the 3000 line, 11.4 km long, station spacing averaged 200 m. PRS4's (3-component) were deployed approximately every 400 m, or approximately at every other instrument site, with PRS1's, SGR's, and Texans at the remaining sites. On the 4000 line, 21.8 km long, station spacing averaged 270 m. PRS4's and Refteks were deployed approximately every 1200 m, or approximately every fourth or fifth instrument site, and the remainder of the sites were Texans, SGR's, and PRS1's. On the 5000 line, 12.4 km long, station spacing averaged nearly 400 m and only four 3-component instruments (Refteks) were deployed. On the 6000 line, 19.5 km long, station spacing averaged approximately 200 m, and Refteks were spaced on average every 880 m, or at every fourth or fifth instrument site. The scatter deployment of 50 instruments (all 3-component Refteks) was approximately 2.7-km in diameter and centered on downtown Santa Monica. On the 7000 line, 16.2 km long, station spacing averaged 300 m, and there were only five 3-component instruments (Refteks) on the line.

PERMITTING

Permitting was a lengthy process, lasting nearly 2 years. In all, 50 permits were required for 93 shotpoints, and 376 permits were required for over 1400 instrument locations (Table 3). Permits were received from 3 federal, 1 state, and 12 local government agencies, and from 3 conservation/education organizations, 20 commercial/industrial organizations, and 337 private citizens. All government agencies and all conservation/educational organizations that were approached ultimately granted the requested permits, and most commercial/industrial organizations and private citizens did likewise. Our worst results were from land developers, but 2 out of 6 ultimately granted the requested permits. We are very indebted to all agencies, organizations, and people who participated in LARSE II by granting permission and, in many cases, vital assistance to

our survey. Commercial/industrial organizations and private citizens granted a total of 31 shotpoint permits (33 %) and 357 recorder permits (95%). Clearly, without the cooperation of these organizations and citizens, LARSE would have been less than a success.

As discussed in the above section, shotpoint locations were sought in open spaces, where shaking of nearby personal residences, buildings, and other structures would be minimized, and where, if possible, prior grading or other impacts on the land surface existed, such as in parking lots, road pullouts, and abandoned or seldom-used roads and trails. To the extent possible, instrument locations were also sought in open spaces, and along seldom-used roads and trails, where background seismic noise would be minimized; some spot measurements of seismic noise level were performed before site selection. In addition, security of instruments was of great importance, and sites were selected where instruments could be hidden or buried. In populated areas, such secure sites included the back yards and garden areas of many private citizens. All siting requests, for shotpoints and recorders, were accompanied with pamphlets and/or USGS Fact Sheets on LARSE (in English and Spanish) that were written specially for the permitting process (Henyey and others, 1999a, b). In addition, all shotpoint permit requests were accompanied by an environmental assessment (see Murphy and others, in preparation). Several government agencies and companies required more detailed estimates of ground shaking from our seismic shots (see "Shotpoints and Shot-Size Determination") below.

For shotpoints located on property managed by the City of Los Angeles, the shooting procedures were overseen by the City Engineer, City and County Fire Marshals, County Sheriff (Bomb Squad), and the California Occupational Safety and Health Administration (CALOSHA).

SHOTPOINTS AND SHOT-SIZE DETERMINATION

LARSE II shots were explosions detonated at the bottoms of drill holes measuring 20 cm (8 in) in diameter and more than 18 m (60 ft) deep (Table 2b; Fig. 7). The holes were drilled by a commercial water-well-drilling rig and cased as needed with iron pipe or, in some cases, with PVC. The explosive is a commercial ammonium-nitrate-based product (blasting agent) that is pumped into the drill hole by a pump truck. The total depth of each drill hole varies with charge size, according to the approximate formula:

hole depth (m) = 18 m + shot-size (kg)/37.3 kg/m(or hole depth (ft) = 60 ft + shot-size (kg)/25 lbs/ft)

Holes are loaded as much as one month prior to detonation, but are not "primed" for detonation until minutes before actual detonation. Loading is accomplished as follows:

- a) Hole depth and depth to water is measured.
- b) A length of detonating cord that is slightly longer than hole depth is spooled out, and a weight is attached to one end.
- c) Boosters (Class B explosive) are threaded onto the detonating cord and taped in place at the top and bottom of the interval to be occupied by the blasting agent. When

needed, boosters were taped at 3-m (10-ft) intervals along the cord between the top and bottom boosters.

- c) The detonating-cord/booster assembly is lowered down the hole.
- d) The required amount of blasting agent is pumped from a truck using a hose lowered to the bottom of the hole and slowly drawn upward during the pumping process.
- e) A bag of dirt is lowered to the top of the blasting agent, at 18-m depth, to separate the blasting agent from fill or "tamp" above.
- f) Drill cuttings or gravel are shoveled on top of the dirt bag, filling the hole nearly to the surface. Clean gravel is used in cases where the hole contains significant water. (Drill cuttings simply mix with the water and do not sink to efficiently contain the explosion.)
- g) The detonating cord is wrapped around a locking bar, that is inserted through both the casing and a custom-made cap (Fig. 7).
- h) Where the cap and casing protruded above ground, they were covered with a pile of dirt to avoid attracting attention.

In LARSE II, efficient loading, as described above, led to consistently energetic explosions, and to consistently good seismic data (see below). The explosions were detonated at night, when wind and cultural noise are at their lowest levels at seismograph sites. After inspecting the area for stray currents that might prematurely detonate an electrical blasting cap, each shot crew attached a cap to the detonating cord ~5 minutes before shot time. The cap was fired by a signal from a master clock and a shooting system designed by the USGS. The cap initiated successive detonation of the cord, boosters, and blasting agent. The shot times (Table 2a) are generally master-clock trigger times; delays for the caps, detonation cord, boosters, and blasting agent, which explode at ~5.5-6.0 km/s, are ignored. Master clocks generally drift less than 1 millisecond per week. For two LARSE II shots (SP's 8084 and 8270), stray currents were dangerously high and an alternate, percussive firing system was used. Shot times were estimated in these two cases using up-hole seismographs.

Where shotpoints were located near private residences, buildings, or other structures, shot size was determined using ground-shaking data collected in LARSE I plus data from a series of calibration shots (11, 23, and 68 kg in size) at SP 204C, in the San Fernando Valley (Fig. 8). [Note: since these amplitude data were needed in planning the LARSE II shot sizes, NO LARSE II DATA WERE USED IN MODELING SEISMIC AMPLITUDES.] A model curve was fitted through the seismic amplitudes (or, upward ground velocities) using the formula of Kohler and Fuis (1992):

where:

$$a_{ij} = b_1 x_{ij} + b_2 x_{ij}^2 + c_1 w_i + g_X$$

 a_{ij} is the logarithm (base 10) of the seismic amplitude for the ith shot and jth trace,

(in units of cm/s),

- x_{ij} is the logarithm (base 10) of the distance between the ith shotpoint and the jth trace location, (in units of km),
- w_i is the logarithm (base 10) of the charge size (weight) of the ith shot, (in units of kg), and b_1 , b_2 , c_1 , g_X are constants to be inverted for.

 g_X is a constant for ground conditions, which govern the efficiency of shot coupling.

Four ground conditions were recognized: 1. wet alluvium (g_A) , 2. dry alluvium (g_D) , 3. bedrock (g_R) , and 4. sedimentary rocks (g_S) . "Wet alluvium" and "dry alluvium" apply to all Quaternary and Pliocene/Quaternary deposits which have some or no standing water, respectively, in shotholes prior to loading. "Bedrock" applies to Mesozoic and older rocks, and "sedimentary rocks" applies to Tertiary sedimentary rocks. a_{ij} , x_{ij} , and w_i are known, and b_1 , b_2 , c_1 , and g_1 are unknowns.

The data in Fig. 8 can be fitted with two different curves, with approximately similar standard errors, depending on whether the (a_{ij}, x_{ij}) points are weighted by distance (1/x) or not. The model curve shown in Fig. 8 is for distance weighting, which, of course, emphasizes data at small distances:

For 1/x distance weighting:

variable	value	std dev
\mathbf{b}_1	-1.9277	0.0053 distance factor
b_2	-0.3411	0.0037 distance-squared factor
c ₁	0.8119	0.0245 charge-size factor
g _R	-3.0059	0.0137 correction for bedrock sites
g _A	-3.1249	0.0366 correction for wet alluvium sites
g _D	-3.5600	0.0395 correction for dry alluvium sites
gs	-3.8767	0.0801 correction for sedimentary-rock sites

Number of points 2163

Standard error 0.57 (in units of \log_{10} cm/s)

For no distance weighting:

b ₁	-1.6068	0.0549 distance factor
b_2	0.0190	0.0738 distance-squared factor
c ₁	0.8022	0.0235 charge-size factor
g _R	-3.2789	0.0127 correction for bedrock sites
gA	-3.3791	0.0364 correction for wet alluvium sites
g _D	-3.8278	0.0391 correction for dry alluvium sites
gs	-4.1457	0.0796 correction for sedimentary-rock sites

Number of points 2164 Standard error 0.55

In Fig. 8, the model curve and data move up or down depending on which shot size and site constants g are used to correct the data. Additional curves can be plotted to bracket 90% or 99% of the data. (In Fig. 8, the 99% curve--approximately 2 standard deviations above the model curve--is shown.) The intersections of these latter curves with 3 different thresholds of concern determine shot size. The thresholds are ~ 2.5 cm/s (1 in/s) (at frequencies less than 40 Hz) for human complaints, ~5 cm/s (2 in/s) for incipient damage to old stucco, and 12.5 cm/s (5 in/s) for potential damage to older engineered structures (Edwards and Northwood, 1960; Nicholls and others, 1971; Blasters' Handbook, 1977; Northwood and others, 1963; Stagg, and others, 1980; W. Bender, written manual "Explosives Training Course", 1992)., We most commonly used the 99% curve to

avoid human complaints and potential cosmetic damage to private residences, and the 90% curve to avoid potential damage to engineered structures. To easily determine shot size, we constructed two tables listing shot size and distance (a) for various shotpoint site factors, (b) for 90% and 99% certainty, and (c) for the 3 thresholds above (APPENDIX I). One table was constructed using a model curve determined with distance weighting (1/x) (APPENDIX Ia) and another, with no distance weighting (APPENDIX Ib). The final shot size determined for a particular location was an average of values from these 2 tables.

The procedure outlined above was quite successful in avoiding human complaints and structure damage. The occurrence of the Hector Mine earthquake 4 days before shooting began, may, however, have been a factor in reducing human complaints, as aftershocks continued to be felt for days after the earthquake. Fortunately, these aftershocks did not seriously contaminate the explosion data.

To aid in the planning of future seismic surveys of the LARSE type, we have used LARSE II data to determine how far P-waves will propagate for a given shot size (Fig. 9; Table 2b). P-wave propagation distances were picked, where they did not extend to (and presumably beyond) the ends of the main line. P-wave arrivals at the picked distances were required to have discernable upward first motion. We did not distinguish shotpoint site conditions/geology in Fig. 9, although such a grouping could be done based on the column headed "Geologic site label." in Table 2b (see discussion above). We also picked distances to which energy of any type was discernable from each shotpoint (Table 2b).

The data obtained in LARSE II are displayed in Murphy and others (in preparation), and examples are given in Figs. 10-13. With the exception of data from a couple of shotpoints, data quality is fair to excellent. We were generally quite pleased with both the propagation distances for seismic energy and with signal-to-noise ratios, especially along urbanized sections of our various lines. Data quality appears higher, for example, in the San Fernando Valley than was our experience in the San Gabriel Valley on LARSE Line 1. Further analysis of the data will be required to make more quantitative statements, however. We had some truly exceptional energy propagation from some of our small shots in the San Fernando Valley (see Figs. 11, 12).

SEISMIC ACQUISITION SYSTEMS

Five different types of seismograph systems were used to acquire seismic data during LARSE II: PRS1's and PRS4's (developed by the Geological Survey of Canada), SGR III's (developed by Globe Universal Sciences, Inc., for AMOCO), RefTeks (developed by Refraction Technology for IRIS/PASSCAL), Texans (developed by Refraction Technology for University of Texas, El Paso, and IRIS/PASSCAL), and PDAS (developed by Teledyne/Geotech) (Table 1). A general description of each is given in Murphy and others (in preparation), but for more detailed descriptions IRIS/PASSCAL of RefTeks and Texans, see the web site (http://www.passcal.nmt.edu). For the PRS1's and PRS4's, see Asudeh and others (1992), and for the SGR III's, see the technical manual by Globe Universal Sciences, Inc. and the L-10 geophone specifications by Mark Products. No general references are available for the PDAS's.

EXPERIMENT SCHEDULE

The LARSE II field work began in mid-June 1999 with shothole drilling. Drilling was stopped in mid-July due to the slow pace of permitting and resumed in September. It continued until October 22, our 3rd day of shooting. In August, several survey parties began staking, flagging, and logging recorder sites. In urban and suburban areas, where many recorder sites had to be located on private property, survey parties had to do intensive permitting as well. Calibration shots were drilled and loaded in early September, and detonated on September 17. Loading of shot holes for the main survey began on October 4 and continued through October 24. In mid-October, seismic recording systems and personnel were assembled from numerous institutions. Instrumentation was tested and instruments were deployed over a three day period starting October 17. Instruments with the longest battery lives (Refteks, PRS1's, PRS4's, SGR's and PDAS's) were deployed in the first 2 days and instruments with the shortest battery lives (Texans) deployed on October 19. Sixty two shots were detonated on October 20-22 (Julian days 293-295--see Table 2a) by a maximum of 11 shooting teams/night, each shooting 1 minute apart during 11-minute intervals beginning at 1:30 AM, 3:00 AM, and 4:30 AM. Thirty-one shots in the City of Los Angeles were loaded on October 23 and detonated on October 24-25 (Julian days 297-298--see Table 2a) during the same early-morning time intervals as above. Cleanup of Los Angeles City shotpoints began on October 24, and cleanup of the entire survey was completed by the mid-November. Data processing and cleanup began in November and continued until October 2000, when it was made available on the SCEC web site to LARSE researchers.

DETERMING LOCATIONS

Horizontal locations for both shotpoints and recorders were obtained using a Global Positioning Satellite navigation system (GPS). Accuracy is estimated to be 3-5 m. Vertical locations (elevations) were obtained by an alternative method, as some GPS elevations were either not reported or were highly inaccurate. In this method, horizontal locations were used to extract elevations from 10-m Digital Elevation Models (DEM's). These have estimated average errors in hilly terrain of ~6 m, and less in flat terrain. The range of error is probably 5-10 m. Horizontal locations of shotpoints, both Latitude/Longitude and Universal Transverse Mercator (UTM) projections for Zone 11, are given in Table 2a with respect to the WGS84/NAD83 datum. Elevations are given with respect to Mean Sea Level (MSL). Recorder locations and elevations are given in Murphy and others (in preparation).

DATA PROCESSING

The mix of instruments posed several unique recording problems. The PRS1's and PRS4's have an instrument response designed for lower-frequency refraction/wide-angle reflection recording (2-20 Hz), whereas the SGRs, RefTeks, Texans, and PDAS's are designed for higher-frequency reflection recording. Although all of the playback systems produce SEG-Y data tapes, the header files and sample rates are different for each system. Merging the data required extensive processing, as follows:

Data Reduction and Merging

Seismograms from the diverse types of instrumentation were combined to form complete common shot gathers. This data merging was performed to archive the data using proper SEG-Y formatting but in a manner which would be useful for subsequent data analysis. The SEG-Y standard requires that all the data have common sampling rates and lengths with coherent indexing within the SEG-Y trace headers.

The archival data was primarily organized by seismic array (Lines 2, 3000, 4000, 5000, 6000, 7000, and the scatter array "6A"). Each array collected all 93 explosion sources. The number of instruments per array varied as did the number of 3-component versus single component instruments; as a result, the number of total seismic traces in an array's shot gather is varied. These values are summarized:

			#traces
Stations	<u>#stations</u>	<u>#shots</u>	per shot
1001-2500	954	93	1296
3001-3058	56	93	82
4006-4114	81	93	117
5010-5073	30	93	34
6005-6108	90	93	134
7001-7063	54	93	64
6503-6557	49	93	147
	1001-2500 3001-3058 4006-4114 5010-5073 6005-6108 7001-7063	1001-2500 954 3001-3058 56 4006-4114 81 5010-5073 30 6005-6108 90 7001-7063 54	1001-2500954933001-305856934006-411481935010-507330936005-610890937001-70635493

A description of which instrument type was deployed at which station is provided in Murphy and others (in preparation). The data were organized by line. Within each line, data were ordered primarily by shot and secondarily by "channel". Channel number is based on station location and on station components. Channel numbering starts in the south at the ocean and is increased northward by each trace. Each 1-component station increases the number by one and each 3-component station increases the number by three. For example a Texan adds one trace to the channel number and a RefTek adds three traces to the channel number.

Data merging was performed using a software application which was written specifically for merging the LARSE data. This application used lists to place seismograms in low-to-high station location order for each array. Prior to ordering, the application program performed procedures common to all the data and made several adjustments to the data based on instrument type.

The incoming data had the following characteristics:

Inst	#samples	sample		time of first
type (DAS)	per trace	<u>interval</u>	<u>#sec</u>	sample (sec)
PRS-1	3841	1/120.	32	-2.000
PRS-4	3841	1/120	32	-2.000
SGR	15501	.002	31	-1.000

Reftek	15500	.004	62	-1.996
PDAS	12401	.005	62	-2.000
Reftek Texan	11250	.004	45	-0.996

The final data had the following characteristics:

Inst	#samples	sample		time of first
type (DAS)	per trace	<u>interval</u>	<u>#sec</u>	sample (sec)
All instruments	15501	.004	62	-2.00

The following procedures were performed on data from each instrument type prior to merging:

PRS1 and PRS4:

- a) amplitude debias.
- b) static time shift based on preprocessing trace header value due to DAS programming.
- c) hand static and shot static (described in "Quality Assurance" section below).
- d) convert *PRS1/4* sampling rate to archival sampling rate using cubic spline interpolation of each seismogram.
- e) zero-pad seismograms to desired output trace length.

SGR:

- a) amplitude debias.
- b) hand static and shot static (described in "Quality Assurance" section below).
- c) convert SGR sampling rate to archival sampling rate using cubic spline interpolation of each seismogram.
- d) zero-pad seismograms to desired output trace length.

Reftek:

- a) amplitude debias.
- b) hand static and shot static
 - (described in "Quality Assurance" section below).
- c) polarity reversal.
- d) zero-pad seismograms to desired output trace length.

PDAS:

- a) amplitude debias.
- b) hand static and shot static
 - (described in "Quality Assurance" section below).
- c) convert PDAS sampling rate to archival sampling rate using cubic spline interpolation of each seismogram.
- d) zero-pad seismograms to desired output trace length.

Texan:

- a) amplitude debias.
- b) hand static and shot static (see below)
 - (described in "Quality Assurance" section below).
- c) polarity reversal.
- d) zero-pad seismograms to desired output trace length.

Upon merging, appropriate index trace headers were assigned, where order within a line was based primarily on shot number and secondarily on station location. Additional trace headers were also defined such as latitude/longitude and UTM coordinates, offset distances, field geometries and data descriptions (see Murphy and others, in preparation).

A preliminary version of merged data was produced in April 2000. These data were visually inspected by LARSE personnel at the USGS. Individual seismogram corrections were identified primarily in regards to first arrival travel time (hand static) and polarity reversals. These corrections were applied upon final archive-quality merging. Several shots required bulk time shifts (shot static) due to their shot initiation times being delayed from the desired shot time (which were "on-the-minute").

Quality Assurance

The data were displayed in record sections reduced by 6 km/s. Each trace was examined for potential problems with timing, polarity, and location.

<u>Timing</u>: For traces whose first-arrivals were consistently out of line with adjacent traces by more than ~40-50 ms, the time difference was recorded for each shot (see for example Table 4a). Time differences for each trace for each 11-minute shot window were averaged (see, for example, Table 4b). Numerical flags were defined and attached to each timing correction according to the size of the correction and to its certainty. To further investigate these timing problems for the Refteks, where independent timing information is available, we examined internal instrument logs. All but one of the 23 Refteks with initial tabulated timing corrections, as identified by visual timing misalignment, had evidence in their internal logs indicating timing problems. (Timing corrections for the single Reftek without independent evidence of timing problems were deleted.)

<u>Polarity</u>: For traces with impulsive first arrivals, polarity reversals were noted (Table 4a) and a flag was set in Table 4b to correct the polarity.

Location: A few traces had timing problems that were interpretable as location or duplication problems. These problems were noted (Table 4a) and flagged (Table 4b).

The timing, polarity, and location/duplication corrections were applied to the data, and these corrections and accompanying flags were written to the SEG-Y trace headers so that future researchers can undo the corrections if desired.

WATER LEVELS IN SHOTHOLES

Information on the water table is generally of immediate use to shotpoint permittors (Table 2b; Fig.14). "Water table" is a simplified concept wherein the upper part of the Earth's crust is thought of as a porous medium with water existing uniformly in the pores below a horizon, the "water table", that generally varies laterally in a smooth fashion. Permanent streams would represent "outcrops" of the water table, and intermittent streams would represent "outcrops" of the water table, and intermittent streams would represent "outcrops" of the water table, and intermittent streams would represent "outcrops" of the water table, and intermittent streams would represent "outcrops" of the water table is high enough to intersect the bottoms of valleys. Lakes may represent a "perched water table" with an impervious layer of rock or soil beneath it, separating it from the main "water table" below. Porosity occurs as both voids between the various grains and minerals that make up rock or as cracks and fault zones. Generally, cracks are present in the upper few km of the Earth's crust, but they close as pressure gets higher with depth. Active fault zones provide porosity to much greater depths than in surrounding rock. In the real Earth, porosity may vary drastically from one body of rock to the next, and these rock bodies do not necessarily form simple layers in the Earth. Thus, one may find that there are dramatic differences in water level from well to well, even when the wells are closely spaced.

In examining a profile of water levels along the main LARSE Line 2 (Fig.14), one sees some wells that obey the simple concept of a "water table" and others that do not. For example SP's 8020-8045 (Table 2b; Fig. 14, numbers 1-4) are located along intermittent streams in the southern Santa Monica Mountains, and reflect a shallow water table that is near the surface. A similar observation is also made for SP's 8120-8210 (Table 2b; Fig. 14, numbers 14-19), which span the Los Angles River (located near number 17), SP's 8490-8502 (Table 2b; Fig. 14, numbers 42-44), located in a large desert wash on the south flank of Sierra Pelona, and SP's 8700 and 8720 (Table 2b; Fig. 14, numbers 60, 62), located in intermittent washes in or near the San Andreas fault zone. A striking exception to the simple "water table" concept is SP 8590 (Table 2b; Fig. 14, number 51), located in the large wash of San Francisquito Canyon and near (but not in) the inactive San Francisquito fault zone (Fig. 4). This shotpoint was drilled into the almost impermeable Pelona Schist. Immediately to the south, SP's 8540-8570 apparently represent a "perched water table" atop the Sierra Pelona (Table 2b; Fig.14, numbers 48-50). These shotpoints are also drilled into Pelona Schist, but at these locations, apparently the upper part of the Pelona Schist is permeable. One additional example of a "perched water table" is SP 8270 (Table 2b; Fig. 14, number 25), in the dry northern San Fernando Valley; this shotpoint is located in a local debris basin/lake. One notes that water level in the central Santa Monica Mountains, Santa Susana Mountains, Santa Clarita Valley, central Transverse Ranges, Mojave Desert, and Sierra Nevada is generally deeper than along other parts of the line (greater than 24 m, or 80 ft). These greater depths may result from any or all of the following factors: 1) greater distance from and elevation above streams, 2) poorly permeable bedrock, and 3) rainfall deficit compared to adjacent areas.

ACKNOWLEDGMENTS

LARSE II was a difficult survey to permit, deploy, shoot, and cleanup. We had welcome help from many government agencies, institutions, and individuals. In Table 5, we list these agencies, institutions, and key individuals who made this survey possible. We would like to mention especially the following: The U.S. Forest Service (Saugus District) and Mike Wickman gave a swift and thorough review of our environmental assessment and streamlined the permitting

process. The staff of the City of Los Angeles expedited our permitting process at a cost of approximately \$25,000, born by the City. Mike Michalski and Linda Moore helped us scout for shotpoints on City property; Andy Gutierrez oversaw and assisted us with safety compliance for our explosions; and Mark Mackowski and Simon Hsu were helpful in our permitting process along the Los Angeles aqueduct. Rich Rozelle, Randy Cedarquist, and Jeff Bolton expedited our permitting process for Topanga State Park and for surrounding lands under the jurisdiction of the Santa Monica Mountains Conservancy. Tom Tindall and his staff guided us in getting permission from California State University at Northridge; John Chandler influenced the content of our LARSE "Fact Sheet" (Henyey and others, 1999a). Evan Morris (Los Angeles Unified School District), Evan Aldrich (City of Santa Clarita), Mike Otavka (W.S. Hart School District), and Mark Fulmer (Saugus Elementary School District) assisted us in getting permission for shotpoints on school properties. Karvel Bass coordinated our permit process with the U.S. Army Corps of Engineers, and Teresa Castillo signed our permit from the U.S. Veterans Administration. Robert Sagehorn (Castaic Lake Water Agency), assisted by Michael Thompson, kindly gave us permission for shotpoints and access to Water Agency land. Peter Sego, Tom Shroeder, Jim Mansdorfer, and Sharon O'Rouke were helpful in our obtaining permits from the Southern California Gas Company. Ralph Herman, owner of El Caballero Country Club and former owner of much of the land surrounding the south end of Reseda Blvd in Tarzana, kindly assisted us in finding shotpoints in that area. Paul Ramina and Gerd Koenig were helpful in our obtaining a permit from Riviera Country Club. Joan Akins (City of Santa Monica), Councilperson Cindy Miscikowski (City of Los Angeles), and Lisa Merlino (City of Los Angeles) were instrumental in our obtaining permits for a vibrating truck in the Santa Monica area (see Baher and others, in review, for a description of the vibroseis survey). Steven Seemann (Richmond American Homes) and Bruce Harrigan (Playa Vista Development Company) were the only land developers to give us permits; we were grateful. James Aidukas and James Ambroso (BFI Sunshine Canyon Landfill) gave us permits for key shotpoints in the Santa Susana Mountains. Dana Stewart (The Oaks Camp and Conference Center) was the first to sign any of our LARSE permit requests, giving us initial encouragement. Byron McMichael (National Cement Company) gave us an important shotpoint in the Tehachapi Mountains. George Jackman allowed us to store explosives in his "Magazine Canyon" compound. Finally, numerous private land owners all along the LARSE lines gave us permission for shotpoint and seismograph locations; thirty-two gave permission for shotpoints (Table 5).

The personnel needed to carry out this experiment, 123 in number, were provided by a large group of universities, organizations, and private companies (APPENDIX II). Even with this large number of people, we were understaffed, and everyone was forced to work long hours. As a credit to this enormous collective effort, LARSE II was successful.

Our two contractors, Sam Crum (Sam Crum Water Well Drilling) and Gordon Coleman (Alpha Explosives), worked as part of the LARSE team. Without their expert and willing efforts, we would have no seismic results to report.

Finally, we would like to thank Jim Luetgert for reviewing this report.

REFERENCES CITED

(For additional LARSE publications, reports, abstracts, and videos see APPENDIX III)

- Allen C. R., Engen, G. R., Hanks, T. C., Nordquist, J. M., and Thatcher, W. R., 1971, Main Shock and larger aftershocks of the San Fernando earthquake, February 9 through March 1, 1971, in *The San Fernando, California, Earthquake of February 9, 1971*: U.S. Geological Survey Professional Paper 733, p. 17-20.
- Allen C. R., Hanks, T. C., and Whitcomb, J. H., 1975, Seismological studies of the San Fernando earthquake and their tectonic implications, in *San Fernando, California, Earthquake of 9 February 1971*, edited by G. B. Oakeshott: California Division of Mines and Geology Bulletin 196, p. 257-262.
- Asudeh, I., Anderson, F., Parmelee, J., Vishnubhatla, S., Munro, P., and Thomas, J., 1992, A portable refraction seismograph PRS1: Geological Survey of Canada Openfile Report 2478, 34 p.
- Baher, S., Davis, P., Clayton, R., and Fuis, G., Seismic Reflection Data Acquired in the Los Angeles Region Seismic Experiment (LARSE II), Los Angeles, California, using Vibroseis Sources: U.S. Geological Survey Open-File Report (in preparation),
- Bohannon, R.G., 1975, Mid-Tertiary conglomerates and their bearing on Transverse Range tectonics, southern California, in *The San Andreas Fault in Southern California*, edited by J.C. Crowell: California Division of Mines and Geology Special Report 118, p. 75-82.
- Brocher, T.M., Clayton, R.W., Klitgord, K.D., Bohannon, R.G., Sliter, R., McRaney, J.K., Gardner, J.V., and Keene, J.B., 1995, Multichannel seismic-reflection profiling on the R/V Maurice Ewing during the Los Angeles Region Seismic Experiment (LARSE), California: U.S. Geological Survey Open File Report 95-228, 70 p.
- Campbell, R.H., Yerkes, R.F., and Wentworth, C.M., 1966, Detachment Faults in the Central Santa Monica Mountains, California, in *Geological Survey Research* 1966: U.S. Geological Survey Professional Paper 550-C, p. C1-C11.
- Crouch, J.K., and Suppe, J., 1993, Late Cenozoic evolution of the Los Angeles basin and inner California borderland: A model for core complex-like crustal extention: Geological Society of America Bulletin, v. 105, p. 1415-1434.
- Crowell, J. C., 1954, Strike-slip displacement of the San Gabriel fault, southern California, in *Geology of Southern California*, edited by R. H. Jahns: California Division of Mines Bulletin 170, Chapter IV: Structural Features, v 1, p. 49-52.

- Crowell, J.C., 1962, Displacement along the San Andreas fault, California: Geological Society of America Special Paper 71, 61 p.
- Crowell, J.C., 1982, The tectonics of the Ridge basin, southern California, in *Geologic History of the Ridge Basin, Southern California*, edited by J.C. Crowell, and M.H. Link: Pacific Section, Society of Economic Paleontologists and Mineralogists, p. 25-42.
- Davis, P.M., Rubenstein, J.L., Liu, K.H., Gao, S.S., Knopoff, L., 2000, Northridge earthquake damage caused by geologic focussing of seismic waves: Science, v. 289, p. 1746-1750.
- Dibblee, T.W., Jr., 1967, Areal geology of the western Mojave Desert, California: U.S. Geological Survey Professional Paper 522, 153 p.
- Dibblee, T.W., Jr., 1992, Geologic map of the Topanga and Canoga Park (south 1/2) quadrangles, Los Angeles County, California: Santa Barbara, Calif., Dibblee Geological Foundation, scale 1:24,000.
- Dibblee, T.W., Jr., 1996, Geologic map of the Newhall quadrangle, Los Angeles County, California: Santa Barbara, Calif., Dibblee Geological Foundation, scale 1:24,000.
- Ehlig, P. L., 1968, Causes of distribution of Pelona, Rand and Orocopia schists along the San Andreas and Garlock faults, in *Proceedings of Conference on Geologic Problems of San Andreas Fault System*, edited by W.R. Dickinson, and A.
 Grantz: Stanford University Publications, Stanford, California, p. 294-306.
- Ehlig, P. L., 1981, Origin and tectonic history of the basement terrane of the San Gabriel Mountains, central Transverse Ranges, in *The Geotectonic Development of California*, edited by W.G. Ernst: Prentice-Hall, Englewood Cliffs, New Jersey, p. 253-283,
- Ehlig, P.L., Ehlert, K.W., and Crowe, B.M., 1975, Offset of the upper Miocene Caliente and Mint Canyon formations along the San Gabriel and San Andreas faults, in *The San Andreas Fault in Southern California*, edited by J.C. Crowell: California Division of Mines and Geology Special Report 118, p. 83-92.
- Field, N., Jones, L., and Jordan, T., 2001, Earthquake shaking--Finding the "hotspots": U.S. Geological Survey Fact Sheet 001-01.
- Fuis, G.S., Ryberg, T., Godfrey, N.J., Okaya, D.A., and Murphy, J.M., 2001, Crustal structure and tectonics from the Los Angeles basin to the Mojave Desert, southern California: Geology, v. 29, p. 15-18.

- Gao, S., Liu, H., Davis, P.M., and Knopoff, L., 1996, Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake: Bulletin of the Seismological Society of America, v. 86, p. 209-230.
- Hauksson, E., Jones, L. M., and Hutton, K., 1995, The 1994 Northridge earthquake sequence in California: Seismological and tectonic aspects: Journal of Geophysical Research, v. 100, p.12,335-12,355.
- Henyey, T.L., Fuis, G.S., Benthien, M.L., Burdette, T.R., Christofferson, S.A., Clayton, R.W., Criley, E.E., Davis, P.M., Hendley, J.W., II, Kohler, M.D., Lutter, W.J., McRaney, J.K., Murphy, J.M., Okaya, D.A., Ryberg, T., Simila, G., and Stauffer, P.H., 1999a, The "LARSE" Project--working toward a safer future for Los Angeles, U.S. Geological Survey Fact Sheet 110-99, 2 p.
- Henyey, T.L., Fuis, G.S., Anima, R.J., Barrales-Santillo, A., Benthien, M.L., Burdette, T.R., Christofferson, S.A., Criley, E.E., Clayton, R.W., Davis, P.M., Garcia, S., Hendley, J.W., II, Kohler, M.D., Lutter, W.J., McRaney, J.K., Murphy, J.M., Okaya, D.A., Ryberg, T., Simila, G., y Stauffer, P.H., 1999b, El proyecto sísmico "LARSE"--Trabajando hacia un futuro con mas seguridad para Los Angeles, U.S. Geological Survey Fact Sheet 111-99.
- Hornafius, J.S., Luyendyk, B.P., Terres, R.R., and Kamerling, M.J., 1986, Timing and extent of Neogene tectonic rotation in the western Transverse Ranges, California: Geological Society of America Bulletin, v. 97, p. 1476-1487.
- Jahns, R.H., and Muehlberger, W.R., 1954, Geology of Soledad basin, Los Angeles County, in *Geology of Southern California*, edited by R. H. Jahns: California Division of Mines Bulletin 170, v 2, Map sheet no. 6.
- Jennings, C.W., compiler, 1977, Geologic map of California: California Division of Mines and Geology, scale 1:750,000.
- Jennings, C. W., and Strand, R. G., 1969, Geologic map of California, Los Angeles sheet: California Division of Mines and Geology, scale 1:250,000.
- Heaton, T.H., 1982, The 1971 San Fernando earthquake: a double event?: Bulletin of Seismological Society of America: v. 72, p. 2037-2062.
- Kohler, M.D., Davis, P.M., Liu, H., Benthien, M., Gao, S., Fuis, G.S., Clayton, R.W., Okaya, D., and Mori, J., 1996, Data report for the 1993 Los Angeles Region Seismic Experiment (LARSE 93), southern California: a passive study from Seal Beach northeastward through the Mojave Desert: U.S. Geological Survey Open-File Report 96-85, 82 p.

- Kohler, M. D., and Kerr, B. C., Data report for the 1998-1999 Los Angeles Region Seismic Experiment II Passive Array: U.S. Geological Survey Open-File Report (in preparation),
- Kohler, M.D., Kerr, B.C., and Davis, P.M., 2000, The 1997 Los Angeles basin passive seismic experiment--a dense, urban seismic array to investigate basin lithospheric structures: U.S. Geological Survey Open-File Report 00-148, 109 pp.
- Kohler, W. M., and Fuis, G. S., 1992, Empirical relationship among shot size, shotpoint site condition, and recording distance for 1984-1987 U.S. Geological Survey seismic-refraction data: USGS Open-File Report 89-675, 107 p.
- Langenheim, V.E., Griscom, A., Jachens, R.C., and Hildenbrand, T.G., 2000, Preliminary potential field constraints on the geometry of the San Fernando basin, southern California: U.S. Geological Survey Open-File Report 00-219, 17 p.
- Matti, J.C., Morton, D.M., and Cox, B.F., 1985, Distribution and geologic relations of fault systems in the vicinity of the central Transverse Ranges, southern California: U.S. Geological Survey Open-File Report 85-365, 27 p. scale 1:250,000.
- McCulloh, T.H., Beyer, L.A., and Enrico. R.J., 2000, Paleogene Strata of the eastern Los Angeles basin, California: Paleogeography and constraints on Neogene structural evolution: Geological Society of America Bulletin, v. 112, p. 1155-1178.
- Meisling, K. E., and Weldon, R. J., 1989, Late Cenozoic tectonics of the northwestern San Bernardino Mountains, southern California: Geological Society of America Bulletin, v. 101, p. 106-128.
- Mori, J., Wald, D.J., and Wesson, R.L., 1995, Overlapping fault planes of the 1971 San Fernando and 1994 Northridge, California earthquakes: Geophysical Research Letters, v 22, p. 1033-1036.
- Murphy, J. M., Fuis, G. S., Okaya, D.A., Thygesen, K., Baher, S.A., Kaip, G., Fort,
 M.D., Asudeh, I., Report for borehole explosion data acquired in the 1999 Los
 Angeles Region Seismic Experiment (LARSE II), Southern California: Part II
 DATA: U.S. Geological Survey Open-File Report (in preparation),
- Murphy, J.M., Fuis, G.S., Ryberg, T., Okaya, D.A., Criley, E.E., Benthien, M.L.,
 Alvarez, M., Asudeh, I., Kohler, W.M., Glassmoyer, G.N., Robertson, M.C., and
 Bhowmik, J., 1996, Report for explosion data acquired in the 1994 Los Angeles
 Region Seismic Experiment (LARSE94), Los Angeles, California: U.S.
 Geological Survey Open-File Report 96-536, 120 p.
- Oakeshott, G.B., 1975, Geology of the Epicentral Area, in San Fernando, California, Earthquake of 9 February 1971, edited by G. B. Oakeshott: California Division of Mines and Geology Bulletin 196, pp. 1-30.

- Okaya, D.A., Bhowmik, J., Fuis, G.S., Murphy, J.M., Robertson, M.C., Chakraborty, A., Benthien, M.L., Hafner, K., and Norris, J.J., 1996a, Report for air-gun data acquired at onshore stations during the 1994 Los Angeles Region Seismic Experiment (LARSE), California: U.S. Geological Survey Open-File Report 96-297, 224 p.
- Okaya, D.A., Bhowmik, J., Fuis, G.S., Murphy, J.M., Robertson, M.C., Chakraborty, A., Benthien, M.L., Hafner, K., and Norris, J.J., 1996b, Report for local earthquake data acquired at onshore stations during the 1994 Los Angeles Region Seismic Experiment (LARSE), California: U.S. Geological Survey Open-File Report 96-509, 332 p.
- Oliver H.W., Chapman, R.H., Biehler, S., Robbins, S.L., Hanna, W.F., Griscom, A.,. Beyer, L.A., Silver, E.A., 1980, Gravity map of California, and it's continental margin: California Division of Mines and Geology Geologic Data Map No. 3., scale 1:750,000.
- Powell, R. E., Balanced palinspastic reconstruction of pre-late Cenozoic paleogeology, southern California: Geologic and kinematic constraints on evolution of the San Andreas fault system, 1993, in *The San Andreas Fault System: Displacement, Palinspastic Reconstruction, and Geologic Evolution,* edited by R.R. Powell, R.J. Weldon, and J.C. Matti: Geological Society of America Memoir 178, p. 1-106.
- Stitt, L.T., 1986, Structural history of the San Gabriel fault and other Neogene structures of the central Transverse Ranges, in *Neotectonics and Faulting in Southern California*, compiled by P.L. Ehlig: Geological Society of America, 82nd Annual Meeting of Cordilleran Section, Guidebook and Volume for Field Trips 10, 12, 18, p. 43-102.
- ten Brink, U.S., Drury, R.M., Miller, G.K., Brocher, T. M., and Okaya, D.A., 1996, Los Angeles Region Seismic Experiment (LARSE), California off-shore seismic refraction data: USGS Open-File Report 96-27, 29 p.
- Tsutsumi, H., and Yeats, R.S., 1999, Tectonic setting of the 1971 Sylmar and 1994 Northridge earthquakes in the San Fernando Valley, California: Bulletin of Seismological Society of America, v. 89, p.1232-1249.
- U.S. Geological Survey staff, 1971, Surface Faulting, , in *The San Fernando, California, Earthquake of February 9, 1971:* U.S. Geological Survey Professional Paper 733, pp. 55-76.
- Wald, D.J., and Graves, R.W., 1998, The seismic response of the Los Angeles Basin, California: Seismological Society of America Bulletin, v. 88, p. 337-356.

- Weber, F. H., Jr., 1975, Surface Effects and Related Geology of the San Fernando Earthquake in the Sylmar Area, in San Fernando, California, Earthquake of 9 February 1971, edited by G. B. Oakeshott: California Division of Mines and Geology Bulletin 196, pp. 70-96.
- Winterer, E.L., and Durham, D.L., 1954, Geology of a part of the eastern Ventura basin, Los Angeles county, in *Geology of Southern California*, edited by R. H. Jahns: California Division of Mines Bulletin 170, v 2, Map sheet no. 5
- Working Group on California Earthquake Probabilities, 1995, Seismic hazards in southern California: Probable earthquakes, 1994-2024: Seismological Society of America Bulletin, v. 85, p. 379-439.
- Wright, T.L., 1991, Structural geology and tectonic evolution of the Los Angeles basin, California, in *Active Margin Basins*, edited by K.T. Biddle: American Association of Petroleum Geologists Memoir 52, p. 35-134.
- Yeats, R.F., 1987, Late Cenozoic structure of the Santa Susana fault zone, in *Recent Reverse Faulting in the Transverse Ranges, California*: U.S. Geological Survey Professional Paper 1339, 137-160.
- Yeats, R.S., Huftile, G.J., and Stitt, L.T., 1994, Late Cenozoic tectonics of the east Ventura basin, Transverse Ranges, California: American Association of Petroleum Geologists Bulletin, v. 78, pp 1040-1074.
- Yerkes, R.F., and Campbell, R.H., 1980, Geologic Map of east-central Santa Monica Mountains, Los Angeles County, California: U.S. Geological Survey Miscellaneous Investigation Series, Map I-1146, scale 1:24,000.
- Yerkes, R.F., McCulloh, T.H., Schoellhamer, J.E., and Vedder, J.G., 1965, Geology of the Los Angeles basin, California--An introduction: U.S. Geological Survey Professional Paper 420-A, 57 p.

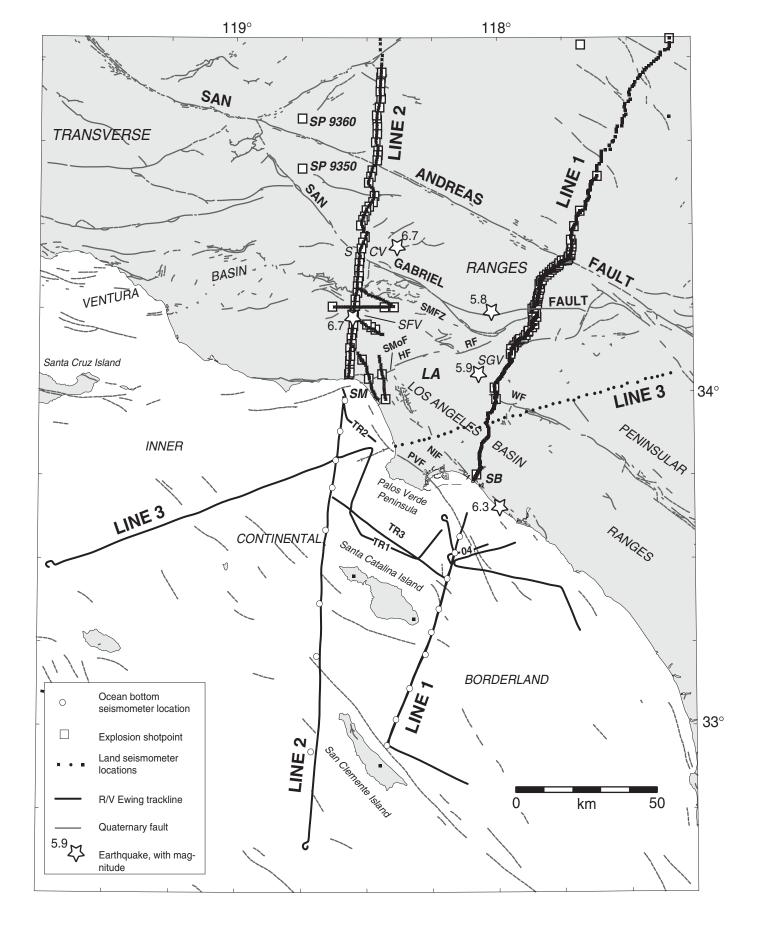
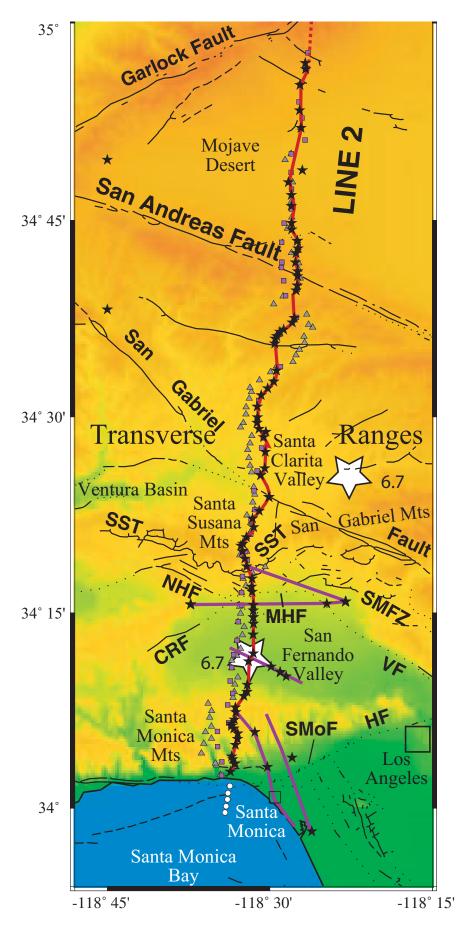



Figure 1. Fault map of Los Angeles region showing LARSE lines. Abbreviations: HF, Hollywood fault; LA, Los Angeles; NIF, Newport-Inglewood fault; PVF, Palos Verde fault; RF, Raymond fault; SB, Seal Beach; SCV, Santa Clarita Valley; SFV. San Fernando Valley; SGV, San Gabriel Valley; SM, Santa Monica; SMFZ, Sierra Madre fault zone; SMoF, Santa Monica fault; TR1-4, transit lines 1-4; WF, Whittier fault.

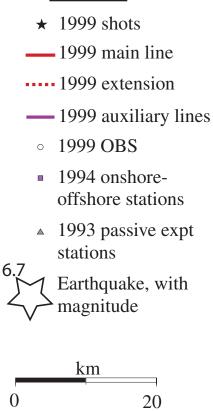


Figure 2. Fault map of northwestern part of the Los Angeles region showing shotpoint and seismograph locations along LARSE Line 2. Faults are abbreviated as in Fig. 1 with additions, CRF-Chatsworth Reservoir fault, MHF-Mission Hills fault, NHF-Northridge Hills fault, SST-Santa Susana thrust fault, and VF-Verdugo fault.

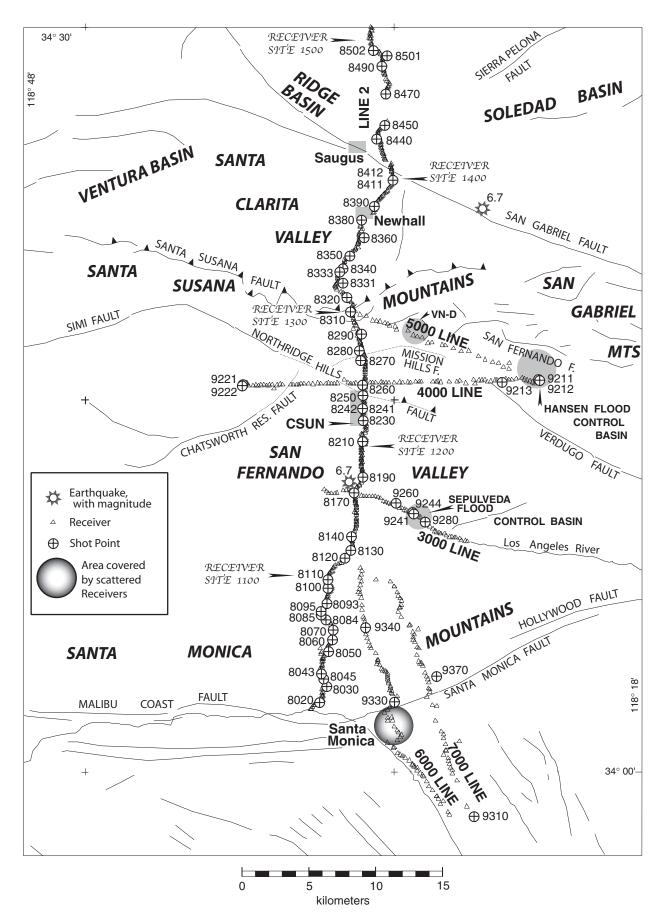


Figure 3. Fault map showing southern part of LARSE Line 2, auxiliary lines 3000-7000, and scatter deployment.

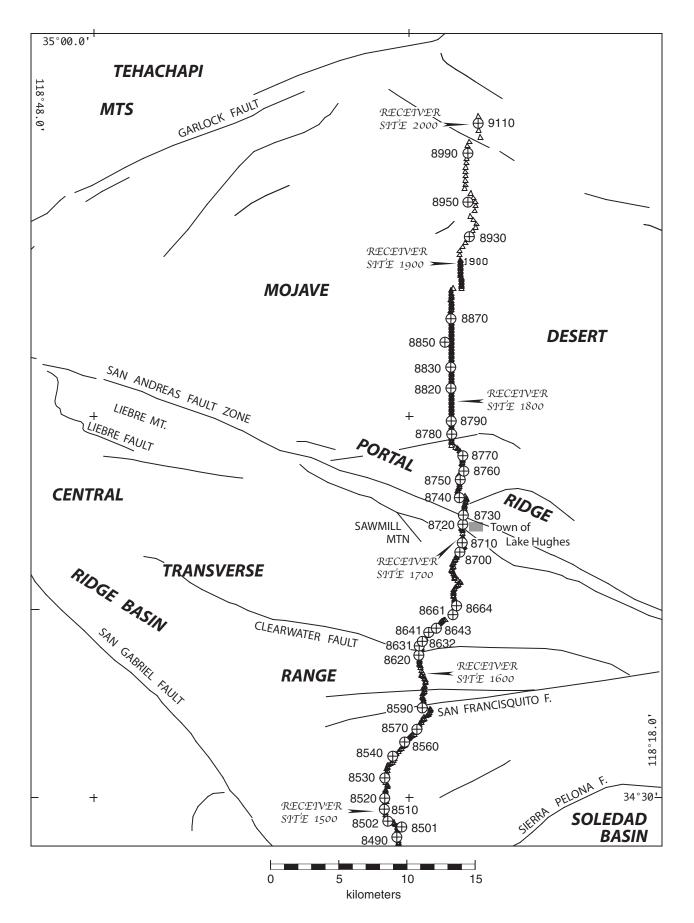


Figure 4. Fault map showing central part of LARSE Line 2.

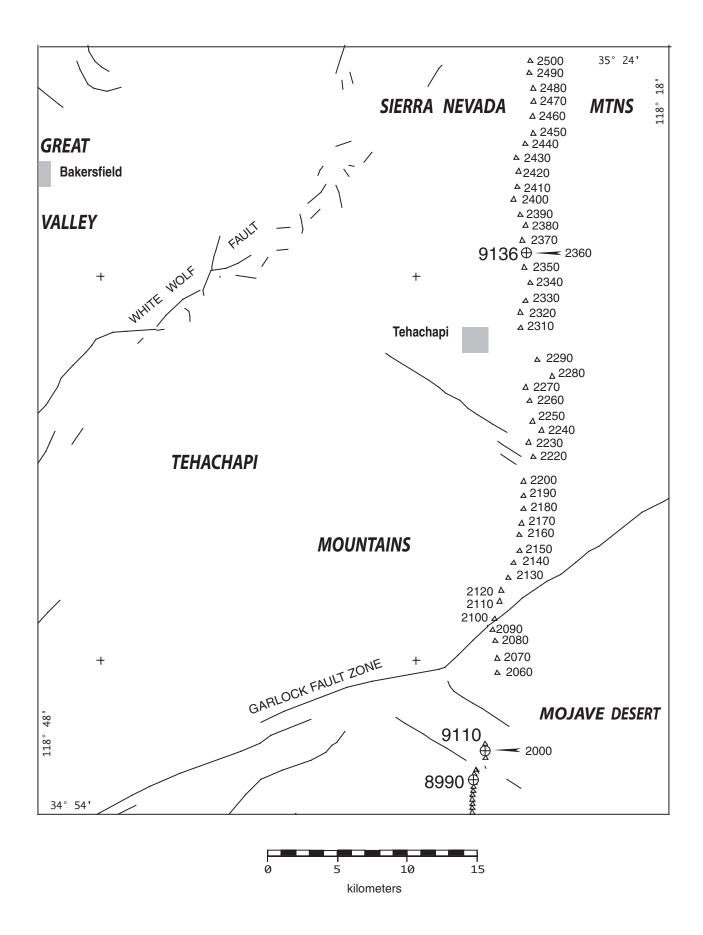


Figure 5. Fault map showing northern part of LARSE Line 2.

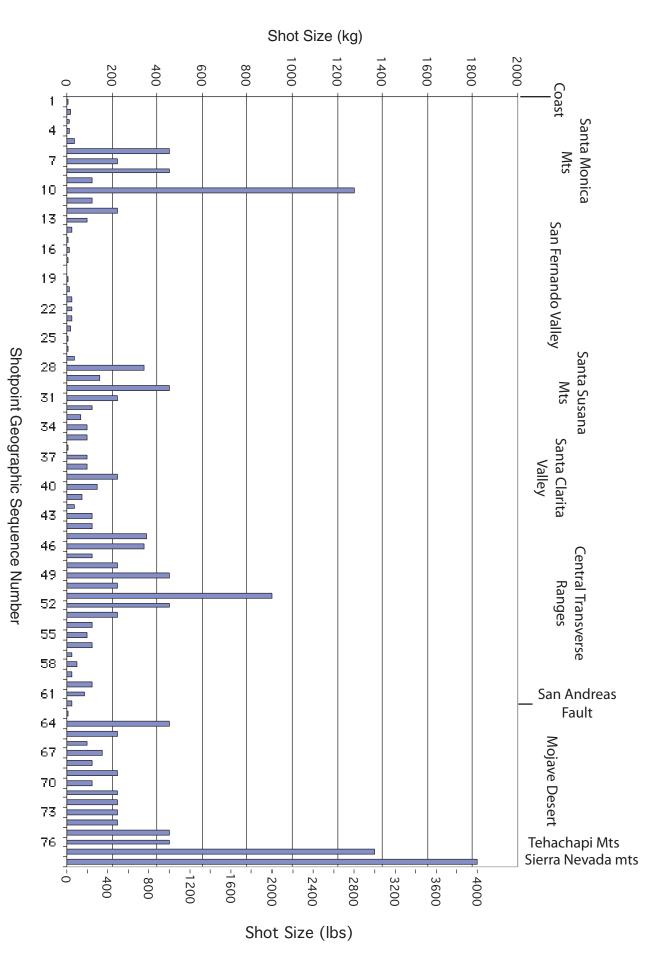


Figure 7. Shothole Diagram

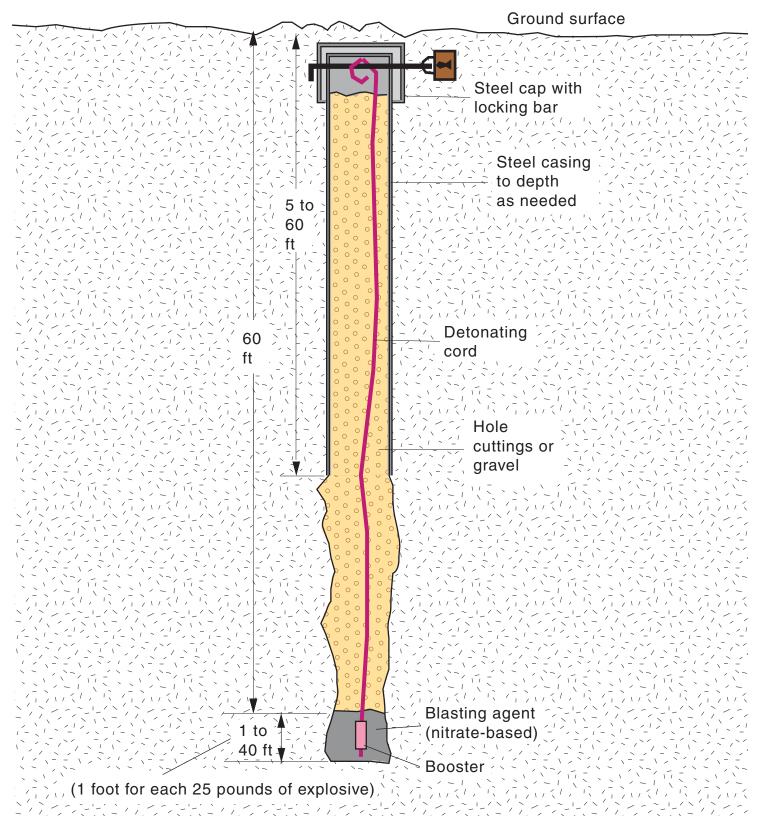
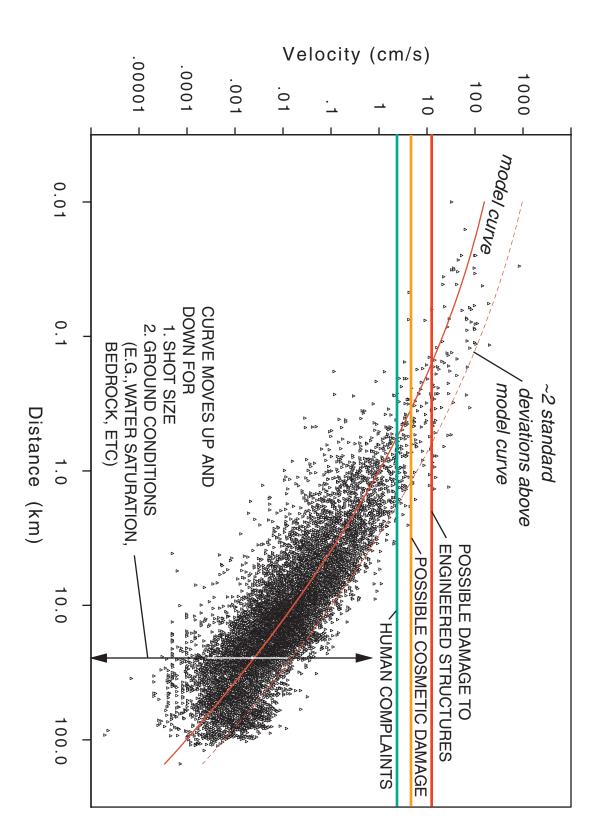
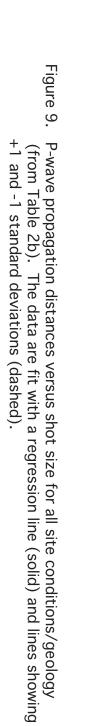




Figure 8. Seismic amplitudes (vertical ground velocity) versus distance, from LARSE I data and from calibration shots for LARSE II in San Fernando Valley

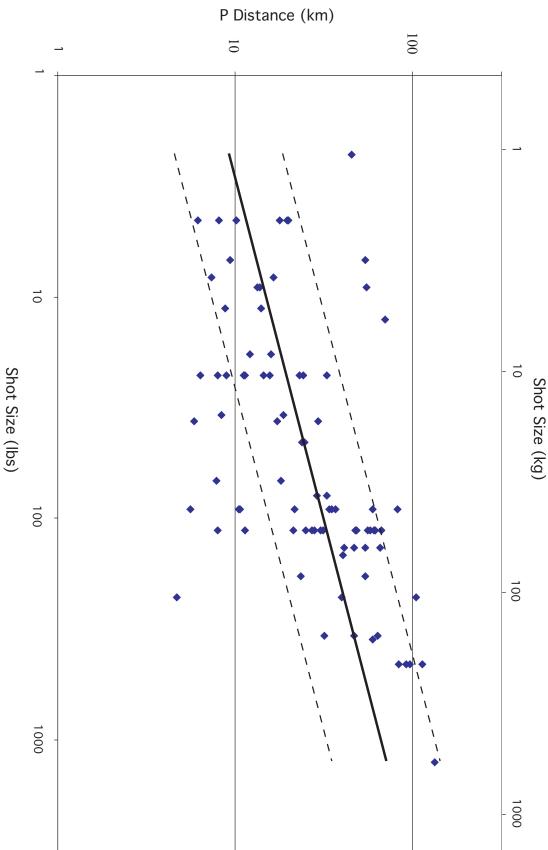
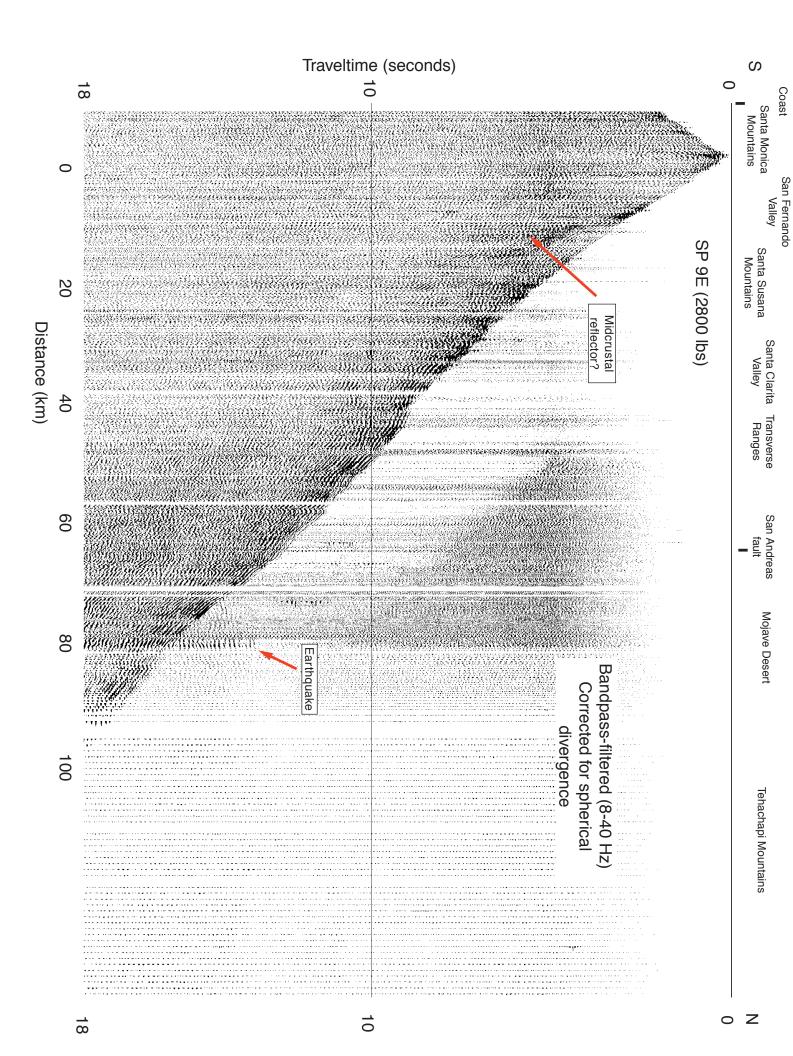



Figure 10. Data from Shotpoint 8095 (Sequence number 10)

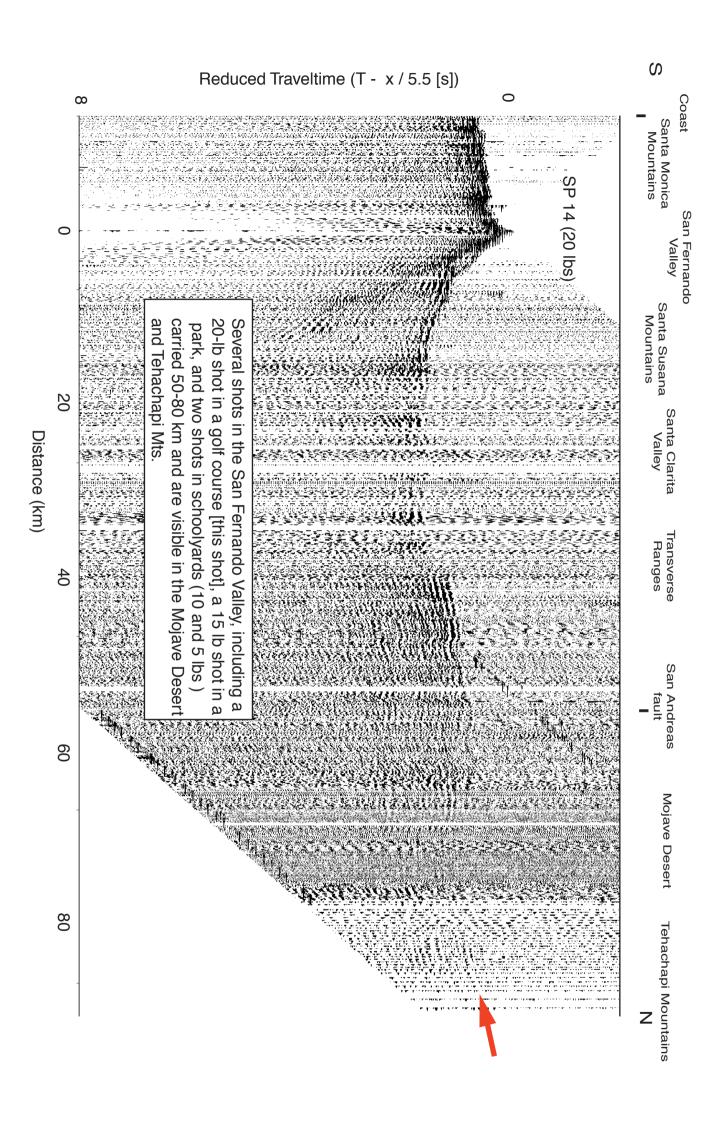
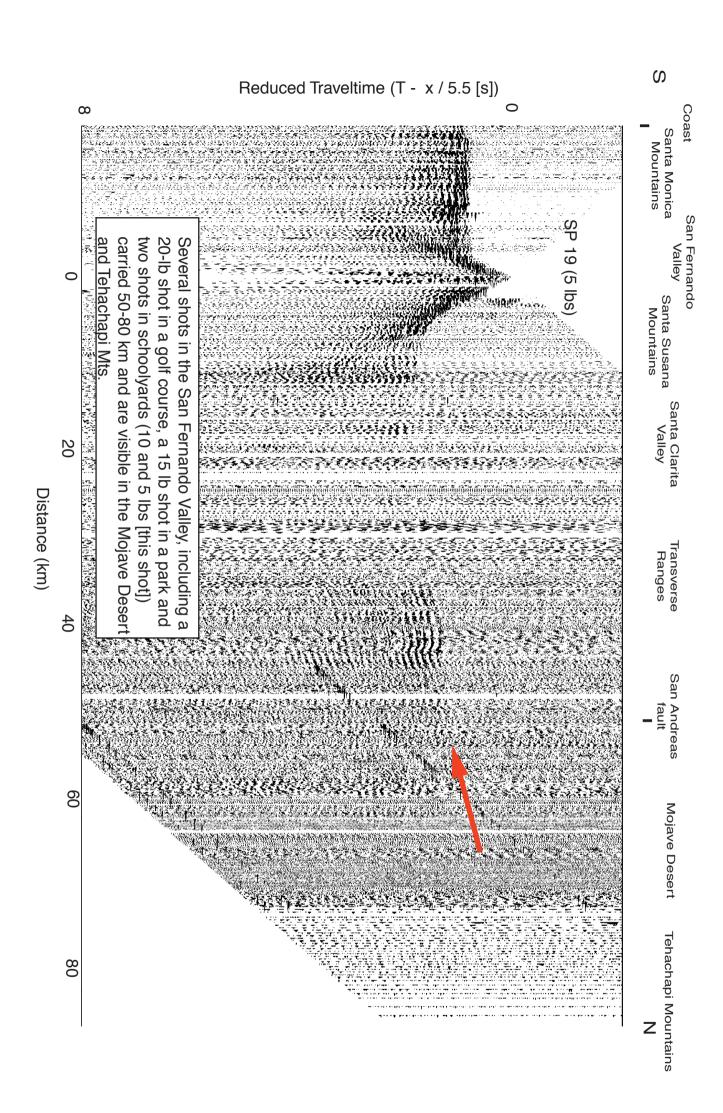



Figure 12. Data from Shotpoint 8190 (Sequence number 18)

55

Figure 13. Data from Shotpoint 8740 (Sequence number 64)

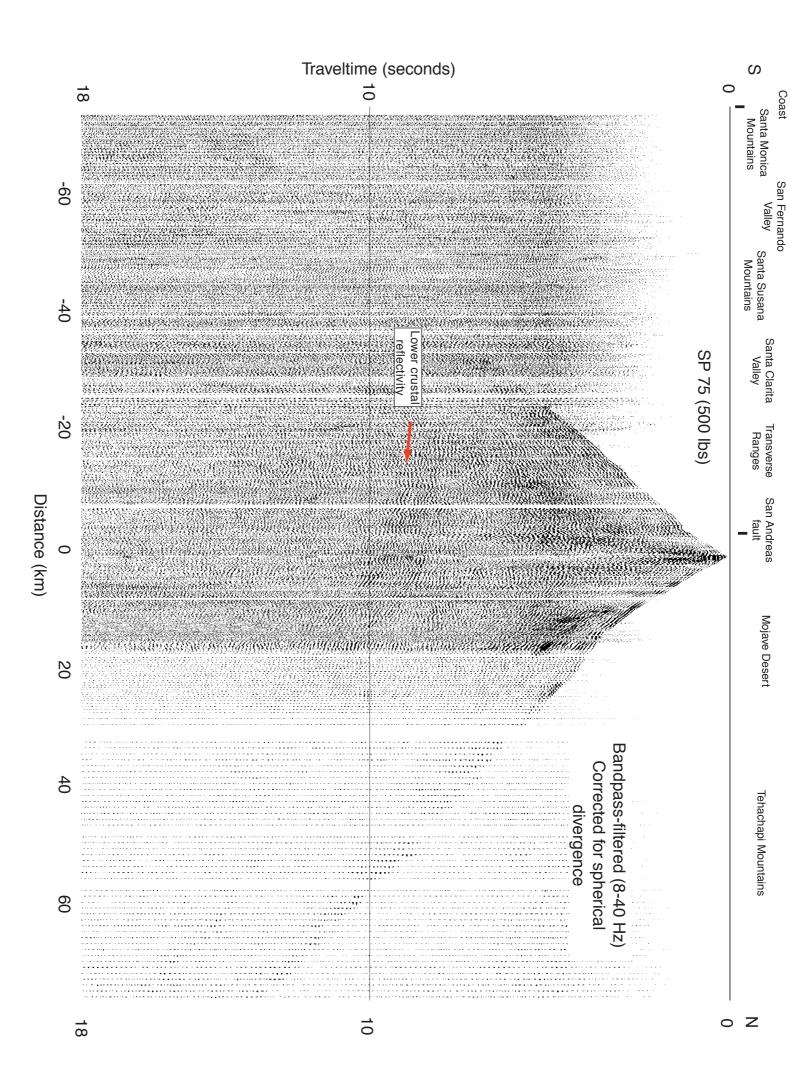
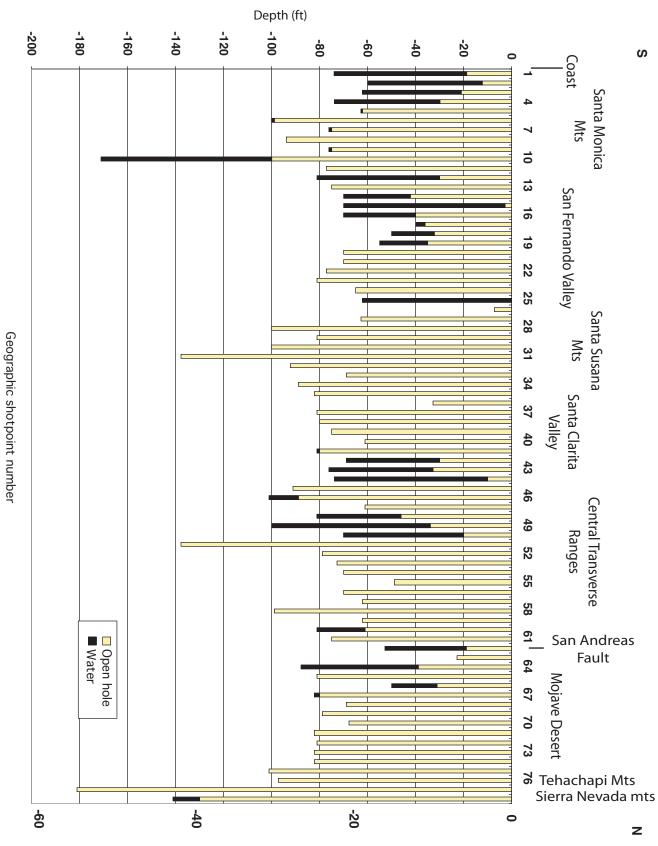



Figure 14. Profile of borehole depth and water-table depth along main part of LARSE Line 2.

Depth (m)

LE

Total	SCEC Refteks LLL Refteks	USGS Refteks	German Teledyne PDAS-100 (34 x 6-ch)	SGR's	PRS4's	PRS1's	Texans	IRIS Refteks	Instrument type
1405	18 3	10	204	180	28	176	540	246	Number
		disk	disk	tape	RAM	RAM	RAM	disk	Data storage type
		4 Gb	1 Gb		3-5 Mb	1 Mb	32 Mb	230 (112); 540 (84); 1Gb (44)	Disk size
		24-bit	16 bit gain-ranged	16-bit (96db)		12-bit gain-ranged	24-bit	16-bit (92) 24-bit (148)	A-D bit size
		external GPS	internal clock accuracy 0.1 ppm	internal clock accuracy 0.1 ppm		internal clock accuracy 0.1 ppm	internal clock accuracy 0.1 ppm	98 - int. GPS; 98 - ext. GPS; 45 - internal clock accuracy 1.0 ppm	Timing type
		2Hz/100 Hz	4.5	8		2	4.5	4.5	Jug freq (hz)
		2-200	4.5-160	8-200		~2-25	4.5-200	4.5-200	System bandpass
	Accelerometers	6 2-Hz velocity sensors and 3 Force-Balance	1	1	3	1	1	3	Jug components
		250	200	500		120	250	250	Sample rate (sps)

Table 1. Seismographs - type, source, number, recording parameters.

SCEC Refteks LLL Refteks	USGS Refteks	German Teledyne PDAS-100 (34 x 6-ch)	SGR's	PRS4's	PRS1's	Texans		IRIS Refteks	Instrument type
	10 days	10 day	5-6 days		10 days	5-6 days	b. 12 days	a. 10 days	Power duration
	inf.	inf.	99		130 (30 sec)	999		inf.	No. Prog windows
	inf.	inf.	66		540 s	variable		inf.	Max window length
	none	none	daily tape change (23-25 min/tape)		130 windows	none	none	none	Deployment Constraints: Data Storage
	none	none	5 day max		5 day max	5 day max		45 have no GPS: need pulsing every 2 days	Deployment Constraints: Clock Timing
		battery cycle program	daily tape change; 3-night window limit		3-night window limit; clock drift	batteries last ony 5 days; clock drift		Refteks stay out; 45 pulsed every 2 days	Summary
DAS status	QC batteries/	in field	in field with laptops (~4-5) reprogram; if bring in, can recharge batteries	reprogram	in field with field units (~3-4) download data;	bring in (field service possible?); reprogram; change batteries		QC batteries/ DAS status	Mid-stream Service

Table 1. Seismographs - type, source, number, recording parameters.

30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Geographic Shotpoint Sequence Number
21	15	4	65	85	87	67	76	88	77	68	93	84	74	83	73	64	20	14	3	13	2	58	19	12	1	70	79	72	82	Chronologic SP Sequence Number == SEGY Bytes 9-12 "Shot Gather Index Number" or "FFID"
293	293	293	297	297	297	297	297	297	297	297	298	297	297	297	297	297	293	293	293	293	293	295	293	293	293	297	297	297	297	Julian Day
11:33:00.000	10:03:00.000	08:33:00.000	08:33:00.000	11:33:00.000	11:35:26.780	08:35:00.000	10:05:00.000	11:36:00.000	10:06:00.000	08:36:00.000	08:30:00.000	11:32:00.000	10:02:00.000	11:31:00.000	10:01:00.000	08:31:00.000	11:32:00.000	10:02:00.000	08:32:00.000	10:01:00.000	08:31:00.000	08:33:59.536	11:30:00.000	10:00:00.000	08:30:00.000	08:38:00.010	10:08:00.010	10:00:00.000	11:30:00.000	UTC (HH:MM:SS.00)
33A	32A	31A	29A	28	27A	26A	25	24 (2)	24 (1)	23 A	21	19	17A	14A	13B	12E	11A	10A	9C	9E	8E	BD	7C	6B	SH	4C	4E	3E	2A	Old Shotpoint Name
8331	8320	8310	8290	8280	8270	8260	8250	8242	8241	8230	8210	8190	8170	8140	8130	8120	8110	8100	8093	8095	8085	8084	8070	8060	8050	8043	8045	8030	8020	New Shotpoint Name == SEGY bytes 17-20 "SP"
-118.54200	-118.53841	-118.53577	-118.52663	-118.52828	-118.52716	-118.52545	-118.52537	-118.52559	-118.52542	-118.52501	-118.52587	-118.52556	-118.53272	-118.53481	-118.53530	-118.54007	-118.55312	-118.55243	-118.55455	-118.55900	-118.55903	-118.55544	-118.54954	-118.54980	-118.55300	-118.55886	-118.55712	-118.55451	-118.56047	Lat-WGS84
34.32845	34.31914	34.30932	34.29431	34.28352	34.27682	34.26001	34.25293	34.24458	34.24451	34.23614	34.22236	34.19816	34.18802	34.15801	34.14913	34.14367	34.12921	34.12315	34.11358	34.10810	34.10533	34.10216	34.09574	34.08890	34.08115	34.06632	34.06279	34.05772	34.04698	Long-WGS84
358144	358458	358685	359501	359331	359423	359553	359548	359514	359530	359553	359451	359440	358763	358520	358460	358011	356784	356837	356625	356206	356198	356524	357058	357022	356714	356148	356303	356535	355967	UTMx (NAD83)
3799651	3798614	3797521	3795844	3794650	3793905	3792039	3791253	3790328	3790320	3789391	3787864	3785180	3784065	3780740	3779756	3779157	3777572	3776899	3775841	3775239	3774932	3774575	3773855	3773097	3772242	3770606	3770212	3769646	3768463	UTMy (NAD83)
2554	2578	2593	1339	1178	1118	1000	968	668	898	849	777	733	725	849	922	964	1680	1628	1828	2016	2003	2043	1964	1835	1467	444	395	309	226	Elevation (ft above Mean Sea Level)
778	786	790	408	359	341	305	295	274	274	259	237	223	221	259	281	294	512	496	557	614	610	623	598	559	447	135	120	94	69	Elevation (m above Mean Sea Level)
455	148	341	34	5	7	18	23	23	23	11	5	2	7	9	8	23	91	227	114	1273	114	455	227	455	36	9	9	18	8	Shot size (kg)
1000	325	750	75	10	15	40	50	50	50	25	10	5	15	20	18	50	200	500	250	2800	250	1000	500	1000	80	20	20	40	18	Shot size (kg) (lbs)

Table 2a. Shot list

60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	Geographic Shotpoint Sequence Number
62	41	32	7	17	23	59	55	56	31	6	16	22	40	50	30	39	49	36	45	54	11	25	18	53	44	35	57	48	29	Chronologic SP Sequence Number == SEGY Bytes 9-12 "Shot Gather Index Number" or "FFID"
295	294	294	293	293	293	295	295	295	294	293	293	293	294	294	294	294	294	294	294	294	293	293	293	294	294	294	295	294	294	Julian Day
10:00:00.000	10:06:00.000	08:36:00.000	08:36:00.000	10:06:00.000	11:36:00.000	08:36:00.000	08:31:00.000	08:32:00.000	08:35:00.000	08:35:00.000	10:05:00.000	11:35:00.000	10:05:00.000	11:35:00.000	08:34:00.000	10:04:00.000	11:34:00.000	08:40:00.000	10:10:00.000	11:40:00.000	08:40:00.000	11:40:00.000	10:10:00.000	11:39:00.000	10:09:00.000	08:39:00.000	08:33:00.000	11:33:00.000	08:33:00.000	UTC (HH:MM:SS.00)
70C	66D	66A	65 A	64C	64A	63B	63A	62	59B	57A	56A	54B	53B	52B	51B	50B2	50B1	49B	47F	45B	44C	41C(2)	41C(1-east)	39A	38A	36D	35B	34A	33C	Old Shotpoint Name
8700	8664	8661	8650	8643	8641	8632	8631	8620	8590	8570	8560	8540	8530	8520	8510	8502	8501	8490	8470	8450	8440	8412	8411	8390	8380	8360	8350	8340	8333	New Shotpoint Name == SEGY bytes 17-20 "SP"
-118.45985	-118.46244	-118.46532	-118.47038	-118.47867	-118.48452	-118.48947	-118.49185	-118.49236	-118.48955	-118.49386	-118.50337	-118.51319	-118.51939	-118.51915	-118.51962	-118.51678	-118.50596	-118.50973	-118.50685	-118.50794	-118.51421	-118.50143	-118.50124	-118.51635	-118.52656	-118.52438	-118.53598	-118.54144	-118.54446	Lat-WGS84
34.66074	34.62581	34.61998	34.61698	34.61118	34.60843	34.60275	34.59964	34.59331	34.55900	34.54494	34.53634	34.52749	34.51317	34.49961	34.49244	34.48458	34.48101	34.47410	34.45523	34.43455	34.42535	34.39781	34.39784	34.38016	34.37048	34.35874	34.34664	34.33823	34.33581	Long-WGS84
366234	365940	365667	365198	364428	363887	363424	363201	363144	363345	362927	362040	361124	360531	360531	360475	360723		361353	361587	361452	360861	361990	362008	360589	359634	359815	358728		357930	UTMx (NAD83)
3836391	3832520	3831878	3831552	3830920	3830622	3829999	3829658	3828956	3825147	3823594	3822653	3821685	3820106	3818601	3817807	3816931	3816521	3815759	3813663	3811371	3810359	3807287	3807291	3805351	3804291	3802986	3801660	3800735	3800471	UTMy (NAD83)
2852	3808	3755	3833	3627	3462	3296	3134	2846	1658	2150	2112	2005	1976	1876	1962	1570	1519	1450	1395	1604	1409	1662	1665	1316	1542	1491	1603	1803	2179	Elevation (ft above Mean Sea Level)
869	1161	1144	1168	1106	1055	1005	955	867	505	655	644	611	602	572	598	479	463	442	425	489	430	507	508	401	470	455	489	550	664	Elevation (m above Mean Sea Level)
114	23	45	23	114	91	114	227	455	606	227	455	227	114	341	352	114	114	36	68	136	227	91	91	5	91	16	59	114	227	Shot size (kg)
250	50	100	50	250	200	250	500	1000	2000	500	1000	500	250	750	775	250	250	80	150	300	500	200	200	10	200	200	130	250	500	Shot size (kg) (lbs)

Table 2a. Shot list

90	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	89	67	66	65	64	63	62	61	Geographic Shotpoint Sequence Number
91	80	66	89	78	69	10	92	5	63	90	81	9	26	34	43	52	46	37	27	47	38	28	33	42	51	60	24	8	61	Chronologic SP Sequence Number == SEGY Bytes 9-12 "Shot Gather Index Number" or "FFID"
297	297	297	297	297	297	293	297	293	297	297	297	293	294	294	294	294	294	294	294	294	294	294	294	294	294	295	293	293	295	Julian Day
11:39:00.000	10:09:00.000	08:34:00.000	11:37:00.000	10:07:00.000	08:37:01.992	08:39:00.000	11:40:00.000	08:34:00.000	08:30:00.000	11:38:00.009	10:10:00.000	08:38:00.010	08:30:00.000	08:38:00.009	10:08:00.010	11:38:00.010	11:31:00.000	10:01:00.000	08:31:00.000	11:32:00.000	10:02:00.000	08:32:00.000	08:37:00.000	10:07:00.000	11:37:00.000	08:37:00.000	11:37:00.000	08:37:00.000	08:40:00.000	UTC (HH:MM:SS.00)
201 (2south)	201 (1-north)	206	204C1	204C4	208	306	307	305	304	303	301	136	101	66	95	93	87	85C	83A	82	79	78	77 A	76A	75 A	74A	73A	72A	71 A	Old Shotpoint Name
9212	9211	9260	9241	9244	9280	9360	9370	9350	9340	9330	9310	9136	9110	0668	8950	8930	8870	8850	8830	8820	8790	8780	8770	8760	8750	8740	8730	8720	8710	New Shotpoint Name == SEGY bytes 17-20 "SP"
-118.38365	-118.38348	-118.49816	-118.48403	-118.48437	-118.47471	-118.76061	-118.46585	-118.74382	-118.52307	-118.50003	-118.43540	-118.41124	-118.44512	-118.45366	-118.45371	-118.45226	-118.46714	-118.47170	-118.46687	-118.46714	-118.46660	-118.46644	-118.45744	-118.45659	-118.45971	-118.46050	-118.45713	-118.45747	-118.45786	Lat-WGS84
34.26435	34.26461	34.18138	34.17406	34.17447	34.16904	34.81881	34.06485	34.61580	34.09754	34.04785	33.97048	35.26513	34.94142	34.92157	34.88991	34.86724	34.81357	34.79846	34.78204	34.76808	34.74652	34.73835	34.72401	34.71417	34.70829	34.69654	34.68530	34.67920	34.66724	Long-WGS84
372616	372632	361937	363228	363197	364078	338979	364729	340125	359503	361547	367393	371634	368032	367220	367164	367260	365813	365371	365787	365739	365754	365755	366556	366618	366323	366232	366522	366481	366426	UTMx (NAD83)
3792333	3792362	3783282	3782451	3782497	3781882	3854363	3770316	3831820	3774018	3768476	3759811	3903358	3867500	3865310	3861799	3859282	3853350	3851680	3849853	3848305	3845913	3845007	3843404	3842312	3841664	3840362	3839111	3838435	3837109	UTMy (NAD83)
066	990	700	698	695	680	3345	447	1905	1443	280	4	3440	3760	3400	3170	2673	2477	2503	2554	2600	2666	2698	2778	3003	3457	3595	3223	3029	3324	Elevation (ft above Mean Sea Level)
302	302	213	213	212	207	1020	136	581	440	85	1	1049	1146	1036	966	815	755	763	778	792	813	822	847	915	1054	1096	982	923	1013	Elevation (m above Mean Sea Level)
455	227	136	182	295	136	1705	23	1818	455	13	182	1818	1364	455	455	227	227	227	227	114	227	114	159	91	227	455	5	23	80	Shot size (kg)
1000	500	300	400	650	300	3750	50	4000	1000	28	400	4000	3000	1000	1000	500	500	500	500	250	500	250	350	200	500	1000	10	50	175	Shot size (kg) (lbs)

Table 2a. Shot list

Table 2a. Shot list

	-		-
93	92	91	Geographic Shotpoint Sequence Number
86	75	71	Geographic Scquence Number Shotpoint == SEGY Bytes Julian UTC Sequence 9-12 "Shot Gather Day Index Number" or "FFID"
297	297	297	Julian Day
297 11:34:00.000 202B2(south) 9222	297 10:04:00.000 202B1(north) 9221	297 08:39:00.000	UTC (HH:MM:SS.00)
202B2(south)	202B1(north)	201C	Old Shotpoint Name
9222	9221	9213	New Shotpoint Name == SEGY bytes 17-20 "SP"
-118.62221	-118.62223	-118.41303	Lat-WGS84
34.26075	34.26090	34.26225	Long-WGS84
350644	350643	206698	UTMx (NAD83)
3792259	3792275	3792138	UTMy (NAD83)
1068	1061	1015	Elevation (ft above Mean Sea Level)
326	323	309	Elevation (m above Mean Sea Level)
136	136	36	Shot size (kg) (lbs)
300	300	80	Shot size (lbs)

32	3 1	30	29	28	27	26	N U	24	23	22	21	20	19	18	17	16	15	14	13	12		10	6	8	7	6	5	4	ω	N	_	Geo- graphic shot- point sequenc e no.
8340		8331		8310	8290		8270			8242			8210					8120		8100								8043			8020	Shotpoint name
28.0		30.5		30.5													21.3										19.2				22	Hole depth (m)
92	138	100	8 1	100	63	7	62				70						70					171		94		1	63	74	62	60	74	Hole depth (ft)
28.0	42.1	30.5	24.7	30.5	19.2	2.1	0.0	19.8	24.7	23.5	21.3	21.3	10.7	8.6	11.0	12.2	0.9	12.8	22.9	9.1	23.5	30.5	22.9	28.7	22.9	30.2	18.9	9.1	6.4	3.7	5.8	Depth to to water before loading (m)
92	138	100		100				65									з													12	19	Depth to to water before loading (ft)
0.0		0.0			0.0			0.0																						14	16.8	Water column in hole before loading (m)
0	0	0		0		0											67			51		71	1	0	1	1			41	48	55	Water column in hole before loading (ft)
113.4	226.8	453.6	147.4	340.2	34.0	4.5	6.8	18.1	22.7	22.7	22.7	11.3	4.5	2.3	6.8	9.1	8.2	22.7	90.7	226.8	113.4	1270.1	113.4	453.6	226.8	453.6	36.3	9.1	9.1	18.1	8.2	Charge Size (kg)
250	500	1000	325	750	75	10	15	40	50	50	50	25	10	5	15	20	18	50	200	500	250	2800	250	1000	500	1000	80	20	20	40	18	Charge size (Ibs)
23.8	38.7	17.7		21.3	_		18.9				20.7			15.2			21.0			21.6		33.5					19.2		18	18.3	21.9	Depth to top of explosive (m)
78	1	58	69	70	60			65	79				55						67	71		_	72					73		60		Depth to top of explosive (ft)
	T sed / methane		(la	T sed	_										we	_		T sed										Т	Т	Т	T sed	Surface geology
S	S	s	S	S	D	A	A	D	D	D	D	D	A	A	A	S	S	s	S	S	S	S	s	S	S	S	S	s	S	S	S	Geol. site label
30.4		1	1	-	18.8	3.9	1	1	1	1	1	14.0	19.5	-	ı	1	1	-	1	1	,	1	1	-	-	-	-	-	1	-	-	South: max. dist. clear P arrival
66.0		83.2	40.5	31.6	8.3	-	9.4	12.1	6.4	32.9	11.3		10.2	44.9	54.0	54.7	7.3	8.0	59.8	4.7	60.2	132.8	55.5	96.1	103.8	112.7	5.9	13.8	13.4	15.8	16.3	North: max. dist. clear P arrival
		1	ı			1	1	1	1	1		15.7	-	-	-	1	1	-	1	1	,	1	-	-	-	-	-	1	1		-	South: max dist. clear energy
		1	81.1		32.7	1	42.2	35.5	8.2	47.7	47.9	13.9	17.0	52.8	98.5	96.8	9.2	9.5	67.8	10.0	82.3	ı	68.3	1		-	7.2	16.9	13.4	60.9	69.8	North: max dist clear energy

	1						-													r						
58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	Geo- graphic shot- point sequenc e no.
8661	8650	8643	8641	8632	8631	8620	8590		8560			8520	8510	8502		8490			8440	8412		8390	8380	8360	8350	Shotpoint name
30.2	18.9	3 21.3	1 14.9	2 21.3	1 22.3	0 24.1	0 42.1					30.8				21.0	24.7		22.9			0 10.1	25.0	27.1	0 21.0	t depth (m)
66	62	70	49	70	73	79	138		1			1	91	74			81			80		33		68	69	Hole depth (ft)
30.2	18.9	21.3	14.9	21.3	22.3	24.1	42.1	6.1	10.4	14.0	18.6	27.1	27.7		_	9.1	24.4	18.6	22.9	24.4	24.7	10.1	25.0	27.1	21.0	Depth to to water before loading (m)
99	62	70	49	70	73	79	_	20						10		30	. 80		75	. 80					69	Depth to to water before loading (ft)
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			1		3.7		19.5		_	0.3		0.0						0.0	Water column in hole before loading (m)
0	0	0	0	0	0	0		50		з		12		64		39	1		0	0		0		0	0	Water column in hole before loading (ft)
45.4	22.7	113.4	90.7	113.4	226.8	453.6			453.6				351.5	113.4	_	36.3	68.0	136.1	226.8	90.7	90.7	4.5	90.7	113.4	59.0	Charge Size (kg)
100	50	250	200	250	500	1000	2000		_		250	750	775	250	250	80	150	300	500	200	200	10	200	250	130	Charge size (Ibs)
18.0	17.7	17.7	13.7	19.8	16.2		21.9		15.2			21.3				19.8			16.8	21.9			23.5		18.3	Depth to top of explosive (m)
59	58	58	45	65	53	54	72						58	63		65		50	თ თ	72		28	77	. 80	09	Depth to top of explosive (ft)
PC ign-meta rock				Pelona Schist			T	-		T sed	wet QTalluv	dry QTalluv	dry QTalluv					dry QTalluv	T sed	Surface geology						
ת	R	R	R	ת	R	R	R			R	S	s	s	s	s	S	A	D	D	D	D	D	D	D	s	Geol. site label
24.4	22.9	59.4	22.2	21.1	57.6	1	,	-	1	1	48.3	46.3	1	1	1	17.2	7.8	1	-	5.6	1	8.1	35.0	1		South: max. dist. clear P arrival
23.6	24.0	1	-	47.3	ı	I	,	-				63.2	59.0		60.9	29.5	18.2	65.2		21.6	36.9	6.2	33.9	81.6		North: max. dist. clear P arrival
62.5	22.9	-	25.1	24.4	ı	1	,	-	ı		1	ı	ı	,	ı		10.9	ı		37.3	1	8.1	ı	,		South: max dist. clear energy
55.0	26.0	ı	ı		ı	ı	,	1	ı	ı	67.6	ı	ı	1	ı	51.1	25.8	ı		29.7	58.4	23.6	41.0	1		North: max dist clear energy

				-		-			-																		
85	84	83	82	8 1	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	Geo- graphic shot- point sequenc e no.
9280	9360	9370		9340	9330	9310	9136	9110									8780	8770	8760	8750	8740	8730	8720	8710	8700	8664	Shotpoint name
23.2	(1)	20.1	43.0/ 43.0	30.5	31.1	17.4	43.0/ 43.0) 15.2		26.8	0.7	16.2	22.9	24.7	18.9	Hole depth (m)
76	130/ 83	66	141/ 141	100	102	57	141/ 141	181	76	101	82	58	81	82	68	79	69	82	50	81	88	23	53	75	8 1	62	Hole depth (ft)
18.0	4.6/ 8.5	20.1	12.2/ 4.1	30.5	21.3	1.5	39.6/ 39.6	55.2	29.6		25.0		24.7					24.4	9.4	24.7	11.9	7.0	5.8	22.9	18.6	18.9	Depth to to water before loading (m)
59	15/ 28	66	40/ 13.5	100	7		130/ 130	_		1			8 1		68		69		31		39		19	75	61	62	Depth to to water before loading (ft)
5.2	25.9	0.0	ω	0.0	9.8	15.8	3.4								0.0		0.0		5.8		1	0.0	10.4	0.0	6.1	0.0	Water column in hole before loading (m)
17	85	0	114	0	32	52	11	0	0		0			0	0		0		19	0	49	0	34	0	20	0	Water column in hole before loading (ft)
136.1	1701.0	22.7	1814.4	453.6	12.7	181.4	1814.4	1360.8	453.6	453.6	226.8	226.8	226.8	226.8	113.4	226.8	113.4	158.8	90.7	226.8	453.6	4.5	22.7	79.4	113.4	22.7	Charge Size (kg)
300	3750	50	4000	1000	28	400	4000	3000	1000	_	500		500		250	500	250	350	200	500	1000	10	50	175	250	50	Charge size (Ibs)
21.6	15.8/ 16.8	20.1	_				22.6/ 22.6		22.3							19.5			13.7		1	6.4	14.9	21.0	21.6	17.4	Depth to top of explosive (m)
71	52/55	66	60/ 60	75	100	53	74/74	88	73			64		65	61			80	45			21	49	69	71	57	Depth to top of explosive (ft)
wet Q alluv		dry	PC ign-meta rock	Mz ign		wet Q alluv	Mz ign	dry Q alluv						dry Q alluv	dry Q alluv			We	Mz ign		Mz ign	Mz ign	PC ign-meta rock	PC ign-meta rock	PC ign-meta rock	PC ign-meta rock	Surface geology
A	л	D	R	я	A	A	R	D	D	D	D	D	D	D	D	D	D	A	R	л	л	R	R	R	R	R	Geol. site label
-		8.9	1	-	1	-	101.1	49.5	48.8	43.9	38.4	36.7	35.0	32.0	26.8	29.0	27.7	27.2	10.4	25.4	1	19.8	31.0	28.6	11.3	15.7	South: max. dist. clear P arrival
53.7		11.1	-	91.8	69.6	23.3	-		-	1	1			ı	31.0	1	25.0	,	10.6	,	,	17.7	1	32.9	8.0	14.4	North: max. dist. clear P arrival
			-			_	_,	50.3	94.0	45.2	42.1	44.8	80.0	80.0	32.6	74.0	28.3		16.7	67.8		22.4	69.0	29.8	13.4	19.6	South: max dist. clear energy
ı	1	12.2	-		110.0	26.6			-	ı	1		1	ı	ı		56.5		22.8			18.5	1	40.0	10.4	25.1	North: max dist clear energy
				-					-		_											_					

								gra sh seq e
93	92	91	90	68	88	87	86	Geo- graphic shot- point sequenc e no.
9222	9221	9213	9212	9211	9260	9241	9244	Shotpoint name
24.7	24.7	23.8	24.7	19.2	21.9	19.8	25.9	Hole depth (m)
81	8 1	78	81	63	72	65	85	Hole depth (ft)
24.4	24.7	11.6	24.4	7.3	7.0	15.2	25.9	Depth to to water before loading (m)
80	81	38	80	24	23	50	85	Depth to to water before loading (ft)
0.3	0.0	12.2	0.3	11.9	14.9	4.6	0.0	Water column in hole before loading (m)
_	0	40	1	39	49	15	0	Water column in hole before loading (ft)
136.1	136.1	36.3	453.6	226.8	136.1	181.4	294.8	Charge Size (kg)
300	300	80	1000	500	300	. 400	650	Charge size (Ibs)
21.3	21.9		20.1	15.2	19.8	18.0	21.3	Depth to top of explosive (m)
70	72	74	66	50	65	59		Depth to top of explosive (ft)
Mz sed	Mz sed	T volc/sed	wet Q alluv	wet Q alluv	wet Q alluv	wet Q alluv	70 wet Q alluv	Surface geology
ת	ת	ა	A	A	A	A	A	Geol. site label
	,							South: max. dist. clear P arrival
40.9	46.7		-	39.5		54.1	1	North: max. dist. clear P arrival
								South: North max max dist. dist clear clear energy energ
75.4				43.9		83.		North: max dist clear energy

Explanation:

1) "Geographic sequence number" is sequential from south to north on the main part of Line 2, followed by south to north on the 6000 and 7000 lines, followed by east to west on the 3000 and 4000 lines.

3) "Surface geology" was taken from geologic maps (Jennings and Strand, 1969; Jennings 1977; Dibblee, 1967, 1992, 1996). Abbreviations are Q-Quaternary, 2)"Water column in hole before loading" is the difference between the two pairs of columns to the left, averaged where two holes were drilled at a single shotpoint. QT- Quaternary and Pliocene, T-Tertiary, Mz-Mesozoic, PC-Precambrian, alluv-alluvium, sed-sedimentary rocks, ign-igneous rocks,

meta-metamorphic rocks, volc-volcanic rocks.

5) "South/north maximum distances for clear P arrivals" are maximum south/north offsets from a shotpoint (in km) to which P-arrivals can be clearly picked. 4) "Geologic site labels" are A-wet alluvium (Q or QT), D-dry alluvium (Q or QT), S-sedimentary rocks (T), R-hard rock (Mz-PC).

(and presumably beyond). Blanks in any of these columns mean that there were problems with the shot, and no measurements were made. Dashes ("-") in any of these 4 columns mean that P arrivals or energy was observed to the north or south ends of the main line "South/north maximum distances for clear energy" are maximum south/north offsets from a shotpoint (in km) to which any energy can be discerned

6) Metric units were converted from English units. Both are given, as drilling and loading are done in English units.

Table 3. Permitting Organizations

Participating Organizations and	Number of	Number of	Permits required for	Permits required for
Property Owners	Shotpoints†	Recorder Sites	shotpoints	stations
Federal Government Agencies	•		-	
(3)			3	3
U.S. Forest Service	21	226		
U.S. Veterans Administration	1	8		
U.S. Department of the Army*	[4]	[30]		
Total	26	234		
State Government Agencies				
(1)			1	1
California Department of Parks and Recreation	10	134		
Total	10	134		
Local Government Agencies				
(12)			12	12
L.A. City Department of Recreation and Parks	11	68		
L.A. County Department of Parks and Recreation	1	5		
L.A. County Sanitation Districts	1			
L.A. Unified School District	3	7		
L.A. Department of Water and Power		26		
L.A. County Department of Public Works	1	45		
William S. Hart School District/City of Santa Clarita	1	2		
Saugus Elementary School District	1	8		
Castaic Lake Water Agency	2	15		
Newhall Water District		5		
Whiteman Airport		4		
Los Angeles International Airport		5		
Total	21	190		
Conservation/Education				
Organizations (3)			3	3
Santa Monica Mountains Conservancy/				
Mountains Recreation and Conservation Authority	1	17		
California State University, Northridge	3	24		
Masters College	1	2		
Total	5	43		
Commercial/Industrial				
Organizations (20)	1 3	154	13	20
Private Citizens (337)	18	692	18	337
Cumulative Total	93	1447	50	376

*Since all Army Corps lands utilized were leased to the L.A. City Department of Recreation and Parks, these figures overlap with those listed for City Parks sites.

 $\ensuremath{\mathsf{+}}\xspace{\mathsf{Sites}}$ with multiple boreholes were counted as a single shotpoint.

1052	1048	1047	1046		1043	1042	1038	1032	1031		1027	1021	1020	1019	1017		1013		1012		1010		Stake no.	
7	7	13	16		16	7	16	7	16		16	7	1	13	16		13		7		13		Inst type	
	hi-f noise			no sig/dc shft		-50			no sig/lo-f noise							noisy		ded					SP's 8050	Delays for
-60	ok		-66	no sig/dc shft no sig/dc shft no sig/dc shft		-40	-48		no sig/lo-f noise	Two IDENTIC AL traces DELETE ONE		-34			-55 could be structure	same pattern as shot 13	shot 13 -68	noise; same pattern as	-70 ok:lo-f	same pattern as shot 13	-70		2 8085	
-52			-67	no sig/dc shft		-42			no sig/lo-f noise									±30	-82	±40	-70		3 8093	
																							4 8310	
				no sig/dc shft																		DAY	5 9350	
				no sig/dc shft no sig/dc shft																		1 Shot window 1	6 8570	
																						ndow 1	7 8650	
																							8 8720	
																							9 9136	
																							10 9360	
-73 uncertain				dc shft																			11 8440	
-60			0 IGNORE CLOSE TO SP	no sig/dc shft		-52		a in	no sig/lo-f noise							same pattern as shot 13		same pattern as shot 13		same pattern as shot 13		DAY 1 - Sh	12 8060	
-52			-72	no sig/dc shft no sig/dc shft		-36	-40	is.	no sig/lo-f noise	Two IDENTIC AL traces DELETE ONE		-42	rev polarity		-67 could be strucutre		-91		-94		-67	DAY 1 - Shot window 2	13 8095	

Table 4a. Sample trace problems

The number at the top of each cell is the averaged time correction for a given shot window. The number below (an integer, 1-13) is a flag indicating the certainty of the time correction or the existence of a non-timing problem (see Murphy and others, in preparation).

Explanation:

1054	1052	1048	1047	1046	1043	1042	1038	1032	1031	1022	1021	1020	1019	1017	1013	1012	1010	1009	1007	1005	Stake	
16	7	7	13	16	16	7	16	7	16	16	7	1	13	16	13	7	13	1	7	13	Instr_ ty	Shot Shotpoint
	-57 5			5 -66	2	4 44	-48 4		2		-34 4	13		-55 5	-68 5	3	-70 5		-58 5	-65 5		1 8050
	-57 5			-66	2	44	-48 4		2		-34 4	13		-55 5	-68 5	-76 5	-70 5		-58 5	-65 5		2 8085
	-57 5			5 -66	2	4 44	-48 4		2		-34 4	13		-55 5	-68 5	-76 5	-70 5		-58 5	-65 5		3 8093
	-57 5			5 -66	1	4 -44	-48 4		13		-34 4	13		-55 5	-68	-76 5	-70 5		-58 5	-65 5		4 8310
	-57 5			5 -66	2	44	-48 4		13		-34 4	13		-55 5	-68 5	-76 5	-70 5		-58 5		DAY	5 9350
	-57 5			5 -66	2	44	-48 4		13		-34 4	13		-55 5	-68 5	-76 5	-70 5		-58 5	-65 5	7 1 Shot w	6 7 8570 8650
	-57 5			-66	1	4 -44	-48 4		13		-34 4	13		-55 5	-68 5	-76 5	-70 5		-58 5	-65 5	/indow 1	7 8650
	-57 5			5 -66	1	4 44	-48 4		13		-34 4	13		-55 5	-68	-76 5	-70 5		-58 5	-65 5		8 8720
	-57 5			-66	1	4 44	-48 4		13		-34 4	13		-55 5	-68 5	-76 5	-70 5		-58 5	-65 5		9 9136
	-57 5			-66	1	4 44	-48 4		13		-34 4	13		-55 5	-68 5	-76 5	-70 5		-58 5	-65 5		10 9360
	-57 5			5 -66	з	4 44	-48 4		13		-34 4	13		-55 5	-68 5	-76 5	-70 5		-58 5	-65 5		11 8440
	-57 5			-64 5	2	-44 4	-40 4	1	2		-42 4	13		-67 5	-91 5	-94 5	-67 5		-64 5	-73 5	DAY 1 -	12 8060
	-57 5			5 -64	2	4 44	-40 4	1	2		-42 4	13		-67 5	-91 5	-94 5	-67 5		-64 5	-73 5	Shot windov	12 13 8060 8095
																					w 2	

Table 4b. Sample trace corrections

Participating Organizations, Property Owners, and LARSE Contractors	Persons
Federal Government Agencies	
U.S. Forest Service U.S. Veterans Administration U.S. Department of the Army*	Mike Wickman Teresa Castillo Karvel Bass Robert Colangelo
State Government Agencies	
California Department of Parks and Recreation	Rich Rozzelle
	Randy Cedarquist
California Department Industrial Relations, Division of Occupational Safety and Health	Jerel Snapp
	Stan Rhyu
Local Government Agencies	
L.A. City Bureau of Engineering	Mike Michalski Robert Hancock Linda Moore
L.A. City Department of Recreation and Parks L.A. City Fire Department L.A. Police Department	Jay Sloan Andrew Gutierrez Randy Becker
L.A. City Department of Water and Power	Richard Nagel Mark Mackowski Cliff Plumb
L.A. City Officials	Simon Hsu Councilperson Cindy Miscikowski Bob Canfield Ellis Stanley Judith Steele Lisa Merlino
Santa Monica City Department of Public Works L.A. County Department of Parks and Recreation	Joan Akins Jim Park Lillie Lowery
L.A. County Sanitation District	David Nakagaki
L.A. County Department of Public Works	Eric Gonzales
L.A. Unified School District	Evan Morris
William S. Hart School District/City of Santa Clarita	Mike Otavka Evan Aldrich
Saugus Elementary School District Castaic Lake Water Agency	Mark Fulmer Robert Sagehorn Michael Thompson

Conservation/Education	Organizations
-------------------------------	---------------

. .	
Santa Monica Mountains Conservancy/ Mountains Recreation and Conservation Authority	Jeff Bolton
California State University, Northridge	Tom Tindall
	John Chandler
	Kit Espinosa
	Judith Nutter
Masters College	Bob Hotton
Masters College	Rick Hulett
Utility	
Southern California Gas Company	Jim Montgomery
	Tom Shroeder
	Jim Mansdorfer
	Peter Sego
	Sharon O'Rouke
	Steve Cardiff
Companies	
Browning-Ferris Industries	James Aidukas
	James Ambroso
Playa Vista Development Company	Bruce Harrigan
El Cabellero Country Club	Ralph Herman
	Tom Burnsen
Diviero Country	Doug Meadows
Riviera Country	Gerd Koenig
	Paul Ramina
Magazine Canyon	Bruce Harrigan
Berry Petroleum Co.	Ralph McPhetridge
National Technical Systems	John Czajkowski
Capp's TV	Capp Loughboro
Richmond American Homes	Steven Seemann
The Oaks Camp and Conference Center	Dana Stewart
	Dan Smith
Calaveras Cement Company	Ed Watamaniuk
	David Whitney
California Portland Cement Company	Leo Mercy
Sanorna i Shana Sonon Sompany	Steve Palmer
National Cement Company	Byron E McMichael
National Cement Company	Byfoll E Miciwiichael
Private Individuals	32
LARSE Contractors	
Sam Crum Water Well Drilling, Inc.	Sam Crum
Alpha Explosives	Gordon Coleman

90.00 percent of shots will produce $v \le 1.00$ in/s at this distance.

will produce	V < 1.00 IN	/s at this disi	distance.	
		Distan	ce (feet)	
Shot Size	Hard	Wet	Dry	Sed
(lp)	Rock	Alluvium	Alluvium	Rock
ъ	53	34	0	0
10	106		12	0
		112	28	0
	ω	143		0
	N	171	5 5	13
30	S	196	67	20
35	$\overline{}$	220	79	26
	0			32
	N	σ		38
	СЛ	ω	110	43
	9	-		54
	ω	σ		64
	$\overline{}$	ω		73
	0	-		82
0	ω	ω	9	91
С	$\overline{}$	σ	С	130
0	9	СЛ	Ľ.	ი
250	892	745	361	195
0	ω	N	ò	222
С		ö	4	248
0	ω	σī	ω	272
СЛ	0	-		
0	N		4	
0		$\overline{}$	610	355
0	ò		665	392
0	1594	σī	716	426
0		ώ	764	457
0	Ń		608	487
50	ω	1827		616
00	42	80	1158	N
0	2672	2304		817
00	89	49	1414	

95.00 percent of shots will produce v < 1.00 in/s at this dis

will produce v	< 1.00 in/s	at this	distance.	
		Distanc	ce (feet)	
Shot Size	Hard	Wet	Dry	Sed
Ы	Rock	Alluvium	Alluvium	Rock
ъ	66	71	6	0
10		134	38	0
	ω̈́	185		17
20	289	229		28
25	335	267	102	39
30	376	302	120	49
35	414		137	59
40	449	364	152	89
45	482	393	167	76
50	514	419	181	84
60	571	468	207	100
70	624	513	232	115
80	672	5 5 5 5	255	129
06	717	594	276	142
100	760	630	296	154
	943	788	385	210
200	1093	919	460	258
250	1222	1031	525	300
300	1337	1131	584	338
350	1441	1222	637	373
	1536	1305	686	406
450	1625	1382	732	436
500	1707	1455	776	465
600	1858	1587	855	518
700	1994	1706	928	567
008	2119	1816	994	612
006	2234	1917	1056	654
1000	2342	2012	1114	693
1500	2797	2413	1362	864
2000	3163	2737	1565	1004
2500	47	3013	1738	1124
3000	3747	3255	1891	1232

Shot size determination from a model curve determined with distance weighting (1/x) Appendix la

99.00 percent of shots will produce $v \le 1.00$ in/s at this distance.

Shot Size (Ib) 10 15	Hard Rock 245 387 496	Distan Wet Alluvium 192 312 404	Alluvium 65 125
	ωσ	4 4	ωu
40 40	лΟ		- 4
	<u>-</u> ທ	ര -	344 371
	σ	0	9
	ົດ	9	4
	4	ົດ	ŝ
	30		564
0	36	С	0
С	66	4 1	СЛ
	89	0 0 0	° √
		1959	
σī	44	0	ი
0	59	23	4
σı	72	ы С	Ň
0	8 5	46	ö
0	000	0 0 1 0	Ň
	≥ N Ø	5 0 5 0	L C
0 0	6 0 0		1/43
00	8 N	ŝ	ū
50	50	92	32
00	05	4 1	63
0	Ŭ1	8 N	
ò	91	5189	ω ω

1	<	6
	will produce v < 2.00 in/s at this distant	90.00 percent of shots
	^	ç
	2.00	sho
	in/s	ß
	at	
Dis	this	
Distance	distan	

																																		-	
3000	2500	2000	1500	1000	006	800	700	600	500	450	400	350	0	250	200	150	100	06	80	70	60	50	45	40	З5	30	25		15	10	сл	(lb)	Shot Size		will produce v
1982	1822	1642	1431	1173	1112	1048	978	903	819	774	726	675	619	557	489	-	317	296	273	249	223	195	181	165	148	131	112	91	69	43	13	Rock	Hard		/ < 2.00 in/s
1695	1555	1397	1213	886	935	879	819	754	682	643	601	557	509	456	398	331	252	234	215	195	174	151	138	125	112	97	82	6 5	47	27	0	Alluvium	Wet	Distance	at this
921	836	741	632	500	470	437	403	366	325	303	280	256	229	201	170	135	95	86	76	67	56	46	40	34	28	21	14	0	0	0	0	Alluvium	Dry	ce (feet)	distance.
562	505	442	370	284	264	243	221	198	172	159	144	129	113	96	78	58	35	30	25	19	14	6	0	0	0	0	0	0	0	0	0	Rock	Sed		

95.00 percent of shots will produce v \leq 2.00 in/s at this distance.

	l		at this Dist	ance (feet)	
	(lb)	Rock	Alluvium	Alluvium	Rock
_	ъ		24	0	0
			60	0	0
	15	123	91	18	0
		СЛ	117	~	0
			142	41	0
	30	211	164	52	
		ω	184	61	16
		259	204	71	22
	45	ω	222	80	27
		0	ω	88	з 1
		ω		104	40
		$\overline{}$	0		
		0	N	134	
		ω	ъ	4	65
	0	б		σ	
	С	9	α	-	
	200	969	575	266	136
	СЛ	ω	ъ	0	σ
	0	ი	N	4	ω
	С	4	ω	ω	
	0	ō	4	-	ώ
	С	$\overline{}$	9	4	σī
	0		4		
	0	ώ		ω	ò
	0	ŵ	1128	ω	
	0	Ň	õ	N	ō
	0	õ	1278		Ö
	00		1346		Ň
	50	Ξ	ω	ω	
	00	8	ō		ŵ
	0	40		С	<u> </u>
	3000	2608		1259	793

99.00 percent of shots will produce v < 2.00 in/s at this dist

		Dist		
Shot Size (Ib)	Hard Rock	Wet Alluvium	Dry Alluvium	Sed Rock
	128	95	20	0
10			5 5	1 3
	ø	229		29
20	350	280	109	43
25	403	325	132	56
30	451		153	89
35	494	403	172	9 2
40	535		191	J 6
45		469	208	101
50	608		225	110
60	674	σī	σī	129
70	733		œ	147
80	789	655		163
06	840	700		179
	888	741	σī	193
	1095	921		259
	1265	1068	547	314
		9	621	363
300	1539	1308	688	407
	1656	1410	749	447
	1763	1503	805	484
450	1862	1590	857	519
500	1954	1671	906	552
600	2123	1819	966	613
700	2275	1953	1078	669
008	2414	2076	1153	720
006	2542	2189	1223	768
1000	2662	2295	1289	813
1500		2742	1568	1006
2000	3575	3102	1794	1164
2500	3920		1988	1300
3000	4222	3677	2160	1421

90.00 percent of shots will produce v \leq 5.00 in/s at this distance.

																														ĺ		ŝ	1	Ş
5 О		50		0	ò	0	0		450	ò	σī	ò	σī		σī	0	06				50	45	40	ა 5		25	20	15	10	Б	(lp)	Shot Size		
	939		4	0	ō	Ň	ò		403		344	-	$\overline{}$	ω	9	ω	128				74	67		5 1				12	0	0	Rock	Hard		
973		1			ō.	430	Ö	4	325	ò	275	4		ω	147	0	95	85			52	46	39	33	26	18	10	0	0	0	Alluvium	Wet	Distan	s at this up
440 491	α	-		N	õ	ω		144						61				16	11	0	0	0	0	0	0	0	0	0	0	0	Alluvium	Dry	ce (feet)	lance.
245 278		168	121	111		88	76	63	56	49			2 2 5		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Rock	Sed		

95.00 percent of shots will produce v < 5.00 in/s at this distart

3000 1561	2500 1430	2000 1283	1500 1111	1000 902	900 853	800 801	700 745	600 684	500 618	450 582	400 544	350 503	300 458	250 410	σī	150 295	100 223	90 207	80 189	70 171	60 152	50 131	45 119	40 108	35 96	30 83	25 69	20 54	15 38	10 20		(Ib) Rock	Shot Size Hard	-	will produce v < 5.00 in/
1326	1212	1084	934	753	711	666	618	565	508	478	445	41	-	ы Э	286	234	174	160	146	130	114	7 6	88	79	69	58	4	З5	23	7	0	Alluvium	Wet	Distan	in/s at this
Ň		õ	ω	σi	<u> </u>	σ	-	σ	õ		4	-	Z	ω	ω	ώ	\checkmark													7	0	Alluvium	Wet	Distanc	at
669	631	556	469	365	341	316	289	260	229	212	195	176	156	135	111	86	5 6		43		29	21	17	13	8	0	0	0	0	0	0	Alluvium	Dry	e (feet)	Ince.
414	369	320	264	197	182	167	150	132	113	103	93	82	70	57	44	30		10	0	0	0	0	0	0	0	0	0	0	0	0	0	Rock	Sed		

99.00 percent of shots will produce v < 5.00 in.

	will produce	v < 5.00 in/s	at this	distance.	
-			Distan	ce (Teet)	
	Shot Size	Hard	Wet	Dry	Sed
1	(lp)	Rock	Alluvium	Alluvium	Rock
	5	40	24	0	0
	10	86	61	0	0
	15	124	92	19	0
	20	157	119	31	0
	25	187	144	42	0
	30	214	166	5 3	11
	35	239	187	63	17
	40	262	206	72	22
	45	284	225	8 1	27
	50	305	4	06	32
	60	343	274	106	41
	70	1	304	121	50
	80	Ĺ.	332	135	9 5 8
	06	442	359		66
	100	472	383	162	73
	150	598	ò	220	108
	200	702	581	269	138
	250	Ö			164
	300	874	729	352	189
	350	948	793	388	212
	400	1016	852	421	233
	450	1079	906	453	253
	500	1138	957	482	272
	600	1246	1052	537	308
	700	1344	1137	587	340
	800	1434	1216	633	371
	006	1518	1289	677	399
	1000	1596	1357	717	426
	1500	1927	1648	892	543
	2000	2196	1884	1036	640
	2500	2426	2086	1160	724
	3000	2628	2264	1270	800

Shot size determination from a model curve determined with no distance weighting Appendix Ib

90.00 percent of shots will produce $v \le 1.00$ in/s at this distance.

< 1.00 in/s	at this Dist	distance. ance (feet)	
Hard	Wet	Dry	Sed
77	67	36	24
108	94	51	з ЗЗ
131	114	61	40
151	131	71	46
168	146	78	51
183	160	86	თ თ
198	172	92	60
211	183	86	63
223	194	104	67
ω	204	110	71
С	223	120	77
277	241	129	83
9	G	138	68
-	272		94
N	286		66
0	349	σ	
б	402	ωσ	
-	4	<u> ന</u>	
б		ω ω σ	
0	ö	ი ω <u>-</u> α σ	
4	NØ	∞ o ω → ∞ υ	
688	6 N Ø	0 8 6 8 - 8 5	
	0 O N O	<u>-0868-87</u>	0 0 0 0 J U N
N	N \emptyset \emptyset N \emptyset	ω <u>→</u> О ∞ О ω <u>→</u> ∞ Л	<u>- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>
	@ N @ の N @	<u>ба – Саба – ал</u>	ω - ο ο α ο σ ω Ν
JUN	00000004	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	ͷϣϫϘϣϣϣϥͽ
- JO O N	0 7 0 0 7 8 4 0	N 0 0 0 - 0 0 0 0 - 0 0	√ J J J J J J J J J J J J J J J J J J J
$\sigma \rightarrow \sigma \sigma N$	0 0 0 0 0 0 4 0 4	τυ α - ω α α α α α α α α α α α α	$\omega \lor \sigma \omega \to 0$
- 6 - 5 0 N	000000404040	τι α - ω α α ο - ω α ο α 4 ν	$\bigcirc \square \lor \square $
4 - 6 - 5 9 2	0000004040400	τι α - ω α α α - ω α α α α α α α	$ \bigcirc \bigcirc$
ω 4 - σ - σ ο Ν	00000040404000	τι α - ω α α α α α α α α α α α α α α α α α	$NOOO \sqrt{J}O + OOOOJ + NOOOOJ + NOOOOJ + OOOOJ + OOOOJ + OOOOJ + OOOOJ + OOOOJ + OOOJ + OOOJ + OOOJ + OOJ + $
O O O $ O$ $ O$ O O	0 0 0 0 0 0 4 0 4 0 0 4 0	τι α - ω α α α - ω α α α α α α α α α α α α	\vee N O O O \vee U U U \rightarrow O O O O U U N
	οο4 α Λ υ τυ <u></u> μ α μ 4 ω ο		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

95.00 percent of shots

3000	00	50	1000	006	800	700	600	500	450	400	350	300	250	200	150	100	06	80	70	60	50	45	40	35	30	25	20	15	10	ъ	(lb)	Shot Size	
2363	ι 9 1 3	1	1370	1300	1227	1149	1064	973	924	871	816	756	692	620	538	441	419	396	371	344	315	299	282	264	245	225	201	175	144	103	Rock		
2048	1 7		1188	1128	1064	766	924	844	802	756	708	657	600	538	467	383	364	344	322	299	273	260	245	230	213	195	175	152	125	06	Alluvium	Wet	Distance
989 1082	o œ	ດ	630	865	565	529	491	449	426	402	377	350	320	287	249	205	195	184	172	160	146	139	131	123	114	105	94	82	67	48	Alluvium	Dry	ice (feet)
691		ö	403	383	361	339	314	287	273	258	242	224	205	184	160	132	125	118	111	103	94	06	85	79	74	68	61	5 З	44	3 1	Rock	Sed	

99.00 percent of shots will produce $v \le 1.00$ in/s at this distance.

Sho																
(Ib) 5 10 15 20 25 25 30 35 35 40				0	с or		10	0 (сσ	0	0 0	0	00	0 0	50	
	- 4	593 640	νœ	ი	ıω	9 ~	<u> </u>	<u> </u>	0 0	4	ωŌ	N G	ω 8	2914 3364	76	٠
	4 1	515 555	v o	ົດ	ò	ωü	sω	r		0		95	06		N Л	л Л
	σω	275 296	ت ش	σī	Ň	σü	ı O	ω c	ίωi	4		ω	Ö		<u> </u>	
	153 161	176 190	203	N	1	σ –	<u>•</u> ∞	- 4	470 105	4		σ	Ö	979 979	õ	1195

90.00 percent of shots will produce v < 2.00 in/s at this dis

	< 2.00 II/S	at this	ance (feet)	
	:			
Shot Size	Hard	Wet	Dry	Sed
`	51	44	24	16
10	71			22
15	86		-	
20	66	86	47	30
25	111	96	52	34
30	121	105	57	37
35	130	113	61	39
40	139	121	65	42
45	147	128	69	44
50	155	134	72	47
60	169	147	79	5 1
70	182	158	5 8	ე ე
0 8	194	169	91	58
06	206	179	96	62
100	216	188	101	65
150	263	229	123	79
200	303	263	141	91
250	338	294	157	101
300	369	321	172	110
350	398	346	185	119
400	425	369	197	127
450	450	391	209	134
500	474	412	220	141
600	518	450	240	154
700	559	486	259	166
008	597	518	276	177
006	632	549	9	188
1000	666	578	308	198
1500	813	706		241
2000	937	813	432	277
2500	1046	907		
3000	1144	993	527	337

Shot size determination from a model curve determined with no distance weighting Appendix Ib

95.00 percent of shots will produce v \leq 2.00 in/s at this distance.

will pro (Ib
duce v Size v Siz
Hard 68 95 115 148 161 174 196
at this Dist Wet 59 1000 115 128 140 140 141 151 151 161 171
distance.ance (feet)DrynAlluvium3245546263758187
Rock 2 1 2 9 3 5 4 0 4 9 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2

99.00 percent of shots

will produce v	/ < 2.00 in/s	at this	distance.	
		Dist	ce (feet)	
Shot Size	Hard	Wet	Dry	Sed
Ы	Rock	Alluvium	Alluvium	Rock
л	116	101	54	35
10	162	141	76	-
15	198	172	92	60
20		198	106	68
25	253	220	118	76
30	277	241	129	83
35	299	260	139	68
40	319	277	148	95
45	338	293	157	101
50	355	309	165	106
60	388	338	180	116
70	419	364	194	125
0 8	447	388	207	133
06	474	411	220	141
100	499	433	231	149
150	608	528	282	181
200	701	803	324	208
250	782	679	361	232
300	855	742	395	253
350	923	801	426	273
400	986	855	455	9
450	1045	907	482	308
500	1100	955	507	325
600	1204	1045	554	355
700	1299	1127	598	383
008	1388	1204	638	408
006	1472	1276	677	433
1000	1550	1345	712	455
1500	1896	1644	870	555
2000	2187	1896	1002	640
		2118	1119	714
3000	2676	2319	1224	781

90.00 percent of shots will produce v \leq 5.00 in/s at this distance.

			and	
Shot Size	Hard	Wet	Dry	Sed
(Ib	Rock	Alluvium	Alluvium	Rock
	30	26	14	9
10			19	13
	50	-	24	15
20	57	50	27	18
25	64	56	30	19
30	70	61	33	21
З5	75	6 J	з 5	23
40	80	70	3 B	24
45	85	74	40	26
50	68	8 2	42	27
60	97	85	46	30
70	105	91	49	32
80	112	97	5 2	34
06	118	103	5 5	36
100	124	108	58	38
150	151	132	71	
200	174	151	81	52
250	194	169	91	58
	212	184	66	64
350	228	198	106	69
400	244	212	114	73
450	258	224	120	77
500	271	236	126	81
600	297		138	68
700	320	278	149	96
800	341	Ö	159	102
006	362	314	168	108
1000	381	331	177	114
1500	464	403	215	138
2000	534	464	248	159
2500	596	518	276	177
3000	652	566	302	194

95.00 percent of shots will produce v < 5.00 in/s at this distant

Shot Size (Ib)	۸ ۲۰.0 Roc	Alluviur	(feet Dry Alluviu	Sed
5 10	39 55	34 48	19 26	<u> </u>
15		-	-	N
20	76	67	36	N
25	85	74	40	N
30	93	8 1	44	N
35	100	87	47	ω
40	107	93	50	ω
45	113	86	53 53	ω
50	119	103		ω
60	130	113	61	ω
70	140	122	65	4
80	149	130	70	4
	158	137	74	4
100	166	145	78	сī
150	202	176	94	თ
200	233	202	108	7
σī	259	225	121	7
õ	283	4	132	8
350	305	266	142	9
400	326	283	152	9
450	345	ò	161	10
500	364	<u> </u>	169	10
600	397	345	185	1 1
700	428	1	199	12
800	457	397	212	13
006	485	421	225	14
1000	510	443	236	1 ភ
1500	622	541	288	18
2000	717	622	331	21
2500	800	695	370	23
3000	875	760	404	25

99.00 percent of shots will produce v \leq 5.00 in/s at this

	Dist	e	
Hard	Wet		Sed
Rock	Alluvium	Alluvium	Rock
67	58	32	20
94	8 1	44	28
114	66	53	34
131	114	61	40
146	127	68	44
159	138	74	48
171	149	80	52
183	159	85	55
194	168	06	58
		95	61
N		104	67
240	209	112	72
ъ	Ň		77
$\overline{}$	ω		81
ω	4		86
4	0		104
0	4		120
446	388	207	133
488	424	226	145
Ň	457	244	157
ō	488	260	167
9	517	276	177
N	545	290	186
686	596	-	203
740	642	4	219
790	686	365	234
837	727	387	248
882	765	407	261
1077	935	496	318
1241	1077	571	366
1386	1202	638	408
1517	1316	697	446
	Hard Rock 114 114 114 114 114 114 114 114 114 11	DistHard RockWet Alluviur 67 589494114941311141461271311141461271223194159138224020422562232712362852402852402852402852402852402852402852402852402852402852483023024463884463484463484463484463484463485955176865967406427906868377278827651077935124110771386120215171316	$\begin{tabular}{ c c c c } \hline \hline Distance (feet Hard Net Alluvium Alluvium Alluvium Alluvium 114 99 51 131 114 99 51 131 114 99 51 131 114 99 51 114 114 99 51 114 114 115 114 115 114 115 114 115 114 115 115$

Appendix II

Participating Organizations and Institutions

Organization/Institut	ion	Number of persons
9	gical Survey - (USGS)	37
	University of Southern California – (USC)	14
Earthquake Center	California Institute of Technology –	10
(SCEC)	(Caltech) University of California at Los Angeles – (UCLA)	10
	University of California at Santa Barbara –	5
University of Texas a	L <u>(UCSB)</u> at El Paso - (UTEP)	9
•	versity, Northridge - (CSUN)	9
	h Institute of Seismology/Program for Array	5
Seismic Studies of th	e Continental Lithosphere -	
(IRIS/PASSCAL) GeoForschungsZentr	um, Potsdam, Germany - (GFZ)	5
Geological Survey of	4	
University of Karlsru	4	
University of Copenh	nagen, Denmark	3
Glendale Community	/ College	2
Subsurface Explorati	on, Inc.	2
Stanford University		1
Pasadena City Colleg	ge	1
University of Dublin		1
URS Grenier Woodw	vard Clyde	1
Total		123

LARSE II Personnel

Name		
First	Last	Affiliation
Marcos	Alvarez	IRIS/PASSCAL
Isa	Asudeh	GSC
Shirley	Baher	UCLA
Julia	Bartlakowski	U. Karlsruhe
Mark	Benthien	SCEC
Harley	Benz	USGS Golden
Steffen	Bergler	UTEP/U. Karlsruhe
Dave	Bowman	USC
Tom	Brocher	USGS Menlo Park

Tom	Burdette	USGS Menlo Park
Rufus	Catchings	USGS Menlo Park
Youlin	Chen	USC
Rob	Clayton	Caltech
Geoff	Clitheroe	USGS Menlo Park
Elizabeth	Cochran	UCSB
Dave	Cornwell	USGS Menlo Park
Coyn	Criley	USGS Menlo Park
Edward	Criley	USGS Menlo Park
David	Croker	USGS Menlo Park
Bill	Curtis	USGS Pasadena
Jocelyn	Davies	USGS Pasadena
Autumn	Davies	URS Greiner Woodward Clyde
Paul	Davis	UCLA
Dave	Delis	CSUN
Shane	Detweiler	USGS Menlo Park
Jeff	Dingler	USGS Menlo Park
Scott	Dodd	GSC
Chris	Duenas	UCLA
Leo	Eisner	Caltech
Chuck	Estabrook	USGS Menlo Park
Matt	Evans	UCLA
Javier	Favela	Caltech
Mike	Fort	IRIS/PASSCAL
Gary	Fuis	USGS Menlo Park
John	Galetzka	USGS Pasadena
Richard	Garcia	Caltech
Florian	Gawlas	USGS Menlo Park
Carrie	Glavich	UCSB
Nicola	Godfrey	USC
Lauri	Green	Glendale CC
William	Greer	UCLA
Steve	Harder	UTEP
Franz	Hauser	U. Karlsruhe
Tom	Henyey	SCEC
Brian	Hoffman	USC
Dan	Hollis	Subsurface Exploration
James	Hollis	Subsurface Exploration
Martha	House	Caltech
Gray	Jensen	USGS Menlo Park
Mandy	Johnson	Caltech
Barbara	Jones	CSUN
T.A.	Jones	CSUN
Peer	Jorgensen	U. Copenhagen
Ron	Kaderabek	USGS Menlo Park

Galen	Kaip	UTEP
Bill	Keller	Caltech
Randy	Keller	UTEP
Cameron	Kennedy	CSUN
Brian	Kerr	Stanford
Ingo	Koglin	U. Karlsruhe
Monica	Kohler	UCLA
Alex	Krimskiy	USC/Pomona Polytech
Stephanie	Kullen	USGS Menlo Park
Michael	Landes	U. Dublin
Pete	Lean	UCSB
YunFeng	Liu	USC
Stephen	Longhurst	UCLA
Jim	Luetgert	USGS Menlo Park
Aaron	Martin	UCSB
Iain	Matcham	IRIS/PASSCAL
Bob	McClearn	USGS Menlo Park
John	McRaney	SCEC
John	Meloche	GSC
Gregory	Miller	USGS Woods Hole
Walter	Mooney	USGS Menlo Park
Mohi	Munar	Caltech
Janice	Murphy	USGS Menlo Park
Jeff	Nealon	USGS Woods Hole
Dave	Okaya	USC
Karl	Otto	GFZ Potsdam
Tracy	Pattelena	Pasadena CC
ZhiGang	Peng	USC
Taylor	Perron	USGS Menlo Park
Raven	Peters	Glendale CC
Claus	Prodehl	U. Karlsruhe
Rachel	Reiley	CSUN
David	Reneau	USGS Menlo Park
Luke	Reusser	SCEC
Scott	Reynolds	UTEP
Luis	Rivera	Caltech
Erich	Roth	USGS Woods Hole
Justin	Rubinstein	UCLA
Trond	Ryberg	GFZ Potsdam
Jonathan	Saben	SCEC
Bob	Schieman	GSC
Kimberly	Schramm	UTEP
Albrecht	Schulze	GFZ Potsdam
Michael	Seiberlich	GFZ Potsdam
Russell	Sell	USGS Menlo Park

Oguz	Selvi	UTEP
Shawn	Shapiro	CSUN
Gerry	Simila	CSUN
Ray	Sliter	USGS Pasadena
Cathy	Snelson	UTEP
Anne	Sophie	UCLA
Paul	Tackley	UCLA
Mike	Taylor	USGS Menlo Park
Mary	Templeton	IRIS/PASSCAL
Uri	ten Brink	USGS Woods Hole
Hans	Thybo	U. Copenhagen
Kristina	Thygesen	U. Copenhagen
Kathryn	Van Roosendaal	CSUN
John	Van Schaack	USGS Menlo Park
Shannon	Van Wyk	USGS Pasadena
Jan	Villalobos	CSUN
Mike	Watkins	Caltech
Michael	Weber	GFZ Potsdam
Joel	Wedberg	USC
Angie	Williams	USGS Menlo Park
Jochen	Woessner	UTEP/U. Karlsruhe
Alan	Yong	USGS Pasadena
Willie	Zamorra	IRIS/PASSCAL

Appendix III--LARSE PUBLICATIONS, OPENFILE REPORTS, RECENT ABSTRACTS (THROUGH SPRING, 2001), AND VIDEOS

LARSE PUBLICATIONS

- Fuis, G.S., Okaya, D.A., Clayton, R.W., Lutter, W.J., Ryberg, T., Brocher, T.M., Henyey, T.L., Benthien, M.L., Davis, P.M., Mori, J., Catchings, R.D., ten Brink, U.S., Kohler, M.D., Klitgord, K.D., and Bohannon, R.G., 1996, Images of crust beneath southern California will aid study of earthquakes and their effects: EOS Transactions American Geophysical Union, V. 77, p. 173, 176.
- Fuis, G.S., Brocher, T.M., Mori, J., Catchings, R.D., ten Brink, U.S., Klitgord, K.D., Bohannon, R.G., Okaya, D.A., Clayton, R.W., Henyey, T.L., Benthien, M.L., Davis, P.M., Kohler, M.D., Lutter, W.J., and Ryberg, T., 1997, Defining subsurface structure in earthquake country: Earth in Space, v. 9, pp. 7-10. (This magazine is published by AGU for high-school teachers and students.)
- Fuis, G.S., 1998, West margin of North America--a synthesis of recent seismic transects: Tectonophysics, v. 288, p. 265-292.
- Fuis, G.S., Ryberg, T., Godfrey, N.J., Okaya, D.A., and Murphy, J.M., 2001, Crustal structure and tectonics from the Los Angeles basin to the Mojave Desert, southern California, Geology, v. 29, p. 15-18.
- Fuis, G.S., Ryberg, T., Lutter, W.J., and Ehlig, P.L., 2001, Seismic mapping of shallow fault zones in the San Gabriel Mountains from the Los Angeles Region Seismic Experiment, Southern California, Journal of Geophysical Research, v. 106, p. 6549-6568.
- Gao, S., H. Liu, P. M. Davis, and L. Knopoff, Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake: Evidence for focusing in Santa Monica, Bull. Seism. Soc. Amer., Vol. 86, No. 1B, Northridge Earthquake special issue, Editors K. Aki and T. L. Teng., pp. S209-S230, February, 1996.
- Godfrey, N.J., G.S. Fuis, V. E. Langenheim, D.A. Okaya, and T.M. Brocher, Lowercrustal deformation beneath the Transverse Ranges, southern California: Results from the Los Angeles Region Seismic Experiment, Journal of Geophysical Research (in press).
- Henyey, T.L., Fuis, G.S., Benthien, M.L., Burdette, T.R., Christofferson, S.A., Clayton, R.W., Criley, E.E., Davis, P.M., Hendley, J.W., II, Kohler, M.D., Lutter, W.J., McRaney, J.K., Murphy, J.M., Okaya, D.A., Ryberg, T., Simila, G., and Stauffer, P.H., 1999, The "LARSE" Project--working toward a safer future for Los Angeles, U.S. Geological Survey Fact Sheet 110-99, 2 p.
- Henyey, T.L., Fuis, G.S., Anima, R.J., Barrales-Santillo, A., Benthien, M.L., Burdette, T.R., Christofferson, S.A., Clayton, R.W., Criley, E.E., Davis, P.M., Hendley,

J.W., II, Kohler, M.D., Lutter, W.J., McRaney, J.K., Murphy, J.M., Okaya, D.A., Ryberg, T., Simila, G., and Stauffer, P.H., 1999, El proyecto sísmico "LARSE"--Trabajando hacia un futuro con mas seguridad para Los Angeles, U.S. Geological Survey Fact Sheet 111-99, 2 p.

- Kohler, M. D. and Davis, P. M., 1997, Crustal thickness variations in Southern California from Los Angeles Region Seismic Experiment passive phase teleseismic travel times, Bull. Seis. Soc. Am., v. 87, p.1330-1344,
- Kohler, M. D., J. E. Vidale, and P. M. Davis, 1997, Complex scattering within D" observed on the very dense Los Angeles Region Seismic Experiment passive array, Geophys. Res. Lett., v. 24, p. 1855-1858.
- Kohler, M. D., 1999, Lithospheric deformation beneath the San Gabriel Mountains in the southern California Transverse Ranges, J. Geophys. Res., v.104, p.15025-15041.
- Lutter, W.J., Fuis, G.S., Thurber, C.H., and Murphy, J.M., 1999, Tomographic images of the upper crust from the Los Angeles basin to the Mojave Desert, California: results from the Los Angeles Region Seismic Experiment, Journal of Geophysical Research, v. 104, p. 25,543-25,565.
- Ryberg, T., and Fuis, G.S., 1998, The San Gabriel Mountains bright reflective zone: possible evidence of young mid-crustal thrust faulting in southern California: Tectonophysics, v. 286, pp. 31-46.
- ten Brink, U.S., Zhang, J., Brocher, T.M., Okaya, D.A., Klitgord, K.D., and Fuis, G.S., 2000, Geophysical evidence for the evolution of the California Inner Continental Borderland as a metamorphic core complex: Journal of Geophysical Research, v. 105, p. 5835-5857.
- Zhu, L., 2000, Crustal Structure across the San Andreas Fault, Southern California from Teleseismic Converted Waves, Earth and Planetary Science Letters, v. 179, p. 183-190.

LARSE-RELATED PUBLICATION

Houseman, G. A., E. A. Neil, and M. D. Kohler, 2000, Lithospheric instability beneath the Transverse Ranges of California, Journal Geophysical Research, v. 105, p. 16,237-16,250.

OPEN-FILE REPORTS

- Brocher, T.M., Clayton, R.W., Klitgord, K.D., Bohannon, R.G., Sliter, R., McRaney, J.K., Gardner, J.V., and Keene, J.B., 1995, Multichannel seismic-reflection profiling on the R/V Maurice Ewing during the Los Angeles Region Seismic Experiment (LARSE), California: USGS Open File Report 95-228, 70 p., 3 pl.
- Gao, S., Liu, H., Davis, P.M., Knopoff, L., and Fuis, G., 1996, A 98-station seismic array to record aftershocks of the 1994 Northridge, California, earthquake: U.S. Geological Survey Open-File Report 96-690, 28 p.
- Kohler, M.D., Davis, P.M., Liu, H., Benthien, M., Gao, S., Fuis, G.S., Clayton, R.W., Okaya, D., and Mori, J., 1996, Data report for the 1993 Los Angeles Region Seismic Experiment (LARSE 93), southern California: a passive study from Seal Beach northeastward through the Mojave Desert: U.S. Geological Survey Open-File Report 96-85, 82 p.
- Kohler, M.D., B.C. Kerr, and P.M. Davis, 2000, The 1997 Los Angeles basin passive seismic experiment--a dense, urban seismic array to investigate basin lithospheric structures, U.S. Geological Survey Open-File Report 00-148, 109 pp.
- Kohler, M. D., and B. C. Kerr, (in preparation), Data report for the 1998-1999 Los Angeles Region Seismic Experiment II Passive Array, to be submitted as a U.S. Geological Survey Open-File Report.
- Langenheim, V.E., and R.C. Jachens, 1996, Gravity data collected along the Los Angeles Regional Seismic Experiment (LARSE) and a preliminary mmodel of the regional density variations in basement rocks, southern California, U.S. Geological Survey Open-File Report 96-682, 25 p.
- Langenheim, V.E., 1999, Gravity and Aeromagnetic models along the Los Angeles Region Seismic Experiment (Line 1), California, U.S. Geological Survey Open-File Report 99-388, 22 p.
- Murphy, J.M., Fuis, G.S., Ryberg, T., Okaya, D.A., Criley, E.E., Benthien, M.L., Alvarez, M., Asudeh, I., Kohler, W.M., Glassmoyer, G.N., Robertson, M.C., and Bhowmik, J., 1996, Report for explosion data acquired in the 1994 Los Angeles Region Seismic Experiment (LARSE94), Los Angeles, California: U.S. Geological Survey Open-File Report 96-536, 120 p.
- Murphy, Janice M., Gary S. Fuis, David A. Okaya, Kristina Thygesen, Shirley A. Baher, Galen Kaip, Michael D. Fort, Isa Asudeh, (in preparation), Report for borehole explosion data acquired in the 1999 Los Angeles Region Seismic Experiment (LARSE II), Southern California: Part II DATA: U.S. Geological Survey Open-File Report.

- Okaya, D.A., Bhowmik, J., Fuis, G.S., Murphy, J.M., Robertson, M.C., Chakraborty, A., Benthien, M.L., Hafner, K., and Norris, J.J., 1996, Report for air-gun data acquired at onshore stations during the 1994 Los Angeles Region Seismic Experiment (LARSE), California: U.S. Geological Survey Open-File Report 96-297, 224 p.
- Okaya, D.A., Bhowmik, J., Fuis, G.S., Murphy, J.M., Robertson, M.C., Chakraborty, A., Benthien, M.L., Hafner, K., and Norris, J.J.,1996, Report for local earthquake data acquired at onshore stations during the 1994 Los Angeles Region Seismic Experiment (LARSE), California: U.S. Geological Survey Open-File Report 96-509, 332 p.
- ten Brink, U.S., Drury, R.M., Miller, G.K., Brocher, T. M., and Okaya, D.A., 1996, Los Angeles Region Seismic Experiment (LARSE), California off-shore seismic refraction data: USGS Open-File Report 96-27, 29 p..

RECENT ABSTRACTS

- Baher, S.A., Davis, P.M., Fuis, G., 1999, LARSE II Santa Monica high resolution survey: preliminary observations(abs.), EOS Transactions American Geophysical Union, v. 80, p. F714.
- Baher, S.A., and Davis, P.M., 2000, Site response in the Santa Monica Area--The LARSE II high resolution seismic survey (HRESS) (abs.), Seismological Research Letters, v. 71, p. 242.
- Baher, S.A., P. Davis, G. Fuis, and R. Clayton, 2000, LARSE II: What caused the focusing related damage in Santa Monica during the Northridge earthquake (abs.), EOS Transactions American Geophysical Union, v. 81, p. F821.
- Fuis, G.S., Burdette, T.R., Criley, E.E., Murphy, J.M., Perron, J.T., Yong, A., Benthien, M.L., Baher, S.A., Clayton, R.W., Davis, P.M., Godfrey, N.J., Henyey, T.L., Kohler, M.D., McRaney, J.K., Okaya, D.A., Simila, G., Keller, G.R., Prodehl, C., Ryberg, T., Alvarez, M., Asudeh, I., Thybo, H., and ten Brink, U.S., 1999, The Los Angeles Region Seismic Experiment, Phase II (LARSE II)--A survey to identify major faults and seismic hazards beneath a large metropolitan area (abs.), EOS Transactions American Geophysical Union, v. 80, p. F714.
- Fuis, G.S., Criley, E.E., Murphy, J.M., Perron, J.T., Yong, A., Benthien, M.L., Baher, S.A., Clayton, R.W., Davis, P.M., Godfrey, N.J., Henyey, T.L., Kohler, M.D., McRaney, J.K., Okaya, D.A., Simila, G., Keller, G.R., Prodehl, C., Ryberg, T., Thybo, H., and ten Brink, U.S., 2000, The Los Angeles Region Seismic Experiment, Phase II (LARSE II)--A survey to identify major faults and seismic

hazards beneath a large urban region (abs.), Seismological Research Letters, v. 71, p. 214.

- Fuis, G.S., Ryberg, T., Godfrey, N.J., and Okaya, D.A., 2000, Crustal structure and tectonics along the LARSE transects, southern California, USA(abs.), University of Copenhagen, Copenhagen, Denmark, Ninth International Symposium on Deep Seismic Profiling of the Continents and Their Margins (conf. in Ulvik, Norway, June 18-23, 2000), p. 102.
- Fuis, G.S., T. Ryberg, N.J. Godfrey, D.A. Okaya, W.J. Lutter, J.M. Murphy, and V.E. Langenheim, 2000, Crustal structure and tectonics of the San Andreas fault in the central Transverse Ranges. Mojave Desert area (abs.), Stanford University Publications in Geological Sciences, Stanford, Calif., v. XXI, 3rd Conference on Tectonic Problems of the San Andreas Fault System (conf. at Stanford, Calif., Sept. 6-8, 2000).
- Fuis, G.S., J.M. Murphy, W.J. Lutter, T. Ryberg, D.A. Okaya, R.W. Clayton, P.M. Davis, N.J. Godfrey, S. Baher, E. Hauksson, V.E. Langenheim, K. Thygesen, C. Prodehl, G.R. Keller, 2001, Preliminary seismic images from the Los Angeles Region Seismic Experiment, Phase II (LARSE II), southern CA (abs.), Geological Society America Abstracts with Programs, v. 33, p. A-56.
- Godfrey, N.J., Fuis, G.S., and Okaya, D.A., 1999, Crustal-scale effects of compressional tectonics in southern California: results from the Los Angeles Region Seismic Experiment (LARSE) (abs.), EOS Transactions American Geophysical Union, v. 80, p. F1002.
- Godfrey, N.J., Okaya, D.A., and Fuis, G.S., 2000, Lower- crustal deformation beneath the Los Angeles region, southern California: Results from LARSE Lines 1 and 2(abs.), University of Copenhagen, Copenhagen, Denmark, Ninth International Symposium on Deep Seismic Profiling of the Continents and Their Margins (conf. in Ulvik, Norway, June 18-23, 2000), p. 103.
- Langenheim, V.E., and Fuis, G.S., 1999, Constraints from gravity and aeromagnetic data on interpretation of the LARSE I seismic-refraction transect, southern California(abs.), EOS Transactions American Geophysical Union, v. 80, p. F1002.
- Langenheim, V.E., Jachens, R.C., Hildenbrand, T.G., Fuis, G.S. and Griscom, A., 2000, Structure of the San Fernando basin area, California, based on analysis of gravity and magnetic data, Geological Society America Abstracts with Programs, v. 33, p. A-56.
- Lutter, W.J., G.S. Fuis, J.M. Murphy, D.A. Okaya, R.W. Clayton, P.M. Davis, N.J. Godfrey, T. Ryberg, C. Prodehl, G. Simila, G.R. Keller, H. Thybo, V.E.

Langenheim, N.I. Christensen, and C.H. Thurber, 2000, Preliminary tomographic images from the Los Angeles Region Seismic Experiment, Phase II (LARSE II), southern California (abs.), EOS Transactions American Geophysical Union, v. 81, p. F855.

- Murphy, J.M., Fuis, G.S., Ryberg, T., Godfrey, N.J., Okaya, D.A.,2000, A movie showing the kinematics of crustal motion in the Los Angeles region, California, using a foam-rubber model, EOS Transactions American Geophysical Union, v. 81, F304.
- Ryberg, T., G.S. Fuis, J.M. Murphy, D.A. Okaya, R.W. Clayton, P.M. Davis, N.J.
 Godfrey, C. Prodehl, G. Simila, G.R. Keller, and K. Thygesen, 2000, Preliminary reflection images from the Los Angeles Region Seismic Experiment, Phase II (LARSE II), southern California (abs.), EOS Transactions American Geophysical Union, v. 81, p. F855
- Schramm, K., K.C. Miller, D. Okaya, N. Godfrey, K. van Roosendal, G. Fuis, 2000, Three-dimensional velocity model of the Los Angeles region from LARSE active source experiments (abs.), EOS Transactions American Geophysical Union, v. 81, p. F856.
- Simila, G., Fuis, G., Burdette, T., Criley, E., Murphy, J., Perron, J., Yong, A., Benthien, M., Baher, S., Clayton, R., Davis, P., Godfrey, N., Henyey, T., Kohler, M., McRaney, J., Okaya, D., Keller, G., Prodehl, C., Ryberg, T., Alvarez, M., Asudeh, I., Thybo, H., ten Brink, U., 2000, The Los Angeles Region Seismic Experiment, Phase II (LARSE II): A survey to identify major faults and seismic hazards beneath a large metropoliton area, American Association of Petroleum Geologists.
- Simila, G., K. Thygesen, G.S. Fuis, H. Thybo, J.M. Murphy, and D.A. Okaya, 2001, Preliminary velocity model of the upper part of the San Fernando Valley sedimentary basin (abs.), Geological Society America Abstracts with Programs, v. 33, p. A-56.
- Thygesen, K., G.S. Fuis, J.M. Murphy, D.A. Okaya, V.E. Langenheim, G. Simila, H. Thybo., 2000, Preliminary velocity modeling in the San Fernando Valley: Results from the Los Angeles Region Seismic Experiment, Phase II (LARSE II), southern California (abs.), EOS Transactions American Geophysical Union, v. 81, p. F855.

VIDEOS

- Video Tape "The Los Angeles Region Seismic Experiment" (9 min); produced jointly by SCEC and USGS, 1995.
- Video Tape: "The results of the Los Angeles Region Seismic Experiment" (40 min); produced jointly by SCEC and USGS, 1997.