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INTERIM REPORT ON

WORLDWIDE HISTORIC SURFACE FAULTING

by
M. G. Bonilla and Jane M. Buchanan

Introduction

This interim report presents data on and interrelations between the
parameters L (length of surface rupture), D (maximum surface displacement),
and M (Richter magnitude of associated earthquake) for the main traces of
historic surface faults that have been reported in the worldwide literature.
Original descriptions of the individual fault-events published in English,
French, German, or Spanish were used whenever possible, supplemented by
translations of selected passages of reports published in Japanese and
Chinese. For some events, original descriptions were not published in
these languages and secondary sources were used. Although more than 100
fault-events have been reported in the literature, only those for which
reliable data (in the judgement of the present writers) were available on
at least two of the three parameters M, L, and D are included in this
interim report and listed in table 1. Some fault-events have been omitted
because the available reports contained significantly different data for
the same event and the writers had insufficient basis for choosing between
them.

This report was prepared to permit early release of part of the results
of a more comprehensive study of historic surface faulting now under way,
and to elicit suggestions and criticisms from users of the report. Comments
are especially invited regarding the methods used in designating the fault

type and in identifying the main fault,



The more comprehensive report will deal with subsidiary faults as
well as main faults, will have detailed citations of the sources of in-
formation, and will discuss various additional aspects of faulting. It
is anticipated that reliable data on a few more faults will be obtained,
and it is hoped that comments from users of this interim report will permit
improvement of the comprehensive report. Thus it is expected that the
comprehensive report will contain modifications of the present data and
will be of larger scope.

Explanation of table 1

Some general comments on the table are given here; more specific com-
ments are given in subsequent sections of the report.

The fault-events are listed geographically, and chronologically within
geographic units, Faults numbered from 1 to 49 are in North America and
those numbered 50 and greater are outside North America, (Each fault number
also includes a letter indicating the fault type, which is explained in
another section of the report.) The North American events are listed
chronologically, oldest first. Faults outside North America are listed
alphabetically by country and chronologically within each country. The
data in the table apply to the main fault, as clarified in a following
section of this report.

The column labelled "FAULT" gives the name of the fault, if known to
the writers,

The date of the event is listed by year, followed by month and day.

The column headed '"MAG" gives the Richter magnitude of the earth-
quake associated with the faulting. The intent was to include only in-

strumentally-determined magnitudes., If any non-instrumental, derived



magnitudes are listed, the writers would appreciate being advised of this
by users of the report,

Length of surface faulting and fault displacement are given in the
columns headed "L-METERS" and "DISP-METERS" respectively. Length and
displacement are included only if field measurements were reported;
estimates based on aftershock area, dislocation theory, or other indirect
methods are not listed. The apparent accuracy of some of the figures given
is the result of computation, either of oblique slip from strike slip and
dip slip components or of conversion from English to metric units by the
computer, Field measurements of displacement are only rarely given as
closely as 0.1 foot or 0.0l meter, and lengths are generally given only
to the nearest mile or kilometer., The values given in table 1 for length
and displacement must be multiplied by the power of ten that is given as a
final digit in each of these columns, i.e., ""06" indicates that the decimal
point must be moved 6 places to the right, and "-0l" requires shifting of
the decimal point 1 place to the left., Other comments on fault displacement
are given in a later section of this report.

Absence of data is indicated by "0.0" in the columns for magnitude,
length, and displacement.

The column labeled "REFERENCES'" indicates the principal sources of
the data in the table. The two- or three-letter reference code is keyed

to the alphabetical list of references at the end of this report.
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Designation of the main fault

In most fault-events, one surface fault clearly predominates in terms
of length, displacement, and continuity and can be designated the main
fault without ambiguity (Bonilla, 1967, p. 5; 1970, p. 54=55). 1In some
events however, many small faults of nearly equal importance occur, and
in others two faults of similar importance may predominate over the
other faults, When two faults of similar length, displacement, and
continuity were reported in one event, the following criteria, in ap-
proximate order of decreasing importance, were used as guides in desig-
nating the main fault:

a) Rupture occurred on recognized (or recognizable) prequake fault

b) The greater LxD2 (L, length; D, maximum displacement; both in

same units)

¢) Geodetic survey results, with consideration of age of surveys

in relation to the faulting

d) Location of epicenter(s), with consideration of accuracy of

location

e) Isoseismal lines

Criterion "a'" was adopted because evaluation of the suitability of a
reactor site with regard to seismic hazards generally involves an appraisal
of the probable behavior of the most important recognizable fault in the
vicinity of the site. The use of criterion "a" to help choose between two
nearly-equal faults thus is intended to make the results of this study
more applicable to the practical problem of evaluating seismic risk,

especially from subsidiary faulting.



Criterion "b", following the usage of King and Knopoff (1968), was
adopted early in the study as the best indication that can be obtained,
from simple field measurements of fault displacement and length, of the
magnitude of the associated earthquake and hence the '"importance' of
the fault. The data obtained as this study progressed confirmed the
rather good correlation reported by King and Knopoff (1968) between
magnitude and length times square of displacement (see table 3, fig. 4,
and p. 17, this report).

Despite the use of the criteria listed above, a clear choice could

not be made on designation of the main fault for the 1935 Taiwan event.
The two prominent faults are both included so that their length-displace-
ment data could be used, but the earthquake magnitude was omitted so that
neither of these ruptures would be included in relations involving earth-
quake magnitude,

For the purposes of this report the faulting has been divided into 5
principal types, designated by letters A through E, based on the relative
importance and sense of the strike-slip and dip-slip components of displace-
ment., These 5 types are a grouping of the 12 fault types shown on figure 1,
Figure 1 represents the plane of a fault dipping toward the observer. If a
point originally at the center of the circle and on the far side of the
fault is displaced by faulting to the rim of the circle, the indicated types
of faults would be produced. The movement of the point generates a radial
line that makes an angle (measured in the plane of the fault) with the
horizontal line that represents the strike of the fault; this angle, called
¢, can be measured on striations in the fault surface, or it can be calcu-
lated from the relative values of the strike slip (SS) and dip slip (DS):
SS/DS = cotangent ¢. The radii that mark the boundaries between fault types
make angles of 30°, 60°, and 90° above or below the horizontal line (see
fig. 1). The value of the contangent of ® combined with the normal or reverse

sense of displacement gives the 5 types of faults, as shown on table 2,
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Table 2, (lassification of fault types used in this report

Fault type Angle &, Cotangent Movement of
degrees of & hanging wall
A Normal slip 90 to 60 0 to 0.577 Down*
B Reverse slip 90 to 60 0 to 0.577 Up
C Normal oblique slip <60 to 30 >0,577 to 1,732 Down*
D Reverse oblique slip <60 to 30 >0.577 to 1.732 Up
E Strike slip <30 >1.732 -

*If the fault surface was reported as vertical or nearly vertical,
vertical slip was treated as normal slip unless strong evidence of
compression was found, in which case it was treated as reverse slip.

The limits adopted give equal weight to all 12 fault types shown on
figure 1., Whether the limits for oblique-slip faults shown on figure 1 and
in table 2 fits the usage of others is not known to the writers, as they
found no limits given in several text books that were consulted,

In applying the criteria for fault type, the predominant character-
istics of the fault over most of its length were used, whenever possible,
rather than the characteristics at one point. For example, a north-south
fault on which the cotangent of & was 0.8 at one point but 1.8 at most
other points, and the relatively downdropped side alternated from east
to west along its length, would be classified as strike slip.

The fault types are designated by the letters A through E near the

left side of table 1.



Fault displacement

The displacement (abbreviated '"DISP" on table 1) is the maximum re-
ported for each event. For strike-slip, normal-slip, and reverse-slip
faults the largest strike-slip or dip-slip component was used. For oblique-
slip faults the largest resultant of the combined strike-slip and dip-slip
components at a single point was used, if sufficient data were available;
otherwise the largest strike-slip or dip-slip component was used.

Relations between fault parameters

The relations between fault length and displacement and earthquake
magnitude are plotted on figures 2 through 5, and equations for the best
straight-line representation for these relations are given in table 3.

The fault numbers that identify the data points on figures 2 through
5 are the same as in table 1 and thus indicate the geographic location as
well as the type of fault represented.

Table 3 lists 75 equations by giving the coefficients a and b in
equations of the form y = atbx ; these were derived by the method of least
squares. Length and displacement are in meters in all equations, The
equations are given for groupings of various sets of faults, the first
three sets being geographic and the remaining 12 being by fault type. The
reliability of each of the equations can be judged by the number of data
points in each set, by the standard deviation, and by the correlation
coefficient (a measure of the goodness of fit of the least=~square line),

which are also given in table 3.

10



Table 3.--EQUATIONS FOR LINES OF BEST'FIT

3.1 Magnitude:vs Displacement: Log D = a+bM (see fig. 2)

Fault set Number a b Standard Correlation

in set deviation coefficient
1-49 19 -4,211 0.616 0.413 0.848
50-140 31 -3.123 0.471 0.317 0.655
1-140 50 ~3.916 0.578 0.362 0.799
A 14 -4.660 0.689 0.408 0.761
B 7 -2,703 0.389 0.310 0.705
C 7 -0.167 0.066 0.261 0.065
D 5 -0.111 0.042 0.304 0.053
E 17 -4,334 0.633 0.305 0.918
A+C 21 -4,399 0.655 0.378 0.715
B+D 12 -2,003 0.302 0.327 0.538
C+D+E 29 ~-4,049 0.600 0.323 0.854
C+D 12 -0.427 0,097 0.285 0.110
. B+E 24 - =4,021 - 0,582 0.329 0.879
A+CH+E 38 -4,310 0.637 0.350 0.845
B+D+E 29 -3.847 0.562 0.341 0.847

3.2.+ Magnitude vs length: Log L =fafb&A (see fig. 3)

Fault set  Number . a b Standard Correlation

in set deviation coefficient
1-49 20 2.092 0.344 0.485 0.609
50-140 33 ~1,513> 0.401 0.533 0.465
1-140 53 2,036 0.338 0.523 0,506
A 14 2.308 0.277 0.420 0.418
B 7 3.900 0.056 0.448 0.051
c 7 0.196 0.611 0.323 0.677
D 5 4.849 -0.116 0.588 ~0.075
E 20 1.915 0.389 0.492 0.695
A+C 21 1.545 0.401 0.423 0.528
B+D 12 ©2,905  0.177 0.524 0.181
C+D+E 32 1.765 0.395 0.527 0.606
C+D 12 0.208 0.586 0.524 0.479
B+E 27 2,290 0.316 0.541 0.546
A+CHE 41 1.799 0.384 0.480 0.616
B+D+E 32 2,192 0.320 0.575 0.501

11



Table 3. (Continued)

3.3 Magnitude vs Length times Displacement: Log LD = a+bM

Fault set  Number : a 7 b Standard Correlation
in set " deviation coefficient
1-49 19 -1,882 0.930 0.779 0.788
50-140 29 -1.681 0.880 0.724 0.534
1-140 48 -1,695 0.890 0.750 0.699
A 14 ~2,352 0.967 0.742 0.672
B 6 -5.183 0.675 0.560 0.461
c 6 -5,855 1.507 0.322 0.750
D 5 4,738 -0,.073 0.868 -0.032
E 17 -1.871 0.950 0.719 0.828
A+C 20 -2,.705 1.033 0.670 0.681
B+D 11 0.975 0.475 0.735 0.333
C+D+E 28 -1.898 0.941 0.733 0.755
C+D 11 -0.706 0.754 0.733 0.324
. B+E 23 ~1.405 0.858 0.752 0.758
A+CH+E 37 -2,191 0.976 0.704 0.773
B+D+HE 28 -1,386 0.848 0.799 0.708
3.4 Magnitude vs Length times gquare of Displacement: Log th°é abM (see fig. 4)
Fault set Number a. ©b Standard Correlation
in set deviation coefficient
1-49 19 -6,094 1.546 1.152 0.821
50-140 29 ~4,912 1.366 0.985 0.585
1-140 48 -5.701 1.479 1.057 0.755
A 14 ~7.013 1.656 1.122 0.717
B 6 -4.410 1.218 0.796 0.550
C 6 ~5.236 1.466 0.552 0.541
D 5 45626  -0.030 1.161 -0.010
E 17 -6.206 1,583 0.984 0.874
A+C 20 -7.140 1,692 1.005 0.713
B+D 11 ~0.577 0.718 1,010 0.362
C+D+E 28 -5.966 1.544 0.994 0.812
C+D 11 -1.054 0.840 0.977 0.275
B+E 23 -5.580 1,461 1.033 0.821
A+C+E 37 -6.517 1.614 1.000 0.818
B+D+HE 28 -5.347 1.425 1.085 0.778

12



Table 3.

(Continued)

3.5 Displacement vs Length: Log

Fault set

Number
in set

19
42
61
20

8

7

5
21
27
13
33
12
29
48
34

a

-4,264
-1.190
-2.239
-3.136

0.151

0.197
-1.640
-3.266
-2.391
-0.936
-2.288
-0.966
-2,528
-2.709
-2,181

D

13

= a+bLog L~ (see fig. 5)

b

0.951
0.350
0.558
0.774
0.035
0.041
0.451
0.751
0.601
0.281
0.556
0.287
0.606
0.654
0.537

Standard
deviation

0.545
0.319
0.469
0.420
0.355
0.300
0.149
0.545
0.418
0.310
0.494
0.269
0.531
0.489
0.502

Correlation
coefficient

0.715
0.510
0.552
0.668
0.040
0.060
0.872
0.641
0.578
0.420
0.567
0.536
0.544
0.594
0.541



Magnitude related to displacement

The plot of the relation between maximum surface displacement and
earthquake magnitude (figure 2) shows less scatter of the data points
than any of the other graphs. This is evident from visual comparison of
the graphs and is supported by the correlation coefficients, listed in
table 3.1, which are generally higher for this relation than for the others,
The correlation between displacement and magnitude is especially good for
strike-slip faults and the correlation coefficient for them is the highest
of the 75 listed in table 3. Chinnery (1969) also found a high correlation
between displacement and magnitude for strike-slip faulting.

For the historic faulting included in this report, the lines of best"
fit for strike-slip faults, normal-slip faults, all fault types in North
America (set 1-49), and all fault types in the world (set 1-140) are very
similar, as can be seen on figure 2, The line for reverse-slip faults is
conspicuously different from the others, perhaps because of the small number
of examples (7) in the set.

Magnitude related to length

The relation between length of surface rupture and magnitude of the
associated earthquake is shown in table 3.2 and on figure 3. The correlation
is a poor one as shown by the scatter of points and the low correlation co=-
efficients, the highest of which is less than 0.7. These low correlation
coefficients indicate that only 49 percent (0.7x0.7x100) or less of the
variation in logarithm of fault length may be accounted for by the variation

in the earthquake magnitude (Freund and Williams, 1958, p. 315).
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Magnltude related to LD

The relation of magnltude to the product of 1ength and the square of
displacement, recently‘studied_by King and}Kﬁopff’(1968)j iS‘given in
table‘3 4 ~and shown on figure 4 «The'eotnelation eoefficients generally
‘are moderately high, approachlng those obtalned/for the relatlon between
magnltude and dlsplacement. Although the 11ne for reverse-sllp faults
is drawn on figure &4, it must be used with ceutlon 1nasmuch as the corre-

lation eoeff;cient is only 0.55.

’Displaeement‘reieted”tcfleﬂgth’

A poor correlation exists'betweee’th¢~maxiﬁuﬁ»surface displacement
and the length of surface tupture,‘ This iSﬁilleetrated~by the scatter
of pointSvon‘figure 5, and is indicated'ﬁy:theigenerally 1ow~cor£e1ation
coefficients listed in table 3.5. Of the,liﬁes:dteWntonefigUre 5, only
that representing North‘America hae e correlation eoefficient'greater
than 0.7. The ﬁide‘scatter of points should'be»keﬁﬁin mind if any of
these»lines are used, | | |

’ Varlatlons of fault parameters bz_‘ype of fault

Oone of the aims of this study is to 1earn Whether the relatlons among;
fault 1ength displacement, and assoc1ated eafthquake magnltude dlffer
according’ to the type of faultlng that occurs. Although an ana1y81s of
“this aspect of the data is still very 1ncomplete, a feW’contrasts and '
31mllarit1es were noted and are glvenabelow;Wlthout;attemptlog,eet present,
to evaluate thelr 31gn1flcance or’ p0551ble causes. | e

For 4 of the 5 relatioms- 113ted 1n ‘table 3 the strlke-sllp faults
(set E) display the most comnsistent grouplngs, as Judged,by the‘correlation

coefficient, The one exception is fortthe relaticnwbetween'displacement
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and length, in which the reVerse-oblique,slip'faults (set.D) have the
highest correlation coefficient. The line fof strike-slip faults has
a steeper slope (constént "b") and a lower value of the constant Halt
than the line for all faults (set 1-140) on all of the graphs,

Tﬁe normal=-slip faults (setkA) have a moderate to low correlation
coeffiéient on all plots, with values raﬁging from'9;76155616;Aié@i The
slope of the line for normal-slip faults is greater than, and the '"a"
values are less than, the line for all'fauits (set 14140) on all plots
except figure 3 (magnitude related to 1ength);

Owing to the small number of exampleS“and7thé scatter of the points
for feverse slip (set B), normal oblique slip (set C), and reverse oblique
slip (set D) faults, little can be said about them., Most of the correlation
coefficients are very low and some of the lines of best fit for set D even
have a‘negativeSlope,indicatingfan inverse correlation. Neﬁertheless, the
slope of‘the line for reverse'faultsy(set B) is consistentiy lower than for
all faults (set 1-140), and the ngn values, with one exception, are greater

than for all faults; these relations are opposite to those for normal faults.
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