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ABSTRACT 
This report describes some simple spatial statistical methods to explore the 

relationships of scattered points to geologic or other features, represented by points, lines, 
or areas.  It also describes statistical methods to search for linear trends and clustered 
patterns within the scattered point data.  Scattered points are often contained within 
irregularly shaped study areas, necessitating the use of methods largely unexplored in the 
point pattern literature.  The methods take advantage of the power of modern GIS toolkits 
to numerically approximate the null hypothesis of randomly located data within an 
irregular study area.  Observed distributions can then be compared with the null 
distribution of a set of randomly located points.  The methods are non-parametric and are 
applicable to irregularly shaped study areas.  Patterns within the point data are examined 
by comparing the distribution of the orientation of the set of vectors defined by each pair 
of points within the data with the equivalent distribution for a random set of points within 
the study area.   A simple model is proposed to describe linear or clustered structure 
within scattered data.   

A scattered data set of damage to pavement and pipes, recorded after the 1989 
Loma Prieta earthquake, is used as an example to demonstrate the analytical techniques.  
The damage is found to be preferentially located nearer a set of mapped lineaments than 
randomly scattered damage, suggesting range-front faulting along the base of the Santa 
Cruz Mountains is related to both the earthquake damage and the mapped lineaments.  
The damage also exhibit two non-random patterns: a single cluster of damage centered in 
the town of Los Gatos, California, and a linear alignment of damage along the range front 
of the Santa Cruz Mountains, California.  The linear alignment of damage is strongest 
between 45º and 50º northwest.  This agrees well with the mean trend of the mapped 
lineaments, measured as 49º northwest. 
  
INTRODUCTION 

Scattered point data are common in the geological sciences; earthquake 
epicenters, the locations of mineral deposits, and oil plays are examples of geologic data 
that are represented as point data.  Two questions are common with these data: “Are the 
points related to some other geologic feature?” and “Do the points themselves exhibit a 
pattern?”  

One of the difficulties of statistically analyzing scattered datasets is that the data 
often occur within irregular study areas.  A null hypothesis of randomness, in this case a 
set of randomly located points, is often the starting point for any analysis.  Complete 
spatial randomness for points is defined as a set of points whose locations are an 
independent random sample taken from a distribution of equal probability across the 
study region (Diggle, 2003).  This implies that the location of a given point is 
independent of the location of any other point.  In other words, the points do not interact 
with one another.   

A typical method of generating distribution parameters of point data sets 
satisfying complete spatial randomness within an irregular study area is Monte Carlo 
simulation, where randomly located points are added to a study area and the properties 
are averaged over 100 or more simulations (Diggle, 2003).  While this method is robust, 
it often requires programming effort to meet the needs of the particular analysis, requires 
computing power, and does not necessarily offer any insight into the problem.   

3 



Some distributions can also be estimated more directly than by the use of Monte 
Carlo simulations.  Such direct methods commonly require less computing time, less 
programming effort, and ultimately offer more insight into the problem at hand.  As will 
be seen, for example, distributions based on a null hypothesis of complete spatial 
randomness can be conveniently estimated in at least two cases by using powerful raster 
processing tools available in modern GIS software packages. 

The first case, the problem of investigating the spatial relationship of scattered 
point data to other objects, was described by Okabe and Fujii (1984).  The second case, 
the problem of investigating the randomness of a scattered dataset itself, can be derived 
from principles developed in solving the first case.  The following sections are devoted to 
exploring methods of approaching both problems, using a dataset of damage to pavement 
and pipe breaks caused by the 1989 Loma Prieta earthquake as the point dataset, and a set 
of mapped areal photographic lineaments as the objects which may be spatially related to 
the earthquake damage. 

 
DATA AND SOFTWARE 
 

The 1989 Mw 6.9 Loma Prieta earthquake (U.S. Geological Survey, 2007), the 
epicenter for which was located roughly 100 kilometers south of San Francisco, 
California, caused damage to many types of public works, including roads and sidewalks, 
throughout Santa Clara Valley (figure 1).  The location and type of damage were mapped 
via extensive fieldwork and database compilation (Schmidt and others, 1995).  1427 
observations, taken from fieldwork, the records of utility and transportation institutions, 
and local governments, were recorded for a 663 square kilometer area. Schmidt and 
others (1995) exhaustively searched roads and parking lots within the study area, 
measuring contractional damage indicators for ground level damage, pavement breaks 
and curb breaks.  They added to this field data by incorporating damage for sub-surface 
gas and water line ruptures, data shared by local utility, transportation, and governments.  
In all, five types of damage were recorded (asphalt, channel lining, concrete, gas line, 
water line), in addition to the sense of deformation (if any), the freshness of the damage, 
and whether or not the damage was at or below the ground surface.  Damage to structures 
was not included because it depends upon building construction, materials, and design, 
and the damage cannot be constrained to the Loma Prieta event. Sidewalks, pavement, 
and other public infrastructure works are more commonly built to uniform specifications 
and can therefore be used to detect ground motion in a consistent manner.  In this report 
only the location of the damage is considered in the analyses; analyses based on subsets 
of the data would be a reasonable next step for further research.  For further information 
discussing the 1989 Loma Prieta earthquake the reader is directed to U.S. Geological 
Survey Professional Papers 1550-1553. 

The (unpublished) digital version of damage recorded in Santa Clara Valley is 
used as the example scattered data for analysis in this report.  While the data were 
collected by plotting the locations on 1:24,000-scale topographic maps (before the 
widespread use of GPS), subsequent digitizing and registration to scanned topographic 
maps indicates a relatively high level of positional accuracy, where data points often plot 
on the correct side of the street.  While not all points were checked, this observation 
suggests the data points are accurately located to within a few meters.  
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Hitchcock and others (1994) mapped a series of areal photographic lineaments as part of 
a Quaternary geologic mapping study to investigate seismic activity along the eastern 
range front of the Santa Cruz Mountains, where the mountains abut Santa Clara Valley.  
The lineaments are based on several types of geomorphic and photographic features, such 
as topographic scarps and depressions, stream sinuosity, vegetation lineaments, and tonal 
changes in the ground surface.  The lineament database  used in the next section is an 
unpublished digital rendition of geology from plate 2 of Hitchcock and others (1994). 

The GIS software used to test and implement the methods described in this report 
was the commercial package Arc/Info, and the associated product ArcMap (ESRI™).  
Arc/Info has built-in tools to generate many of the analytical results used in this report, 
including density maps, buffers, nearest-neighbor distances, point-in-poly operations, and 
database merges and queries.  Appendix II contains pseudo-code for the analytical 
operations performed in this report.   

The commercial statistical software package Splus (Insightful™) was used for the 
statistical analysis, including graphical displays, analysis of distributions, and goodness-
of-fit tests. 
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Figure 1 Location of the Santa Clara valley in the San Francisco Bay area, California, USA Damage used
in this repcrl frem the Lana Frieta earthquake was recocded within the study area shown in red



METHODS AND RESULTS 
In order to compare the observed pattern of a scattered point dataset to a null 

hypothesis of a pattern of complete spatial randomness one must be able to describe the 
null distribution for the study area in question.  This is often done in the literature by 
means of quadrat analysis, where the study area is broken up into squares of equal size 
(quadrats) and the frequency of the points per quadrat generates a Poisson distribution 
under complete spatial randomness (Diggle, 2003; Upton and Fingleton, 1985).  One is 
not always fortunate enough to have a rectangular study area, however.  The natural 
world often precludes rectangular study areas by imposing natural boundaries (e.g. rivers 
and lakes, forests, cliffs and other steep terrain), and existing datasets were not always 
created to conform to a rectangular study area.  If one does not wish to be limited in 
analyzing scattered datasets, methods must be developed to describe the distributions of 
complete spatial randomness for irregular study areas.  

The question “Are the points in a given scattered dataset related to some geologic 
phenomenon?” can be addressed by considering the geologic phenomenon as fixed, and 
the points as realizations of some process that is perhaps influenced by the phenomenon.  
Points are considered “events” that occur with some probability within the study area.  
For the null hypothesis of complete spatial randomness, the study area is considered 
homogenous; that is, a point has equal probability of being located anywhere within the 
study area, independent of features (e.g. topography, soil type, vegetation).  Now suppose 
that this assumption is violated: some geologic phenomenon creates inhomogeneities 
within the study area or some geologic process causes the points to locate non-randomly 
within the study area.  If the points and the geologic phenomenon are related, one might 
expect either a positive or negative spatial association between them, in which the points 
would either have a tendency to be attracted to, or avoid, the phenomenon.  In other 
words, in the end-member cases the points will either be co-located with the phenomenon 
or as far from it as allowable given space constraints.  The strategy, then, is to find a null 
distribution for the distance from the geologic phenomenon, under the assumption of 
complete spatial randomness, within the given study area, and compare this with the 
observed distribution.  If the observed distribution of distance from the geologic 
phenomenon is different from the null distribution, then one can determine if two are 
positively or negatively correlated. 

The question “Are the points themselves randomly located within the study area?” 
amounts to determining whether or not the scattered point dataset can be distinguished 
from complete spatial randomness.  A new method of examining whether a scattered 
dataset deviates from complete spatial randomness is described.  This method relies on 
the orientation specified by pairs of points within the dataset.   

Complete spatial randomness depends on the sample points being independent of 
one another.  No point may have an effect on the location of another point. Stated 
differently, if there are two processes influencing the location of points, then the effect 
from one may influence the statistical results calculated for another, and this would 
violate the assumption of independence (of course it would be very unusual to have only 
one process operating in any natural system, but one would like the dominant process to 
overshadow the rest).  Before any analysis begins the dataset should be examined for 
obvious effects from secondary processes. 
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Association of damage points with areal photographic lineaments:  an example from the 
Loma Prieta earthquake 

“Are the points in a given scattered dataset related to some geologic 
phenomenon?” is addressed for the example of comparing damage incurred during the 
1989 Loma Prieta earthquake in Santa Clara Valley, CA (figure 2), 

 
to a set of areal photographic lineaments mapped within an irregular study area along the 
range front of the Santa Cruz Mountains (Hitchcock and others, 1994), near the towns of 
Los Gatos and Saratoga (figure 3).  The study boundary is determined by using the full 
extent of the available geologic mapping presented by Hitchcock and others (1994), a 
somewhat irregular strip of mapping along the range front of the Santa Cruz Mountains.     

The example demonstrates the method for determining a spatial association 
between linear features and a scattered point dataset, but the method is easily extendable 
to point features or area features (Okabe and Fujii, 1984; Okabe and others, 1988).  For 
convenience, references to damage in the rest of this report will mean the damage from 
Loma Prieta earthquake in Santa Clara Valley as describe by Schmidt and others (1995), 
and the study area covered by the damage data will be referred to as the “damage study 
area.”  Similarly, references to lineaments will mean the lineaments mapped by 
Hitchcock and others (1994) and the study area encompassing the lineaments will be 
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referred to as the “lineament study area.”  The lineament study area is completely 
contained within the damage study area (figure 3). 

 
The lineament data have been cited as evidence to support the interpretation and 

mapping of reverse faults along and outboard of the range front of the Santa Cruz 
Mountains (Hitchcock and others, 1994; Hitchcock and Kelson, 1999).  This 
interpretation is supported by geophysical evidence of a steep-sided subsurface basin 
adjacent, and parallel to, the range front (Langenheim and others, 1997).  However, while 
some of the lineaments mapped are based on observed geologic features such as 
topographic scarps, others are based on vegetation or tonal changes seen in areal 
photographs.  The latter types of evidence are not necessarily indicative of fault activity.  
A spatial association of the damage with the lineaments would strongly suggest the 
features that define the lineaments are related fault activity.  If the damage is, on average, 
closer to the lineaments than would be the case for complete spatial randomness, then the 
lineaments and the damage tend to be co-located and are thus spatially related.  

To answer the question of whether or not the damage is associated with the 
lineaments a model of randomness must be constructed with which to compare the 
observed data.  Such a model can be developed by using the distance of each damage 
point to the nearest lineament.  If the damage and the lineaments tend to be co-located, 
the damage ought to occur on or near the lineaments.  If they avoid co-locating, the 
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damage ought to be as far as possible from the lineaments.  A spatially random 
distribution of damage locations would show no association with lineaments throughout 
the study area.   

The distribution of the distance of the damage to the lineaments can be obtained 
by measuring the distance of each damage point to the nearest lineament (considering 
only the subset of the damage data that falls within the lineament study area (as defined 
by Hitchcock and others, 1994)).  The problem then becomes how to generate the 
probability density function of the distance to the lineaments for a random process.  Once 
this is accomplished the two distributions can be compared. 

Assume the lineaments are fixed; that is, they are mapped correctly and properly 
located. This is not an insignificant assumption, but here the mapped features are taken as 
given. Then, over the lineament study area, one can compare the distributions of the 
distance of damage points to the nearest lineaments with the distance expected for a 
randomly distributed set of points.  

To obtain a random distribution, one need only consider the probability of a point 
falling in a particular sub-region of a given study area (Okabe and Fujii, 1984).  Since a 
random point has equal probability of falling at any particular place in the study area, the 
probability that it will fall in a given sub-region is simply the area of the sub-region 
divided by the total area (figure 4). 

   

 
 
Now consider the sub-region of the study area defined as any point greater than x 

and less than x+h distance from the nearest lineament (figure 5).  The probability of a  
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Figure 4. The area of the square is defined to be A,
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random point being between x and x + h distance from the nearest lineament in the 
lineament study area is simply the area defined by the buffer around the lineaments from 
x to x +h divided by total area.  If the probabilities for many buffers (for example, in 200 
m increments) are combined for a sequence of distances from zero to the farthest distance 
in the study area, the result is an approximation of the probability density function for the 
distance to the nearest lineament for a random set of points.   

This distribution can be numerically approximated by rasterizing the lineament 
study area and keeping track of all cells a given distance from the nearest lineament 
(figure 6).  The ratio of the area of the sub-regions between x and x + h distance from the 
nearest lineament to the total study area is simply the number of pixels  between x and x 
+ h distance from the nearest lineament divided by the total number of pixels in the study 
area (the units cancel).  This numerical approximation of the random distribution can be 
compared to the observed distribution of the distance of the damage points to the nearest 
lineament.  Since the resulting probability density functions are non-gaussian, a Smirnov 
test (Rock, 1988) can be used to test whether or not the two distributions are different.  

The above method is appropriate provided one assumption is satisfied: that it is 
assumed the observed process is, or at least could be, homogeneous over the study area.  
That is, the process is the same at any location in the study area.  For example, as a first 
approximation, damage is assumed to be equally likely regardless of the type of soil that  
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Figure 5. The lineaments (black lines) in the lineament study area (dashed outline, area = A) are butTered,
showing the sub-region that is between 250 m and 500 m from the nearest lineament (dark grey, area 0= or).
The probabllity that a randomly located point./h, will fall within the buflcred region is the arca of the
butTered region divided by the total area, or Pr/250<p;<500}o=atlA. where the numbers represent the
distance to the nearest lineament, in meters.



 

 
is present.  If the process is homogeneous (does not depend on soil type), it is then 
reasonable to compare this observed distribution with a random distribution that meets 
the same assumption of homogeneity.  A study area that includes sub-areas that affect the 
process differently is called inhomogeneous.   

The mapped damage is an example of an inhomogeneous point pattern, because 
the damage data consists of pavement breaks (these occur exclusively on paved areas i.e.: 
streets and sidewalks) and pipe breaks (also almost always occurring beneath streets, 
because utilities tend to follow public streets and rights-of-way).  Practically speaking, 
this damage cannot occur outside of an area covered by a street.  The process is therefore 
inhomogeneous over the both damage and lineament study area.  The total sample space 
is the subset of the study areas that are covered by streets and sidewalks.   

Changing the sample space changes the probability of a random point falling a 
given distance from a line because it changes the total area available to the random point.  
In order to calculate the probability for the inhomogeneous point process the area of the 
streets and sidewalks must be found.   

Finding this subset of the lineament study area would require coupling extensive 
data at the county level for street footprints, if such data could be obtained.  A scanned 
1:100,000 USGS topographic map of the streets for the lineament study area gives a 
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reasonable approximation of the area covered by streets and sidewalks, as can be seen in 
figure 7,  

 
which compares the scan to the 1995 digital orthophoto quarter-quadrangle for a portion 
of the area.  While certainly not error-free, the scan appears to approximate the area to 
within 10% to 20%.  In the subsequent analyses the scan will be used to generate the 
subset of the lineament study area for examining the inhomogeneous point process.   
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Note that the lineaments are assumed to be fixed, and the damage is taken as the 
process that is either related to these fixed features or not.  The question could have been 
posed conversely; are the lineaments located more closely to the mapped damage than a 
random process for generating lineaments?  In this case the damage points are the more 
stable features.  Based on geomorphologic evidence, the lineaments represent features 
that span a range of ages (Hitchcock and others, 1994).  If they are tectonic features, then 
one would expect them to span multiple events.  In this case the damage represented by a 
single event would not necessarily be associated with every lineament, but with a subset 
belonging to one or more fault strands experiencing activity in the Loma Prieta event.  
Therefore the question is posed such that the particular event is compared with the 
general tectonic framework.  
 
DECLUSTERING THE DATA  

The method described above assumes that the damage is not significantly affected 
by another process.  A density plot1 of the damage data (figure 8, top) shows the linear 
concentration of damage along the range front of the Santa Cruz Mountains apparent in 
figure 2, and the tight clustering of damage near the town of Los Gatos.  Previous authors 
(Hitchcock and Kelson, 1999; Langenheim and others, 1997; Schmidt and others, 1995) 
have noted the linear nature of the damage, and Schmidt and others (1995) noted the 
apparent clustering of damage, with 54% of the damage occurring in the Los Gatos 7.5’ 
quadrangle.  What is apparent in the density plot, and perhaps less apparent in figure 2, is 
the magnitude of the clustering relative to the linear concentration of damage.  The 
cluster of data near Los Gatos is by far the dominant signal in the point pattern, with the 
density of points almost four times larger than the density along the linear concentration 
of damage.  The cluster is at the southwest end of the Los Gatos embayment, a concavity 
in the range front near the town of Los Gatos (figure 2).  In addition to lineaments, 
several mapped faults are also present within the region of the cluster.  Is the cluster of 
damage due to local faulting, or another process, such as the shape of the embayment, 
which perhaps concentrated and focused seismic waves?  The interpretation of the 
statistical results depends on the answer to such questions, and the questions are typically 
not easy to answer.  If the clustering in the damage data (near Los Gatos) is due to a 
process independent of that which is potentially generating the lineaments, then the 
clustering will bias the resulting statistical analysis.   

In order to account for the possible bias of the cluster, it was modeled as a circular anomaly 
and the effect removed from the data.  This was accomplished by examining the 
characteristic location and shape of the cluster observed in the density plot.  The density plot 
shows the cluster of damage has a locus within the town of Los Gatos.  Furthermore, the 
cluster is a roughly circular phenomenon that appears almost isolated from the rest of the 
damage.  This can be seen in a cross-section of the density plot of figure 8 (top) that transects 
the cluster (figure 9).  A gaussian curve fit to this cross-section models the cluster well to two 

                                                 
1 Density plots in one dimension are “smoothed” histograms, created by counting the number of data points 
within a moving window (rather than within a fixed bin as the histogram does), and applying a weighting 
function to the points so that points at the edge of the window contribute less to the total count within the 
window.  In two dimensions the moving window is in the shape of a circle, typically tapering at the edges 
using a gaussian or quadratic kernel.  See Silverman (1986) for a complete description of density plots. 
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standard deviations.  The model indicates that the cluster has a center 
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within the town of Los Gatos2 and a radius of about 500 m.  There are 310 points within 
this area, and they seem to be attributable exclusively to the cluster, with little effect seen 
outside the model’s radius. 

The 310 points within a 500 m radius of the center of the modeled cluster were 
removed, generating a dataset referred to for the remainder of this paper as the 
declustered dataset.  The density plot of the declustered dataset is shown in figure 8 
(bottom).  The resulting dataset should be free of the effect of the dramatic clustering in 
the town of Los Gatos.  However, it is possible that the clustering and the linear 
concentrations of damage are related to the same process as the lineaments, and that 
using the declustered dataset will reduce the sample size and introduce some bias.  Since 
the nature of the cluster is not clear, both the original dataset and the declustered dataset 
will be examined in this report, and the results compared.  
 
RESULTS:  Association of damage with lineaments  

As a first step, the point data is assumed to be homogenous over the lineament 
study area.  To numerically approximate a random distribution of locations assuming a 
homogenous process (the probability is the same throughout the study area), the 
                                                 
2 coordinates are (590285, 4120396) UTM zone 10 NAD27 
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lineament study area was rasterized at 5 m, and the distance of the center of each raster 
cell to the nearest lineament was recorded.  This created a distribution against which to 
compare the observed distribution of damage.   

In general the shape of these histograms is asymmetric and skewed to the right.  
This is caused by two competing effects: the increase of area with distance away from an 
object (the area between 1 and 2 radii from a point, for example, is less than the area 
between 2 and 3 radii from the point), and the confines of the study area.  Thus these 
histograms will increase until the restrictions imposed by the study boundaries limit the 
area available at large distances from the object.  For a circular study area and a single 
point at its center, the histogram of the area at a given distance from the point will 
increase until the radius is reached.  For an irregular study area with multiple objects, the 
amount of area available within the study area (typically) gradually tapers off with 
increasing distance from the objects. 

Figure 10 shows the histograms and density plots of the random and observed 
distributions. The median of the observed distribution, approximately 119 meters, is less 
than half the median of the random distribution, which is 240.  Also note that the 
frequency of observed distances falls off much more rapidly towards the asymmetrical 
tail of the distribution than the random distribution.  From this one can infer that the 
damage points are likely to be associated with the lineaments.  In general, the damage 
points are simply closer to the lineaments.   

A more formal statistical test can be performed to demonstrate that the 
distributions are different.  Figure 11 shows the cumulative distributions for both the 
random and the observed data sets.  Again, assume that the points within the damage 
dataset are independent of each other; and that there is no tendency of clustering or 
avoidance among the points themselves.  Any spatial association between the damage 
and lineaments is interpreted to be due to external influences, and in this case tectonic 
processes are the likely candidate.  A two-sided Smirnov test, which is based on the 
difference between the two cumulative distributions, confirms the two distributions are 
different at greater than the 99% confidence level.  From the data it can be seen that the 
observed damage points are more closely associated with the lineaments than the random 
dataset, thus the two tend to be spatially related. 

Now consider the inhomogeneous case, where damage is assumed to be 
homogeneous only within the area covered by streets.  In the previous analysis it was 
assumed that the entire lineament study area was homogeneous, but this is not the case 
since the damage dataset only records damage in areas covered by streets.  To take this 
into account the null hypothesis must be developed excluding the sub-areas that cannot 
contain damage to pavement and pipes breaks.   

Using the approximation of the lineament study area provided by the scanned 
USGS map discussed in the previous section, the same calculations (finding the distance 
to the nearest lineament for each cell) were performed.  The result is the distribution of 
the null hypothesis of spatial randomness under the condition that only areas covered by 
streets can contain a damage point.  Figure 12 compares the two null hypotheses of 
randomness, that considering the entire study area and that considering only the area 
covered by streets.  This comparison shows the difference between the two null 
hypotheses of complete spatial randomness, the first which considers the entire study 
area, and the second which considers an area restricted to the streets that occur within the  
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Figure 10. Histogram of the random and observed distributions of the 
distance to the nearest lineament, in meters.  Dashed lines show the 
median.
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Figure 11.  Cumulative distributions for the distance to the nearest lineament for a random set of points (solid, lower curve) and for the observed 
damage dataset (dashed, upper curve), for the lineament study area.
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study area.  The median of the latter distribution is 249, and the histograms are seen to 
match closely. Figure 13 shows a quantile-quantile plot comparing the distributions.  In 
this case the difference between the two distributions is not great.  Apparently the streets 
offer a robust sampling of the lineament study area, and the change to the distribution of 
the null hypothesis is minimal.  Therefore the comparison of the observed damage to the 
null hypothesis of complete spatial randomness performed in the previous section is 
unchanged. 

The previous analysis of comparing the observed damage to a null hypothesis of 
complete spatial randomness assumes that the cause of the damage is related to processes 
causing the lineaments, namely faulting along the range front of the Santa Cruz 
Mountains.  If the large cluster of damage near Los Gatos, discussed in the previous 
section, is caused by a different process, say the focusing of seismic waves, then damage 
in this cluster could be adding bias to the statistical results.  To address the question of 
whether or not the cluster is biasing, or even driving, the analysis, the analysis was 
repeated using the declustered damage dataset.   

A repeat of the analysis confirms the original results, although the observed 
distribution for the declustered dataset is not quite as sharply peaked, as shown in the 
histograms in figure 14 where it is compared with the distribution for the homogeneous 
lineament study area.  The median has shifted from 119 meters to 154 meters.  This 
indicates that the clustering does have an effect. The median of the declustered data set is 
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Figure 12. Histogram plots of the homogeneous (entire study area) and
 inhomogeneous (area covered only by streets) distributions of the distance 
to the nearest lineament, in meters.  Dashed lines are medians.
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Figure 13. Quantile-quantile plot comparing the distribution of the homogeneous (entire study area) and inhomogeneous (streets only) distributions of the 
distance to the nearest lineament within the lineament study area.  The distributions are very close to one another.

 
still closer to the lineaments than a randomly located set of points, but less dramatically 
so.  The cumulative curves are shown in figure 15, and a two-sided Smirnov test again 
confirms that the distributions are significantly different from each other at the 99% 
confidence level.  The damage points are located more closely to the lineaments than a 
randomly located set of points, even after the clustering effect has been mitigated and the 
inhomogeneity has been accounted for. 

 
Investigating the lineaments by treating them as zones 

Previous paragraphs have treated the lineaments as independent, individual lines. 
If instead one wishes to treat the lineaments as representing zones, then one must first 
convert the lineaments to zones, areas over which the process that generated the 
lineaments operates.  Once zones are identified, points can be compared with them.  
Reasons for treating the lineaments or damage as zones might be that they are thought to 
be an expression of a stochastic process that operates over a zone, for which the existing 
lineaments or damage are one realization of that process. 

To convert the lineaments to zones, one must first decide how to define the zones. 
A simple way would be to specify some distance, d, from the lineaments, less than which 
is defined as within the lineament zone.  One could then buffer the lineaments at the 
distance d to create the polygonal zones.  The damage could be examined to see if a 
majority was located within the lineament zones.  However, this is a binary version (only 
two options are considered: less than distance d, and greater than distance d) of the  
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Figure 14. Histogram plots of the random and  observed distributions 
of the distance to the nearest lineament, in meters, after removal of the 
damage cluster.  Dashed lines show  the median.
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Figure 15.  Cumulative distributions for the distance to the nearest lineament for a random set of points (solid, lower curve) and for the observed 
damage dataset (dashed, upper curve), for the declustered lineament study area.
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original problem addressed in the previous section, where the entire range of distances of 
damage from the nearest lineament was considered. The binary case is a simplified 
version that considers only a single distance, d.  Therefore if one defines the zones by 
means of a buffer, nothing is gained over the original analysis.   

An alternative to buffering the lineaments is to calculate the lineament density, as 
was done for the damage density in the previous section.  In the case of linear features, 
the total length of features within a specified window is calculated across the map.  The 
units are length per area.  Again, the analyst must determine the size of the window.  The 
density of lineaments in the lineament study area was determined using a 400 m window 
and a cut-off density of one standard deviation above the mean lineament density.  This 
was chosen to satisfy the author’s judgment that the lineament zones should surround 
areas with abundant lineaments, yet not extend too far beyond the outer edge and into the 
adjacent empty space.  Larger window sizes generate zones that extend beyond the 
concentration of lineaments into adjacent empty space, and smaller window sizes do not 
adequately combine dense areas into zones.  Figure 16 shows the zones of lineaments 
defined as areas that are above the mean density of lineaments in the study area (top left), 
and as areas that are one standard deviation above the mean density of lineaments in the 
study area (top right).  The first definition is compared with a buffer of 200 m from the 
lineaments (bottom left).  This definition of a zone and the buffer are very similar, and 
are both judged to extend too far beyond the outer lineaments in the lineament groupings.  
The second definition of a zone, all areas one standard deviation above the mean 
lineament density, is deemed superior, and is shown with the lineaments (top right) and  
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the damage (bottom right) overlain.  While the zones are ultimately defined based on the 
judgment of the analyst, the procedure used to define the zones is quantitative and 
repeatable.  This allows for a quantitative comparison between datasets, something that is 
not possible if the procedure used to define the zone boundaries were based solely on 
judgment (as in a visual assessment).   

The area where the density of lineaments is greater than one standard deviation 
above the mean within a 400 m moving window defines the zones of lineaments within 
the lineament study area.  The area within the lineament zones makes up approximately 
31% of the total lineament study area.  The zones can now be compared with the damage 
data.  Since, as determined in the previous section, the streets seem to offer a robust 
sample of the lineament study area, the complication of using an inhomogeneous study 
area is not considered in the following analyses.   

One would expect that with 31% of the area covered, about 31% of the points 
should fall within the covered area.  We can use the binomial distribution to test the 
hypothesis that the points are randomly distributed in space.  Considering all damage that 
falls within the lineament study area, 652 out of 1046, or approximately 62%, of damage 
points fall within the lineament zones (figure 17).  The probability that at least 652 out of 
1046 points fall within the damage zone is essentially zero (less than 4.5 x 10-14), thus we 
must reject the hypothesis that the damage is randomly distributed.  The damage clearly 
shows a spatial association with at least some of the zones defined by the lineaments.   

The same analysis can be performed using the declustered dataset, to mitigate the 
influence of clustering processes on the analysis, as discussed previously.  For the 
declustered lineament study area, the lineament zones make up 30% of this area.  In the 
declustered dataset there are 353 out of 735 damage points, or approximately 48% of the 
points, that fall within the lineament zones.  This leads to 222 expected points within the 
lineament zones under the assumption of complete spatial randomness (based on the 
binomial distribution).  Again, the probability of 353 or more damage points falling 
within the damage zone is essentially zero (less than 6.4 x 10-14), and the damage clearly 
shows a spatial association with at least some of the zones defined by the lineaments. 

One can also compare the lineament zones with zones of damage generated from 
the declustered dataset, where the zones for the damage are defined using the same 
parameters: a 400 m search radius, and a cut-off of one standard-deviation above the 
mean.  The zones are overlain in figure 18.  The lineament zones make up approximately 
30% of the lineament study area, while approximately 53% of the area of the damage 
zones overlies the lineament zones.  While a formal statistical analysis of the probability 
of the proportion of irregular shapes overlying one another within an irregular area is 
beyond the scope of this paper, a few qualitative observations can be made regarding the 
overlapping zones.  The first is that 53% overlap seems rather significant, because under 
complete spatial randomness for a set of points one would expect about 30% overlap.  
The second observation is that the area of overlap shown in the inset seems to be the most 
significant overlap in the lineament study area.  No clear linear pattern exists across the 
study area to suggest damage follows along a particular set of lineaments that could be 
inferred to be a fault.  Rather, the zones overlap in patches, with perhaps the suggestion 
of a weak linear trend from southeast to northwest. 

Key decisions in the flow of the analysis in this section are based on the judgment 
of the analyst.  These judgments include optimal window sizes and cut-off values used in 



generating the density plots, and the method used to decluster the data.  In this sense the 
analyses are exploratory in nature.  However, as emphasized, the quantitative procedures 
defined for the analyses provide a quantitative foundation for repeating, and therefore 
comparing, analyses among different datasets.  Furthermore, seeking a quantitative 
procedure by which to define fuzzy concepts such as “lineament zones” or “clusters of 
points” helps focus attention on the logic behind the scientific intuition that is often used 
to guide analysis.  It is hoped that the procedures discussed have this effect. 
 
METHOD: comparing the damage data to complete spatial randomness, and looking 
for alignment of damage 

The previous section has suggested that the damage is preferentially located in 
zones similar to those defined by mapped areal photographic lineaments.  The following 
sections are meant to present general methods of analyzing a point pattern, of which the 
damage data is one example. The question of randomness of the damage data will be 
explored without considering the previous results so that these new methods may be 
illustrated.   

The map pattern of the damage in the Santa Clara Valley from the Loma Prieta 
earthquake appears to be concentrated in a linear band outboard of, and parallel to, the 
range front of the Santa Cruz Mountains.  There are also quite a number of damage points 
scattered throughout the damage study area. Is there a quantitative test that can be 
brought to bear that rules out the criticism that the damage points are randomly located?  
Can linear structure be quantitatively defined within the scattered damage points?   

To answer these questions a model of randomness (null hypothesis) must be 
constructed against which to compare the observed data.  For a sample of points 
distributed over an area, what is meant by an alignment of points?  One interpretation is 
that line segments defined by pairs of points tend to be aligned preferentially.  Points 
clustering about an imaginary line would result in pairs of points aligned in a particular 
direction over a range of distances, whereas points scattered about an area would result in 
pairs of points with no particular alignment, given the constraints of the study area.  
Figure 19 shows two synthetic datasets defined over a 1 km by 1 km region.  The first 
point set consists of ten points randomly located within the area, defined by combining 
ten random numbers, from 0 to 1, for the x-coordinates with ten random numbers, from 0 
to 1, for the y-coordinates.  The second point set consists of ten aligned points, defined by 
combining ten random values, from 0 to 1, for the x-coordinates and assigning the y-
coordinates according to the equation y = 0.6x+0.2 (an arbitrary line within the study 
area).  Each pairing of points within the study area defines a vector, and the distribution 
of the directions defined by vectors, referred to from here on as direction vectors, can be 
used to examine structure within a point set; namely, whether or not the points are 
randomly distributed throughout the study area, and whether or not other structure can be 
detected.  Direction vectors are simply the vectors defined by the pairs of points in a 
point set, and have length and direction defined as for any vector.  Direction, in this case, 
refers to the compass direction in which the vectors point; the head and tail of the vectors 
are less significant for this analysis.  In this paper the focus is on the orientation 
component of the direction vector and not the length. 
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Figure 19.  Location of 10 randomly placed points (left) and ten points placed randomly along a line (right) according to y=0.6x+0.2 (an arbitrary 
line).  The direction vectors connecting the random points will not show a preferential direction; the direction vectors connecting the aligned points 
will.
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Figure 20 shows the distribution of the direction vectors for both the random point set 
and the aligned point set shown in figure 19.  The distribution has been quantized into
bins and the bin mid-points connected by lines instead of using histogram bars.  This 
emphasizes the shape of the distributions, and allows them to be added together easily.  
Note how the random point set results in direction vectors distributed roughly uniformly, 
whereas the aligned point set produces direction vectors that are aligned in one direc
Strictly speaking, the study area must be circular for the random distribution of the 
direction vectors to be perfectly uniform, but practically the deviation from a uniform 
distribution caused by a square study area is less than 5 percent.  A Monte-Carlo test
100 simulations and 2000 points revealed that distributions of both the circular and
square stu

l.  
For a given point set with n points, and defining the direction vectors as any 

pairing of points other than a point with itself, there are n(n-1) total direction vectors.  
Half of these direction vectors are equivalent but of opposite sign e.g. direction vector
for points P1 and P2 are defined as P1 – P2 and P2 – P1.  For some analyses it may be 
useful to consider the full set of direction vectors.  Here north is defined as 0 degrees, and
only the direction vectors bet

-1)/2 in the point set. 
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A set of randomly scattered points will, more or less, fill a study area.  The shape 
of the study area, however, may limit the amount of scattering possible for a set of 
randomly located points.  The direction vectors will therefore be biased by the shape of  
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Figure 20.  Frequency of direction vectors, in 5 degree intervals of compass direction, for the random point set and the aligned point set.  The direction 
vectors of the random point set show a roughly uniform distribution, whereas the direction vectors of the aligned point set show a peaked distribution 
in the direction of the line along which the points fall.
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involves finding the probability density function for a fixed point paired 

the study area.  A circular area containing randomly scattered points produces no 
preferential direction for pairs of points, on average, and the resulting distribution 
pairs of points is the uniform distribution.  However, for an irregular area the random
distribution of direction vectors is not so straightforward. This is beca

 area may afford the opportunity for more points in one sector, biasing the 
resulting direction vector distribution. For irregularly shaped areas methods must be 
developed for defining the random distribution of direction vectors.  

One way to accomplish this is by Monte Carlo simulation: generate random p
within the study area, measure the distance and direction for all pairs of points, re
experiment m

ming and a fair bit of computer time, but has the advantage of producing an 
experimentally robust probability distribution where confidence intervals can be 
estimated.   

Another approach is to calculate the probability using a numerical approximatio
of the theoretical solution.  This approach is advantageous because it is straightforward
and rapid once the method is understood. This approach is best explained in two parts.
The first part 
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with ea ych member of a randoml  located point set within a study area, and the second 
involves combining many of these into an overall probability density function for the 
entire area.   

Consider a fixed point, 1P, within the study area (figure 21).  Within the study 
boundary there is a fixed amount of territory that is between angle θ  and angle θ + h
from 1P.  This territory consists of two wed ped areas opposite each other  eithe

de of 

 
ge-sha r 

si .  A point,
on

1P iP, added g to either of these wed e-shaped areas would result in a 

direction vector, defined by the point pair ( )jPP ,1 , having an angle of between θ  and 
θ + h,  ( ) hPP j +<∠< θθ ,1 . If the second point, jP, is added to the study area at random, 
it is as likely to land at one location within the study area as any other. Therefore the 
probability of a point landing in the area defined by the wedges is equal to the area of t

wedges divided by the total area under study. This is shown in figure 21 as 

he 

A
a1 , where 

is the combined area of both wedges and A is the total study area.  Dividing the study 

1a  

 area up into n n wedges for  desired slices of  degrees each and r ing the rah ecord tio of
A
aj   

for each point pair ( )jP,  wP1 ill result in a p nsity functio  for the f xed point, robability de n i
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1P.  

 
This probability density function can be numerically approximated by estimating 

the area of each wedge. This is accomplished by rasterizing (representing the study are
by a finite number of pixels) the study area and counting the pixels (which have a known
area) between 

a 
 

θ  and θ + h degrees from 1P, for all cells in the raster dataset. So, by 
rasterizing the study area, a probability density function for the angle from a fixed point, 

1P, can quickly be constructed by comparing 1P to every other cell in the raster datase
The second part of the explanation extends this idea to all points in the study a

Let each raster cell (pixel) within the study area represent a point, denoted i

t.  
rea. 

P or jP .  For 
each point, iP, consider the direction vectors for all paired points ( ) jiji PPPP ≠∋,, , in the study 
area. This yields the probability density function for the angle of a direction vecto
created 

r 
by adding a new point, iP.  Summing across all points jP  within the study area 

yields the probability density function for the angle of direction vectors created by all 
pairs of a set of random points ( )ij PP , within the study area.  

An approximation of the probability density function for the direction vec
pairs of random points within the irregular study area ca

tors of 
n be constructed by rasterizing 
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Figure 21. Given a fixed point, PI, in the damage study area (outlined in black), the probability that a
rnndomly located point, Pi> will fonn a direction vector,plp" with a compass direction of between 0 and O+h
is the area of the sub-region that is within the state<! compass direction (dark grey) divided by the total area
of the study area, p,.{O<p,P,<O+h}=(JIIA.



the study area at the desired level of precision and calculating the directions for all pairs 
of points.  Since each raster cell has the same area, the units cancel and one need only 
consider the number of points within a given direction to the total number of points 
within the study area. 

Now that a method exists to generate a probability density function of the 
direction vectors for a randomly located set of points within an arbitrarily-shaped area, 
the resulting theoretical distribution can be compared to an observed distribution. Since 
both distributions are circular and non-gaussian, a Chi-square test based on circular ranks 
test can be employed to see if the distributions differ significantly (Fisher, 1995).  

 
RESULTS: comparison to complete spatial randomness and alignment of 
damage 

To test whether the damage points are non-randomly located, a distribution of the 
direction vectors for randomly scattered points was compared to the empirical 
distribution of direction vectors for the study area.  This test is comparing the damage 
data with complete spatial randomness, so the entire dataset, rather than the declustered 
dataset, should be used. The reason for this is that the relation of damage to one or more 
processes would legitimately indicate a departure from random behavior; additional 
processes controlling damage locations does not affect the outcome of the test.  The 
distribution of direction vectors for a random set of points was constructed using the 
numerical approximation method discussed in the previous section. A histogram of the 
direction vectors, with a density line superimposed, is shown in figure 22 (bottom).  Note 
how the shape of the study area causes a preferential alignment in the northwest 
direction.   

The distribution of direction vectors for the observed damage locations are shown 
in figure 22 (top) as a histogram and density plot.  There are over one million direction 
vectors for the sample of 1427 damage locations.   Note that the two histograms differ 
somewhat in shape, but more importantly the mode in the random distribution is 
displaced from the mode in the observed distribution.   
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Figure 22. Combined histogram and density plots (black lines) for the observed distribution of direction 
vectors (top) and the theoretical distribution of direction vectors (bottom).  Note that the observed 
distribution is multimodal, whereas the theoretical distribution is (largely) unimodal.  The y-axis is base
on the density plots, which normalize the area under the density curve to one.
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Figures 23 and 24 compare the distributions to each other, using a quantile-
quantile plot and cumulative plot, respectively.  As the quantile-quantile plot (figure 23) 
shows, the two distributions differ noticeably, with the observed distribution having 
much fewer direction vectors in the range of -90º to about -50º than the random 
distribution.  This difference also stands out on the cumulative distribution plot (figure 
24), which is the distribution that is used for the Chi-square test based on the circular 
ranks test to compare two distributions.  Judging visually, there is a clear distinction 
between the two distributions. 
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Figure 23.  Quantile-quantile plot comparing the observed and theoretical random 
distributions formed by the direction vectors. 

 
 

The non-parametric Chi-square test based on circular ranks was performed to 
quantify the difference between the two distributions (Fisher, 1995).  The test showed a 
highly significant difference, beyond the 99% confidence level.  However, such tests can 
be sensitive to very large sample sizes.  For example, Rock (1988) points out that the 
significance levels for large (>100) samples are approximated for the Smirnov test, the 
non-parametric test used to distinguish two different distributions in the previous section, 
so supporting evidence for the degree of difference between the distributions would be 
helpful. 

A Monte Carlo simulation that placed points within the study area at random 
locations was performed to test the veracity of the numerical approximation method and 
to confirm the results indicated by the Chi-square circular ranks test.  1427 points, 
equivalent to the sample size of the damage observations, were distributed at random 
locations throughout the study area, and the distribution of the direction vectors 
calculated.  100 simulations were performed, and the average, 0.05, and 0.95 quantiles 
recorded at five degree intervals.  Figure 24 displays the results of the Monte Carlo  
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Figure 24.  Cumulative distributions of the direction vectors for the theoretical random, mean monte carlo random (including the 0.05 and 0.95 quantile 
confidence intervals), and the observed damage data set.  The mean monte carlo and theoretical random distributions are almost indistinguishable in this plot.
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Figure 25 (close-up).  Close-up of figure 25, showing that the difference between the theoretical distribution calculated numerically is close to the mean 
monte-carlo simulation, and within the 0.05 and 0.95 confidence envelopes.

 
simulation, including the 0.05 and 0.95 quantiles that serve as confidence envelopes.  The 
distribution of the direction vectors for the average Monte Carlo simulation and the 
numerically calculated distribution are indistinguishable in the figure, and upon close 
inspection show only very minor deviations from each other (figure 25 shows a close-up 
of the graph, to better distinguish the numerically-calculated theoretical distribution of 
complete spatial randomness and the mean Monte Carlo distribution of complete spatial 
randomness).  This indicates that the numerical solution is a viable alternative to Monte 
Carlo simulation for this type of analysis.  The 0.05 and 0.95 quantile confidence 
envelopes are also quite close to the average distribution, indicating that there is little 
variation within the random distribution of direction vectors, at least with the sample size 
given.  The observed distribution is clearly outside of the 0.05 and 0.95 confidence 
envelopes, supporting the results of the Chi-square circular ranks test.  The damage data 
is clearly not randomly distributed. 

Three potential problems with the investigation must be mentioned.  The first is 
preferential sampling due to the limitation of damage being confined to public areas, 
primarily streets.   Since streets are commonly arranged in grids, there is the danger of 
sampling finely parallel to the streets and coarsely at an angle to them, introducing 
anisotropy into the sampling process.   However, a street map of the study region 
revealed no such systematic pattern to the street network, and the previous investigation 
showed minimal bias in the lineament study area.  The study area is large enough to 
ncompass several communities, each with separate street patterns that do not coincide in 

 

 

e
direction with each other.  A related problem is that sampling along streets can introduce 
a linear pattern in the data for small local areas.  This is noticeable within the large cluster
describe in the previous section.  The third potential problem is the possible association 
of damage with surface geology.  While there is undoubtedly a relationship between the
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two, the surficial geology is also closely related to the tectonics of the area, with alluvial 
fan units forming along the mountain front and giving way to broad mudflats towards the 
shore of the bay.   This creates a trend in the spatial arrangement of the Quaternary 
geologic units.  The damage points do not appear to be preferentially associated with any 
particular geologic unit.  Indeed, they seem to cut across the grain of the Quaternary 
geology.  Since there is no obvious relationship between the two independent of the local 
tectonic influence, and the two likely co-vary because of this, it is assumed that the 
Quaternary geology has an insignificant effect on the location of the damage. 

The results indicate that the observed distribution of damage in the Santa Clara 
Valley differs from that of randomly distributed locations.  Furthermore, the observed 
distribution shows distinct peak at the mode, 40º northwest (figure 22).  This peak is 
narrower than the broad mode of the random distribution.  This suggests preferential 
alignment of points at 40º northwest.   

The numerical method used to test the null hypothesis of a random distribution of 
direction vector orientations is a viable alternative to Monte Carlo simulation, and may be 
preferred because it is easy to calculate.    

 
DISCUSSION: Development of a process model and a method of spatial filtering 
 

Visually the pattern of damage in Santa Clara Valley seems to be preferentially 
aligned in a northwest direction along a single, major line near the range front, with 
perhaps some smaller, secondary alignments further from the range front, and some 
scattered points throughout the study area (figure 2).  The density plot (figure 8, top) also 
shows that a significant cluster appears in the dataset near the town of Los Gatos and the 
distribution of direction vector orientations for the damage locations also shows a 
prominent spike at approximately 40º northwest.  It appears at least three patterns are 
combined within the damage data.  The damage forming the cluster pattern was separated 
previously.  Is there a quantitative model that can be applied to the dataset to separate the 
declustered damage into two subsets, one representing a linear pattern and the other a 
random pattern?   

 Visual inspection of the declustered damage, and the distribution of the resulting 
direction vector orientations, suggest a simple end-member model for damage, namely 
that damage is either aligned in a northwest direction, or scattered randomly throughout 
the study area.  This combination of patterns would result in the direction vectors being 
defined by a mixture of pairs of random points, pairs of aligned points, and pairs of one 
random and one aligned point. 

To investigate this behavior, consider the synthetic dataset of random and aligned 
points from figure 19, combined into one plot in figure 26.   
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Figure 26.  Location of 10 randomly nts and ten points placed randomly along a line according to 
y=0.6x+0.2 (an arbitrary line).  The direction vectors connecting the random points will not show a preferential 
direction; the direction vectors connecting the points along the line will.

 
The direction vectors for this point se will re total of 190 dire n vectors 
(20*19/2), 45 of which are generated by pairings of aligned points (10*9/2), 45 of which 
are generated by pairings of random points, and 100 of which are generated by pairing a 
random point with an aligned point.  Figure 27 (top left) is equivalent to figure 20, and 
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figure 27 (top right) adds the direction vectors for the random-aligned pairings.  The 
direction vectors in figure 27 (top right) add together to create the distribution of 
direction vectors for the whole point set, shown in Figure 27 (bottom left).  Note that the 
distribution of direction vectors for the random-aligned pairings is roughly uniform. One 
way to think of this result is that a single point, when added to a random point set, will 
produce direction vectors that appear random.  The direction vectors for the random-
aligned pairings is the combined direction vectors for each aligned point with the random 
point set.   

One can consider the direction vectors associated with the pairing of the aligned 
points as a signal, and the rest of the direction vectors as noise.  This can be defined by a 
noise factor, k, where  is the number of aligned points, and therefore 

1) 
is the total number of points in the point set.  In general, increasing n will cause 
percentage of signal in the direction vector distribution to decrease towards   

2) 

an
nkna =   

2
1
k

. 

 
 
so as the size of the point set increases, the proportion of direction vectors 

considered noise approaches 2

11
k

−  (see Appendix I for proof).  If the signal-to-noise 

ratio (in this case the ratio of the direction vectors considered signal to the total number 
of direction vectors) can be estimated from the direction vector distribution, can be 
estimated by the relationship defined above: 
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where R is the proportion of direction vectors considered signal to the total number of direction 
vectors, is the number of aligned points, n is the total number of points in the set, and k is a 
constant.  
 

For large values of n the equation simplifies further,  
since    
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For example, consider the direction vector distribution for the point set above, as 

if the structure of the point set were unknown.  The distribution suggests an alignment of 
points at north 55º east, and randomly distributed direction vectors otherwise.  The mean 
frequency of the data, excluding the peak direction of 55º east, is 4.11 direction vectors 
per 5º.  Assuming this applies to all directions, there are 148.11, or 148, direction vectors 
that are in the noise category, and therefore 42 direction vectors in the signal category.  
The ratio of direction vectors considered signal to the total number of direction vectors is 
therefore 42/190.  By equation 3, the number of aligned points in the point set is 

42/190/20 =9.4, or 9 points.  Considering the direction vector distribution for each 
individual point, the points with their direction vector mode at 55º east are logical 
candidates to be the aligned points.  In this synthetic example there are 10 points with 
equal frequency of direction vectors for 55º east, with no clear way of distinguishing 
them.  The model considers only the average random response, and has not accounted for 
the individual character of this dataset.  In this synthetic example the number of aligned 
points is under-predicted because the model assumes that there is a random component to 
all directions.  In this small sample, no random point fell in the aligned direction, and 
thus the random signal was absent in the aligned direction.  Since the calculated number 
of aligned points is approximate, bringing additional information to bear on borderline 
cases would be the next step in any investigation. 

Clusters of points can also produce a peak in the direction vector distribution.  
Figure 28 shows the distribution resulting from taking the 10 random points in a 1 km by 
1 km area described above, and adding one point to the point data set at ten times the 
range (10 km away).  In this modified dataset the random points behave like a cluster, 
and the added point is an outlier.  As can be seen from the figure, the direction vector 
causes a peak in the distribution of direction vectors.  Two clusters sufficiently distant 
from one another essentially form a line between each other, and therefore cause a peak 
similar to collinear points.  As with the lineaments, clusters of points can the bias the 
results of the analytical method discussed in the previous paragraph.   

The previous example has shown that the direction vector distribution for a point 
set can

rate the components of the direction vector 

as been quantized i  5º bins  

 be thought of as different components adding together to create the total 
distribution.  Given a direction vector distribution, one can construct simple models of 
linear structure and attempt to sepa
distribution.   For a simple model of aligned points and random points, one can estimate 
the number of aligned points, and, using the direction vector distribution for each 
individual point, develop a set of candidate aligned points.   In this case the direction 
vector distribution can be used as a filtering process. 

For the observed damage dataset, the declustered data is used to avoid the 
problem the large cluster in the town of Los Gatos will cause.  Small clusters in the data 
will still have an effect, but the largest effect will be minimized.  The histogram of the 
distribution of direction vectors for the declustered dataset is shown in figure 29 (small-
dashed line; in this figure, as in figure 20, the distribution h nto
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Figure 28.  Distribution of direction vectors for the set of ten randomly located points and an
additional outlier point located at ten times the range of the random points.  The distribution 
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and the bin mid-points connected by lines instead of using histogram bars, in order to 
emphasize the shape of the distribution and to be able to subtract one distribution from 
the other).  It has a similar shape to the complete observed damage dataset.  The largest 
number of random direction vectors possible, without exceeding the observed number of 
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direction vectors at any given point, is fit to the distribution of direction vectors for the 
declustered dataset (figure 29, large-dashed line), and subtracted from it, to obtain the 
residual distribution (figure 29, solid line).   The residuals have a clear peak from 55º to 
40º northwest. 
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Figure 29.  Distribution of direction vectors for the declustered damage dataset, a random dataset, and the residuals of the distribution of the 
declustered data minus the distribution from the random data.  
was fit to the declustered distribution.

The largest subset possible of  direction vectors forming the random distribution 

 

rection 

Figure 30 shows the results of choosing the damage points with their individual 
direction vector mode between 55º to 40º northwest.  That is, for any point iP , consider 
all direction vectors for that point: )},(),...,,(),...,,(),,(),,{( 321 nijiiii PPPPPPPPPP , 
excluding ),( ii PP , and select the mode of this distribution as the mode of the direction 
vectors for the point iP .  Figure 30 considers points whose mode is between 55º to 40º 
northwest.  When separated into groups according to their mode, the alignment of points 
is moderately linear, strongly linear, weakly linear and somewhat clustered.  The 157 
points having a direction vector distribution mode of 50º northwest, shown in the upper 
right of figure 30, show the strongest linear pattern.  There are 51,751 residual d
vectors 

i
for this direction.  Estimating the expected number of points from the direction 

vectors using a model of linear and random points leads to 22751751 ≈≈an , 
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overpredicting the observed 157 points having a direction vector distribution mode of
by about 30%.  If one considers the entire peak from 55º to 40º northwest, the direction
vectors must be added together in equation 4.  The estimated number of direction vecto

 50º 
 
rs 

for a pe ction ak signal from 55º to 40º northwest is 206377, out of a total of 1246572 dire
vectors in the entire distribution.  This results in an estimate of 454206377 ≈≈an .  
The total number of damage points with a mode from 55º to 40º northwest is 741.  The 
discrepancy between observed and predicted aligned damage is probably because the 
damage is not perfectly aligned, as the model demands, but are more dispersed, which 
causes fewer direction vectors to be aligned in one direction.  It therefore takes more 
points to generate the same number of direction vectors in the aligned direction.  It also 
indicates that the model of a linear alignment of points plus a random set of points is not
completely applicable to

 
 the declustered damage dataset.  This is most apparent for the 

oints with a direction vector distribution mode of 40º northwest, where outlier points in 
dy area can be seen responding to clusters of points in the 

souther is effect.  

st apparent within the damage data can be 
neaments.  The lineaments are aligned in a 

northwest-trending direction (figure 3).  If each straight segment of the mapped 
lineaments is considered as a vector (so that a single mapped lineament that consisted of 
many segments would be considered many vectors, connected head-to-tail), the mean 
direction of the lineaments can be found by calculating the mean direction of all of the 
vectors.  The mean direction of the vectors can be found by adding the vectors and 
calculating the direction of the resulting sum.  The component vector information is 
easily found by extracting the coordinate information from the GIS (appendix 2).  The 
mean direction for the mapped lineaments is 49º northwest.  Thus the prominent linear 
pattern within the damage data matches quite closely with the mean direction of the 
mapped lineaments, again suggesting a common factor, faulting along the range front of 
the Santa Cruz Mountains, links them.   
 
Problems with the model  

 
The method of fitting a model of aligned points plus random points to a scattered 

point dataset considers points aligning in a single direction. For practical application to 
faulting in geology, this may be somewhat limited, because faults may bend, or show 
more than one preferential direction. For investigation of points following a curving line, 
or for conjugate sets, the model for this simple analysis breaks down. In this particular 
area it is fortunate that nature seems to have fairly regular behavior.  

The method is also affected by the width of fault zones.  A fault zone adds short-
distance noise to the distribution of direction vectors, and the resulting direction vector 
peak in the direction vector distribution is not as pronounced.  This leads to an 
underprediction in the number of points producing the “signal”. 

Lastly, other structures in the scattered point dataset, such as clusters and outliers, 
or multiple clusters, can interfere with the signal of aligned points.  These structures are 
neither linear nor necessarily random, and must be investigated separately.  

p
the northern portion of the stu

n portion.  The declustering algorithm reduces, but does not eliminate, th
From the declustered data a clear linear trend emerges for 50º northwest, and a 
reasonably linear trend for 55º northwest.  For the directions 45º northwest to 40º 
northwest the trend is less linear and includes some signs of clustering patterns. 

The linear trend of 50º northwe
compared with the mean trend of the mapped li



 
SUMMARY AND CONCLUSIONS 

discuss me object than would be the 

subset of points that are aligned.  The techniques were demonstrated using a dataset of 
 

r 
objects (point, line, or polygon features), applying techniques previously developed in the 

the theo
for an a hypotheses of 

lineame
taset, such 

phenom
gaussia
bias present in the damage-lineament analysis.  The results demonstrate that the cluster is 

cluster 

each an
method
compared with that developed using Monte Carlo methods, and the two were found to 

damage
compar  

 

indicate
distribu modal, whereas the observed distribution of 

that a th union of a set of points aligned along one 
del for the patterns 

process dominates the signal of the entire dataset and that a linear signal can be seen 
when analyzing the declustered dataset, though some of the signal from clustering in the 
data is still present.  The most significant linear trend is 50º northwest, where the model 

Three analytical techniques relevant to the analysis of point patterns were 
ed: (1) testing whether or not points are closer to so

case with complete spatial randomness, (2) testing whether or not a set of points 
exhibited complete spatial randomness, and (3) a method of filtering a point set for a 

damage caused by the Loma Prieta earthquake and a dataset of mapped lineaments within
the damaged area.  

The first model of random behavior defined the relationship of points to othe

field of urban planning (Okabe and Fujii, 1984).  By applying basic probability theory, 
retical distribution of the distance a set of randomly located points to the objects, 
rbitrarily shaped study area, can be constructed and used as a null 

randomness for comparison with observed data.  The first model of random behavior 
defined the relationship of random points to a set of linear features, in this case 

nts.   
Since the above analysis can be sensitive to inhomogeneities in the da

as clustering, a declustering process was proposed that models a cluster as a circular 
enon whose point density decays from the center of the circle according to a 

n function.  When applied to the damage data, the declustering diminished the 

the most significant pattern in the data in terms of damage concentration and that the 
significantly influenced the results of the initial statistical analysis. 
The second model of random behavior defined the relationship of points to each 

other.  The theoretical random distribution of direction vector orientations, defined by 
d every pairing of points in a set of points, was constructed using numerical 
s.  This method of developing a random distribution of direction vectors was 

agree quite closely.   
The method outlined above was used to demonstrate that the locations of the 
 data are not randomly located throughout the study area.  The distributions were 
ed using a Chi-square test based on circular ranks, and the null hypothesis of

randomness was rejected.  The preferential alignment of the random process was found to
be about 60º northwest, whereas that of the observed process was 40º northwest.  This 

s that the observed process is biased to the north.  Furthermore, the random 
tion of direction vectors is uni

direction vectors is multimodal. 
The distribution of direction vector orientations for the damage data suggested 
eoretical model, composed of the 

direction and a set of randomly located points, was a reasonable mo
observed in damage data.  Using this as a base model, it was discovered that the cluster 
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predicted 227 points would be aligned in that direction, and in the observed damage 
 there were 157.  The linear trend in the damage data of 50º northwest matches 
osely the mean trend of the mapped lineaments, which average 49º north
Numerical methods can be used to develop null models of complete spatial 
ness over (planar) irregularly shaped stud

dataset
quite cl west. 

random y areas.  These models can be generated 
 
a 

set of p ction vectors resulting 
ligned.  

This fil dataset into component patterns of 
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oints itself exhibits complete spatial randomness.  The dire
from a point dataset can be used to filter a point dataset to find points that are a

tering process can be used to separate the point 
aligned and non-aligned points, provided a single linear pattern exists and clustering of 
points is not excessive. 
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APPENDIX I  
 
Given: the union of two independent sets of points defined on a plane, one a set 

of randomly located points, the other a set of points that fall along an arbitrary line, such 
that the total number of points in the union of the two point sets is n .  Direction vectors 
are generated by the pairing of points, with one direction vector for each point-pair.  The 
complete set of direction vectors is generated by the unique pairing of all points. 

 
Prove: the ratio of the number of direction vectors from the aligned point set to 

the number of direction vectors from the union of the two point sets approaches  2

1
k

 as n  

approaches infinity. 
 
Let  =an  the number of points in the aligned set  

 == nkna  the number of total points in the union of the two sets 
 

( ) =− 2/1aa nn  the number of direction vectors in the aligned point set, 
here considered signal 

( ) =− 2/1aa knkn the total number of direction vectors in the union of the 
two point sets 

 
Proof: the ratio of direction vectors considered signal to the total number of 

direction vectors for a given point set is  
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The limit of this ratio as ∞→n is 
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APPENDIX II   
Technical specifications for various spatial analysis tasks 
 

Declustering point data 
1. Convert the (vector) point pattern to a continuous surface by generating a density 

map.  
2. Digitize a cross-section line across the anomaly (visible on the density map); add 

vertices to the line at regular sampling intervals. 
3. Convert the cross-section-line vertices to points; extract the value of the density 

map at the location of the points.   
4. Output these sampled values (Y values) and their respective distance along the 

cross-section-line (X values) to a statistical package and model the anomaly. 
 
Approximating the probability distribution of the distance to the nearest line for 
complete spatial randomness  

1. If the study area is in vector format, convert the study area to raster in order to 
generate an approximation of a space-filling set of points. 
2. Convert the raster (cells) to (vector) points. 
3. Find the distance to the nearest line for each point, which as a set represent the 
entire study area (e.g. the NEAR command in Arc/Info).  Ensure that each record 
includes the line id number and distance.  This will allow for further analysis using 
subsets of data based on the individual lines. 
4. Output the distance data to a statistical package.  This distribution of distance is 
an approximation of the probability distribution of the distance to the nearest line for 
complete spatial randomness within the study area. 

 
Finding the observed probability distribution of the distance to the nearest line for a 
set of points 

1. For the observed data, find the distance of each observation to the nearest line 
(e.g. the NEAR command in Arc/Info).  Ensure that each record includes the line id 
number, point id number, and distance.  This will allow for further analysis using 
subsets of data based on the individual lines. 
2. Output the distance data to a statistical package.  This is the observed distribution 
of the distance of points to lines, and can now be compared with the approximation of 
the theoretical distribution. 

 
 
Finding the average orientation of lines based on individual line segments 

1. Consider each pair of vertices along the length of a line as a vector. 
2. Extract the coordinates of each vertex, in order, along the line, and calculate 

)( 12 xxx −=Δ and )( 12 yyy −=Δ  for each pair. 
3. To add the vectors and find the direction of the average vector, calculate 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ∑
Δ∑−

y
x1tan and convert the result to the compass direction. 
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