

Data Series 467

By James P. Dixon, U.S. Geological Survey, and Scott D. Stihler, University of Alaska Fairbanks

Data Series 467

U.S. Department of the Interior

KEN SALAZAR, Secretary

U.S. Geological Survey

Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2009

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Dixon, J.P., and Stihler, S.D., 2009, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2008: U.S. Geological Survey Data Series 467, 86 p.

Contents

Abstract		.1
Introduction	on	.1
Instrumen	tation	.2
Data Acqu	iisition and Processing	.6
Seismic Ve	elocity Models	.6
Seismicity	·	.7
Summary	1	0
Acknowle	dgments1	0
Reference	s Cited1	0
Appendix A	A. Maps of Monitored Volcanoes with Earthquake Hypocenters Calculated in 20081	3
Appendix I	B. Parameters for Alaska Volcano Observatory Seismograph Stations in 20084	15
Appendix (C. Locations of the Alaska Volcano Observatory Seismograph Stations in 20085	53
Appendix I	D. Operational Status for Alaska Volcano Observatory Stations in 20086	39
Appendix I	E. Seismic Velocity Models Used in Locating the Earthquakes in 20087	15
Appendix I	F. Location of Volcanic Zones Modeled Using Multiple Cylinders8	31
Appendix (G. Previous Alaska Volcano Observatory Earthquake Catalogs8	3
Appendix I	H. Selected Papers Published in 2008 Using Alaska Volcano Observatory Data	35
Figure	S	
Figure 1.	Map showing location of volcanoes mentioned in this report	2
Figure 2.	Log-log plot of representative displacement response curves for the	
	1	3
Figure 3.	Log-log plot of representative displacement response curves for the short-period stations using a Mark Products L22 seismometer	4
Figure 4.	Log-log plot of representative displacement response curves for the short-period stations using a Teledyne-Geotech S13 seismometer	4
Figure 5.	Log-log plot of representative displacement response curves for the broadband stations using a Guralp CMG-40T seismometer	5
Figure 6.	Log-log plot of representative displacement response curves for the broadband stations using a Guralp CMG-6TD seismometer	5
Figure 7.	Map showing earthquakes located by AEIC associated with the Kasatochi eruption	9
-	Map showing the May 2, 2008 M _w =6.6 earthquake with aftershocks and	a

Tables

Table 1.	Number of earthquakes located per year in the Alaska Volcano Observatory catalog	1
Table 2.	Number of Alaska Volcano Observatory seismograph stations by type	
	and year	3
Table 3.	Volcano subnetwork designators	7
Table 4.	Alaska Volcano Observatory event description codes	7
Table 5.	Number of earthquakes located for each seismograph subnetwork in	
	2007 and 2008 within 20 km of the volcanic centers in each subnetwork	8

Conversion Factors and Datum

Conversion Factors

Multiply	Ву	To obtain	
kilometer (km)	0.6214	mile (mi)	
meter (m)	3.281	foot (ft)	

Datum

Horizontal coordinate information is referenced to North American Datum of 1927 (NAD 27).

By James P. Dixon¹ and Scott D. Stihler²

Abstract

Between January 1 and December 31, 2008, the Alaska Volcano Observatory (AVO) located 7,097 earthquakes of which 5,318 occurred within 20 kilometers of the 33 volcanoes monitored by the AVO. Monitoring highlights in 2008 include the eruptions of Okmok Caldera, and Kasatochi Volcano, as well as increased unrest at Mount Veniaminof and Redoubt Volcano. This catalog includes descriptions of: (1) locations of seismic instrumentation deployed during 2008; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2008; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2008.

Introduction

The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has installed and maintained seismic monitoring networks at historically active volcanoes in Alaska since AVO inception in 1988 (fig. 1). The primary objectives of the AVO seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog describes the location of seismic instrumentation deployed in the field, the earthquake detection, recording, analysis, and data archival systems, the seismic velocity models used for earthquake locations, and a summary of earthquakes located in 2008. A summary of earthquake origin times, hypocenters,

magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all HYPOELLIPSE (Lahr, 1999) files used to determine the earthquake locations in 2008 are included in a data supplement to this report.

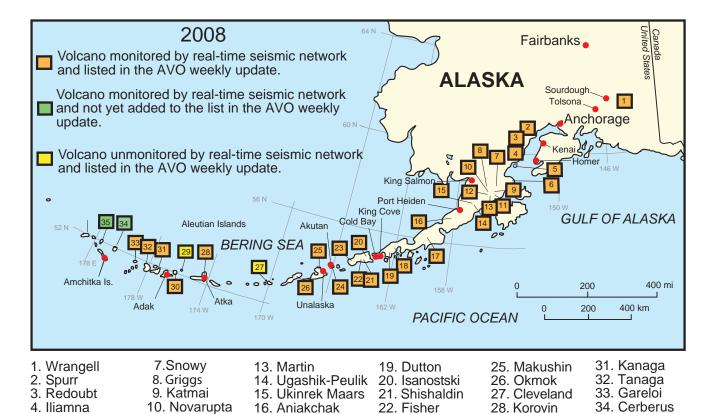

In 2008, the AVO located 7,097 earthquakes (table 1, appendix A) and of these, 5,318 were located within 20 km of the 33 volcanic centers monitored (fig. 1). Two volcanoes, Little Sitkin Volcano and Mount Cerberus, the active vent on Semisopochnoi Island, have not been formally added to the list of permanently monitored volcanoes in the AVO weekly update. To be included in the list of monitored volcanoes in the AVO weekly update, the seismic subnetwork on the volcano must be in place long enough so that the background seismicity is known, typically 6 months, and have no prolonged station outages that prevent AVO from locating earthquakes. Loss of data due to telemetry failures since their installation has prevented Little Sitkin and Mount Cerberus from being added to list of permanently monitored volcanoes.

Table 1. Number of earthquakes located per year in the Alaska Volcano Observatory catalog.

Year	Number of earthquakes located per year	Volcanoes monitored by the AVO seismograph network
1989	911	4
1990	3,285	4
1991	1,119	4
1992	2,184	4
1993	697	4
1994	441	4
1995	850	4
1996	6,466	14
1997	2,930	17
1998	2,873	20
1999	2,769	22
2000	1,551	22
2001	1,427	23
2002	7,242	24
2003	3,911	27
2004	6,928	30
2005	9,012	32
2006	8,666	33
2007	6,664	33
2008	7,097	33

¹U.S. Geological Survey - Alaska Science Center, 903 Koyukuk Drive, Fairbanks, AK 99775-7320

 $^{^2 \}rm University$ of Alaska Fairbanks - Geophysical Institute, 903 Koyukuk Drive, Fairbanks, AK 99775-7320

Figure 1. Location of volcanoes mentioned in this report. Cerberus (34) and Little Sitkin (35) volcanic centers have subnetworks and are not on the list of permanently monitored volcanoes. Cleveland (27) and Kasatochi (29) erupted in 2008 and are not monitored by a seismograph subnetwork. All other volcanic centers are monitored by a seismograph subnetwork and listed in the weekly update of formally monitored volcanoes. Dots show locations referred to in this report.

23. Westdahl

24. Akutan

17. Veniaminof

18. Pavlof

Instrumentation

Augustine

6. Fourpeaked

2

The permanent AVO seismograph network is composed of 24 subnetworks each with 4 to 20 seismograph stations and 9 regional seismograph stations (appendixes B and C) for a total of 193 stations (table 2). Although no new seismograph subnetworks were added to the permanent AVO seismograph network, there were several changes made in 2008. In conjunction with the establishment of GPS instrumentation by EarthScope's Plate Boundary Observatory on Unimak Island, several stations in the Shishaldin and Westdahl subnetworks were moved. In the Westdahl subnetwork, three stations (WESS, WFAR, and WPOG) were removed and three new stations (WESP, WECS, WEBT) were established in similar locations. In the Shishaldin subnetwork, the shortperiod station ISTK was relocated and renamed ISLZ and a broadband station (SSBA) was installed. The only other change in the AVO network was the destruction of the broadband station OKCD in the Okmok eruption in July.

11. Trident

12. Mageik

The 154 single-component short-period seismograph stations were equipped with either Mark Products L4 or Teledyne-Geotech S13 seismometers with a 1-second natural period. AVO also operated 22 three-component, short-

period instruments during 2008. The instruments used at sites with three component sensors were Mark Products L22 seismometers with a 0.5-second period, Mark Products L4-3D seismometers with a 1-second period, or Teledyne-Geotech S13 seismometers with a 1-second natural period. Seventeen broadband stations were operated with either a Guralp CMG-40T seismometer (frequency range: 0.033 to 50 Hz), Guralp CMG-6TD seismometer (frequency range: 0.033 to 50 Hz), or Nanametrics Trillium 40 seismometer (frequency range: 0.025 to 50 Hz). The Augustine strong motion station (AU22) used a REFTEK 130-ANSS/02 strong motion sensor (frequency range: DC to 500 Hz).

29. Kasatochi

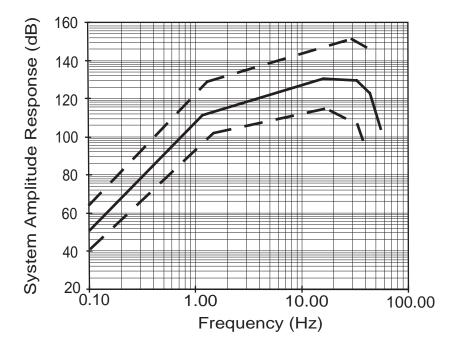
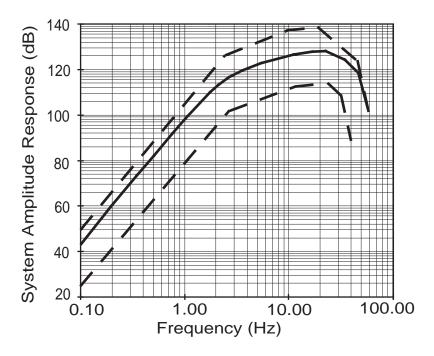
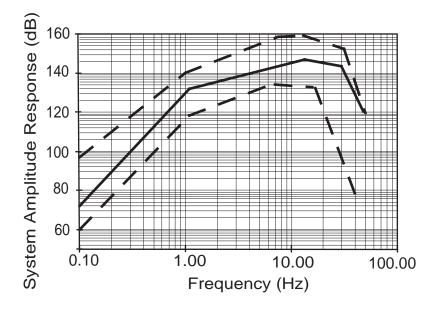
30. Great Sitkin

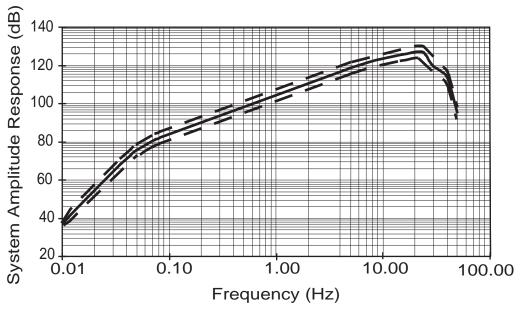
35. Little Sitkin

The majority of the short-period stations were digitized at 100 samples per second (sps). The Cerberus and Little Sitkin subnetworks were recorded at 50 sps due to limitations in data rates using very small aperture terminal telemetry between the recording hub located on Amchitka Island and Anchorage. Broadband stations were digitized at 50 sps with the exception of AUL, which is recorded at 100 sps. Typical calibration curves for short-period and broadband seismometers used in the AVO seismograph network are shown in figures 2-6. Calibration information for each station is compiled in the HYPOELLIPSE file caldata.prm included in a data supplement to this report.

 Table 2.
 Number of Alaska Volcano Observatory seismograph stations by type and year.

Year	Number of seismograph stations	Number of components	Number of single- component stations	Number of three- component stations	Number of broadband stations	Number of strong motion stations
1988	25	29	23	2	0	0
1989	28	32	26	2	0	0
1990	41	48	38	3	0	0
1991	35	41	32	3	0	0
1992	38	45	35	3	0	0
1993	43	50	40	3	0	0
1994	46	57	41	5	0	0
1995	56	66	51	5	0	0
1996	59	78	48	10	1	0
1997	95	124	82	12	2	0
1998	108	141	93	14	2	0
1999	121	155	105	14	2	0
2000	125	161	107	16	2	0
2001	138	176	119	17	3	0
2002	140	178	123	16	2	0
2003	160	216	134	18	9	0
2004	182	254	148	20	15	0
2005	188	265	150	23	15	0
2006	191	274	153	23	15	1
2007	193	280	154	22	17	1
2008	193	280	154	22	17	1


Figure 2. Log-log plot of representative displacement response curves for the short-period stations using a Mark Products L4 or L4-3D seismometer. The solid line illustrates the typical calibration curve and the dashed lines show the range of calibration curves for all AVO stations using L4 or L4-3D seismometers.

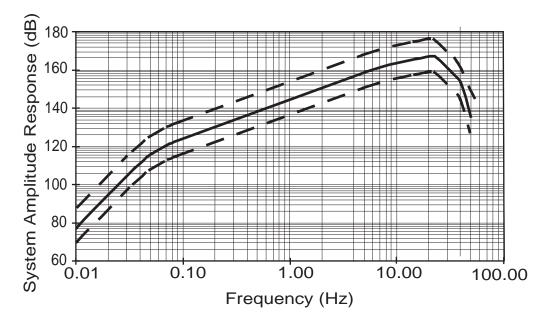

Figure 3. Log-log plot of representative displacement response curves for the short-period stations using a Mark Products L22 seismometer. The solid line illustrates the typical calibration curve and the dashed lines show the range of calibration curves for all AVO stations using L22 seismometers.

Figure 4. Log-log plot of representative displacement response curves for the short-period stations using a Teledyne-Geotech S13 seismometer. The solid line illustrates the typical calibration curve and the dashed lines show the range of calibration curves for all AVO stations using S13 seismometers.

Figure 5. Log-log plot of representative displacement response curves for the broadband stations using a Guralp CMG-40T seismometer. The solid line illustrates the typical calibration curve and the dashed lines show the range of calibration curves for all AVO stations using Guralp CMG-40T seismometers.

Figure 6. Log-log plot of representative displacement response curves for the broadband stations using a Guralp CMG-6TD seismometer. The solid line illustrates the typical calibration curve and the dashed lines show the range of calibration curves for all AVO stations using Guralp CMG-6TD seismometers.

6

Data from short-period seismograph stations were telemetered using voltage-controlled oscillators (VCOs) to transform the signals generated by the seismometer (in response to ground velocity) from a voltage to a frequencymodulated carrier suitable for transmission over a radio link or telephone circuit. AVO primarily used VCOs developed by McChesney (1999) to modulate signals in the field. In rare cases, other VCO models were used, but these are being replaced as stations are visited. Signals were transmitted via UHF and VHF radio to communication hubs located in Adak, Akutan, Amchitka Island, Anchorage, Atka, Cold Bay, Homer, Kenai, King Cove, King Salmon, Port Heiden, Sourdough, Tolsona and Unalaska (fig. 1). Data were then digitized at the Adak, Amchitka Island, Homer, Kenai, King Salmon, and Unalaska communication hubs and directed to AVO offices via high-speed digital circuits. From all other hubs (Akutan, Cold Bay, Port Heiden, Sourdough, and Tolsona), analog signals were relayed via leased telephone circuits to AVO offices in Anchorage or Fairbanks where the signals were subsequently digitized. Data from broadband seismograph stations were digitized at the station site and transmitted digitally using spread spectrum radios to communication hubs in Akutan, Anchorage, Homer, King Salmon, and Unalaska. These data were forwarded to AVO offices in Fairbanks and Anchorage via high-speed digital circuits.

Locations and descriptions for all AVO stations operated during 2008 are contained in appendix B. Maps showing the locations of stations with respect to individual volcanoes are contained in appendix C. Estimates of each station's operational status for the catalog period are shown in appendix D. Other station information are available as part of the data supplement to this report.

Data Acquisition and Processing

Data acquisition for the AVO seismograph network was accomplished with duplicate EARTHWORM systems (Johnson and others, 1995) located in Anchorage and Fairbanks. Data were recorded in both continuous and event detection modes. Event detected data were collected using the EARTHWORM modules, Carlstatrig and Carlsubtrig with the Carlstatrig parameters set as follows: Long-termaverage (LTA) time = 8 seconds, Ratio = 2.3, and Quiet = 4. Three station triggers from the Carlstatrig module are required for an event to trigger Carlsubtrig to create an event record. Carlsubtrig was modified such that a two-letter code (table 3) was appended to the filename of each trigger to identify the first subnetwork that triggered. If four or more subnetworks triggered on the same event, all data were saved in a single trigger and tagged as a regional event. All data are saved in Seismic Analysis Code format (Goldstein and others, 1999).

Event triggers were processed daily using the interactive seismic data analysis program XPICK (Robinson, 1990) and the earthquake location program HYPOELLIPSE (Lahr, 1999). Each event trigger was visually inspected and false triggers were deleted. Each subsequent event was identified by a description code (table 4) modified after Lahr and others (1994), which is stored as a comment in the event location pick file. Earthquakes with a P-wave and S-wave separation of greater than 5 seconds on the closest station were assumed to come from non-volcanic sources and typically were not located. Each hypocenter was checked using a computer algorithm that identified events that did not meet the following minimum parameters: three P-phases, two S-phases, and standard hypocentral errors less than 15 km, as defined by Lahr (1999). If upon reevaluation, the minimum parameters could not be met, the event was removed from the final catalog listing. For the earthquakes in the 2008 AVO catalog, the average root-mean-square travel-time error was 0.137 second and the average hypocentral errors ERZ and ERH were 1.41 and 2.29 km, respectively. Additional data from seismographs operated by the West Coast and Alaska Tsunami Warning Center and Alaska Earthquake Information Center (AEIC) were routinely utilized in event detection and location. Station parameters for the West Coast and Alaska Tsunami Warning Center and Alaska Earthquake Information Center stations used by AVO in 2008 are found in appendix B.

Seismic Velocity Models

During 2008, AVO employed 12 local volcano-specific seismic velocity models and 1 regional seismic velocity model to locate earthquakes at Alaskan volcanoes. All velocity models were one-dimensional models utilizing horizontal layers to approximate the local seismic velocity structure. Each model, with one exception, assumed a series of constant velocity layers. The single exception was the Akutan velocity model (Power and others, 1996), which had a velocity gradient in a layer overlying a half-space of constant velocity.

One or more vertical cylindrical volumes were used to model the volcanic source zones for all volcanoes where a local velocity model was used. Earthquakes within these cylindrical volumes were located with a local model and earthquakes outside of the cylindrical volumes were located with the regional model. All cylindrical volumes had a radius of 20 km with the exception of the cylinders centered on Shishaldin and Mount Veniaminof. The cylinder centered on Shishaldin had a radius of 30 km in order to encompass Fisher Caldera and Isanotski Peaks. The cylinder centered on Veniaminof also had a radius of 30 km because of the large size of the volcanic edifice. The top of each cylinder is set at 3 km above sea level and the bottom is set at a depth of 50 km below sea level.

Table 3. Volcano subnetwork designators.

[For seismograph stations installed in 2003 and later, the network code is also used as the first two letters of the station code]

Volcano subnetwork	Network code	Volcanoes monitored
Akutan	ak	Akutan Volcano
Aniakchak	an	Aniakchak Crater
Augustine	au	Augustine Volcano
Cerberus	ce	Mount Cerberus
Dutton	dt	Mount Dutton
Iliamna	il	Iliamna Volcano
Fourpeaked	fo	Fourpeaked Mountain
Gareloi	ga	Mount Gareloi
Great Sitkin	gs	Great Sitkin Volcano
Kanaga	ki	Kanaga Volcano
Katmai	ka	Mount Griggs, Mount Katmai, Mount Mageik and Mount Martin, Novarupta, Snowy Mountain, and Trident Volcano
Korovin	ko	Korovin Volcano
Little Sitkin	ls	Little Sitkin Volcano
Makushin	ma	Makushin Volcano
Okmok	ok	Okmok Caldera
Pavlof	pv	Pavlof Volcano
Peulik	pl	Ugashik-Peulik and Ukinrek Maars
Redoubt	rd	Redoubt Volcano
Regional Event	rg	none
Shishaldin	sh	Fisher Caldera, Isanotski Peaks, and Shishaldin Volcano
Spurr	sp	Mount Spurr
Tanaga	ta	Tanaga Volcano
Veniaminof	vn	Mount Veniaminof
Westdahl	we	Fisher Caldera, and Westdahl Peak
Wrangell	wa	Mount Wrangell

Table 4. Alaska Volcano Observatory event description codes.

[Lowercase letters refer to triggered events that are located. Uppercase letters are used for triggered events that are not located]

Event classification	Classification code
Volcano-Tectonic (VT)	a
Low-Frequency (LF)	b
Hybrid	h
Shore-Ice	i
Cause unknown	X
Regional-Volcanic	R
Regional-Tectonic	E
Teleseismic	T
Glacier	G
Calibrations	C
Other non-seismic	O

The Akutan, Augustine (Power, 1988), Iliamna (Roman and others, 2001), Okmok (Searcy and Prejean, U.S. Geological Survey, written commun., 2009), Tanaga (J.A. Power, U.S. Geological Survey, written commun., 2005), Veniaminof (Sánchez, 2005), and Westdahl (Dixon and others, 2005) velocity models were used to locate hypocenters that fell within cylindrical volumes described above, centered on each respective volcano. The Cold Bay velocity model (McNutt and Jacob, 1986) was used to locate earthquakes that fell within cylindrical volumes centered on Mount Dutton and Pavlof Volcano. Earthquakes at Fisher, Isanotski, and Shishaldin that fell within the cylindrical regions centered on Shishaldin Volcano also were located using the Cold Bay velocity model. Five overlapping cylinders defined the volume in which the Spurr velocity model (Jolly and others, 1994) was used, four overlapping cylinders defined the volume for the Redoubt velocity model (Lahr and others, 1994), and four overlapping cylinders defined the volume for the Katmai model (Searcy, 2003). The Andreanof velocity model, modified from that in Toth and Kisslinger (1984), was used to locate earthquakes within a volume defined by three cylinders centered on Kanaga Volcano, Mount Moffet, and Great Sitkin Volcano. Specific velocity models for Aniakchak Crater, Mount Cerberus, Mount Gareloi, Korovin Volcano, Little Sitkin Volcano, Makushin Volcano, Mount Peulik, and Mount Wrangell were not available in 2008 and the regional velocity model (Fogleman and others, 1993) was used to locate earthquakes near these volcanoes. The cylindrical model parameters, regional velocity model, and volcanospecific models used to locate earthquakes in this report are summarized in appendix E. Figures showing the volcanic source zones modeled by multiple cylinders are shown in appendix F.

Seismicity

The 7,097 earthquakes located in 2008 represent an increase from the 6,664 earthquakes located in 2007 (Dixon and others, 2008). Of the earthquakes located in 2008, 75 percent (5,318 earthquakes) were located within 20 km of a monitored volcanic center. The numbers of located events at volcanic centers in the last 2 years, listed by seismograph subnetwork, are shown in table 5.

Using the 2008 earthquake catalog, the magnitude of completeness (Mc) for each subnetwork was calculated with the exception of six subnetworks (table 5). The Aniakchak, Dutton, Fourpeaked, Pavlof, Veniaminof, and Westdahl subnetworks had insufficient numbers of located earthquakes (less than 20) to calculate a Mc. The Mc ranged from -0.5 to 1.7 for the individual subnetworks. Mc is the magnitude threshold above which we are reasonably certain that an event of Mc or greater was detected. The Mc was determined using a maximum likelihood estimate of the inflection point in the frequency magnitude distribution using the seismology analysis software ZMAP (Weimer, 2001).

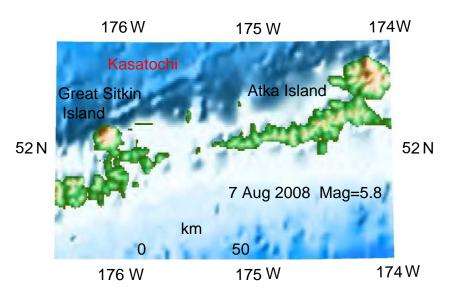
Table 5. Number of earthquakes located for each seismograph subnetwork in 2007 and 2008 within 20 km of the volcanic centers in each subnetwork.

[The totals for 2008 are broken into three event types: volcanic-tectonic (VT), low-frequency (LF) and other (all other possible event types shown in table 4). Magnitude of completeness (Mc) for AVO seismograph subnetworks used the 2008 data]

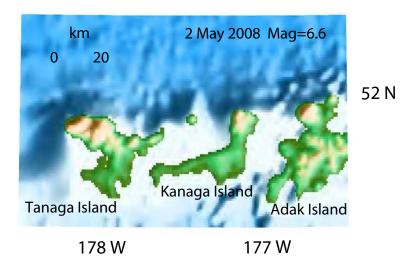
Volcano subnetwork	Earthquakes located in 2007	Earthquakes located in 2008	2008 VT	2008 LF	2008 Other	2008 Mc
Akutan	58	105	101	3	1	0.3
Aniakchak	1	1	1	0	0	(1)
Augustine	367	116	113	1	2	0.1
Cerberus	42	21	21	0	0	0.8
Dutton	17	19	19	0	0	(1)
Fourpeaked	272	11	10	0	1	(1)
Gareloi	1,461	87	86	0	1	1.7
Great Sitkin	52	33	33	0	0	-0.5
Iliamna	106	102	95	7	0	0.7
Kanaga	48	478	403	0	75	1.2
Katmai Cluster	1,375	1,987	1,974	13	0	0.5
Korovin	293	47	46	0	1	1.3
Little Sitkin	217	235	235	0	0	0.4
Makushin	136	117	116	1	0	0.7
Okmok	84	635	608	26	1	1.1
Pavlof	48	9	4	5	0	(1)
Peulik	29	21	20	1	0	1.3
Redoubt	41	107	39	68	0	0.2
Shishaldin	42	290	279	11	0	0.9
Spurr	768	599	545	54	0	0.1
Tanaga	47	401	332	1	68	1.1
Veniaminof	4	17	14	3	0	(1)
Westdahl	6	11	9	2	0	(1)
Wrangell	147	83	15	68	0	1.0
Totals	5,666	5,318	4,903	266	149	(1)

¹ Insufficient number of located earthquakes and therefore an Mc could not be computed.

In 2008, the Volcano Alert Level and Aviation Color Codes were raised at three monitored volcanic centers (Okmok Caldera, Redoubt Volcano, and Mount Veniaminof). The eruption at Okmok (Neal and others, 2009) started with an abrupt increase in seismicity at 1400 UTC July 12 cumulating with the start of the eruption at 2143 UTC. The seismicity peaked at 2200 UTC on July 12 after which it gradually declined until the seismicity at Okmok was back to its pre-eruption levels in mid-November. Several minor ash bursts from Veniaminof were recorded in seismic data in February with all reported activity ending in April. Weak but anomalous seismicity was detected at Redoubt in October. The increased seismicity along with observations suggesting increased heat flow prompted an increase in the Volcano Alert Level and Aviation Color Code for Redoubt on November 5. The eruption of Okmok and the increased unrest at Redoubt and Veniaminof resulted in more earthquakes located at these volcanoes in 2008 than the previous year.


In July, there was an increase in activity detected on the Great Sitkin subnetwork in the vicinity of Kasatochi Volcano (fig. 1), a seismically unmonitored volcano. On August 6, the earthquake activity at Kasatochi rapidly increased (Ruppert and others, 2008). The following day, the seismicity was accompanied by periods of volcanic tremor and cumulated in an eruption later that day. Two days later the intense seismic activity associated with the Kasatochi eruption declined. All 1,553 earthquakes located within 20 km from Kasatochi in 2008 (fig. 7) are available from the AEIC catalog (Ruppert, 2008b). Only 58 earthquakes within 20 km of Kasatochi were located by AVO as the majority of the located seismicity falls outside the AVO guidelines for inclusion in the AVO earthquake catalog.

The increase in located seismic activity within the Katmai subnetwork is related to substantial increase in activity in the vicinity of Trident Volcano and Mount Mageik. In 2007, 338 earthquakes were located within 5 km of Trident whereas in


2008, the number of located events was 625. Likewise, there was a doubling of located earthquakes at Mount Mageik in 2008. A total of 217 earthquakes were located within 5 km in 2007 and 400 were located in 2008. The increase in earthquake activity at Shishaldin started in October and continued into 2009, where the Volcano Alert Level and Aviation Color Code were raised just after the end of 2008. The Pavlof subnetwork showed an apparent decrease in the number of located earthquakes in 2008. In January 2007, a swarm of earthquakes 15 km northeast of Pavlof accounted for the abnormal high number of earthquakes located in 2007.

The apparent decrease in detected seismic activity at the Augustine, Spurr, and Fourpeaked subnetworks likely is related to the continued decrease in activity following the respective periods of unrest. The numbers of located earthquakes in 2008 at these subnetworks are similar to those years preceding their respective eruption/unrest. Subnetworks at Akutan and Westdahl show an increased number of located earthquakes when compared to those located in 2007. When compared to the located seismicity prior to 2007, the number of located earthquakes in 2008 is similar and does not appear to represent a significant change in seismicity.

Four subnetworks (Cerberus, Gareloi, Korovin, and Wrangell), saw a decrease in the number of located earthquakes in 2008 compared to the number of earthquakes located in 2007, which could be due to prolonged station outages. The number of located earthquakes at Gareloi was down substantially compared to the number located in 2007. Winter storms generally reduce the number of events that can be located and starting late spring, the number of operating seismograph stations was below the minimum for an earthquake location to be included in the catalog. Two subnetworks (Tanaga and Kanga) showed an increase in located earthquake due to a nearby large tectonic earthquake on May 2, 2008 (Mw=6.6) and subsequent aftershocks and triggered seismicity (fig. 8). The number of located earthquakes at the Aniakchak, Dutton, Great Sitkin, Iliamna, Little Sitkin, Makushin, Peulik, and Veniaminof subnetworks were similar to those in 2007.

Figure 7. Earthquakes located by AEIC associated with the Kasatochi eruption (Ruppert, 2008b). The focal mechanism shown is for the largest earthquake (Mw=5.8) shown by the star. Kasatochi Volcano is shown by the inverted triangle.

Figure 8. The May 2, 2008 M_w =6.6 earthquake with aftershocks and triggered seismicity located by AEIC (Ruppert, 2008a). The earthquakes shown in the red circles are within 20 km of either the Kanaga or Takawanga volcanic centers.

Summary

Between January 1 and December 31, 2008, AVO located 7,097 earthquakes of which 5,318 occurred at or near volcanoes in Alaska. Monitoring highlights in 2008 include the eruptions of Okmok Caldera and Kasatochi Volcano, as well as increased unrest at Mount Veniaminof and Redoubt Volcano.

Available for download with this report is a compressed Unix tar-file containing a summary listing of earthquake hypocenters and all necessary HYPOELLIPSE input files to recalculate the hypocenters including station locations and calibrations, seismic velocity models, and phase information. The reader should refer to Lahr (1999) for information on file formats and instructions for configuring and running the location program HYPOELLIPSE. Continuous waveform data for selected AVO seismograph stations are archived and available through the Incorporated Research Institutions for Seismology (IRIS) (www.iris.edu). Archives of waveform data are maintained on DVD-ROM at AVO offices in Fairbanks and Anchorage.

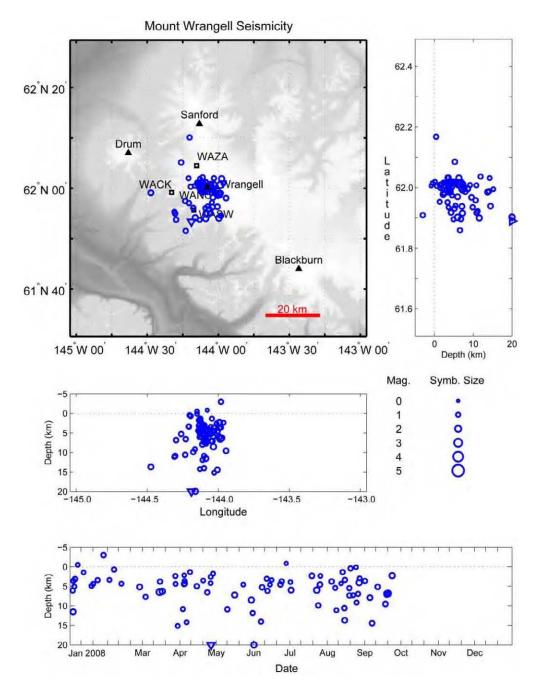
AVO earthquake catalogs for 1989–2007 are listed in appendix G. Selected papers published in 2008 that utilized AVO seismic data are listed in appendix H

Acknowledgments

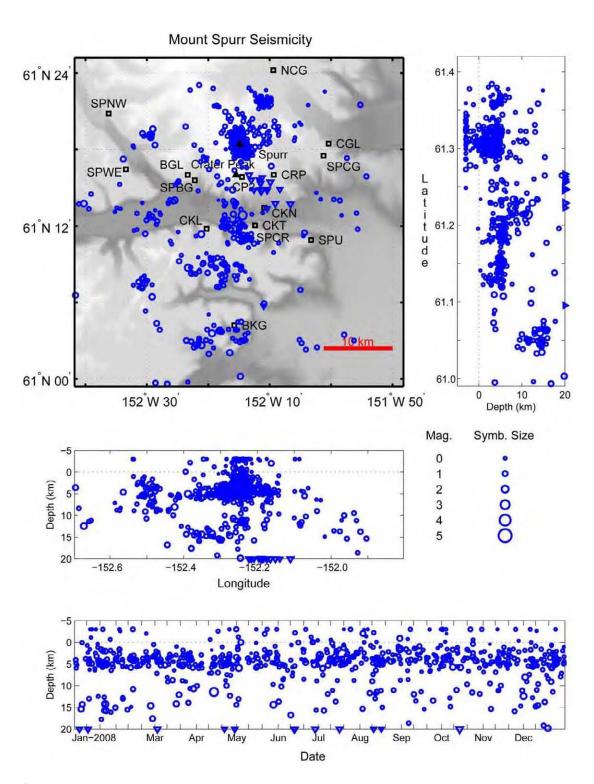
The contents of this report reflect a great deal of hard work by a large number of people including AVO, Alaska Earthquake Information Center (AEIC), and USGS personnel and various students, interns, and volunteers. We thank the AEIC and the West Coast and Alaska Tsunami Warning Center for the use of their data. We thank John Power, Rick Wessels and Dave Wilson of the U.S. Geological Survey for formal reviews of the text and figures.

References Cited

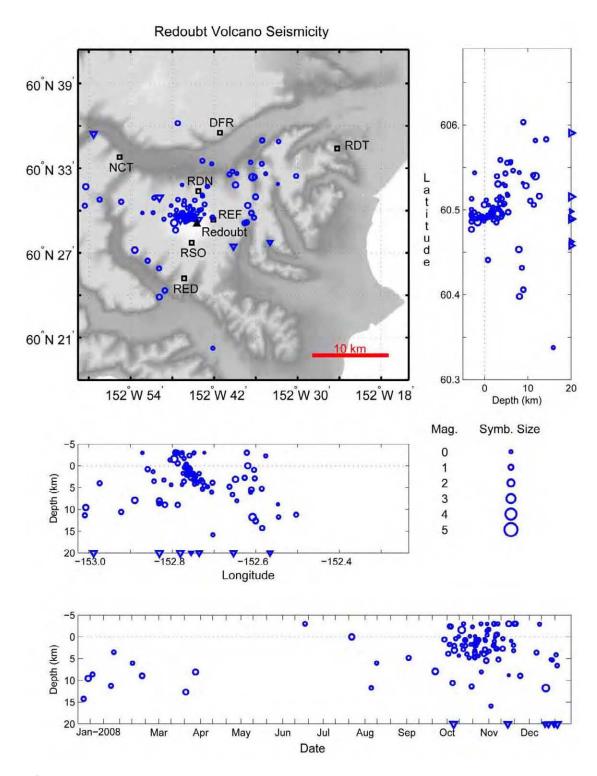
- Dixon, J.P., Power, J.A., and Stihler, S.D., 2005, Seismic observations of Westdahl Volcano and Western Unimak Island. Alaska: 1999–2005, [abs.]: American Geophysical Union Transactions, v. 86, Fall Meeting Supplement, Abstract S11b-0169.
- Dixon, J.P., Stihler, S.D., and Power, J.A., 2008, Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2007: U.S. Geological Survey Data Series 367, 82 p.

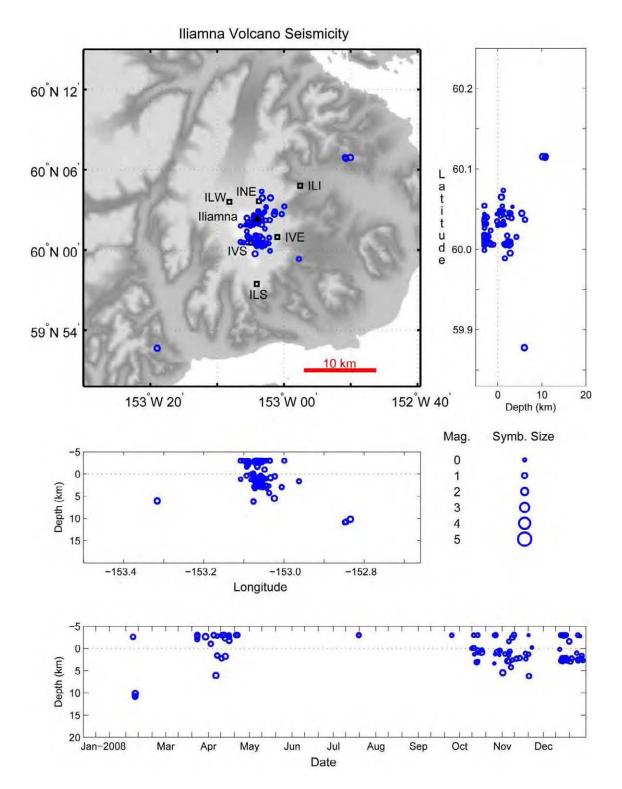

- Fogleman, K.A., Lahr, J.C., Stephens, C.D., and Page, R.A., 1993, Earthquake locations determined by the southern Alaska seismograph network for October 1971 through May 1989: U.S. Geological Survey Open-File Report 93-309, 54 p.
- Goldstein, P., Dodge, D., and Firpo, M., 1999, SAC2000: Signal processing and analysis tools for seismologists and engineers, *in* Lee W.H.K., Kanamori, H., Jennings, P.P., Kisslinger, C., eds., International Handbook of Engineers and Engineering Seismology, v. 81B, San Diego, CA, Academic Press, p. 1613-1614.
- Johnson, C.E., Bittenbinder, A., Bogaert, D., Dietz, L., and Kohler, W., 1995, EARTHWORM: A flexible approach to seismograph network processing: Incorporated Research Institutions for Seismology Newsletter, v. 14, no. 2, p. 1-4.
- Jolly, A.D., Page, R.A., and Power, J.A., 1994, Seismicity and stress in the vicinity of Mt. Spurr volcano, south-central Alaska: Journal of Geophysical Research, v. 99, p. 15305-15318.
- Lahr, J.C., Chouet, B.A., Stephens, C.D., Power, J.A., and Page, R.A., 1994, Earthquake classification, location, and error analysis in a volcanic environment: Implications for the magmatic system of the 1989–90 eruptions at Redoubt Volcano, Alaska: Journal of Volcanology and Geothermal Research, v. 62, p. 137-152.
- Lahr, J.C., 1999, HYPOELLIPSE: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern: U.S. Geological Survey Open-File Report 99-23, 116 p.
- McChesney, P.J., 1999, McVCO Handbook 1999: U.S. Geological Survey Open-File Report 99-361, 48 p.
- McNutt, S.R., and Jacob, K.H, 1986, Determination of large-scale velocity structure of the crust and upper mantle in the vicinity of Pavlof Volcano, Alaska: Journal of Geophysical Research, v. 91, p. 5013-5022.
- Neal, C.A., Larsen, J.F., and Schaefer, Janet, 2009, The July-August 2008 hydrovolcanic eruption of Okmok Volcano, Umnak Island, Alaska: Alaska Geological Society Newsletter, v. 39, no. 5.
- Power, J.A., 1988, Seismicity associated with the 1986 eruption of Augustine Volcano, Alaska: Fairbanks, University of Alaska Fairbanks, Masters Thesis, 149 p.
- Power, J.A., Paskievitch, J.F., Richter, D.H., McGimsey, R.G., Stelling, P., Jolly, A.D., and Fletcher, H.J., 1996, 1996 seismicity and ground deformation at Akutan Volcano: American Geophysical Union Transactions, v. 77, p. F514.

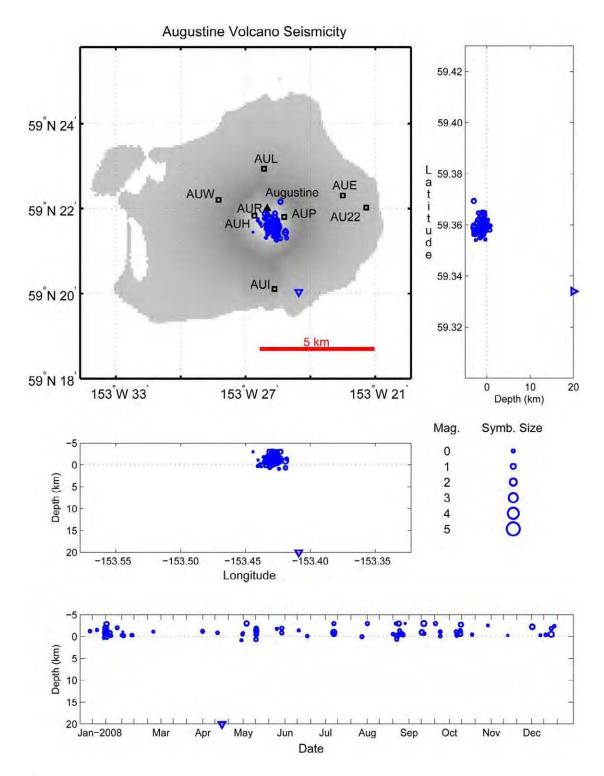
- Robinson, M., 1990, XPICK users manual, version 2.7: University of Alaska Fairbanks, Seismology Lab, Geophysical Institute, 93 p.
- Roman, D.C., Power, J.A., Moran, S.C., Cashman, K.V., and Stihler, S.D., 2001, Unrest at Iliamna Volcano, Alaska in 1996, Evidence for a magmatic intrusion [abs.]: American Geophysical Union Transactions, v. 82, p. F1329.
- Ruppert, N.A., 2008a, Earthquakes in Alaska May 2008, Alaska State Seismologist's Report 2008-05.
- Ruppert, N.A., 2008b, Earthquakes in Alaska August 2008, Alaska State Seismologist's Report 2008-08.
- Ruppert, N.A., Hansen, R.A., West M., and Prejean, S., 2008, Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska, [abs.]: American Geophysical Union Transactions, v. 89, Fall Meeting Supplement, Abstract A53B-0261.

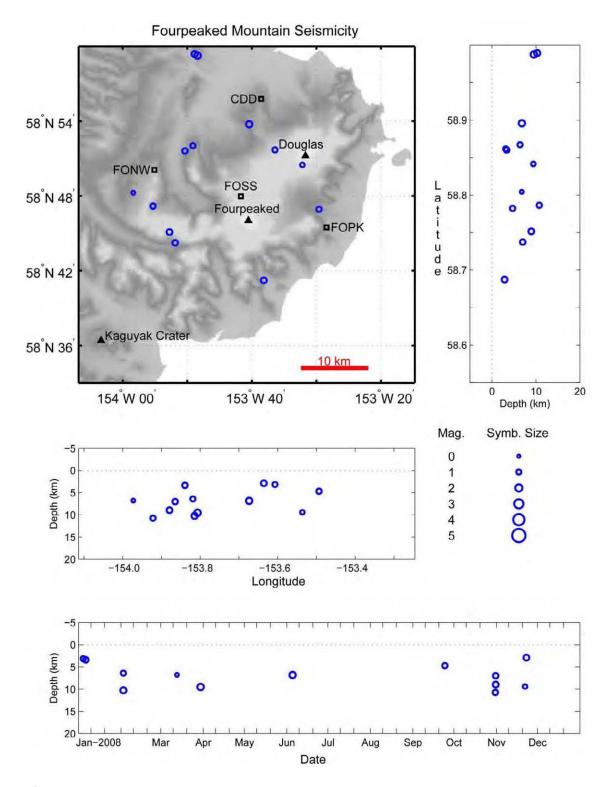

- Sánchez, J.J., 2005, Volcano seismology from around the World: Case studies from Mount Pinatubo (Philippines), Galeras (Columbia), Mount Wrangell and Mount Veniaminof (Alaska): Fairbanks, University of Alaska Fairbanks, Ph.D. dissertation, 208 p.
- Searcy, C.K., 2003, Station corrections for the Katmai Region seismograph network: U.S. Geological Survey Open-File Report 03-403, 16 p.
- Toth, T., and Kisslinger, C., 1984, Revised focal depths and velocity model for local earthquakes in the Adak seismic zone: Bulletin of the Seismological Society of America, v. 74, p. 1349-1360.
- Wiemer, S., 2001, A software package to analyze seismicity: ZMAP: Seismological Research Letters, v. 72, p. 373-382.

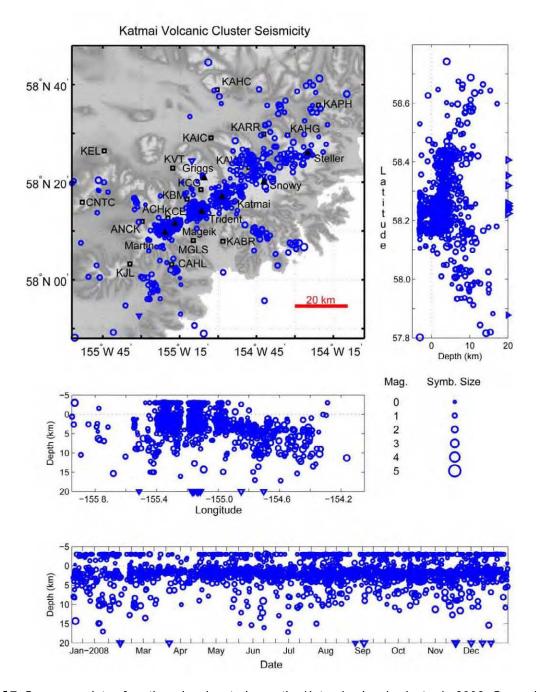
12	Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2008
	This page left intentionally blank

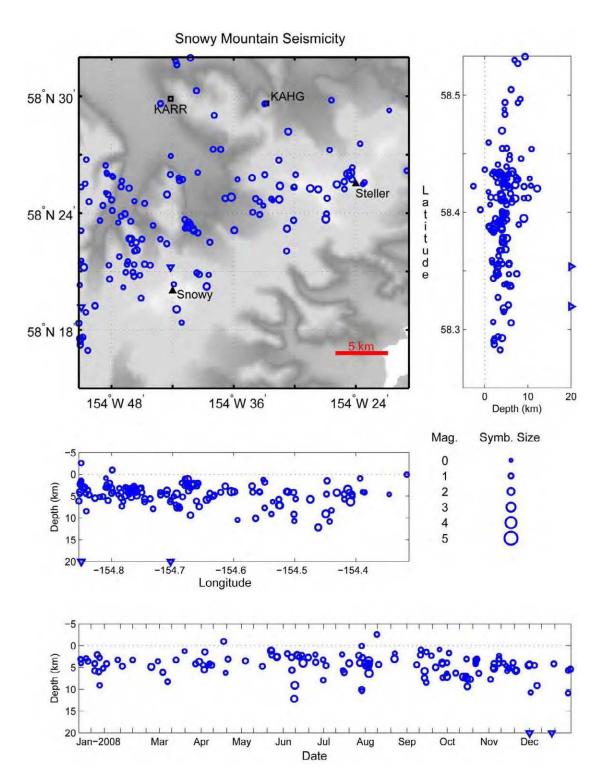

Appendix A. Maps of Monitored Volcanoes with Earthquake Hypocenters Calculated in 2008.

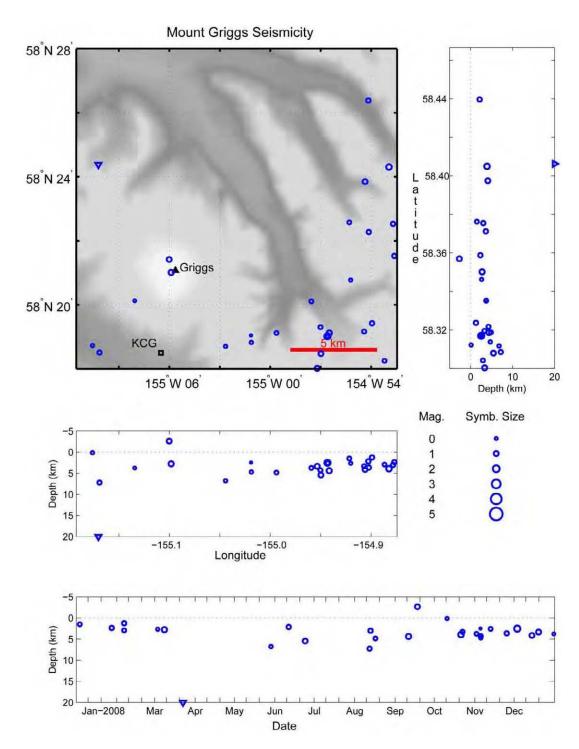

Figure A1. Summary plots of earthquakes located near Mount Wrangell in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

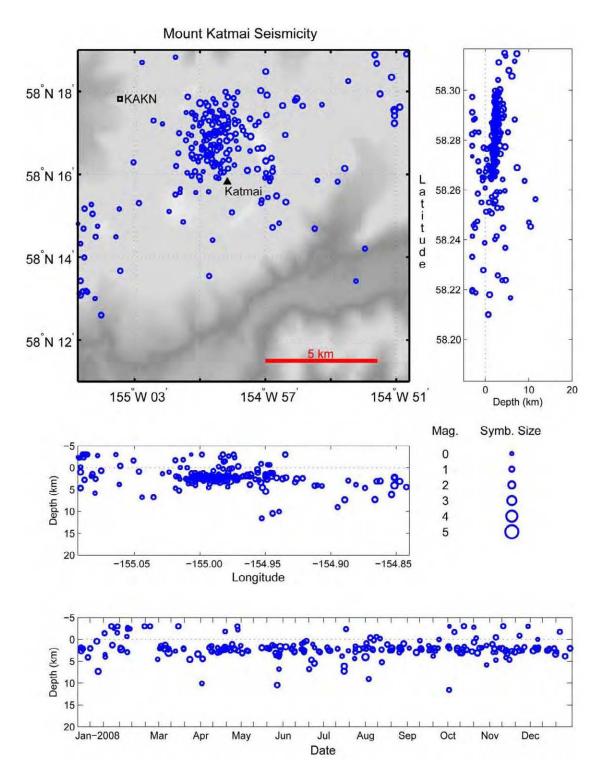

Figure A2. Summary plots of earthquakes located near Mount Spurr in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.


Figure A3. Summary plots of earthquakes located near Redoubt Volcano in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.


Figure A4. Summary plots of earthquakes located near Iliamna Volcano in 2008. Open circles scaled with magnitude show hypocenter locations. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.


Figure A5. Summary plots of earthquakes located near Augustine Volcano in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.


Figure A6. Summary plots of earthquakes located near Fourpeaked Mountain in 2008. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.


Figure A7. Summary plots of earthquakes located near the Katmai volcanic cluster in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

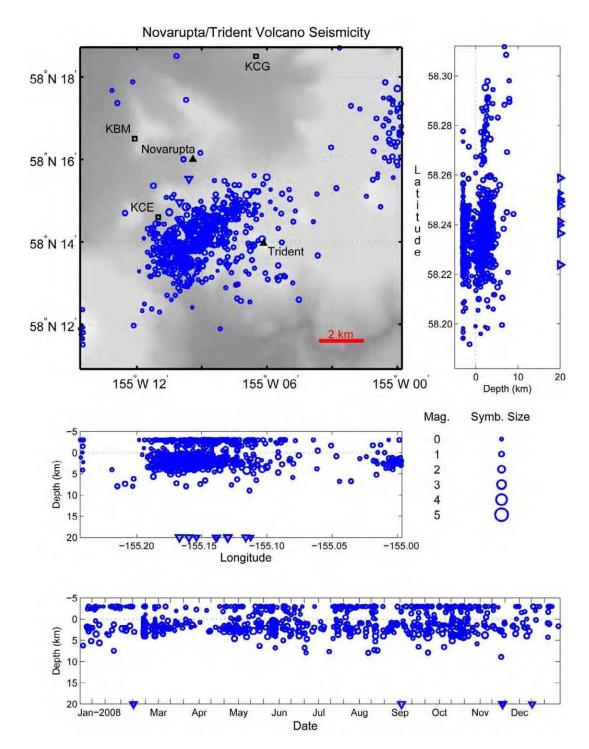
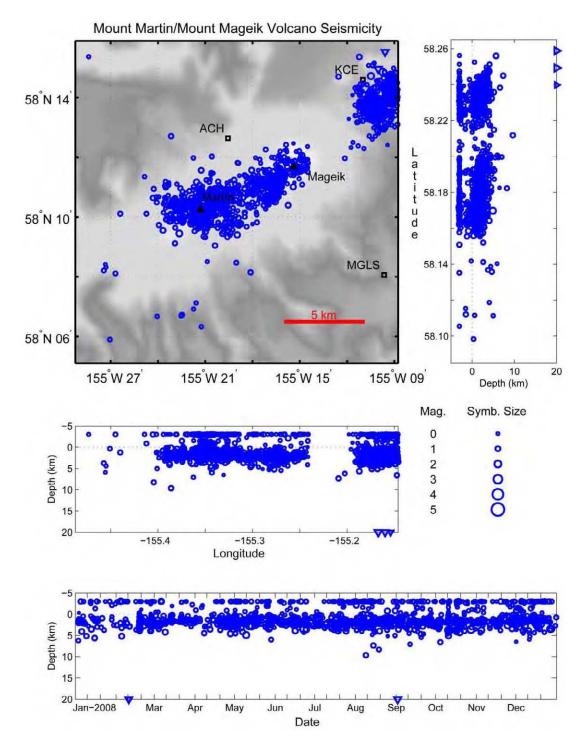
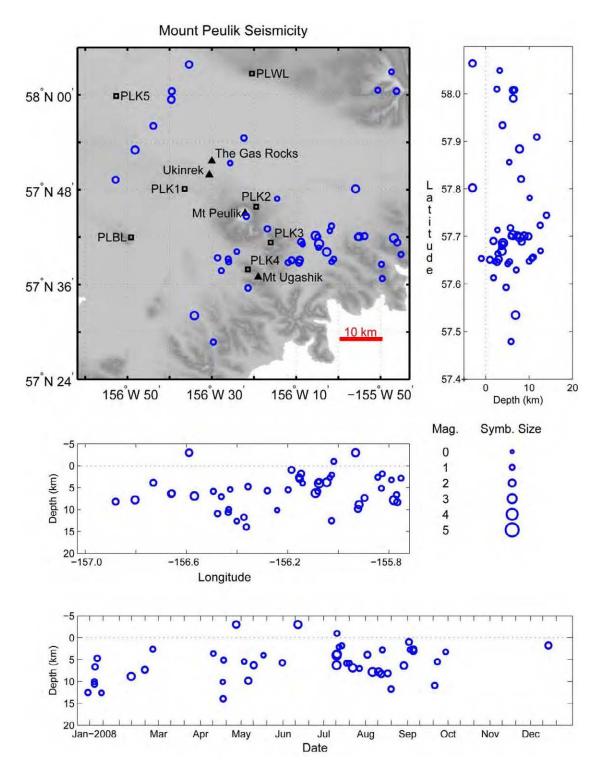
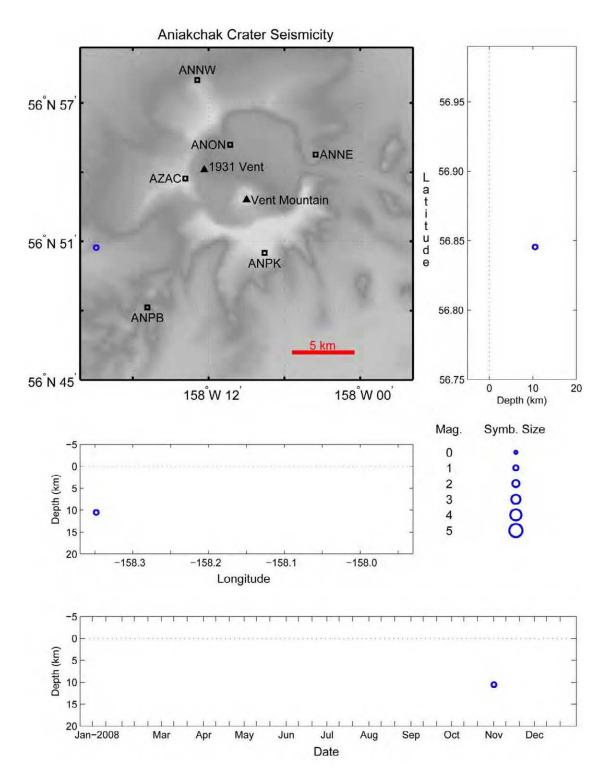
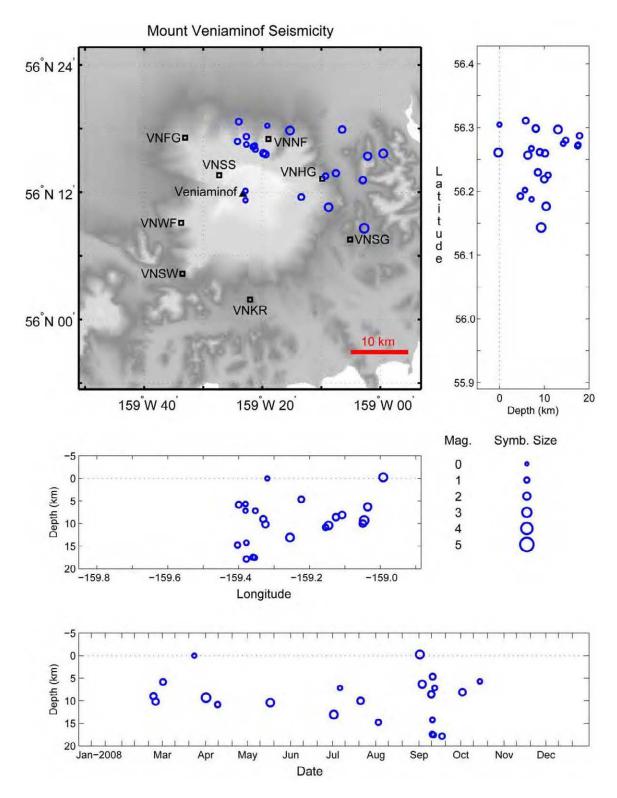

Figure A8. Summary plots of earthquakes located near Snowy Mountain in the Katmai volcanic cluster in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

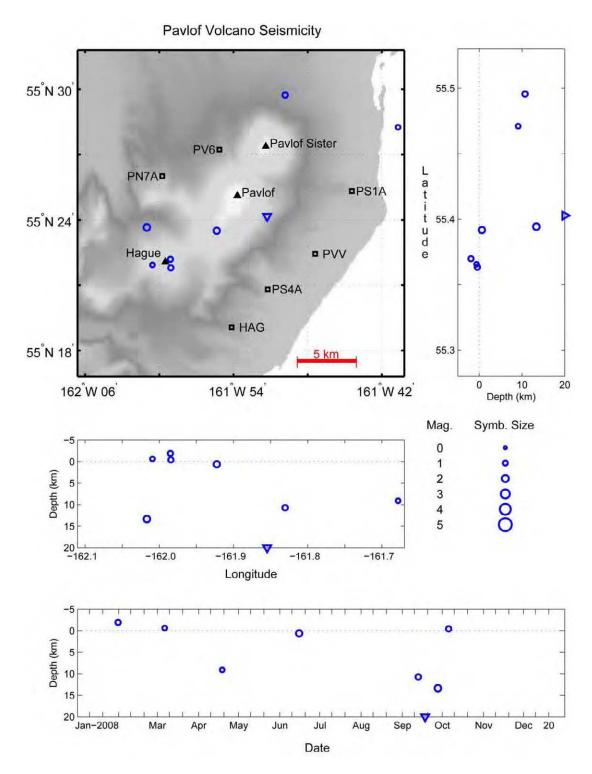
Figure A9. Summary plots of earthquakes located near Mount Griggs in the Katmai volcanic cluster in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles show hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information. Several earthquakes that appear on this figure appear on other figures.

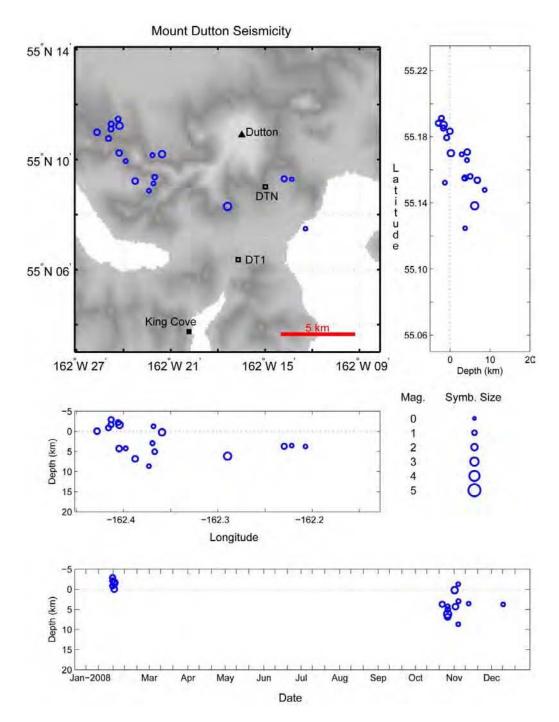
Figure A10. Summary plots of earthquakes located near Mount Katmai in the Katmai volcanic cluster in 2008. Open circles scaled with magnitude show hypocenter locations. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information. Several earthquakes that appear on this figure appear on other figures.

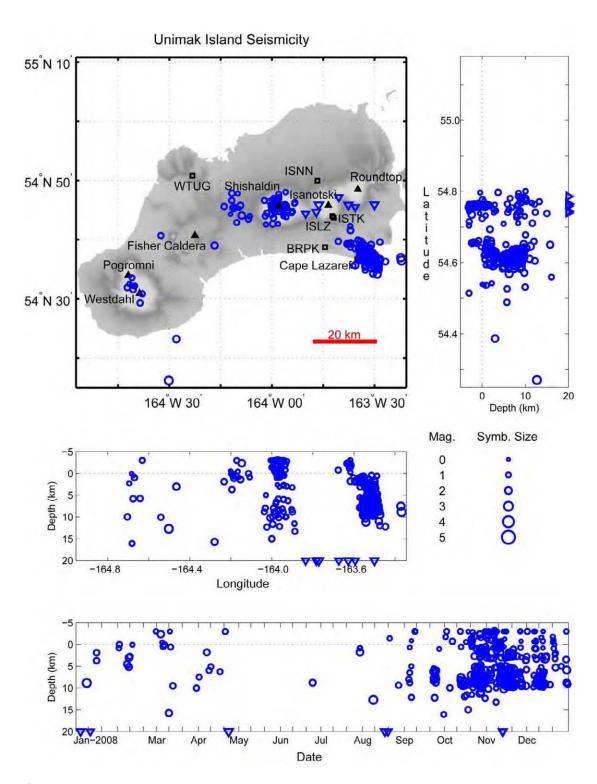
Figure A11. Summary plots of earthquakes located near Novarupta and Trident Volcano in the Katmai volcanic cluster in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information. Several earthquakes that appear on this figure appear on other figures.

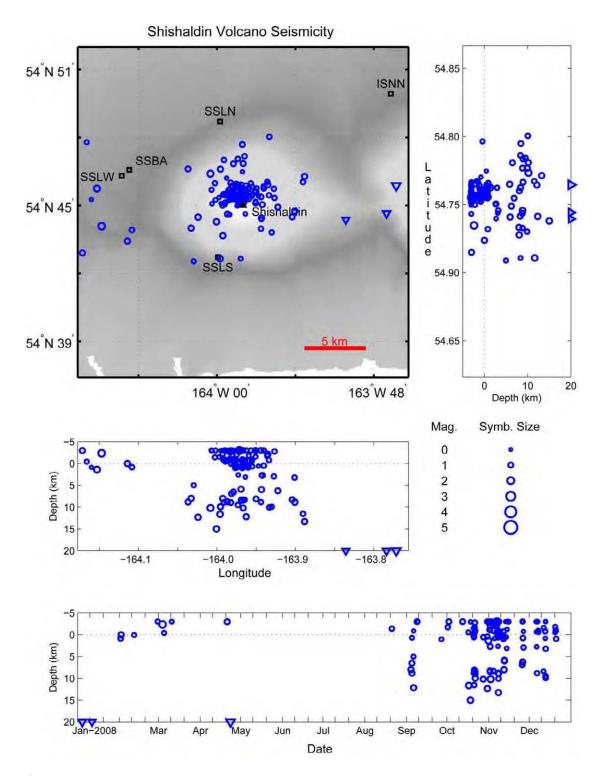




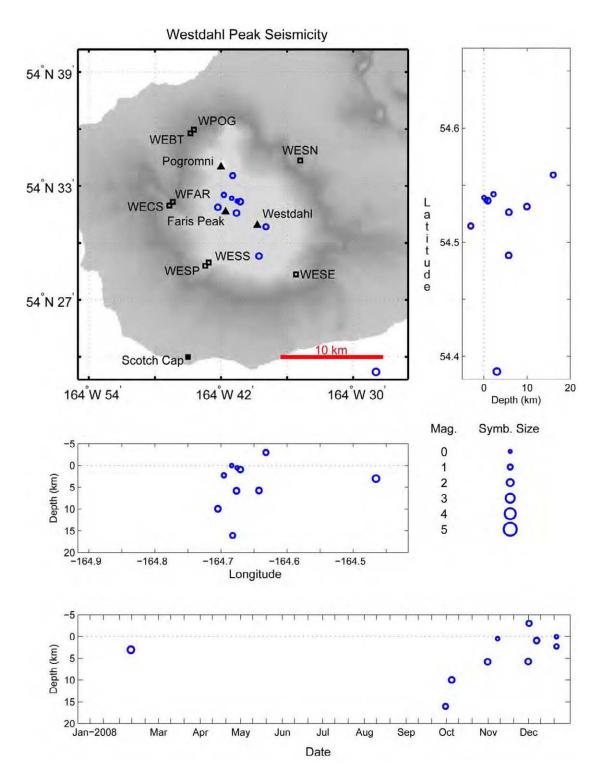

Figure A12. Summary plots of earthquakes located near Mount Mageik and Mount Martin in the Katmai volcanic cluster in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information. Several earthquakes that appear on this figure appear on other figures.

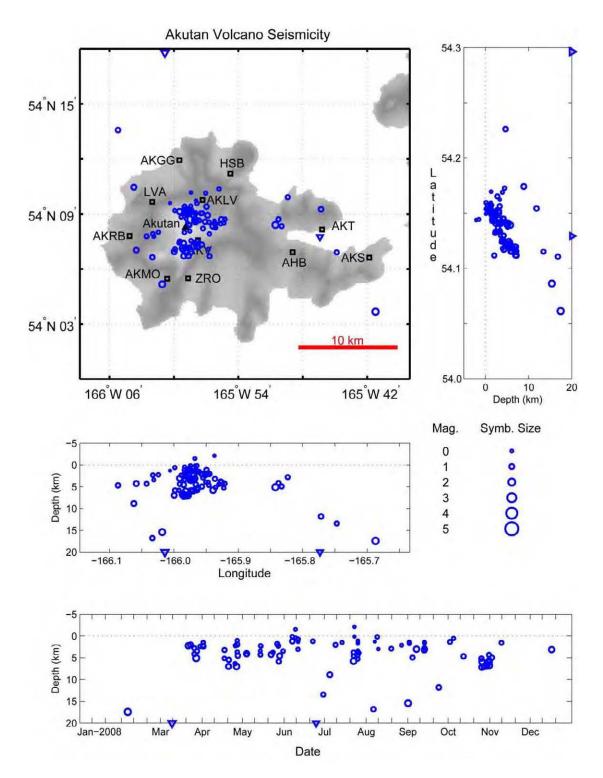

Figure A13. Summary plots of earthquakes located near Mount Peulik in 2008. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

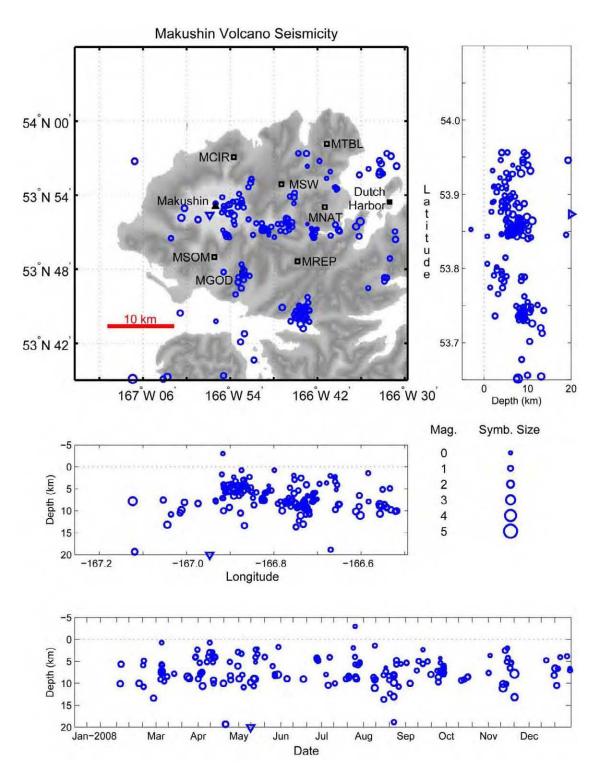

Figure A14. Summary plots of earthquakes located near Aniakchak Crater in 2008. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

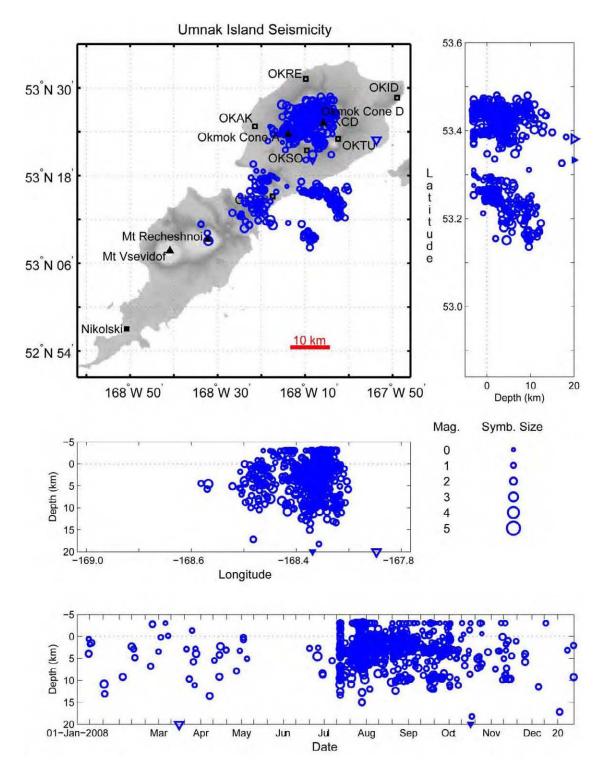

Figure A15. Summary plots of earthquakes located near Mount Veniaminof in 2008. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

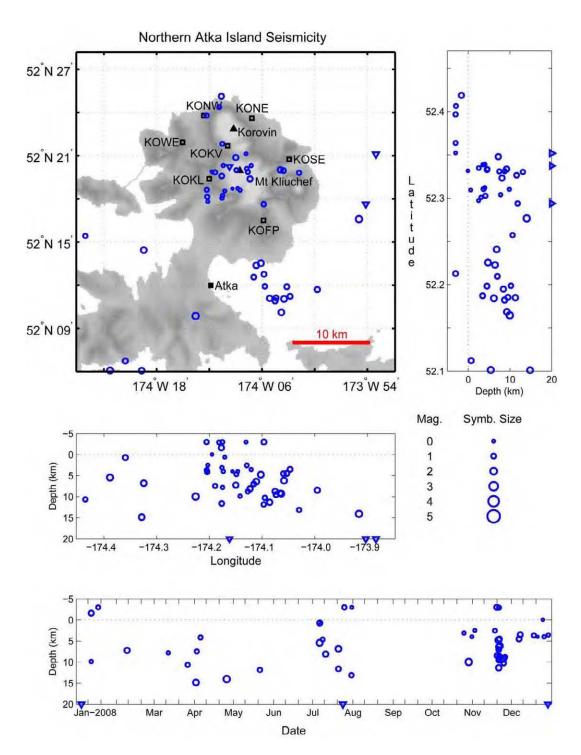

Figure A16. Summary plots of earthquakes located near Pavlof Volcano in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

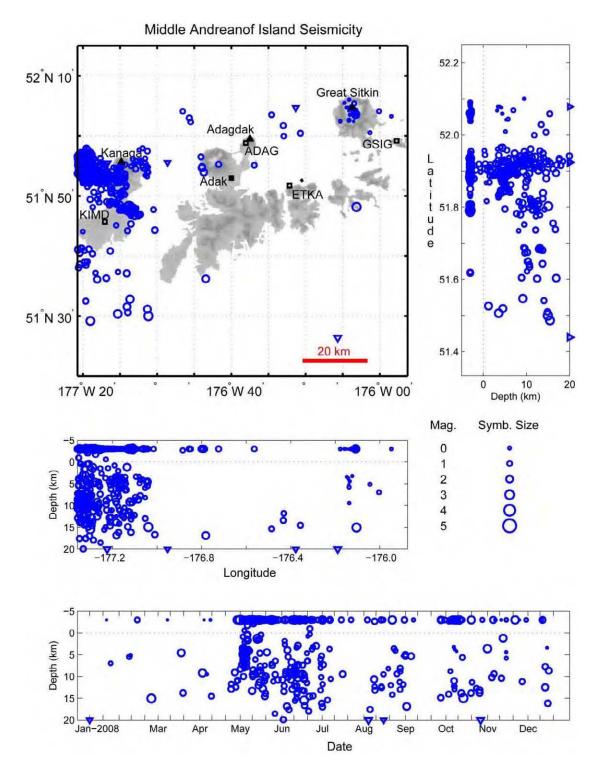

Figure A17. This summary plot shows earthquakes located near Mount Dutton in 2008. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. See appendix B for station information.

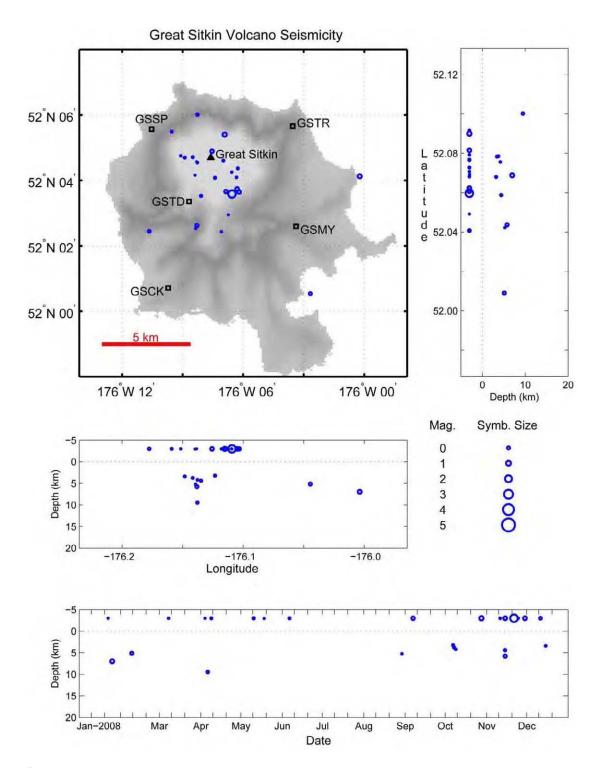

Figure A18. Summary plots of earthquakes located near Unimak Island in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.


Figure A19. Summary plots of earthquakes located near Shishaldin Volcano in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.


Figure A20. Summary plots of earthquakes located near Westdahl Peak in 2008. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. See appendix B for station information.


Figure A21. Summary plots of earthquakes located near Akutan Peak in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.


Figure A22. Summary plots of earthquakes located near Makushin Volcano in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. See appendix B for station information.


Figure A23. Summary plots of earthquakes located on Umnak Island in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. See appendix B for station information.

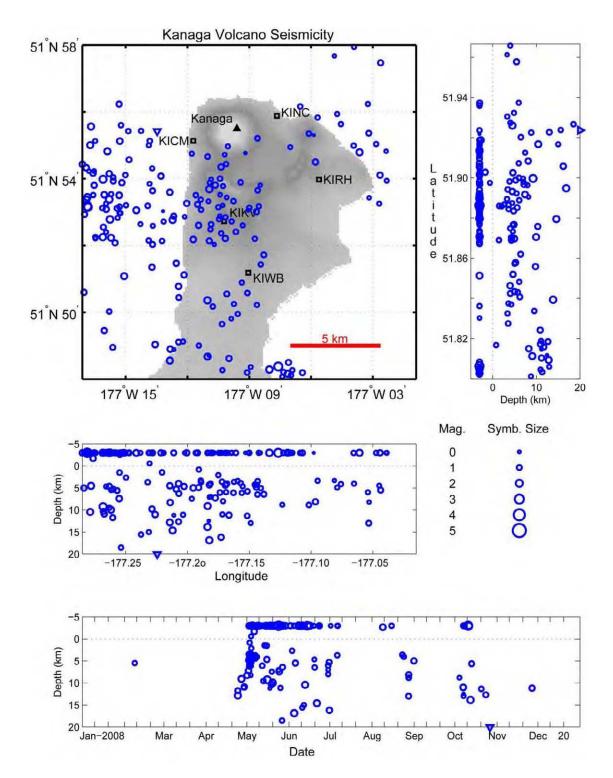

Figure A24. Summary plots of earthquakes located near Korovin Volcano and Mount Kliuchef in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. See appendix B for station information.

Figure A25. Summary plots of earthquakes located in the Middle Andreanof Islands in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. See appendix B for station information.

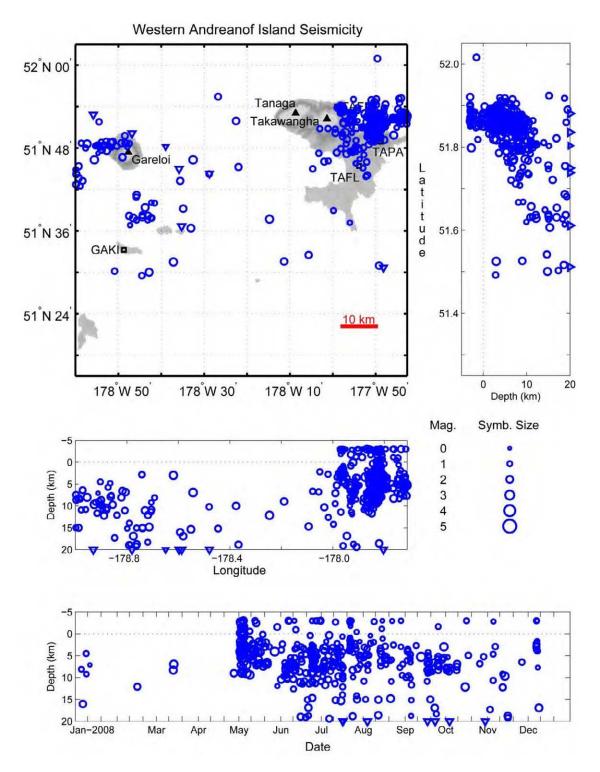


Figure A26. Summary plots of earthquakes located near Great Sitkin Volcano in 2008. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

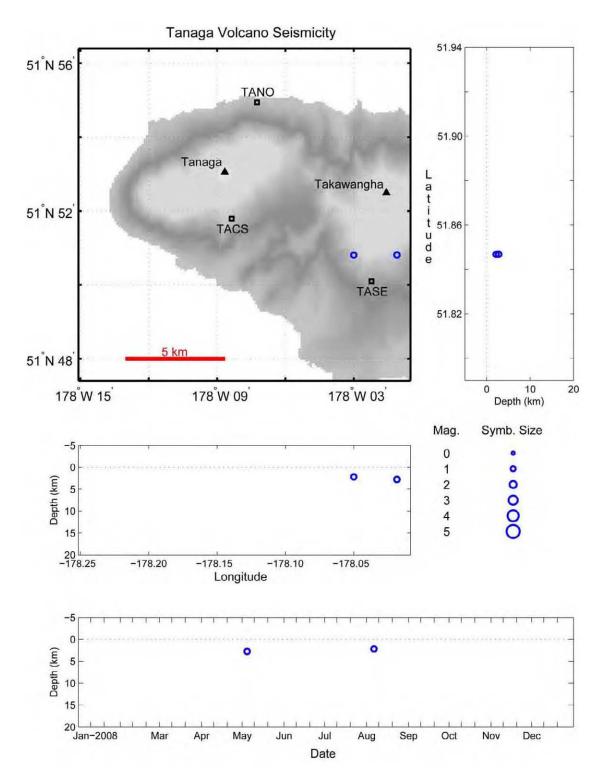


Figure A27. Summary plots of earthquakes located near Kanaga Volcano in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

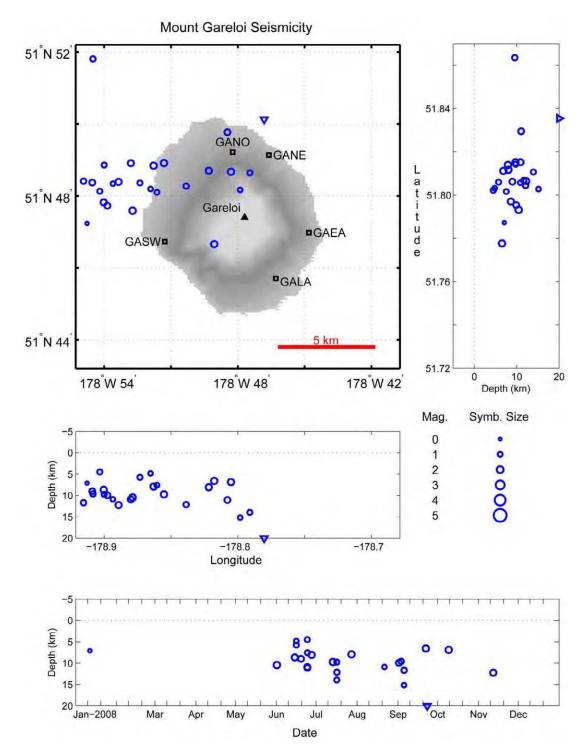


Figure A28. Summary plots of earthquakes located in the Western Andreanof Islands in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

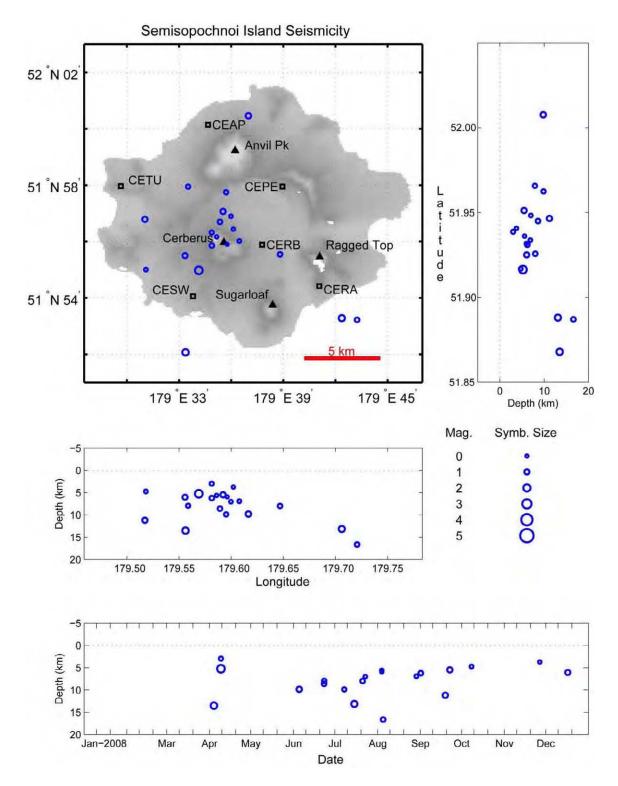


Figure A29. Summary plots of earthquake located near Tanaga Volcano in 2008. Most earthquakes associated with the Tanaga volcanic center do not plot on this figure but to the east as seen on figure A28. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

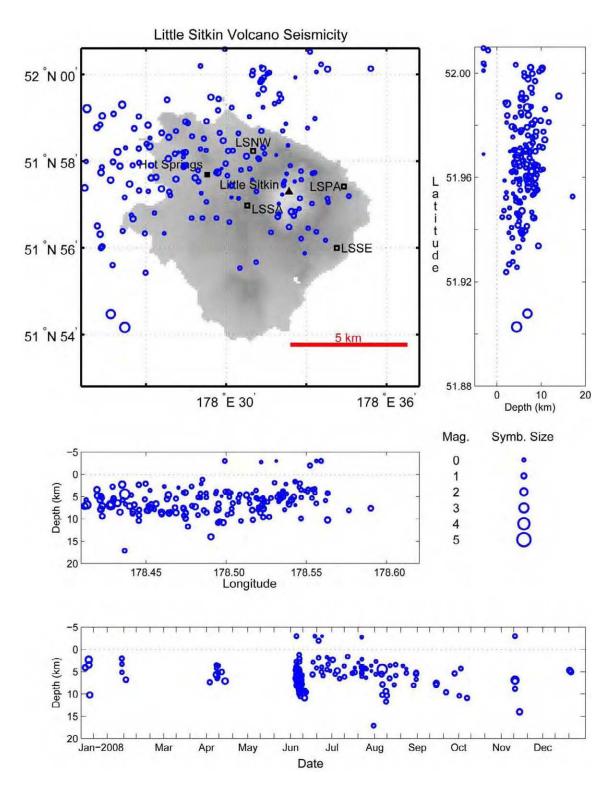


Figure A30. Summary plots of earthquakes located near Mount Gareloi in 2008. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

Figure A31. Summary plots of earthquakes located on Semisopochnoi Island in 2008. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

Figure A32. Summary plots of earthquakes located near Little Sitkin Volcano in 2008. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. See appendix B for station information.

Appendix B. Parameters for AVO Seismograph Stations in 2008.

This list includes station parameters for seismograph stations operated by the Alaska Earthquake Information Center (AEIC) and the West Coast-Alaska Tsunami Warning Center (WC-ATWC) that were used to locate earthquakes in the AVO catalog. The open date is the date that data were first recorded and the close date is the date that recording was stopped. Discounting temporary data outages, date is available for each listed station between the open and close date. Stations still in operation are indicated by a dash in the close date column.

Station Latitude (N) Longitude (E) Elevation (m) Seismometer Open date Close date									
Akutan I	Akutan Peak subnet (12 stations – 26 components)								
AHB	54 06.916	-165 48.943	447	L4	1996/07/24	-			
$AKBB^3$	54 05.905	-165 55.907	310	CMG-6TD	2005/07/05	-			
$AKGG^3$	54 11.930	-165 59.495	326	CMG-6TD	2003/06/27	-			
$AKLV^3$	54 09.762	-165 57.336	551	CMG-6TD	2003/07/02	-			
$AKMO^3$	54 05.471	-166 00.634	277	CMG-6TD	2003/06/25	-			
$AKRB^3$	54 07.803	-166 04.125	334	CMG-6TD	2003/06/29	-			
AKS^3	54 06.624	-165 41.803	213	L22	1996/07/24	-			
AKT^3	54 08.15	-165 46.2	12	CMG-40T	1996/03/18	-			
AKV	54 07.571	-165 57.763	863	L4	1996/07/24	-			
HSB	54 11.205	-165 54.743	497	L4	1996/07/24	-			
LVA	54 09.654	-166 02.025	457	L4	1996/07/24	-			
ZRO	54 05.494	-165 58.678	446	L4	1996/07/24	-			
Aniakcha	ak Crater su	bnet (6 station	s – 8 compor	ents)					
ANNE	56 54.763	-158 03.534	705	L4	1997/07/18	_			
ANNW	56 57.986	-158 12.895	816	L4	1997/07/18	_			
$ANON^3$	56 55.188	-158 10.293	445	L22	2000/07/10	_			
ANPB	56 48.141	-158 16.847	658	L4	1997/07/18	-			
ANPK	56 50.499	-158 07.572	972	L4	1997/07/18	-			
AZAC	56 53.727	-158 13.841	1,057	L4	2003/07/12	-			
Angustin	o Volcono si	ıbnet (9 statioı	nc 18 comp	ononts)					
AU22 ³	59 22.247	-153 21.301	105 – 16 COMP	SM	2007/09/01				
AUE*	59 22.247	-153 22.504	168	\$13	1980/10/29	_			
AUH	59 21.833	-153 26.591	890	\$13 \$13	1978/12/01	_			
AUI^3	59 20.11	-153 25.66	293	\$13 \$13	1978/04/06	_			
AUL	59 22.937	-153 25.00	360	\$13 \$13	1980/10/29	_			
AUL^3	59 22.937	-153 26.142	360	CMG-6TD	1997/08/27	_			
AUNW*	59 22.694	-153 28.609	160	L4	2007/03/15	_			
AUP	59 21.805	-153 25.210	1,033	S13	1977/09/22	_			
AUSE	59 20.481	-153 23.210	1,033	I.4	2006/02/03	_			
AUW	59 22.205	-153 28.249	276	S13	1976/10/17	-			

Station Latitude (N) Longitude (E) Elevation (m) Seismometer Open date Close date							
Mount (Cerberus Sul	onet (6 stations	- 8 compo	nents)			
CEAP	52 00.146	179 34.667	244		L 4	2005/09/17	_
CEPE	51 57.949	179 38.950	335		L 4	2005/09/17	_
CERA	51 54.419	179 41.074	305	I	L 4	2005/09/26	_
$CERB^3$	51 55.886	179 37.783	305		L4-3D	2005/09/18	_
CESW	51 54.060	179 33.800	238		L4	2005/09/18	_
CETU	51 57.965	179 29.651	335		L4	2005/09/22	-
Mount D	Outton subne	et (5 stations - 5	compone	nts)			
BLDY	55 11.670	-162 47.018	259		L 4	1996/07/11	_
DOL	55 08.976	-161 51.702	439		L 4	1996/07/11	_
DRR3	54 58.014	-162 15.665	457		L 4	1996/07/11	_
DT1	55 06.427	-162 16.859	198		L 4	1991/06/21	_
DTN	55 08.744	-162 15.419	396		S13	1988/07/16	-
Fournes	ked subnet (4 stations - 7 co	mnonents	z)			
CDD	58 55.771	-153 38.558	622		S13	1981/08/17	_
FONW*		-153 55.102	905		L-4	2007/10/19	_
FOPK*	58 45.480	-153 28.433	546		L4	2007/09/25	_
FOSS*	58 47.965	-153 41.699	1268		L-4	2007/10/10	-
		net (6 stations -				2002/00/20	
GAEA	51 46.980	-178 44.810	326		L4	2003/08/30	-
GAKI	51 33.267	-178 48.725	99		L4	2003/09/01	-
GALA	51 45.704	-178 46.292	315		_4	2003/08/30	-
GANE	51 49.135	-178 46.603	322		L4	2003/09/02	-
GANO	51 49.220	-178 48.230	451		L4	2003/09/02	-
GASW ³	51 46.731	-178 51.276	248	I	L22	2003/08/30	-
Great Si	tkin Volcano	o subnet (6 stati	ons - 8 co	mponents)			
GSCK	52 00.712	-176 09.718	384	Ī	L4	1999/09/15	-
GSIG	51 59.181	-175 55.502	407	I	L4	1999/09/03	-
GSMY	52 02.594	-176 03.376	418	I	L4	1999/09/03	-
GSSP	52 05.566	-176 10.541	295	I	L4	1999/09/15	-
$GSTD^3$	52 03.356	-176 08.685	873	I	L22	1999/09/03	-
GSTR	52 05.655	-176 03.546	536	I	L4	1999/09/03	-
Iliamna	Volcano sub	net (6 stations -	8 compo	nents)			
ILI	60 04.877	-152 57.502	771		L4	1987/09/15	_
ILS	59 57.454	-153 04.083	1,125		S13	1996/08/28	_
ILW	60 03.585	-153 04.083	1,646		S13	1994/09/09	_
INE	60 03.630	-153 03.732	1,634		S13	1990/08/29	_
IVE ³	60 01.014	-153 00.981	1,173		S13,L22	1996/09/19	_
IVE	60 00.55						-
173	00 00.33	-153 04.85	2,332	,	S13	1990/08/29	-
_		net (6 stations -	6 compo	nents)			
KICM	51 55.136	-177 11.718	183		L4	1999/09/15	-
KIKV	51 52.730	-177 10.223	411		L4	1999/09/15	-
KIMD	51 45.697	-177 14.093	183		L4	1999/09/15	-
KINC	51 55.884	-177 07.657	198		L4	1999/09/15	-
KIRH	51 53.976	-177 05.611	309		L4	1999/09/03	-
KIWB	51 51.183	-177 09.049	244	I	L4	1999/09/03	-

Station Latitude (N) Longitude (E) Elevation (m) Seismometer Open date Close date							
Katmai '	Volcanic Clu	ster subnet (20	stations -	30 componen	nts)		
ACH^3	58 12.64	-155 19.56	960	_	L22	1996/07/25	_
ANCK	58 11.93	-155 29.64	869		L4	1996/07/25	_
CAHL	58 03.15	-155 18.09	807		L4	1996/07/25	_
CNTC	58 15.87	-155 53.02	1,158		L4	1996/07/25	_
KA01#	58 18.858	-155 05.870	810		CMT-6TD	2008/07/20	_
KA02#	58 15.116	-155 09.119	999		CMT3-ESP	2008/07/20	_
KA03 [#]	58 15.611	-155 07.881	1, 015		CMT-6TD	2008/07/20	_
KA04 [#]	58 13.354	-155 08.650	994		CMT-6TD	2008/07/20	_
KA05 [#]	58 12.942	-155 05.083	935		CMT-6TD	2008/07/20	_
KA06 [#]	58 12.660	-155 01.144	1,003		CMT-6TD	2008/07/20	_
KA11 [#]	58 17.006	-155 08.357	1, 098		CMT-6TD	2008/07/20	_
KA12 [#]	58 13.904	-155 16.001	884		CMT-6TD	2008/07/20	_
KA13 [#]	58 13.262	-155 11.507	899		CMT3-ESP	2008/07/20	_
KA15 [#]	58 11.573	-155 11.143	926		CMT-6TD	2008/07/20	_
KA15*	58 10.800	-155 05.999	714		CMT-6TD	2008/07/20	_
KABR	58 07.87	-154 58.15	884		L4	1998/08/12	-
KABU ³	58 16.225				CMT-6TD		-
		-155 16.934	1,065			2004/08/01	-
KAHC	58 38.94	-155 00.36	1,250		L4	1998/10/12	-
KAHG	58 29.64	-154 32.78	923		L4	1998/10/12	-
KAIC	58 29.10	-155 02.75	734		L4	1998/10/12	-
KAKN ³	58 17.819	-155 03.668	1,049		CMG-6TD	2004/08/01	-
KAPH ³	58 35.81	-154 20.81	907		L22	1998/10/12	-
KARR	58 29.87	-154 42.20	610		L4	1998/10/12	-
KAWH	58 23.02	-154 47.95	777		L4	1998/10/12	-
KBM	58 16.50	-155 12.10	732		L4	1991/07/22	-
KCE	58 14.60	-155 11.00	777		L4	1991/07/22	-
KCG^3	58 18.457	-155 06.684	762		L22	1988/08/01	-
KEL	58 26.401	-155 44.442	975		L4	1988/08/01	-
KJL	58 03.24	-155 34.39	792		L4	1996/07/25	-
KVT	58 22.90	-155 17.70	457		L4	1988/08/01	-
MGLS	58 08.06	-155 09.65	472		L4	1996/07/25	-
Vanavin	Walaana sub	mat (7 stations	0.000000	mamta)			
Korovin KOFP	52 16.508	net (7 stations	_		L4	2004/07/02	
KOFP	52 19.393	-174 05.832 -174 12.012	662 758		L4 L4	2004/07/02 2004/07/05	-
							-
		-174 09.915	776 253		L22	2004/07/05	-
KONE	52 23.611	-174 07.156	253		L4	2004/07/10	-
KONW	52 23.790	-174 12.629	334		L4	2004/07/04	-
KOSE	52 20.749	-174 02.909	625		L4	2004/07/07	-
KOWE	52 21.940	-174 15.040	527		L4	2004/07/06	-
Little Sit		4 stations - 6 co)			
LSNW	51 58.232	178 31.011	290		L4	2005/09/30	-
LSPA ³	51 57.413	178 34.405	335		L4-3D	2005/09/30	-
LSSA	51 56.973	178 30.793	549		L4	2005/09/28	-
LSSE	51 55.993	178 34.139	335		L4	2005/09/27	-

Station L	_atitude (N) L	ongitude (E) Elev	ation (m) Seismome	eter Open date	Close date					
Makushi	in Volcano si	ubnet (7 stations	s - 9 components)							
MCIR	53 57.086	-166 53.529	800	L4	1996/07/25	-				
MGOD	53 47.683	-166 52.561	650	L4	1996/07/25	-				
MNAT	53 53.028	-166 41.016	397	L4	1996/07/25	-				
MREP	53 48.629	-166 44.736	785	L4	2002/01/01	-				
MSOM	53 48.978	-166 56.187	146	L4	1996/07/25	-				
MSW^3	53 54.929	-166 47.186	418	L22	1996/07/25	-				
MTBL	53 58.136	-166 40.760	810	L4	1996/07/25	-				
Okmok (Okmok Caldera subnet (12 stations - 18 components)									
OKAK	53 24.740	-168 21.465	165	L4	2005/07/11	-				
OKCD ^{3R}	53 25.818	-168 06.737	459	CMG-6TD	2003/01/09	2008/07/12				
$OKCE^3$	53 25.622	-168 09.858	515	CMG-6TD	2003/01/09	-				
OKCF	53 23.749	-168 08.175	685	L4	2003/01/09	-				
OKER	53 27.278	-168 02.960	956	L4	2003/01/09	-				
$OKFG^3$	53 24.702	-167 54.568	201	CMG-6TD	2003/01/09	-				
OKID	53 28.645	-167 48.972	437	L4	2003/01/09	-				
OKRE	53 31.215	-168 09.846	422	L4	2003/01/09	-				
$OKSO^3$	53 21.447	-168 09.591	460	CMG-6TD	2004/09/01	-				
OKSP	53 15.156	-168 17.431	608	L4	2003/01/09	-				
OKTU	53 23.035	-168 02.466	646	L4	2003/01/09	-				
OKWE	53 28.328	-168 14.388	445	L4	2003/01/09	-				
OKWR	53 26.084	-168 12.333	1,017	L4	2003/01/09	-				
		et (7 stations - 9	•							
BLHA	55 42.276	-162 03.540	411	L4	1996/07/11	-				
HAG	55 19.068	-161 54.144	516	L4	1996/07/11	-				
PN7A	55 26.020	-161 59.713	838	L4	1996/07/11	-				
PS1A	55 25.254	-161 44.496	283	L4	1996/07/11	-				
PS4A	55 20.808	-161 51.276	322	L4	1996/07/11	-				
$PV6^3$	55 27.217	-161 55.112	747	L22	1996/07/11	-				
$PV01^{3R}$	55 26.391	-161 56.359	852	CMG-6TD	2008/09/23	2008/07/18				
$PV02^{3R}$	55 24.413	-161 48.176	458	CMG-6TD	2008/09/22	2008/07/22				
$PV03^{3R}$	55 22.274	-161 51.985	584	CMG-6TD	2008/09/24	2008/07/21				
PVV	55 22.440	-161 47.396	173	L4	1996/07/11	-				
Mount P	eulik subnet	(7 stations - 9 c	omponents)							
PLBL	57 41.990	-156 49.131	461	L4	2004/08/01	-				
PLK1	57 48.114	-156 36.433	78	L4	2004/08/01	-				
PLK2	57 45.852	-156 19.458	401	L4	2004/08/01	_				
PLK3 ³	57 41.320	-156 16.044	494	L22	2004/08/01	_				
PLK4	57 37.928	-156 21.464	1,031	L4	2004/08/01	_				
PLK5	57 59.864	-156 52.662	49	L4	2004/08/01	_				
PLWL	58 02.696	-156 20.479	585	L4	2004/08/01	_				
				2.	200 17 007 01					
		,	· 12 components)	T 4	1000/00/47					
DFR	60 35.514	-152 41.160	1,090	L4	1988/08/15	-				
NCT	60 33.789	-152 55.568	1,079	L4	1988/08/14	-				
RDN	60 31.377	-152 44.273	1,400	L4	1988/08/13	-				
RDT	60 34.394	-152 24.315	930	L4	1971/08/09	-				
RED^3	60 25.192	-152 46.308	1,064	L4	1990/08/30	-				
REF ³ *	60 29.362	-152 41.500	1,801	L22	1992/07/27	-				
RSO	60 27.73	-152 45.23	1,921	L4	1990/03/01	-				

Station I	Latitude (N) L	_ongitude (E) Elev	vation (m) Se	eismometer eismometer	Open date	Close date	
Shishald	lin Volcano s	subnet (7 station	s - 11 comp	onents)			
BRPK	54 38.730	-163 44.449	393	L	4	1997/07/27	-
ISNN	54 49.937	-163 46.706	466	L	4	1997/07/27	-
ISLZ	54 43.559	-163 42.663	466	L	4	2008/08/17	-
$ISTK^{R}$	54 43.929	-163 42.376	704	L	4	1997/07/27	2008/08/17
$SSBA^3$	54 46.363	-164 07.470	766	C	MG-6TD	2008/08/01	-
SSLN	54 48.709	-163 59.756	637	L	4	1997/07/27	-
$SSLS^3$	54 42.718	-163 59.926	817	L	22	1997/07/27	-
SSLW	54 46.307	-164 07.282	628	L	4	1997/07/27	-
Mount S	Spurr subnet	t (15 stations - 23	3 componen	ts)			
BGL	61 16.012	-152 23.340	1,127	L	4	1989/08/13	-
BKG	61 04.21	-152 15.76	1,009	L		1991/07/01	-
CGL	61 18.46	-152 00.40	1,082	L		1981/09/22	-
CKL	61 11.782	-152 20.268	1,281	L		1989/08/05	-
CKN	61 13.44	-152 10.89	735	L		1991/08/19	-
CKT	61 12.05	-152 12.37	975	L		1992/09/16	-
CP2	61 15.85	-152 14.51	1,981	L		1992/10/23	-
CRP^3	61 16.02	-152 09.33	1,622	L	4	1981/08/26	-
NCG	61 24.22	-152 09.40	1,244	L	4	1989/08/06	-
$SPBG^3$	61 15.583	-152 22.194	1,087	C	MG-6TD	2004/09/09	-
$SPCG^3$	61 17.512	-152 01.228	1,329	C	MG-6TD	2004/09/08	=
$SPCR^3$	61 12.051	-152 12.409	984		MG-6TD	2004/09/08	-
SPNW	61 20.826	-152 36.236	1,040	L	4	2004/08/17	-
SPU	61 10.90	-152 03.26	800	L	4	1971/08/10	-
SPWE	61 16.441	-152 33.410	1,233	L	4	2004/08/18	-
Tanaga	Volcano sub	net (6 stations -	8 componer	nts)			
TACS	51 51.792	-178 08.363	918	L.	4	2003/08/28	-
TAFL	51 45.396	-177 53.867	186	L		2003/08/28	-
$TAFP^3$	51 54.003	-177 58.997	440		22	2003/08/27	-
TANO	51 54.942	-178 07.249	269	L		2003/08/24	-
TAPA	51 48.932	-177 48.770	640	L		2003/08/27	-
TASE	51 50.099	-178 02.222	682	L		2003/08/24	-
Mount V	/eniaminof s	subnet (9 station	s - 9 compoi	nents)			
BPBC	56 35.383	-158 27.153	584	Ĺ	4	2002/10/03	-
VNFG	56 17.140	-159 33.066	1,068	L		2002/02/06	-
VNHG	56 13.267	-159 09.853	966	L		2002/02/06	-
VNKR	56 01.871	-159 22.068	620	L		2002/02/06	-
VNNF	56 17.022	-159 18.961	1,153	L		2002/06/20	-
VNSG	56 07.549	-159 05.121	761	L		2002/02/06	-
VNSS	56 13.600	-159 27.290	1,733	L		2002/02/06	-
VNSW	56 04.317	-159 33.508	716	L		2002/06/20	-
VNWF	56 09.104	-159 33.733	1,095	L		2002/02/06	-

Station L	atitude (N)	Longitude (E) Ele	evation (m)	Seismometer	Open date	Close date	
Westdah	l Peak sub	net (6 stations -	8 compone	ents)			
WEBT	54 35.468		467		L4	2008/08/02	-
WECS	54 31.853	-164 46.653	642		L4	2008/08/03	-
WESE	54 28.389	-164 35.038	953		L4	1998/08/28	_
WESN	54 34.620	-164 34.704	549		L4	1998/10/17	_
$WESP^3$	54 28.611	-164 43.277	937		L22	2008/07/31	=
$WESS^{3R}$	54 28.828	-164 43.333	908		L22	1998/08/28	2008/07/31
WFAR R	54 32.029	-164 46.567	640		L4	1998/08/28	2008/08/03
WPOG R	54 35.837	-164 44.606	445		L4	1998/10/17	2008/08/02
WTUG	54 50.847		636		L4	1998/10/17	-
Mount W	Vrangall cu	ibnet (4 stations	- 6 compo	nante)			
	61 59.178		2,280		L22	2000/07/31	
WACK	62 00.189		4,190		L22 L4	2000/07/31	-
WASW	61 55.692		2,196		L4 L4	2000/07/31	-
	62 04.506		2,196		L4 L4	2001/08/03	
WAZA	02 04.300	-144 9.132	2,331		L4	2001/08/03	-
		ions (9 stations -					
ADAG	51 58.812	-176 36.104	286		L4	1999/09/15	-
$AMKA^3$	51 22.70	179 18.11	116		Tri-40	2005/10/14	=
BGM	59 23.56	-155 13.76	625		L4	1978/09/08	-
BGR	60 45.45	-152 25.06	985		L4	1991/07/01	-
ETKA	51 51.712	-176 24.351	290		L4	1999/09/15	-
MMN	59 11.11	-154 20.20	442		S13	1981/08/22	_
OPT	59 39.192	-153 13.796	634		S13	1974/00/00	-
PDB	59 47.09	-154 11.37	360		L4	1978/09/09	_
STLK	61 29.926	-151 49.963	945		L4	1997/09/01	-
AEIC an	d WCATV	VC stations					
ADK	51 53.022		116		STS-1	1966/01/01	_
AKUT	54 8.112		55		STS-2	2002/10/03	_
ATKA	52 12.162		55		CMG-3ESP	2002/10/03	_
BAL	61 02.172		1541		L4	1973/08/24	_
BMR	60 58.092		842		CMG-40T	1979/08/19	_
CHGN	56 18.084		16		L4	2004/10/20	_
CUT	62 24.282		168		L4	1986/07/18	_
FALS	54 51.438		46		CMG-3ESP	2002/06/19	_
GLB	61 26.508		853		L4	1973/08/25	_
HOM	59 39.498		198		L4	1981/01/01	_
KDAK	57 46.968		152		KS-54000	1997/06/09	_
MENT	62 56.280		702		L4	2004/10/20	_
NIKH	52 58.386		507		STS-2	2007/06/21	_
NIKO	52 56.328		80		CMG-3ESP	2007/00/21	_
NKA	60 44.580		100		L4	1971/09/13	_
PAX	62 58.224		1130		STS-2	1969/07/01	_
PLR	61 35.532		100		L4	1984/09/21	-
SCM	61 50.004		100		S13	1966/06/01	-
	62 31.620				S13	1986/01/01	-
SDG			625				-
SKN	61 58.836		603		STS-2	1972/08/09	-
SLK	60 30.738		655		L4	1984/07/30	_
UNV	53 50.790	-166 30.120	67		CMG-3ESP	1999/02/19	-

Station Codes:

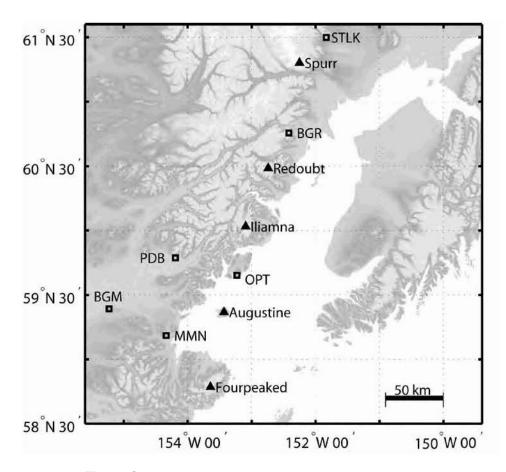
- Three-component station
- # Temporary broadband station in AVO-U-Wisconsin tomography project
- R Station removed in 2008
- * Seismic station has a both a high-gain and low-gain vertical component.

Seismometer Codes:

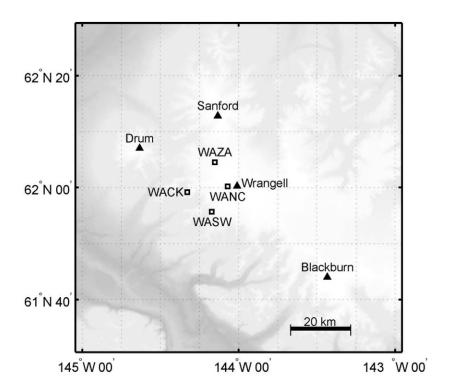
CMG-40T Guralp CMG-40T three-component broadband seismometer CMG-6TD: Guralp CMG-6TD three-component broadband seismometer CMG-3ESP: Guralp CMG-3ESP three-component broadband seismometer

L4, L4-3D: Mark Products L4 or L4-3D single-component short-period seismometer

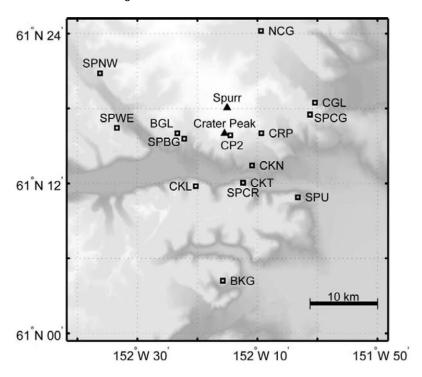
L22: Mark Products L22 three-component short-period seismometer S13: Teledyne Geotech S13 single-component short-period seismometer

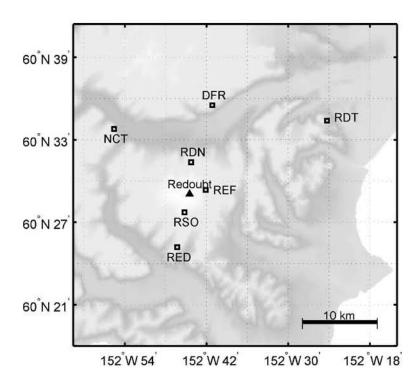

SM: Ref Tek 130-ANSS/02 strong motion seismometer STS-1: Streckeisen STS-1H/VBB broadband seismometer

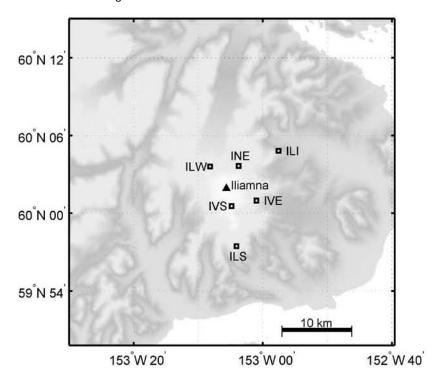
STS-2: Streckeisen STS-2 broadband seismometer

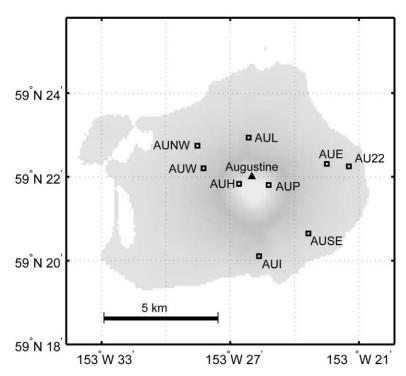

Tri-40: Nanometrics Trillium 40 three-component broadband seismometer

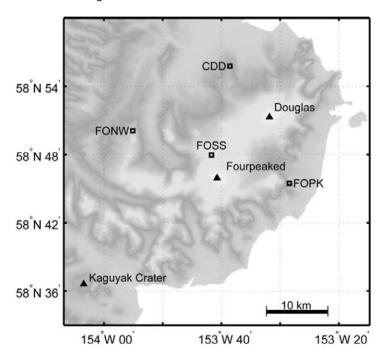
This page left intentionally blank.

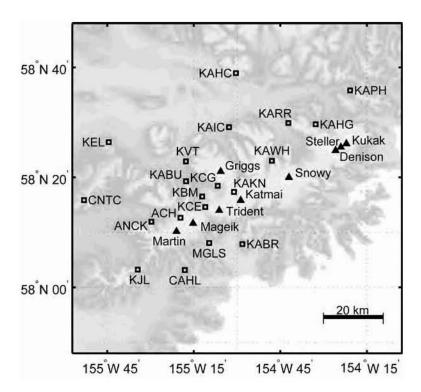

Appendix C. Locations of the AVO Seismograph Stations in 2008.

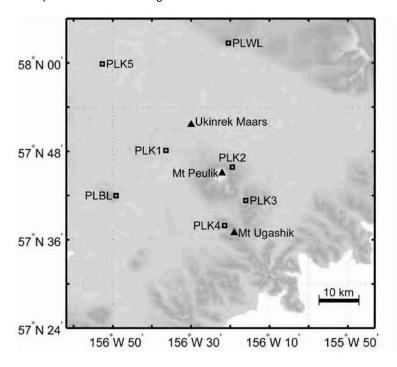

Figure C1. Regional AVO seismograph stations in Cook Inlet in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

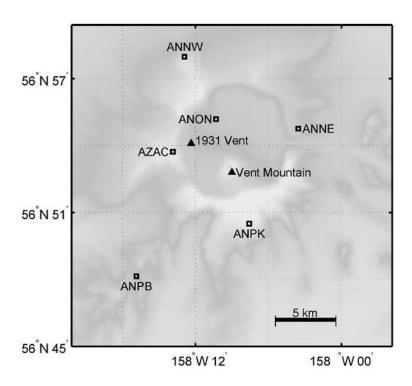

Figure C2. AVO seismograph stations near Mount Wrangell in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

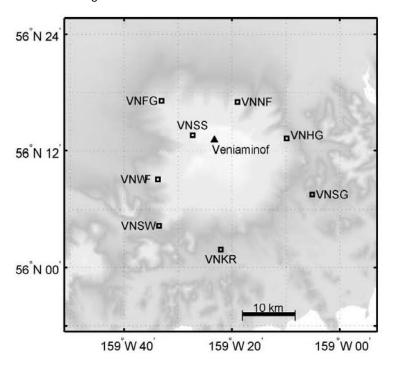

Figure C3. AVO seismograph stations near Mount Spurr in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

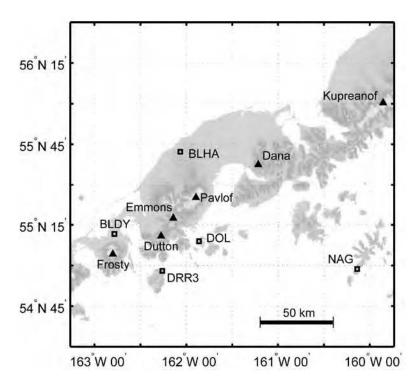

Figure C4. AVO seismograph stations near Redoubt Volcano in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

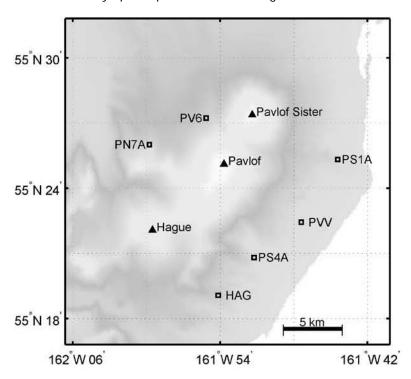

Figure C5. AVO seismograph stations near Iliamna Volcano in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

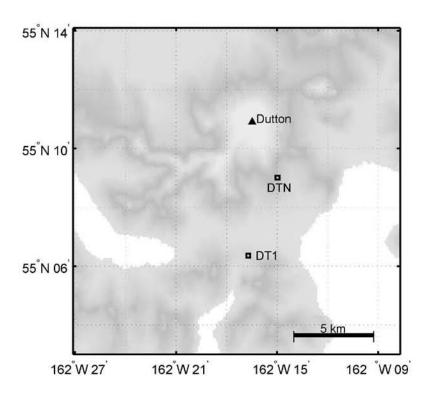

Figure C6. AVO seismograph stations near Augustine Volcano in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

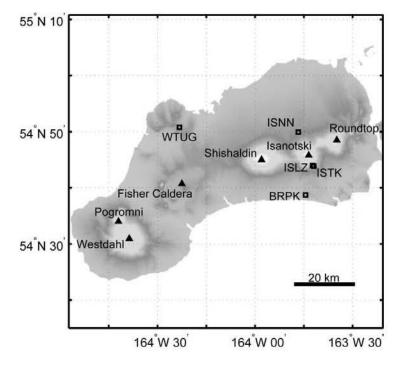

Figure C7. AVO seismograph stations near Fourpeaked Mountain in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

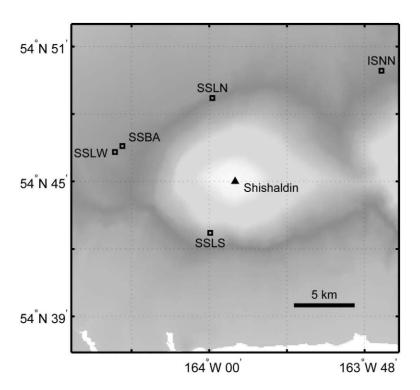

Figure C8. AVO seismograph stations near the Katmai volcanic cluster in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

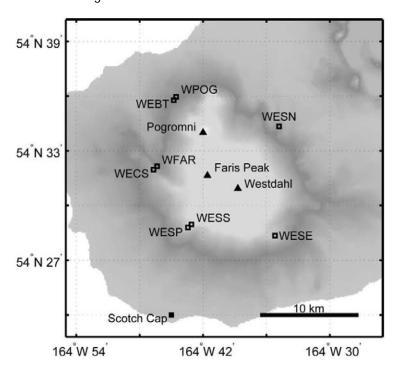

Figure C9. AVO seismograph stations near the Mount Peulik in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

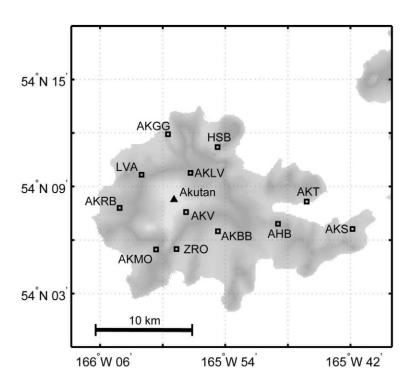

Figure C10. AVO seismograph stations near Aniakchak Crater in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

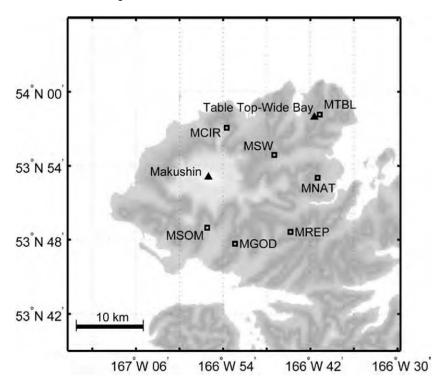

Figure C11. AVO seismograph stations near Mount Veniaminof in 2008. Seismograph station BPBC is not shown and is located 70 km northeast of Mount Veniaminof. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

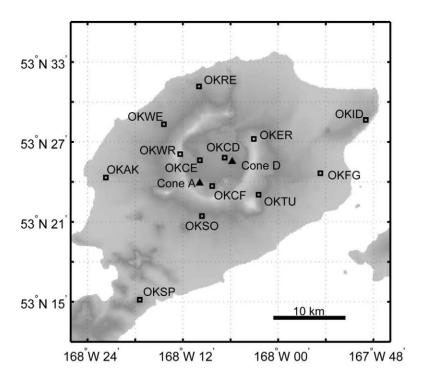

Figure C12. Regional AVO seismograph stations on the western end of the Alaska Peninsula in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

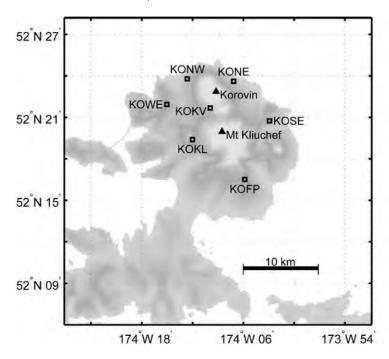

Figure C13. AVO seismograph stations near Pavlof Volcano in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

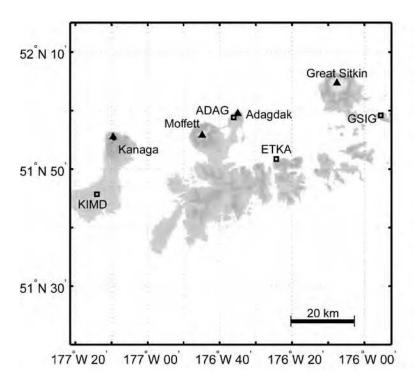

Figure C14. AVO seismograph stations near Mount Dutton in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

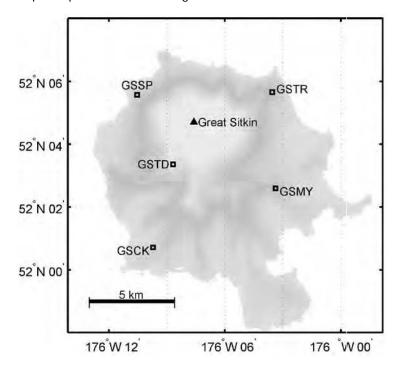

Figure C15. Regional AVO seismograph stations on Unimak Island in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

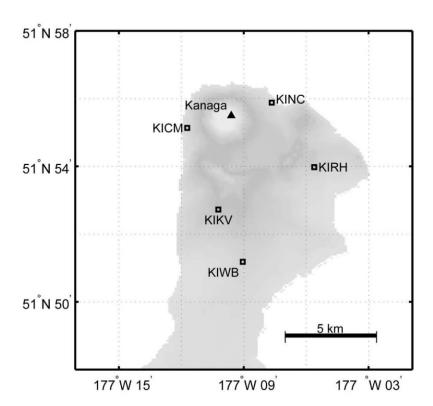

Figure C16. AVO seismograph stations near Shishaldin Volcano in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

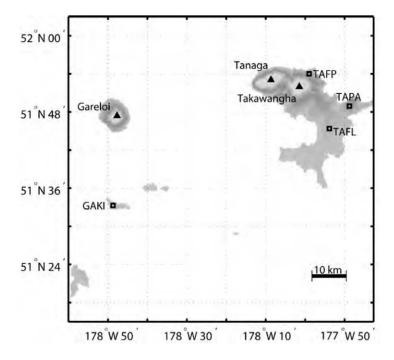

Figure C17. AVO seismograph stations near Westdahl Peak in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

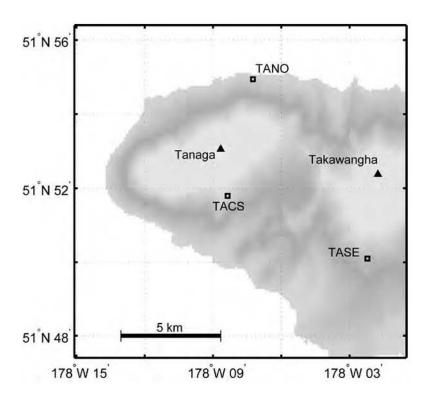

Figure C18. AVO seismograph stations near Akutan Peak in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

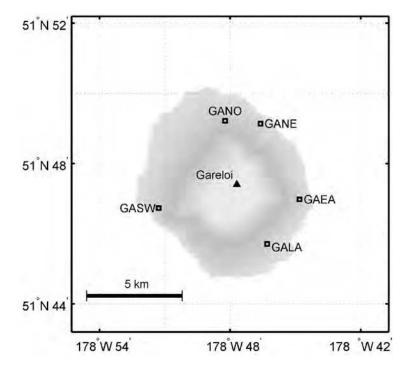

Figure C19. AVO seismograph stations near Makushin Volcano in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

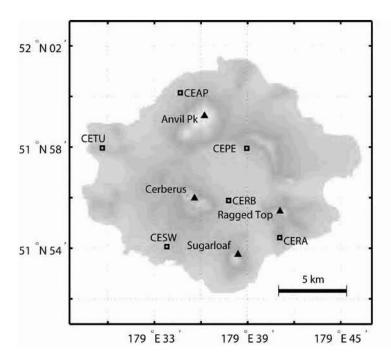

Figure C20. AVO seismograph stations near Okmok Volcano in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers. OKCD was destroyed in the 2008 Okmok eruption.


Figure C21. AVO seismograph stations on Atka Island in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.


Figure C22. Regional AVO seismograph stations around Adak Island in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.


Figure C23. AVO seismograph stations near Great Sitkin Volcano in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.


Figure C24. AVO seismograph stations near Kanaga Volcano in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.


Figure C25. Regional AVO seismograph stations around Tanaga Volcano and Mount Gareloi in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

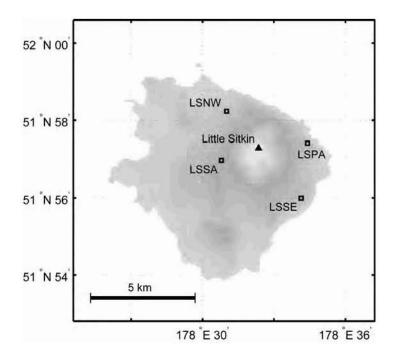

Figure C26. AVO seismograph stations near Tanaga Volcano in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

Figure C27. AVO seismograph stations near Mount Gareloi in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

Figure C28. AVO seismograph stations on Semisopochnoi Island in 2008. Seismograph station AMKA is not shown and is located 65 km south-southwest of Mount Cerberus. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

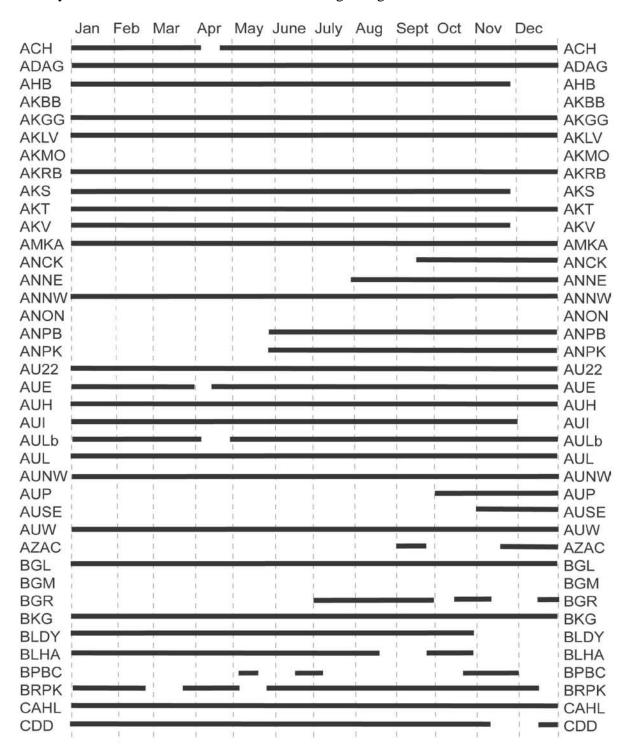
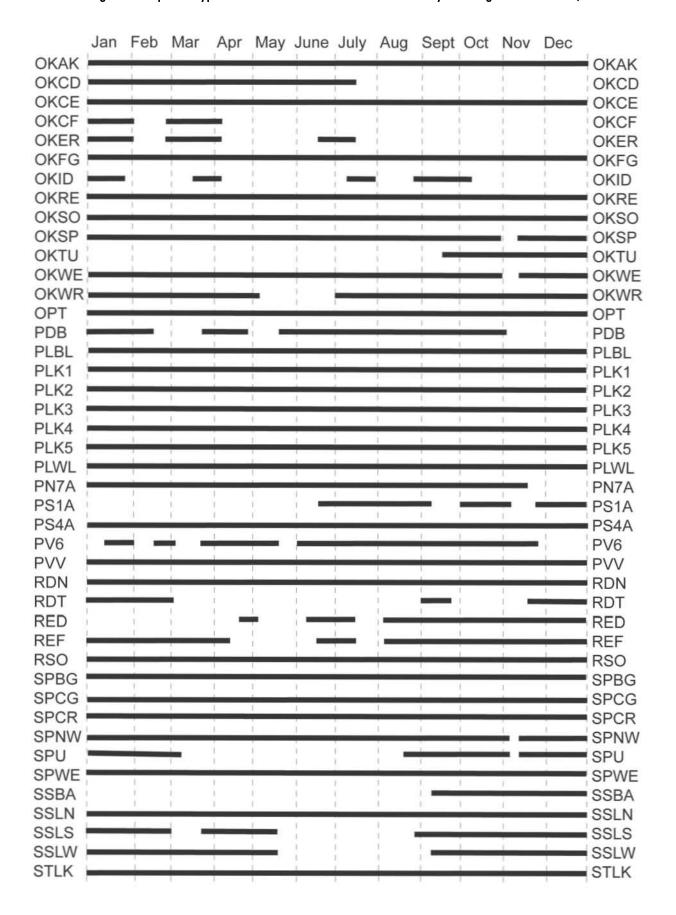
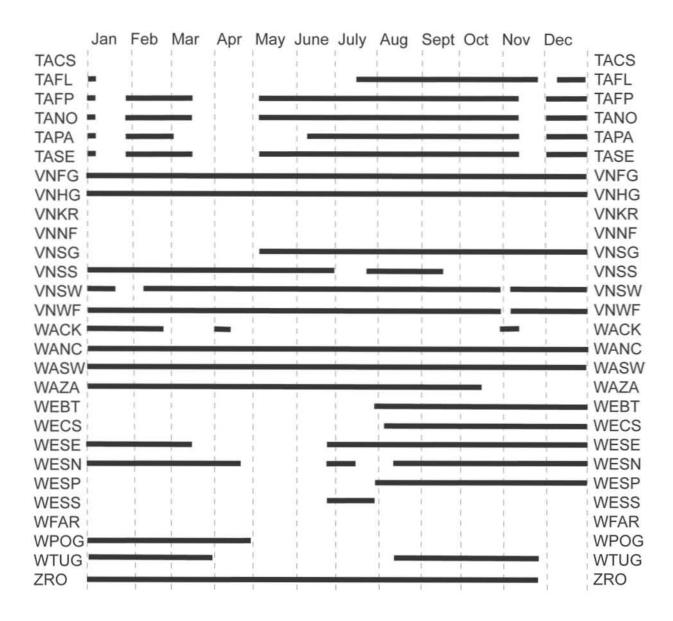


Figure C29. AVO seismograph stations on Little Sitkin Island in 2008. Permanent seismograph stations are shown by open squares. Closed triangles show volcanic centers.

This page left intentionally blank.

Appendix D. Operational Status for AVO Stations in 2008.


A solid bar indicates periods of time a station was operational based on station use plots and weekly checks. Dashed vertical lines show the beginning/end of each month.



74	Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2008
	This page left intentionally blank.

Appendix E. Seismic Velocity Models Used in Locating the Earthquakes in 2008.

Following the name of each velocity model is a list of volcano subnetworks for which the model is used. Depths are referenced to sea level, with negative values reflecting height above sea level.

Cylindrical Model Parameters (Latitude and Longitude are the center of the model).

Velocity Model	Latitude (°N)	Longitude (°E)	Radius (km)	Top (km)	Bottom (km)
Spurr	61.60	-152.40	20	-3	50
Spurr	61.47	-152.33	20	-3	50
Spurr	61.33	-152.25	20	-3	50
Spurr	61.17	-152.35	20	-3	50
Spurr	61.00	-152.45	20	-3	50
Redoubt	60.83	-152.55	20	-3	50
Redoubt	60.66	-152.66	20	-3	50
Redoubt	60.49	-152.75	20	-3	50
Redoubt	60.34	-152.86	20	-3	50
Iliamna	60.03	-153.09	20	-3	50
Augustine	59.36	-153.42	20	-3	50
Katmai	58.17	-155.35	20	-3	50
Katmai	58.29	-154.86	20	-3	50
Katmai	58.35	-155.09	20	-3	50
Katmai	58.43	-154.38	20	-3	50
Veniaminof	56.18	-159.38	30	-3	50
Cold Bay	55.42	-161.89	20	-3	50
Cold Bay	55.18	-162.27	20	-3	50
Cold Bay	54.76	-163.97	30	-3	50
Westdahl	54.52	-164.65	20	-3	50
Akutan	54.15	-165.97	20	-3	50
Okmok	53.40	-176.13	20	-3	50
Andreanof	52.08	-176.13	20	-3	50
Andreanof	51.93	-176.75	20	-3	50
Andreanof	51.92	-177.17	20	-3	50
Tanaga	51.89	-178.15	20	-3	50

Regional Velocity Model (Fogleman and others, 1993).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	5.3	-3.0	1.78
2	5.6	4.0	1.78
3	6.2	10.0	1.78
4	6.9	15.0	1.78
5	7.4	20.0	1.78
6	7.7	35.0	1.78
7	7.9	33.0	1.78
8	8.1	47.0	1.78
9	8.3	65.0	1.78

Akutan Velocity Model (Power and others, 1996).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	2.30 +0.37 km/sec for each km of depth	-3.0	1.80
2	6.30	7.0	1.80

Andreanof Velocity Model (Toth and Kisslinger, 1984).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	3.50	-3.0	1.73
2	3.88	-2.8	1.73
3	4.25	-2.6	1.73
4	4.62	-2.4	1.73
5	5.00	-2.2	1.73
6	5.50	-2.0	1.73
7	5.62	-1.0	1.73
8	5.74	0.0	1.73
9	5.86	1.0	1.73
10	5.98	2.0	1.73
11	6.10	3.0	1.73
12	6.60	4.0	1.73
13	6.68	5.0	1.73
14	6.80	8.0	1.73
15	6.92	11.0	1.73
16	7.04	14.0	1.73
17	7.16	17.0	1.73
18	7.28	20.0	1.73
19	7.85	23.0	1.73
20	8.05	37.0	1.73

Augustine Velocity Model (Power, 1988).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	2.3	-3.0	1.80
2	2.6	-0.7	1.80
3	3.4	0.0	1.80
4	5.1	1.0	1.80
5	6.3	9.0	1.78
6	8.0	44.0	1.78

Cold Bay Velocity Model (McNutt and Jacob, 1986).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	3.05	-3.00	1.78
2	3.44	0.00	1.78
3	5.56	1.79	1.78
4	6.06	3.65	1.78
5	6.72	10.18	1.78
6	7.61	22.63	1.78
7	7.90	38.51	1.78

Iliamna Velocity Model (Roman and others, 2001).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	4.8	-3.0	1.78
2	6.1	-1.6	1.78
3	6.2	1.7	1.78
4	6.3	2.9	1.78
5	6.4	3.1	1.78
6	7.1	16.5	1.78

Katmai Velocity Model (Searcy, 2003).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	5.05	-3.0	1.78
2	5.10	1.0	1.78
3	5.41	2.0	1.78
4	5.49	3.0	1.78
5	5.65	4.0	1.78
6	5.67	5.0	1.78
7	5.69	6.0	1.78
8	5.76	7.0	1.78
9	5.80	8.0	1.78
10	6.00	9.0	1.78
11	6.04	10.0	1.78
12	6.08	12.0	1.78
13	6.30	15.0	1.78
14	6.73	20.0	1.78
15	7.54	25.0	1.78
16	7.78	33.0	1.78

Okmok Velocity Model (Searcy and Prejean, U.S. Geological Survey, written commun., 2009).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	3.830	-3.0	1.73
2	3.891	0.0	1.73
3	5.084	1.0	1.73
4	5.187	2.0	1.73
5	5.470	3.0	1.73
6	6.185	4.0	1.73
7	6.191	10.0	1.73
8	6.454	12.0	1.73
9	6.896	16.0	1.73
10	7.414	20.0	1.73

Redoubt Velocity Model (Lahr and others, 1994).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	2.90	-3.0	1.80
2	5.10	-1.7	1.80
3	6.40	1.5	1.72
4	7.00	17.0	1.78

Spurr Velocity Model (Jolly and others, 1994).

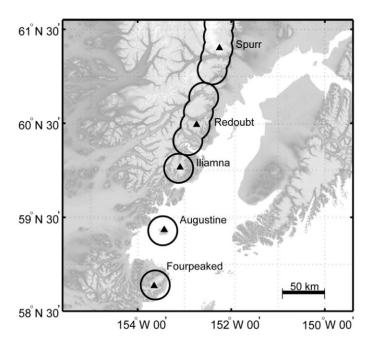
Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	5.1	-3.00	1.81
2	5.5	-2.00	1.81
3	6.3	5.25	1.74
4	7.2	27.25	1.78

Tanaga Velocity Model (Power, personal commun., 2005).

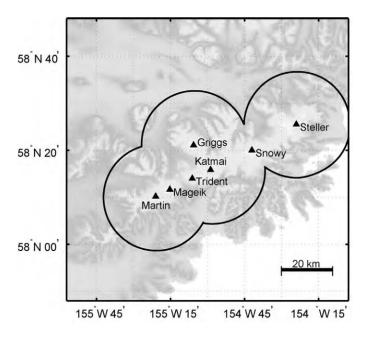
Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	4.0	-3.0	1.78
2	4.5	-1.2	1.78
3	5.0	0.0	1.78
4	5.6	4.0	1.78
5	6.9	10.0	1.78
6	7.2	15.0	1.78
7	7.8	20.0	1.78
8	8.1	33.0	1.78

Veniaminof Velocity Model (Sánchez, 2005).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	4.82	-3.0	1.73
2	5.23	4.0	1.88
3	5.23	10.0	1.38
4	6.49	15.0	1.65
5	6.52	20.0	1.51
6	8.18	25.0	1.89
7	8.21	33.0	1.90
8	8.21	47.0	1.80
9	8.30	65.0	1.78


Westdahl Velocity Model (Dixon and others, 2005).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	3.03	-3.0	1.71
2	3.18	0.0	1.71
3	5.03	2.0	1.71
4	5.70	8.0	1.71
5	6.30	10.0	1.71
6	6.82	16.0	1.71
7	7.17	26.0	1.71
8	8.16	38.0	1.71


80

This page left intentionally blank.

Appendix F. Location of Volcanic Zones Modeled Using Multiple Cylinders.

Figure F1. Volcanic zones for the Cook Inlet Volcanoes. Five overlapping cylinders model the Spurr volcanic zone. Four overlapping cylinders model the Redoubt volcanic zone. Single cylinders model the Iliamna, Augustine, and Fourpeaked volcanic zones.

Figure F2. Volcanic zone for the Katmai volcanic cluster. The volcanic zone is modeled using four overlapping cylinders centered on Mount Martin, Mount Katmai, Mount Griggs, and Mount Steller.

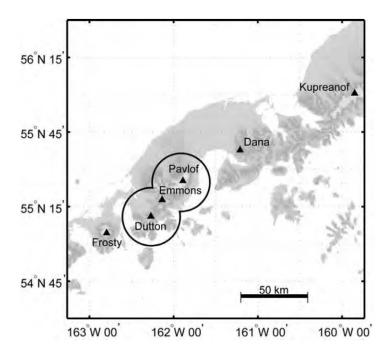


Figure F3. Volcanic zones for Pavlof Volcano and Mount Dutton. The volcanic zone is modeled using two overlapping cylinders centered on Mount Dutton and Pavlof Volcano.

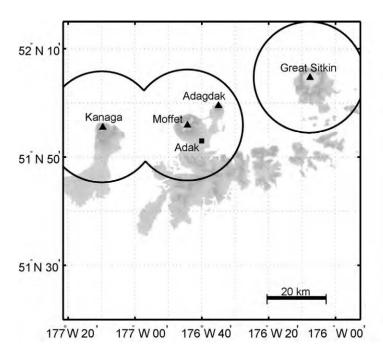


Figure F4. Volcanic zones in the Adak region. The volcanic zones are modeled using cylinders centered on Kanaga Volcano, Mount Moffet, and Great Sitkin Volcano.

Appendix G. Previous Alaska Volcano Observatory Earthquake Catalogs.

Earthquake catalog for 1989–present available from the USGS.

- 1989–90: Power, J.A., March, G.D., Lahr, J.C., Jolly, A.D., and Cruse, G.R., 1993, Catalog of earthquake hypocenters at Redoubt Volcano and Mount Spurr, Alaska: October 12, 1989 – December 31, 1990: U.S. Geological Survey Open-File Report 93-685-A, 57 p. URL: http://pubs.er.usgs.gov/usgspubs/ofr/ofr93685A
- 1991–93: Jolly, A.D., Power, J.A., Stihler, S.D., Rao, L.N., Davidson, G., Paskievitch, J., Estes, S., and Lahr, J.C., 1996, Catalog of earthquake hypocenters for Augustine, Redoubt, Iliamna, and Mount Spurr Volcanoes, Alaska: January 1, 1991 - December 31, 1993: U.S. Geological Survey Open-File Report 96-70, 90 p. URL: http://pubs.er.usgs.gov/usgspubs/ofr/ofr9670
- 1994–99: Jolly, A.D., Stihler, S.D., Power, J.A., Lahr, J.C., Paskievitch, J., Tytgat, G., Estes, S., Lockhart, A.B., Moran, S.C., McNutt, S.R., and Hammond, W.R., 2001, Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1, 1994 - December 31, 1999: U.S. Geological Survey Open-File Report 01-189, 202 p. URL: http://geopubs.wr.usgs.gov/open-file/of01-189/
- 2000-01: Dixon, J.P, Stihler, S.D., Power, J.A., Tytgat, G., Estes, S., Moran, S.C., Paskievitch, J., and McNutt, S.R., 2002, Catalog of Earthquake Hypocenters at Alaska Volcanoes: January 1, 2000 -December 31, 2001: U.S. Geological Survey Open-File Report 02-342, 56 p. URL: http://geopubs.wr.usgs.gov/open-file/of02-342/
- 2002: Dixon, J.P., Stihler, S.D., Power, J.A., Tytgat, G., Moran, S.C., Sánchez, J.J., Estes, S., McNutt, S.R., and Paskievitch, J., 2003, Catalog of Earthquake Hypocenters at Alaska Volcanoes: January 1 - December 31, 2002: U.S. Geological Survey Open-File Report 03-267, 58 p. URL: http://geopubs.wr.usgs.gov/open-file/of03-267/
- 2003: Dixon, J.P., Stihler, S.D., Power, J.A., Tytgat, G., Moran, S.C., Sánchez, J.J., Estes, S., McNutt, S.R., and Paskievitch, J., 2004, Catalog of Earthquake Hypocenters at Alaska Volcanoes: January 1 - December 31, 2003: U.S. Geological Survey Open-File Report 2004-1234, 59 p. URL: http://pubs.usgs.gov/of/2004/1234/
- 2004: Dixon, J.P., Stihler, S.D., Power, J.A., Tytgat, G., Estes, S., Prejean, S., Sánchez, J.J., Sanches, R., McNutt, S.R., and Paskievitch, J., 2005, Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2004: U.S. Geological Survey Open-File Report 2005-1312, 74 p. URL: http://pubs.usgs.gov/of/2005/1312/
- 2005: Dixon, J.P., Stihler, S.D., Power, J.A., Tytgat, G., Estes, S., and McNutt, S.R., 2007, Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2005: U.S. Geological Survey Open-File Report 2007-1264, 78 p. URL: http://pubs.usgs.gov/of/2007/1264/

84 Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2008

2006: Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, Cheryl, 2008, Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2006: U.S. Geological Survey Data Series 326, 78 p.

URL: http://pubs.usgs.gov/ds/326/pdf/ds326.pdf

2007: Dixon, J.P., Stihler, S.D., and Power, J.A., and Searcy, Cheryl, 2008, Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2007: U.S. Geological Survey Data Series 367, 82 p.

URL: http://pubs.usgs.gov/ds/367/pdf/ds367.pdf

Appendix H. Selected Papers Published in 2008 Using Alaska Volcano Observatory Data.

Pesicek, J.D., Thurber, C.H., DeShon, H.R., Prejean, S.G., and Zhang, H., 2008, Three-dimensional P-wave velocity structure and precise earthquake relocation at Great Sitkin Volcano, Alaska, 2008: Bulletin of the Seismological Society of America, v. 98, no. 5, p. 2428-2448.

McNutt, S.R., and Nishimura, T., 2008, Volcanic tremor during eruptions: Temporal characteristics, scaling and estimates of vent radius: Journal of Volcanology and Geothermal Resources, v. 178, p. 10-18.

Waythomas, C.F., Prejean, S.G., and McNutt, S.R., 2008, August-September, 2007 eruption of Pavlof Volcano, Alaska: Eos Transactions, American Geophysical Union, v. 89, no. 23, June 3, 2008.

This page intentionally left blank.

Publishing support provided by the U.S. Geological Survey Publishing Network, Tacoma Publishing Service Center

For more information concerning the research in this report, contact the Director, Alaska Science Center U.S. Geological Survey 4210 University Dr. Anchorage, Alaska 99508-4650 http://alaska.usgs.gov