NEHRP Clearinghouse

displaying 1 - 6 results in total 6

  • Chong, W. H.; Soong, T. T.
    Sliding Fragility of Unrestrained Equipment in Critical Facilities.
    National Science Foundation, Arlington, VA. Earthquake Engineering Research Centers Program., July 5, 2000, 144 p.
    Identifying Number(s): MCEER-00-0005
    Keywords: Sliding friction; Shaking; Nonstructural components; Fragility; Discrete systems model; Mathematical models; Tests; Earthquake damages; Bracing; Buildings; Structural responses; Stability bounds; Fastenings; Structural components; Unrestrained equipment; Shaking tables tests; Stability; Critical facilities; Earthquake engineering; Analytical techniques; Earthquakes

  • Mehrabi, A. B.; Shing, P. B.; Schuller, M. P.; Noland, J. L.
    Performance of Masonry-Infilled R/C Frames under In-Plane Lateral Loads.
    National Science Foundation, Arlington, VA., October 1994, 272 p.
    Identifying Number(s): CU/SR-94/6
    Keywords: Infilled panels; Reinforced concrete; Lateral loads; Prototypes; Displacement; Shear stresses; Cyclic loads; Masonry; Finite element method; Failure modes; Strain gages; Stress strain relations; Structural failure; Algorithms; Earthquake damage; Concrete structures; Cracks; Structural components; Wall loading; Structural analysis; Cracking (Fracturing); Frames; Dynamic response; Earthquake engineering

  • Spacone, E.; Ciampi, V.; Filippou, F. C.
    Beam Element for Seismic Damage Analysis.
    National Science Foundation, Arlington, VA., August 1992, 134 p.
    Identifying Number(s): UCB/EERC-92/07
    Keywords: ; Structural engineering; Finite element method; Deformation; Structural vibration; Beams (Structural); Numerical integration; Earthquake damage; Dynamic response; Earthquake engineering; Stiffness; Structural response; Nonlinear systems; Structural components; Structural analysis

  • Filippou, F. C.; D'Ambrisi, A.; Issa, A.
    Nonlinear Static and Dynamic Analysis of Reinforced Concrete Subassemblages.
    National Science Foundation, Arlington, VA.; Istituto Superiore di Ricerca sui Materiali Speciali, Terni (Italy).; Italian Dottorato di Ricerca Meccanica delle Strutture, Bologna (Italy)., August 1992, 198 p.
    Identifying Number(s): UCB/EERC-92/08
    Keywords: ; Girders; Earthquake resistant structures; Reinforced concrete; Dynamic response; Dynamic models; Earthquake engineering; Ground motion; Stress analysis; Stiffness; Displacement; Nonlinear systems; Reinforcement (Structures); Structural components; Structural analysis

  • Singhal, A.; Kiremidjian, A. S.
    Method for Developing Motion Damage Relationships for Reinforced Concrete Frames, May 1995.
    National Science Foundation, Washington, DC.; New York State Science and Technology Foundation, Albany., May 11, 1995, 124 p.
    Keywords: ; Earthquake resistant structures; Reinforced concrete; Structural failure; Matrices (Mathematics); Mathematical models; Earthquake damage; Dynamic response; Ground motion; Concrete structures; Earthquake engineering; Structural components

  • Singhal, A.; Kiremidjian, A. S.
    Method for Earthquake Motion-Damage Relationships with Application to Reinforced Concrete Frames.
    National Center for Earthquake Engineering Research, Buffalo, NY.; National Science Foundation, Arlington, VA., September 10, 1997, 256 p.
    Keywords: ; Reinforced concrete; Sensitivity analysis; Gaussian processes; Soil-structure interactions; Fragility; Damage assessment; Bayes theorem; Mathematical models; Autoregressive processes; Probability; Structural failure; Earthquake damage; Concrete structures; Monte Carlo method; Seismic effects; Structural components; Frames; Dynamic response; Ground motion; Earthquake engineering