NEHRP Clearinghouse

displaying 51 - 60 results in total 110

  • Saiidi, M.; Maragakis, E.; Feng, S.
    Evaluation of the Current CALTRANS Seismic Restrainer Design Method.
    California State Dept. of Transportation, Sacramento.; National Science Foundation, Washington, DC.; Nevada Dept. of Transportation, Carson City., October 1992, 72 p.
    Identifying Number(s): CCEER-92-8
    Keywords: Earthquake resistant structures; Hinges; Computer programs; Restrainers; Dynamic response; Earthquake engineering; Design standards; Highway bridges; Displacement; Stress analysis; Bridge design; Stiffness; Bearings; Nonlinear systems; Seismic effects; Earthquakes; Dynamic structural analysis

  • Kariotis, J. C.; Rahman, M. A.; El-Mustapha, A. M.
    Investigation of Current Seismic Design Provisions for Reinforced Masonry Shear Walls.
    National Science Foundation, Washington, DC., January 1990, 58 p.
    Identifying Number(s): REPT-2.3-3
    Keywords: ; Masonry; Mathematical models; Earth movements; Walls; Structural design; Dynamic response; Buildings; Earthquake engineering; Reinforcement (Structures); Stiffness; Displacement; Deflection; Design Standards; Seismic effects; Dynamic structural analysis

  • Kariotis, J. C.; Waqfi, O. M.; Ewing, R. D.
    Computer Program Using Beam Elements for the Nonlinear, Dynamic Analysis of Lumped Parameter Models.
    National Science Foundation, Washington, DC., February 1992, 96 p.
    Identifying Number(s): REPT-2.3-5
    Keywords: Equations of motion; Displacement; Loads (Forces); Damping; Nonlinear systems; Masonry; Concrete; Matrices (Mathematics); Algorithms; LPM/II computer program; Stiffness; Beams (Supports); Walls; Dynamic response; Degrees of freedom; Earthquake engineering; Boundary conditions; Computer programs; Reinforcement (Structures); Mechanical properties; Dynamic structural analysis

  • Waqfi, O. M.; Kariotis, J. C.
    Comparison of the Dynamic Response of a Damped MDOF Nonlinear Beam Model with an Equivalent SDOF Hysteretic Model.
    National Science Foundation, Washington, DC., April 27, 1992, 92 p.
    Identifying Number(s): REPT-2.3-6
    Keywords: ; Deformation; Earth movements; Displacement; Loads (Forces); Structural members; Damping; Mathematical models; Nonlinear systems; Masonry; Structural vibration; Mechanical hysteresis; Stiffness; Beams (Supports); Walls; Dynamic response; Degrees of freedom; Earthquake engineering; Energy dissipation; Reinforcement (Structures); Mechanical properties

  • Blondet, M.; Mayes, R. L.
    Transverse Response of Clay Masonry Walls Subjected to Strong Motion Earthquakes. Summary of Dynamic Test Results. Volume 1. General Information.
    National Science Foundation, Washington, DC., April 1991, 163 p.
    Identifying Number(s): REPT-3.2(B2)-VOL-1
    Keywords: ; Moments; Earth movements; Bending; Bricks; Displacement; Deflection; Loads (Forces); Experimental data; Dynamic tests; Masonry; Earthquake damage; Clays; Mechanical properties; Seismic effects; Construction joints; Walls; Dynamic response; Earthquake engineering; Reinforcement (Structures); Earthquakes; Dynamic structural analysis

  • Blondet, M.; Mayes, R. L.
    Transverse Response of Clay Masonry Walls Subjected to Strong Motion Earthquakes. Summary of Dynamic Test Results. Volume 2. Walls No. 4 and 6 (Group 1).
    National Science Foundation, Washington, DC., April 1991, 266 p.
    Identifying Number(s): REPT-3.2(B)-2-VOL-2
    Keywords: ; Moments; Earth movements; Bending; Bricks; Displacement; Deflection; Loads (Forces); Experimental data; Dynamic tests; Masonry; Earthquake damage; Clays; Mechanical properties; Seismic effects; Construction joints; Walls; Dynamic response; Earthquake engineering; Reinforcement (Structures); Earthquakes; Dynamic structural analysis

  • Blondet, M.; Mayes, R. L.
    Transverse Response of Clay Masonry Walls Subjected to Strong Motion Earthquakes. Summary of Dynamic Test Results. Volume 3. Walls No. 8, 9, 10, and 11 (Group 2).
    National Science Foundation, Washington, DC., April 1991, 309 p.
    Identifying Number(s): REPT-3.2(B2)-VOL-3
    Keywords: ; Moments; Earth movements; Bending; Bricks; Displacement; Deflection; Loads (Forces); Experimental data; Dynamic tests; Masonry; Earthquake damage; Clays; Mechanical properties; Seismic effects; Construction joints; Walls; Dynamic response; Earthquake engineering; Reinforcement (Structures); Earthquakes; Dynamic structural analysis

  • Blondet, M.; Mayes, R. L.
    Transverse Response of Clay Masonry Walls Subjected to Strong Motion Earthquakes. Summary of Dynamic Test Results. Volume 4. Walls No. 3, 5 and 7 (Group 3).
    National Science Foundation, Washington, DC., April 1991, 255 p.
    Identifying Number(s): REPT-3.2(B2)-VOL-4
    Keywords: ; Moments; Earth movements; Bending; Bricks; Displacement; Deflection; Loads (Forces); Experimental data; Dynamic tests; Masonry; Earthquake damage; Clays; Mechanical properties; Seismic effects; Construction joints; Walls; Dynamic response; Earthquake engineering; Reinforcement (Structures); Earthquakes; Dynamic structural analysis

  • Kariotis, J. C.; Waqfi, O. M.
    Trial Designs Made in Accordance with Tentative Limit States Design Standards for Reinforced Masonry Buildings.
    National Science Foundation, Washington, DC., February 1992, 242 p.
    Identifying Number(s): REPT-9.1-2
    Keywords: ; Deformation; Moments; Earth movements; Displacement; Loads (Forces); Structural members; Mathematical models; Damping; Masonry; Structural design; Earthquake damage; Buildings; Stiffness; Seismic effects; Walls; Design standards; Earthquake engineering; Reinforcement (Structures); Mechanical properties

  • Kariotis, J. C.; El-Mustapha, A. M.; Ewing, R. D.
    Influence of Foundation Model on the Uplifting of Structures.
    National Science Foundation, Washington, DC., July 1988, 41 p.
    Identifying Number(s): REPT-2.3-2
    Keywords: ; Algorithms; Mathematical models; Damping; Earth movements; Earthquake damage; Dynamic response; Buildings; Degrees of freedom; Uplift pressure; Earthquake engineering; Displacement; Foundations; Loads (Forces); Soil mechanics; Dynamic structural analysis